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1. Introduction

Let 3€ be a Hilbert space, let % = 39(2£ W) be the B*-algebra of bounded linear
operators from 5if to Sff with the uniform operator topology, and let $f be the subset of
S5 consisting of the self-adjoint operators. This article is concerned with the second
order self-adjoint differential equation

L[Y] = [P(x)Y']' + Q(x)Y = 0 (1)

on R+ = [0, oo), where P, Q:R+^9" are continuous with P(x) positive definite for all
x €E R+. Let ^ be the set of positive linear functionals on 38. Elements of <§ are used to
derive oscillation criteria for equation (1). It is demonstrated that these criteria include
most of the known oscillation criteria for (1) in the matrix and scalar case. Extensions of
the results to nonlinear differential equations and to differential inequalities are also
discussed.

Appropriate discussions of the concepts of integration and differentiation of
33-valued functions, as well as treatments of the existence and uniqueness of
solutions Y:R+->9S of (1) can be found in a variety of texts. See, for example, E.
Hille (16, Chapters 6 and 9). In particular, it is well known that when suitable initial
conditions are specified for (1), then the resulting initial value problem has a unique
solution which exists on R+.

In this paper we discuss the behavior of solutions of (1) with particular emphasis
on the oscillation of solutions. Studies of the behavior of solutions of second order
equations in Banach spaces have been made by several authors, including Hille (16,
Chapter 9), T. L. Hayden and H. C. Howard (15), G. J. Etgen and J. F. Pawlowski (10,
11), E. S. Noussair (29), and C. M. Williams (42). The doctoral dissertation of Williams
gives a complete treatment of the basic theory of equation (1), and includes existence
and uniqueness of solutions, the relationship between (1) and the Riccati equation,
nonoscillation, oscillation and disconjugacy.

It is important to note that if $? = Rn, Euclidean n-space, then 38 is the B*-algebra
of n x n matrices and equation (1) is the familiar second order self-adjoint matrix
differential equation which has been investigated in great detail by a large number of
authors. In this regard, we refer to the texts by F. V. Atkinson (4), P. Hartman (14), E.
Hille (16), M. Morse (27), W. T. Reid (31, 32) and C. A. Swanson (34), as well as to the
research papers of C. D. Ahlbrandt, W. Allegretto and L. Erbe, W. A. Coppel, G. J.
Etgen, P. Hartman, H. C. Howard, K. Kreith, R. T. Lewis, E. S. Noussair, W. T.
Reid, C. A. Swanson, E. C. Tomastik, and V. A. Yakubovic. While there are a variety
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of reasons for considering the behavior of solutions of (1) in either the matrix or
general B*-algebra case, much of the motivation for such investigations comes from
the tremendous amount of research devoted to the second order scalar equation

[p(x)y'Y+q(x)y=0 (2)

where p and q are continuous, real-valued functions on R+ with p(x)>0 for all
x G. R+. Research on this equation dates to the work of J. Liouville and C. Sturm in
the 1830's, and since then, includes the work of authors far too numerous to mention
specifically here.

2. Definitions and Examples

Throughout this paper we shall assume that 5if is a Hilbert space over the reals R,
with the inner product on "X denoted by (,) and norm || || = (,)1/2. It will be apparent that
the methods and results in the paper apply equally as well when #f is a Hilbert space
over the field of complex numbers, but we restrict our attention to real Hilbert spaces
because most of the work dealing with the matrix version of (1) and the scalar
equation (2) has been done over the reals.

We shall assume that the B*-algebra 38 of bounded linear operators from $? to $?
is topologised by the operator norm

In the case where $f = Rn, the space of ordered n-tuples of real numbers, 38 is the
2?*-algebra of n x n matrices with the *-operation being "transpose." The case X = Rn

will be referred to as the finite dimensional case, except when n - 1. The case n = 1,
i.e., Sif = Ri = R and (1) = (2) will be called the scalar case. The symbol I is used for
the identity element of 38. The symbol 0 is used indiscriminately for the zero element,
with the appropriate interpretation being clear from the context. If A €= S, the
self-adjoint elements of 58, then the notation A > 0(A & 0) is used to signify that A is
positive (non-negative) definite.

