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Introduction to phase transitions

At the macroscopic scale, matter can be organized into very diverse struc-

tures that are distinguished by their properties; they are the so-called phases.

When a phase transition takes place, the system undergoes a reorganization

and its properties change. Qualitatively, this reorganization can be under-

stood in terms of a competition between energy, essentially associated with

the degree of cohesion, and entropy associated with the degree of disorder,

which results from the fact that the free energy of a given system in equi-

librium must reach a minimum. Therefore, at high temperature, the system

prefers to be in a disordered state of high entropy, while below a certain

temperature, which may depend on parameters such as pressure and mag-

netic field, it becomes more favourable to reorganize itself into an ordered

and more compact phase in order to decrease energy. This is only possible if

the constituents of the system exhibit some kind of attractive interaction.

Consequently, phase transitions take place when a certain physical system

is subjected to a change in the external conditions that can be achieved by

changing the temperature or a field (mechanical, electrical, magnetic, etc.)

that is coupled to system properties. The existence of a phase transition is

revealed through a singular behaviour of some thermodynamic quantities.

In this context, the word singular must be understood not only in the most

common sense of unique and somewhat anomalous behaviour, but also, and

this is a crucial aspect, in its mathematical sense indicating that these vari-

ables have a non-analytical behaviour when the transition takes place. From

a formal viewpoint, a singular behaviour is only expected to occur in the

thermodynamic limit, which means that phase transitions are intimately

related to the thermodynamic behaviour of materials.

These transitions are thermal transitions in the sense that thermal fluctua-

tions are the main microscopic mechanism that induces the change of proper-

ties in the system. Thermodynamics is thus essential in order to understand
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4 Introduction to phase transitions

this class of transitions. Nevertheless, it is important to note that phase tran-

sitions can also occur in non-thermal systems where thermal fluctuations do

not play a primary role (or even do not play any role) in driving the transi-

tion. In this class of systems, phase transitions are controlled by the variation

of a non-thermal parameter, which is not directly related to temperature. In

analogy with thermal systems, this parameter induces a change in the prop-

erties of the system and the transition shows up through a singularity in the

variables conjugated to the control parameter or in their derivatives. Exam-

ples include dynamic phase transitions, disorder-induced phase transitions

and topological (structural) phase transitions. Quantum phase transitions

[1] can also be included within this category. This class of transitions occurs

at zero temperature induced by a certain non-thermal parameter and is a

consequence of competing ground-state phases. The microscopic mechanism

at the origin of these transitions is associated with quantum fluctuations,

which are a direct consequence of the Heisenberg uncertainty principle. In

spite of the fact that these transitions occur in macroscopic systems, they

cannot be described by the usual thermodynamic formalism. Nevertheless,

the analogy with thermal transitions is an essential point in order to under-

stand this class of systems.

Phase transitions, both thermal and non-thermal, can be classified ac-

cording to the nature of the singularity that occurs at the transition. Paul

Ehrenfest was the first to propose a classification based on this idea in 1933

[2]. He considered the analytical properties of the free energy at the transi-

tion point and proposed that a transition belongs to the class of nth-order

transitions if the nth-order derivative of the free energy displays a disconti-

nuity at the transition. Therefore, first-order transitions are those in which

quantities obtained as first-order derivatives of the free energy show a dis-

continuity at the transition. Examples of such quantities are mass (or molar)

density, magnetization or polarization, which are densities of global quanti-

ties associated with the whole system. The discontinuity of these quantities

must be understood to be associated with the coexistence of phases with

different values of such quantities. If the first derivatives are continuous

but the discontinuity occurs in the second-, the third- or the higher-order

derivative of the free energy, then the transition is classified as a second-,

a third- or a higher-order transition. This is an elegant classification, which

has the inconvenience of recognizing only discontinuities rather than more

subtle singular behaviour associated with the possible divergent behaviour

of response functions at the transition. Therefore, this classification has been

proven inappropriate and replaced by a more general one, which proposes

only two large classes of transitions: first-order transitions and continuous
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transitions [3]. The former are those concerned with a discontinuity of prop-

erties associated with first-order derivatives of the free energy and thus are

characterized by the coexistence of different phases in equilibrium. In the

case of continuous transitions, first derivatives of the free energy are contin-

uous, but higher-order derivatives are discontinuous or diverge. Transitions

taking place at a critical point belong to this second class.

The order parameter is the essential entity that permits distinguishing

the different phases that can occur in a system and, thus, must carry basic

information related to the class of singularities occurring at the transition.

Therefore, the order parameter is an important quantity in order to analyze

and formulate a suitable model to quantitatively describe a phase transition

in a given system. Consequently, when studying phase transitions in a given

system, we must begin by identifying an appropriate order parameter. The

identification must be done on the basis of the phenomenological behaviour

of the system considered. Usually it is a quantity or a combination of quanti-

ties related to first-order derivatives of the free energy that is able to reflect

the discontinuous character of first-order transitions or rather to demon-

strate the continuous variation expected across continuous transitions.

In general, it is expected that the chosen order parameter be a quantity

that fluctuates in time and space. Actually, these fluctuations provide essen-

tial information about relevant response functions of the system. This fact

is particularly relevant in the vicinity of critical points where the divergence

of response functions is intimately associated with an anomalous behaviour

of fluctuations. In any case, a large number of aspects related to phase tran-

sitions can be explained simply from the behaviour of the statistical mean

value of the order parameter. In general, it is convenient to define the order

parameter in such a way that this average value vanishes in the disordered

phase (usually the high-temperature phase in thermal transitions) and takes

a finite value in the ordered phase (low-temperature phase in thermal tran-

sitions). In continuous transitions, this mean value will present a continuous

variation across the transition, while it will reveal a discontinuity in a first-

order transition.

Close to critical points, various systems display critical behaviour, which

is also denoted as criticality. This behaviour is characterized by power-law

behaviour of thermodynamic quantities, which reflects the absence of char-

acteristic scales and thus scale invariance associated with the anomalous

behaviour of the fluctuations [4]. For a given thermodynamic quantity ϕ,

its power-law dependence with temperature is expressed as, ϕ ∼ |t|µ, where
t = (T − Tc)/Tc is a reduced temperature that measures the distance in

temperature to the critical point Tc. This notation indicates that close to

https://doi.org/10.1017/9781009549776.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009549776.003


6 Introduction to phase transitions

the critical point ϕ has a dominant power-law behaviour with temperature.

The exponent µ is thus defined as

µ = lim
t→0

log ϕ

log |t|
. (1.1)

Therefore, the exponent that quantifies this behaviour determines the nature

of the singularity occurring at the critical point.1 Note, in particular, that

when the exponent µ is positive, the function ϕ goes to zero at the transition,

while it diverges when it is negative. Note also that µ = 0 may correspond to

the following three different situations: discontinuity, logarithmic divergence

or cusp behaviour of the function ϕ [4].

1.1 Thermodynamics: general features

Thermodynamics is essential in order to understand phase transitions. This

section is a general introduction to basic concepts of thermodynamics and

its relevance for a proper understanding of phase transitions. We will start

with an introduction to the equilibrium thermodynamic description of a

complex material constituted of c components that can exchange matter,

heat and work2 with the surroundings. We will assume that the system

can exchange ω multiple kinds of work associated with different forces that

couple with the properties of the system. The thermodynamic description of

such systems requires c+ ω + 1 independent extensive variables3 or degrees

of freedom, which include the mol numbers {ni} (or the masses {mi}) of

the c components, the w generalized displacements {Xi} that couple with

the forces acting on the system, and entropy S. The internal energy U =

U({ni}, {Xi}, S) is thus a function of these independent variables, and its

differential change associated with differential exchanges in equilibrium of

matter, work, and heat is given by the fundamental thermodynamic equation

(also denoted as thermodynamic identity) that combines the first and second

laws of thermodynamics [5],

1 It is usual to denote critical exponents with the following common notations: exponent of the
heat capacity, α; order parameter, β; susceptibility, γ; critical isotherm, δ; correlation length,
ν; correlation function, η.

2 The definition of work is the same that in mechanics, and, therefore, it is given by the
product of a force and a displacement. Forces of different nature can be considered including
contact forces or electromagnetic forces among others. In quasi-static trajectories, work can
be expressed as the product of an intensive variable and the change of its conjugate extensive
variable that characterizes the state of the system. Usually extensive variables are denoted as
generalized displacements and intensive variables as generalized forces.