Let Y = Y(x) be a solution of equation (1). Then it is easy to verify by differen-
tiation that

Y*[PY'] - [PY1]* Y = C (constant)
on R+.

Definition 2.1. A solution Y = Y(x) of equation (1) is conjoined (or prepared) if

Y*[PY']-[PY']*Y = 0
on R+.

The term "conjoined" has its origins in the Calculus of Variations, and for
amplifications of this concept the reader is referred to Morse (27) and to Reid (31).
Conjoined solutions of (1) can be obtained simply by choosing conjoined initial
values. In fact, it is easy to show that Y is a conjoined solution of (1) if and only if
there is at least one point a G R+ such that

Y*(a)[P(a)Y'(a)] = [P(a)Y'(a)]*Y(a).
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The example given by Noussair and Swanson (28, p. 576) shows that the conjoined
hypothesis on the solutions of (1) is needed in order to obtain an analogue of the
classical theory of oscillation of the scalar equation (2).

Definition 2.2. A solution Y = Y(x) of equation (1) is nonsingular at x = a,
aGR+, if

(i) the range of Y(a):3if-»3€ is %, and
(ii) Y(a) has a bounded inverse.

If either of these conditions fails to hold at x = a, then Y is singular at x = a. The
solution Y has an algebraic singularity at x = a if Y(a) is not one-to-one.

In the finite dimensional case it is clear that the only singularities of a solution Y
of (1) are algebraic singularities, and that Y is singular at x = a if and only if
det [Y(a)] = 0. In the general B*-algebra case, conditions (i) and (ii) in Definition 2.2
are equivalent to the statement Y~l(a) G 58.

Definitions 2.1 and 2.2 are those used by Hille (16), Hayden and Howard (15),
Etgen and Pawlowski (10,11), and Williams (42). Noussair (29) has introduced slightly
different versions of the terms "prepared" and "nonsingular." In particular, he
defines:

Definition 2.2'. A solution Y= Y(x) of equation (1) is nonsingular at x = a if
Y(a) has a bounded inverse.

Definition 2.1'. A solution Y = Y(x) of equation (1) is prepared if
(i) Y*[PY'] = [PY']* Y on R+,
(ii) there is a constant vector a G 3€, a^O, such that a is in the range of Y(a)

whenever Y(a) is nonsingular.
Note that in Noussair's definition of nonsingularity at x = a, it is not required that

Y(a) be onto. An example to illustrate the distinction between Definitions 2.1, 2.2 and
Definitions 2.1', 2.2' is given in (29). It will be apparent in the work which follows that
the methods of this paper can be applied regardless of which definitions of "con-
joined" and "nonsingular" are used. For convenience in the presentation, we shall use
Definitions 2.1 and 2.2 throughout the remainder of the paper.

Definition 2.3. A solution Y = Y(x) of equation (1) is nontrivial if there is at least
one point a G R+ such that Y(a) is nonsingular.

In the finite dimensional case it is well known that a solution Y of (1) is nontrivial
if and only if Y* Y + [PY']*[PY'] > 0 on R+, and that a nontrivial solution has at most
a finite number of singular points on any compact subset of R+. These properties do
not carry over to the general B*-algebra case. Hayden and Howard (15) have shown
that while the set of singularities of a nontrivial solution Y of (1) is a closed set, it is
possible for the set of singularities to have a finite limit point. It is easy to show that
the condition Y*Y + [PY']*[PY']>0 is necessary for Y to be nontrivial, but in the
general B*-algebra case it is not sufficient as the next example shows.

Example 2.1. Let 3if = /2, and consider the differential equation

Y" + AY = 0 on R+,
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where A is the infinite diagonal matrix A = 7r2diag [1, 1/4, 1/9,...]. The function
Y: R+ -» 38 given by Y(x) = diag [sin irx, sin TTJC/2, sin TTX/3, . . . ] is a solution with the
property Y* Y + Y'* Y' > 0 on M+. However, for each fixed x£M + ,xnot an integer, Y is
one-to-one but does not have a bounded inverse because because 0 is in the spectrum of
Y(x). Clearly Y has an algebraic singularity at each integer n G M+. Thus Y is identically
singular on M+.

We turn now to the question of the oscillation of solutions of (1). For the
remainder of the paper we shall assume that the term "solution of (1)" means
"nontrivial conjoined solution."

Definition 2.4. A solution Y = Y(x) of equation (1) is oscillatory if for each
a G R+ there is a number b, b^ a, such that Y(b) is singular. The solution Y is
non-oscillatory if it is not oscillatory.

In the finite dimensional case a solution Y of (1) is oscillatory if and only if det Y
has a infinite number of zeros on R+. Of course, as noted above, det Y can have at
most a finite number of zeros on any compact subset of R+. It is a consequence of
Morse's generalisation (26) of the Sturm separation theorem that if (1) has an oscil-
latory solution, then all solutions are oscillatory. The following simple example shows
that this property does not carry over to the general B*-algebra case.

Example 2.2. Let P(x) = I and Q(x) = 0 in (1), i.e., consider the equation Y" = 0
on R+. Every solution Y of the equation has the form Y(x) = Ax + B, A, B G 38, and
Y is conjoined if A*B = B*A. The solution satisfying Y(0) = /, Y'(0) = 0, is Y(x) = I.
This solution is conjoined and nonsingular on R+. On the other hand, the solution Z
given by Z(x) = Ax + I, where A = diag [-1, -1/2, -1/3 , . . . ] is conjoined and has an
algebraic singularity at each positive integer n.

Definition 2.5. Equation (1) is oscillatory if and only if all nontrivial conjoined
solutions are oscillatory.

The methods and results of this paper involve the set of positive linear functional
on the Banach algebra 33.

Definition 2.6. A linear functional g:33-»R is positive if g (A* A) 2*0 for all
A G 33. Equivalently, g is positive if g(B)s*0 whenever B G Sf and B?f l .

Let 'S denote the set of positive functionals on 38. C. E. Rickart(33) has shown
that if gE.% then g is bounded (i.e., continuous), with ||g|| = g(I), and satisfies a
generalised Cauchy-Schwarz inequality

[g(A*B)]2^g(A*A)g(B*B) (3)

for all A , B £ t It follows from (3) that g is the zero functional if and only if g(I) = 0.
If g is not the zero functional, then g(I) > 0, and, in general, g(A) > 0 whenever A > 0.

The set 'S is non-empty since it is obvious that the zero functional 0 is an element
of <£ It is easy to verify, however, that $ contains elements in addition to the zero
functional. For example, if a G #?, a ^ 0, then the functional ga defined on 38 by

ga(A) = (Aa,a) (4)
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for all A £ % is a positive functional with ||gj| = g{I) = ||a|p > 0. Of course the zero
functional is "associated" with the zero vector 0 G 5? through (4). It can be shown that
there are elements in <£ which are not "associated" with vectors in Sif through (4). For
example, if 2if = Rn, then the functional "trace," denoted tr, and defined by trC4) =
11 au, is a positive functional which is not the associate of any vector a GRn. In
general, it can be verified that <& is a positive cone in the space of continuous linear
functionals on %.

Finally, since a positive functional g is continuous, it follows that

t, a,xGR+

whenever A:R+-*!% is integrable, and

whenever B:R+-»38 is differentiate.

3. Oscillation Criteria

In this section we develop oscillation criteria for equation (1). These criteria will
involve the set <g of positive functionals discussed at the end of the last section. We
shall also show how our criteria include a large number of well known oscillation
criteria as special cases, and so our approach can be viewed as a unification of the
theory. We recall that the term "solution" of (1) is interpreted to mean "nontrivial
conjoined solution."

Definition 3.1. A function V:R+->S8 is L-admissable if each of V and PV is
differentiate on R+ and

V*[PV'] = [PV']*V.

Our first result is a "Picone type" identity for equation (1). The use of Picone's
identity in establishing oscillation and nonoscillation criteria for second order selfad-
joint equations is well known. For a complete discussion of the Picone and related
identities, the reader is referred to Reid (31, Chapter VII) and to Swanson (36,37).