3 Extensive variables are defined for the whole system such as volume, total magnetic moment
or total polar moment (or polarization).
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1.1 Thermodynamics: general features 7

dU = TdS +

ω∑
i=1

yi · dXi +

c∑
j=1

µjdni, (1.2)

where the generalized forces {yi}, chemical potentials {µi}, and temperature

T are intensive variables thermodynamically conjugated to the extensive

variables, {Xi},{ni}, and S, respectively, and are given as,

yj =

(
∂U

∂Xj

)
[{Xi ̸=j},{ni},S]

, (1.3)

µj =

(
∂U

∂nj

)
[{Xi},{ni ̸=j},S]

, (1.4)

T =

(
∂U

∂T

)
[{Xi},{ni}]

. (1.5)

Each pair of conjugated variables Xi and yi has the same tensorial order so

that the tensorial product yi · dXi is a scalar that quantifies the reversible

work associated with the infinitesimal change of the displacement variable.

The existence of interplay between the different degrees of freedom must

be taken into account through the explicit dependence of each coordinate

on the remaining independent coordinates. It is worth noting that in closed

systems, all the ni are fixed and, thus, the term
∑c

i=1 µidni will not appear

in the fundamental equation. This is the usual situation we will deal with

in this book.

In practical situations it is often easier to modify the state of a given

system by externally controlling temperature and generalized forces than

their corresponding conjugated extensive variables, entropy and generalized

displacements, respectively. It is then convenient to use intensive quantities

as independent variables, which can be achieved through suitable Legendre

transforms. For instance, any Legendre transform that supposes the inter-

change of entropy by temperature as independent variable defines a free

energy. The Helmholtz free energy F is given as

F = U − TS. (1.6)

In terms of F the fundamental equation reads,

dF = −SdT +

w∑
i=1

yi · dXi +

c∑
i=1

µidni. (1.7)

The free energy that has temperature and all generalized forces as inde-

pendent variables is usually called the Gibbs free energy G and is defined

as
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8 Introduction to phase transitions

G = U − TS −
w∑
i=1

yi ·Xi, (1.8)

and its differential change is given by

dG = −SdT −
w∑
i=1

Xi · dyi +
c∑
i=1

µidni. (1.9)

All the functions that are obtained by means of Legendre transforms of the

internal energy are usually denoted as thermodynamic energy potentials or

simply thermodynamic potentials. It is worth noting that a set of entropy

potentials can also be introduced as Legendre transforms of the entropy.

They are also called Massieu–Planck functions.

The complete interchange of extensive by intensive variables gives rise to

the Gibbs–Duhem equation,

SdT −
w∑
i=1

Xi · dyi +
c∑
i=1

nidµi = 0, (1.10)

which expresses that intensive variables cannot be all independent. This

result is related to the general condition of extensivity that will be discussed

in more detail later.

Response functions are quantities that express how a system responds

when subjected to external fields that couple to the properties of the sys-

tem. These quantities provide a good description of the behaviour of given

materials and are often the ones of most direct physical interest. Response

functions of particular interest are heat capacities and susceptibilities.

Heat capacities measure the thermal response along a given reversible

thermodynamic trajectory. The two basic heat capacities are defined re-

spectively at constant generalized displacements and at constant generalized

force variables as

CX = T

(
dS

dT

)
{Xi}

, (1.11)

Cy = T

(
dS

dT

)
{yi}

. (1.12)

The susceptibility tensor is a symmetric tensor that quantifies the

response of generalized displacements to the changes of generalized forces.

The elements of this tensor are defined as
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1.1 Thermodynamics: general features 9

χij =

(
∂Xi

∂yj

)
T,{yk ̸=j}

= −
(

∂2G

∂yi∂yj

)
T,{yk ̸=j}

. (1.13)

Diagonal terms determine the response of a given extensive property to its

conjugated field and are simply denoted as susceptibilities. Non-diagonal

terms quantify the cross-response to non-conjugated fields and are called

cross-susceptibilities.

Maxwell relations are equalities that result from the fact that the second

derivatives of the thermodynamic potentials with respect to pairs of their

natural variables are independent of the order in which they are carried

out. This, for instance, justifies that the susceptibility tensor is symmetric.

The most relevant are those involving the entropy. For instance, from dG,

equalities of the form

∂2G

∂yi∂T
=

∂2G

∂T∂yi
⇒
(
∂S

∂yi

)
T,{yj ̸=i}

=

(
∂Xi

∂T

)
{yj}

(1.14)

are obtained. Similar expressions are also obtained from dF , which involve

derivatives with respect to the generalized displacements instead of general-

ized forces.

1.1.1 Equilibrium and stability

General equilibrium conditions are based on the second law of thermody-

namics that states that entropy cannot decrease in a system confined by

adiabatic walls, which are those that do not allow heat exchange with the

surroundings.4 Therefore, this can be interpreted in the sense that entropy

must decrease or remain constant under any virtual displacement consistent

with the adiabatic constraint that moves away the system from the equi-

librium state. For small displacements about equilibrium, this condition of

maximum of the entropy can be expressed as

(δS)[U,{Xi},{ni}] ≤ 0, (1.15)

or, alternatively

(δS)[H,{yi},{ni}] ≤ 0, (1.16)

where H = U −
∑n

i=1 yi ·Xi is the enthalpy. It is easy to show that these

inequalities are equivalent to those expressing the minimum of both U and

4 Adiabatic walls are necessarily non-permeable and do not allow exchange of matter. However,
we will assume that they can allow exchange of work.
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10 Introduction to phase transitions

H at equilibrium. That is, (δU)[S,{Xi},{ni}] ≥ 0 and (δH)[S,{yi},{ni}] ≥ 0,

respectively. It is in fact straightforward to see that all energy potentials

show minima at equilibrium, while all entropy potentials show maxima at

equilibrium.5

It is worth noting that in the preceding inequalities, the symbol δ was

used to represent small but not infinitesimal displacements. Therefore, the

change corresponding to any thermodynamic potential can be expanded as

a power series of its natural variables about equilibrium. For instance, if, for

the sake of simplicity, we consider a closed system that can exchange only

one kind of work (ω = 1) associated with a scalar generalized displacement,

X, then δU can be written as,

δU =

(
∂U

∂S

)
X

δS +

(
∂U

∂X

)
S

δX

+
1

2

{(
∂2U

∂S2

)
X

(δS)2 + 2
∂2U

∂S∂X
δSδX +

(
∂2U

∂X2

)
S

(δX)2
}

+ ... . (1.17)

Therefore, to first order in small displacements, we must have (δ(1)U)S,X =

0, which states that U is an extremum in equilibrium. From this condition,

considering an arbitrary division of the systems into two parts 1 and 2 such

that U = U1 + U2, S = S1 + S2 and X = X1 +X2, it follows that

δ(1)U =
∂U

∂S1
δS1 +

∂U

∂S2
δS2 +

∂U

∂X1
δX1 +

∂U

∂X2
δX2, (1.18)

where derivatives must be computed about equilibrium. Taking into account

that the displacement is performed at constant S and X, then δS1 = −δS2
and δX1 = −δX2 must be satisfied, and it is obtained that

δ(1)U = (T1 − T2) δS1 + (y1 − y2) δX1 = 0. (1.19)

From the preceding expression, it is immediately deduced that T and y

must be homogeneous along the system in equilibrium.6 This result can

be immediately generalized to the case of open multicomponent systems

with multiple work properties. In equilibrium, temperature and all general-

ized forces and chemical potentials must be homogeneous along the system.

These conditions are local conditions that apply to any extremum of the

5 This condition supposes that entropy potentials are concave functions, while thermodynamic
potentials are convex functions about equilibrium.

6 It has been tacitly assumed that force fields that can vary appreciably from point to point in
the system are not considered here. A well-known example of such a situation is fluids
embedded in a gravitational field that can induce a pressure gradient (this effect is neglected
when the vertical dimension of the container of the fluid is small enough).
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1.1 Thermodynamics: general features 11

thermodynamic potentials. To ensure that the equilibrium is stable, the sign

of derivatives of higher order must be considered. If second-order derivatives

of thermodynamic potentials are non-zero, which occur far from phase tran-

sitions, the condition of stability will be given by δ(2)U ≥ 0, which states

that U is a convex function that shows a minimum in equilibrium. In the

same simple case analysed before, this condition can be expressed as(
∂2U

∂S2

)
X

(δS)2 + 2
∂2U

∂S∂X
δSδX +

(
∂2U

∂X2

)
S

(δX)2 ≥ 0. (1.20)

Therefore, the preceding quadratic differential form must be positive def-

inite. Since this must hold for arbitrary variations δS and δX, stability

conditions can be expressed requiring that all principal minors of the Hes-

sian determinant must be positive. Then, it is obtained that the following

inequalities must be satisfied, (
∂2U

∂S2

)
X

=
T

CX
≥ 0, (1.21)(

∂2U

∂S2

)
X

(
∂2U

∂X2

)
S

−
(

∂2U

∂S∂X

)2

=
T

χCX
≥ 0. (1.22)

Therefore, stability requires that the heat capacity CX ≥ 0 and the suscep-

tibility χ ≥ 0. Since it can be shown that the heat capacity Cy ≥ CX , the

condition Cy ≥ 0 is satisfied as well.