Theorem 3.1. Let g E.% and let f: R+ -» R be piecewise continuously differentiable.
If V:R+-»53 is an L-admissable function which is nonsingular on an interval J CR+,
then

g{(f'I ~ fV V"')*P(/7 - fV V-')} + {f2g[PV V-1]}' = f*g[P] - f2g[Q] + f2g{L[ V] V-1}
on J.

This identity can be established by a straightforward verification. We use this
version of Picone's identity to obtain the following oscillation criterion for equation
(1).

Theorem 3.2. / / for each a £ R+ there is a number b, b> a, an element gE'S,
g^ 0, and a piecewise continuously differentiable function / :R+-»R such that f(a) =
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f(b) = O, f^Oon [a,b], and

{f'2(x)g[P(x)]-f2(x)g[Q(x)]} dx^O, (5)

then equation (1) is oscillatory.

Proof. Suppose there is a solution V = V(x) of (1) such that V is non-oscillatory.
Then there is a number a GR+ such that V is nonsingular on [a, *>).

It is well known that the scalar equation (2) has a solution with at least two zeros
on an interval [a, b] if and only if there is a piecewise continuously differentiable
function / :R+-»R such that f(a) = f(b) = 0, f&O on [a,b] and

"u'2(x)p(x)-f2(x)q(x)]dx^0.

From this fact we can conclude that there are numbers c and d, a =£ c <d =£ b, and
a nontrivial solution u = u(x) of the scalar equation

')' + g[Q(x)]y=O

on [a, b] such that M(C) = u(d) = 0. From Theorem 3.1 we have that

f g{(u'I-uV'V-1)*P(u'I-uV'V-')}dx= \ {u'2g[P]-u2g[Q]}dx
J c Jc

= - [ {(g[P]uJ + g[Q]u} udx
Jc

= 0.

Now, since u is nontrivial and u(c) = 0, we must have u'(c) ^ 0 which implies that
there is a nondegenerate interval [c, c')C[c, d] such that u'l- uV'V'1 is nonsingular
on [c, c'). Therefore ( « 7 - H V ' V - | ) * P ( H 7 - K V 7 " 1 ) > 0 on [c, c') since P >0, and
this leads to the contradiction

0<

f
Jc

The proof of Theorem 3.2 suggests the following oscillation criterion for equation
(1).

Theorem 3.3. / / there is a g E.^ such that the scalar equation

(g[P(x)]y')' + g[Q(x)]y = 0 (6)

is oscillatory, then equation (1) is oscillatory.

Proof. Simply use an oscillatory solution u of (6) to construct a piecewise
continuously differentiable function / such that it, together with the given functional
g £ ? satisfies the hypotheses of Theorem 3.2.
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As a consequence of Theorem 3.3, we can consider the question of the oscillation
of equation (1) in terms of the oscillation of an associated scalar equation of the form
(2). Thus any of the very large number of well known oscillation criteria for (2) can be
used to determine a corresponding oscillation criterion for (1). The following corollary
is a generalisation of the Leighton-Wintner oscillation criterion, and it is a simple
example of the type of criteria which can be obtained for (1) through Theorem 3.3.

Corollary. 1/ there is a gE.<& such that

the equation (1) is oscillatory.

Included in this Corollary are most of the well known oscillation criteria for (1) in
both the finite and the infinite dimensional cases. We demonstrate this statement by
giving some specific examples.

Example 3.1. (Hayden and Howard (15, Theorem 2) and Howard (18, Theorem 1).
In equation (1) let P(x) = I, and let K(x) = So Q(t) dt. If

inf (K(x)a, a)-»°° as x->°°,
||o||=l

then equation (1) is oscillatory.

Proof. Fix any fiEffl, ||j8|| = 1, and let gp be the positive functional associated
with /3 using (4). Then g,{P) = &,(/) = ||/3||2 = 1, and

inf (K(x)a, a)*£gp[K(x)] = f * ge[Q(t)] dt.
IMI=i Jo

Thus the given hypotheses imply that /0°° Hgp(P) = So ge(Q) = °°, and the result follows
from the Corollary.