These results can be generalized to multicomponent systems that can ex-

change multiple kinds of work with the surroundings. In this case, among

other conditions involving cross-susceptibilities, it is obtained that heat ca-

pacity and all susceptibilities must be positive (or zero). Also, chemical

potentials of all c components must satisfy(
∂µi
∂ni

)
S,{X}j

≥ 0. (1.23)

1.1.2 Phase coexistence: the Clausius–Clapeyron equation

In first-order phase transitions, phases with different properties can coexist

in equilibrium, which reflects the fact that all extensive properties show a

discontinuity at the transition. In this case, each phase can be treated as

an homogeneous thermodynamic subsystem, and thus the whole system is

assumed to be constituted of the sum of these subsystems or phases that

can exchange heat, work and matter. Instead, in continuous transitions,

extensive properties vary continuously across the critical point. Therefore,
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12 Introduction to phase transitions

the singularity that characterizes the phase transition is in this case more

subtle than in first-order transitions and determines the critical behaviour

that will be discussed in detail afterward.

To analyse phase coexistence a bit deeper, consider the simpler case of a

single component substance characterized by a single scalar extensive prop-

erty X that undergoes a first-order transition. The phase diagram is a chart

that shows the regions where the distinct accessible phases can occur in

equilibrium as a function of thermodynamic variables. In the case consid-

ered, it is customary to represent the lines of coexistence between pairs of

phases in a T -y diagram, where y is the force conjugated to X. Indeed, these

lines separate the regions of existence of pure phases. This is a simple sit-

uation in which the effect of chemical composition need not be taken into

account. The prototypical example is an isotropic fluid where vapour, liquid

and solid phases can coexist in equilibrium. In this case, the property X

is volume and the conjugated thermodynamic force is pressure. Therefore,

assume that y = y(T ) is a two-phase coexistence line or phase boundary

that ends at a critical point (yc, Tc).
7 Equilibrium conditions must be sat-

isfied along this line, which impose that temperature, generalized force y,

and chemical potential µ must be homogeneous along the two phases, 1 and

2, that coexist in equilibrium. Then, the Gibbs–Duhem equation (Eq. 1.10)

allows to write

s1dT + x1dy = s2dT + x2dy, (1.24)

where si and xi (i = 1, 2) are entropy and property X per mole unit in each

phase. Therefore, the slope of the coexistence line is given by

dy

dT
= −∆s

∆x
. (1.25)

This is the Clausius–Clapeyron equation. In this equation, ∆s and ∆x quan-

tify, respectively, the discontinuities at the transition. The change in both

entropy and volume decreases as the system approaches the critical point and

vanishes at this point, where there is no distinction between the two phases.

At this point, second derivatives of thermodynamic potentials vanish and

the stability conditions must be determined with higher-order derivatives.

Since third-order derivatives must also vanish to ensure that the critical

point is not an inflection point, stability must be studied with the sign of

fourth-order derivatives. In particular, the free energy F must satisfy,

7 The fact that a coexistence line ends at a critical point is not imposed by thermodynamics.
As will be discussed later, this is determined by symmetry conditions satisfied by the system.
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1.1 Thermodynamics: general features 13(
∂2F

∂X2

)
T

= 0⇒
(
∂y

∂x

)
T

= 0, (1.26)(
∂3F

∂X3

)
T

= 0⇒
(
∂2y

∂X2

)
T

= 0. (1.27)

This means that the critical point is an inflection point of the equation of

state, y = f(T, x), of the system.

It is interesting to discuss the coexistence of phases in multicomponent

systems constituted of c components. To this purpose, assume that the sys-

tem can only exchange one kind of work associated with the scalar property

X. Suppose also that at a given temperature T and generalized field y, p

phases can coexist in equilibrium. In this case, equilibrium requires that for

all components, the chemical potential must be the same for all phases, that

is,

µ
(1)
i = µ

(2)
i = ... = µ

(p)
i , ∀ i = 1, ..., c. (1.28)

Chemical potentials can be expressed as functions of T , y and the mole

fractions of each component in each phase, x
(r)
i = nri /

∑
i n

r
i , where r is the

index that indicates the phase. The solution of the problem will be given

in terms of the composition of each phase at given values of T and y. This

requires solving c(p− 1) equations with 2 + p(c− 1) independent variables,

where it has been taken into account that for each phase,
∑c

i=1 x
(r)
i = 1.