Example 3.2. (W. Allegretto and L. Erbe (3, Corollary 1), and Noussair and
Swanson(28, Theorem 2)). Let #? = Rn. Let Sfcn denote the collection of strictly
increasing sequences of it integers chosen from the set {l , . . . ,#t}. For any nxn
matrix A, and any a(k) = {it, i2, . . . , /*}£ Sk,n, let 1a A denote the sum of the entries of
the k x k submatrix of A obtained by deleting all rows and columns of A except for
the i'i, i2, • • • ,ik rows and columns. If there exists cr(fe) €E Sk,n such that

then equation (1) is oscillatory. (Noussair and Swanson's result is the case k = 1).

Proof. Let a be the vector with "ones" in the iu h, • • • ,ik positions and "zeros"
elsewhere, and let ga be the positive functional associated with a using (4). Then
ga (A) = 1aA for all nX-n matrices A. Thus the hypotheses can be restated as
Jo" \lga{P) = So ga(Q) = °°, and the Corollary applies.
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In a similar manner, the oscillation criteria obtained by such authors as Etgen (9),
Kartsatos (19), Kreith (20), Swanson (35), and Tomastik (39) can be demonstrated to
be special cases of the Corollary by making suitable choices for the positive func-
tional g.

As suggested by Examples 3.1 and 3.2, and by the results in the other papers cited
above, most of the oscillation criteria for equation (1) in the finite and infinite
dimensional cases are generalisations of the Leighton-Wintner oscillation criterion for
the scalar equation (2), i.e., most of the oscillation criteria involve assumptions of the
form (7). In contrast, Theorem 3.3 can also be'used to obtain oscillation criteria for
equation (1) of the Hille-Wintner type where it is assumed that "JoQ(x)dx is
convergent." As a simple example of this type of criteria, we have:

Example 3.3. Let P(x) = / on R+. If there exists a g £ « such that So g[Q(x)] dx
converges (possibly only conditionally), and if

liminfx f g[Qit)]dt>\,

then equation (1) is oscillatory.

Our next theorem is an extension of Theorem 3.2, and it is the principal result of
this paper. The motivation for this result and the method of proof are contained in the
work of D. B. Hinton (17).

Theorem 3.4. / / there is a positive continuous function h on R+ such that for each

(i) f h(x)dx = °°,
Ja

m •• Ji' {h2(x)gk[P(x)] - [J> h(s) ds]2gk[Qjx)]} dx
u) S2 UFhixTdxf -00

for some sequence {tk} in R+ with lim*^, tk = <», and some sequence of positive function-
al {gk} in <£ with the property that there exists a positive number M such that \\gk\\ =s M
for all positive integers k, then equation (1) is oscillatory.

Proof. Choose any a £ R + . For each t > a, let z, :[a,°°)-»R be the function
defined by

r(jc-fl)C, for x<=[a,a + \)

where C, = [fa+i his) ds ]/[/„' his) ds]. The function z, is piecewise continuously
differentiable on [a, °°).

For any g £ S and any number t, t > a + 1, we have

- z2ix)g[Qix)]} dx = hit) + hit) - hiT),
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where

/,(/) = f °+I {C)g[P{x)] -(x- a)2C2g[Qix)]} dx,

hit) =

hit) =

Pa {h\x)g[P(x)\ - [Ji h(s) ds]2g[Q(x)]} dx
U'his)ds]2

and
Ja

a+I {h\x)g[Pjx)] - Ui his) ds}2 g[Qjx)]} dx
\Sl Hs) ds]2

Now lim,_^ C, = 1, and so lim,^ sup |7i(0| < °°. Also, for t G [a, °°),

r 1 m his) ds]2\\g\\

r1 ui his) dsfhw

• r m i ^ / r 1 h2jx)g[Pix)] dx + fa
a+l [Si his) ds]2\\g\\ • \\Qjx)\\ dx

1/3(01 * [SThuYdsf

[Khis)ds]2 ^ [f!,his)ds]2

so that lim,-^, sup |/3(0| ̂ \\g\\ • niax{||Q(jc)||:x E.[a,a + 1]}<<». Therefore, by hypothesis,
there is a positive integer k such that for t = tk and g = gk we have

f" {[2;*U)]2ft[i*(x)] - z?t(x)ft [<?(*)]} dx < 0.
J a

We can now conclude from Theorem 3.2 that equation (1) is oscillatory.
We conclude this section by giving a variety of oscillation criteria for equation (1)

which are corollaries of Theorem 3.4. Each corollary is obtained either by making a
particular choice for the sequence {gk} of positive functionals, or a particular choice
of the function h, as specified in the hypothesis of Theorem 3.4.

Corollary 1. / / there is a positive continuous function h on R+ such that for each
flER*

r
(0 I mx) dx = oo,

la

( i i ) H m S'a" {h\x){Pix)Zk, &) - Ui" his) ds]2(Qjx)tk, &)} dx m

fc^» [Sak his) ds]2

for some sequence {tk} in R+ with limt_«, tk = °°, and some sequence {&} of unit vectors in
$f, then equation (1) is oscillatory.

Proof. For each positive integer k, the unit vector & determines a positive
functional gk on 58 using (4). Clearly \\gk\\ = ||&|| = 1 for all positive integers k, and so
the hypotheses of the theorem are satisfied.

In essence the next two corollaries involve assumptions on the eigenvalues of
certain self-adjoint operators. While these assumptions do not lead to any difficulties
in the finite dimensional case since a self-adjoint operator on ffl = Rm i.e., an n x n
symmetric matrix, has exactly n real eigenvalues, the situation is not as simple in the
general B*-algebra case. In particular, it is well known that there are self-adjoint
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operators which do not have any eigenvalues. For AE.9", the self-adjoint elements of
m, let

fi(A) = inf (Aa, a) and <r(A) = sup (Aa, a).

Then, for any AE.ST, -oo < fi(A)^a(A)<oo, and \\A\\ = max{\fi(A)\,\tT(A)\}.
Moreover, the numbers ft(A) and <T(A) are elements of the spectrum of A. In the
finite dimensional case, /u.(A) is the minimum eigenvalue of A and a(A) is the
maximum eigenvalue of A.

Corollary 2. // there is a positive continuous function h on R+ such that for each
fl£R+

(0 f
Ja

(n) Mm inf M {h2(t)

then equation (1) is oscillatory.

Proof. Let a G R+. Condition (ii) implies that there is a sequence {tk} in R+ and a
corresponding sequence of unit vectors {&} in $f such that

,• /„" {h2(x)(P(x)£k, &> - [J> /i(5) rf5]2(Q(x)4, 6 » dx _
i™ ] 2 ~ •

Hence, this result follows from Corollary 1.

Corollary 3. // /0° dx/||P(jc)|| = », and if for each a£R +

US dsl\\P(s)\\f

then equation (1) w oscillatory.

Proof. Define Ji on R+ by h(x) = l/||P(x)||. Then by hypothesis, J7 h(x) dx = oo for
each a GR+. For any aGR* and any unit vector f in 9€,

{U'a {h\t)P(t) - Ut h(s) dsfQ(t)} dt]j, g) „
US h(s) dsf

US dsl\\P(s)\\] U

It is now easy to see that the hypotheses of Corollary 1 are satisfied.
Note that if P(x) = I in equation (1), then the condition

lim sup J 2 <r[ [* f' f'
for each aGR*, implies, by Corollary 3, that all solutions of Y"+Q(x)Y = 0 are
oscillatory.
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Finally, it is important to note that the oscillation criteria of Corollaries 1 through 3
above cannot be obtained as corollaries of Theorem 3.3.

4. Extensions

In this section we consider two extensions of the methods and results of the
preceding section. The first of these extensions involves the coefficient function
P : R+-> y in equation (1). Up to this point we have been assuming that P(x) > 0 for all
x £ R+, but with only minor modifications of the results in Section 3, this requirement
can be relaxed to P(x) 3= 0 for all x E R+.

The second extension involves a nonlinear analogue of the linear differential
operator L in (1). Nonlinear matrix equations, as well as linear and nonlinear matrix
differential inequalities, have been investigated by a number of authors. See, for
example, Allegretto and Erbe (3), Etgen (7,9), Kreith (20), Noussair and Swanson (28),
Swanson (35), and Tomastik (39). An examination of these papers shows that the
nonlinear operators are defined in such a manner that the methods developed for
linear equations of the form (1) can be applied.

We combine these two extensions into one treatment in the discussion which
follows. Since the proofs of the results given in this section are virtually identical to
those given in Section 3, most of them will be omitted.

Let P, Q:R+x@ + 08^>S/> be continuous with P(x,A, B)3=0 for all (x, A, B ) E
R+x 38x38. Let T denote the collection of functions y:R+-»39 such that Y and
P(x, Y, Y')Y' are continuously differentiable and

Y*[P(x, Y, Y')Y'] B [P(x, Y, Y')Y']*Y

on R+. Let i? be the nonlinear differential operator defined on F by

2[Y] = [P(x, Y, Y')Y']' + Q(x, Y, Y')Y,

and consider the differential inequality

0. (8)

As an analogue of the work in the preceding sections, we are concerned with the
oscillation of solutions of (8). The concepts of oscillation, non-oscillation, etc., of
solutions of (8), as well as the oscillation of (8) itself, remain as defined in Section 2.
Since the continuation problem is not under consideration here, we assume that all
solutions of (8) can be continued over R+.

The first result is the analogue of Theorem 3.1, and is a nonlinear version of
Picone's identity.

Theorem 4.1. Let g E<&, and let f: R+ -»R be piecewise continuously differentiable.
If V £ F is nonsingular on an interval J C R+, then

g{[f'I-fVV-*]*P{x, V, V')[f'I-fV'V-l)} + {f2g[P(x, V, V')V'V-1]}'

= f'2g[P(x, V, V')]-fg[Q(x, V,

on J.
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Our next result corresponds to Theorem 3.2. The relaxation of the positive
definiteness of P on R+ will require a strengthening of the inequality corresponding to
(5), but, in so doing, the proof is simplified.

Theorem 4.2. The differential inequality (8) is oscillatory if for each a £ R * there
is a number b, b > a, an element g G CS, and a piecewise continuously differentiable
function f :R+-»R such that f(a) = /(*>) = O , /#0 , and

{f'2g[P(x, V, V')] - f2g[Q(x, V, V)]} dx<0 (9)

for every V G F such that V is nonsingular on [a, °°).

Proof. Suppose there is a solution V = V(x) of (8), V G F, such that V is
nonsingular on [a, <») for some a G R + . Let /:R+-»R and g G <& be the functions
specified in the hypothesis. Then, by integrating (9) from a to b, we get

g{[f'I-fV'V-l]*P(x, V, V')[f'I-fV'V-l]}dx

= I" {f'2g[P(x, V, V] - f2g[Q(x, V, V']} dx + (" f2g{£[ V] V-1} dx. (10)
Ja Ja

Since P(x, V, V')^0, the integrand on the left side of this equation is non-negative,
and so the number on the left side is non-negative. Since V is a solution of (8),
V*£[V] = A =£0, which implies i?[V] V'1 = V*'lAV~l =£0. Therefore the integrand of
the second term on the right side of (10) is nonpositive which, with the inequality (9),
provides a contradiction.

The final result of this section is a "nonlinear" analogue of Theorem 3.4, and, with
obvious modifications, its proof can be used here.

Theorem 4.3. / / there is a positive continuous function h on R+ such that for each
aGR+

(i ) f\(x)dx=oo,

I.

f
J a

(ii) ,. Si" {h\x)gk[P{x, V, V')] - IS'* h(s) ds]2gk[Q(x, V, V)]} dx

for some sequence {tk} in R+ with linifc^ tk =°°, some sequence of positive functional
{gk} with the property that there exists a positive number M such that \\gk\\« M for all
positive integers k, and for all VE.T such that V is nonsingular on [a,°°), then the
differential inequality (8) is oscillatory.

In conclusion, we note that Theorem 4.3 has corollaries which correspond in an
obvious manner to the corollaries of Theorem 3.3 and 3.4.
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