When the number of equations exceeds the number of independent vari-

ables, no solution can exist, which means that no equilibrium with so many

phases is possible. If equations and independent variables are exactly equal,

a unique solution exists. Finally, when the number of phases is small and

there are more independent variables than phases, equilibrium is possible

for a manifold of states. The number of degrees of freedom, f , defined as the

difference between the number of independent variables and the number of

equations, is given by f = 2 + c − p. Then, it follows that the number of

phases plus the number of degrees of freedom must exceed the number of

components by two for the coexistence of phases in equilibrium to be possi-

ble. This result is usually known as the Gibbs phase rule, which provides the

limits on the complexity of phase diagrams. Note that for a pure substance

(c = 1), the maximum number of phases that can coexist in equilibrium is

p = 3 with f = 0. This in turn corresponds to triple points where T and y

are fixed.

Gibbs phase rule can be generalized to systems with multiple properties

that can exchange ω kinds of work with the surroundings [6]. In this case,
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14 Introduction to phase transitions

denoting W = ω + c as the number of independent conjugated thermody-

namic pairs in the fundamental equation, it is obtained that f =W − p+1,

which leads to the general version of the Gibbs phase rule that states the

number of phases plus the number of degrees of freedom must exceed the

number of conjugated thermodynamic pairs by one for the coexistence of

phases in equilibrium to be possible.

1.2 Extensivity and thermodynamics of small systems

In the preceding introduction to thermodynamics, it has been implicitly

assumed that systems are macroscopic and properties such as entropy and

generalized displacement satisfy the properties of extensivity, which, strictly

speaking, can only be satisfied by infinitely large systems. Actually, this

property applies to systems that can be considered as composed of many

subsystems all of which can be considered macroscopic as well. Therefore,

suppose a system S which comprises the union of N subsystems, that is,

S = S(1) ∪ S(2) ∪ ... ∪ S(N ). (1.29)

Subsystems should be, in general, separated by walls that impose restrictions

on the exchange of heat, work or matter between them. Then, a global

property X defined for the whole system S is said to be additive if it satisfies

that

X = X(1) +X(2) + ...+X(N ), (1.30)

where X(i) is the property X corresponding to the subsystem i. In general,

this property applies if subsystems are large enough and surface effects as-

sociated with the walls may be safely neglected. In an homogeneous system

in equilibrium, a property that satisfies additivity is said to be extensive.

If temperature T , generalized forces {yi} and the number of moles of the

components {ni} are chosen as independent variables, formally extensivity

supposes that the property X scale with system size as

X(T, {yi}, {λni}) = λX(T, {yi}, {ni}), (1.31)

which must hold for all λ. The preceding equation states that X is an ho-

mogeneous function of degree one. Thus, the Euler theorem enables us to

write

X(T, {yi}, {ni}) =
c∑
i=1

ni

(
∂X

∂ni

)
[T,{yi},nj ̸=i]

. (1.32)
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1.2 Extensivity and thermodynamics of small systems 15

Defining partial molar properties xi as

xi ≡
(
∂X

∂ni

)
[T,{yi},nj ̸=i]

, (1.33)

X can be expressed as, X =
∑c

i=1 nixi. This is particularly interesting in

the case of the Gibbs potential that has T, {yi}, {ni} as natural variables. In
this case, the Gibbs molar properties are precisely the chemical potentials

{µi}. Thus, in this case,

G = U − TS −
ω∑
i=1

yi ·Xi =

c∑
j=1

niµi. (1.34)

The Gibbs–Duhem equation is then obtained by differentiating the preced-

ing expression. This result confirms that Gibbs–Duhem equation is a conse-

quence of extensivity, which means that when extensivity applies, tempera-

ture, generalized fields and chemical potentials are intensive local variables

independent of the system size.

When dealing with small thermodynamic systems comprising a small

number of atoms as, for instance, nanoscale systems, the validity of the

standard formulation of thermodynamics must be questioned. First, because

surface effects may play a relevant role and thus the property of extensivity

might not apply. Second, because the fluctuations of thermodynamic vari-

ables about their average value may be large. Both effects have a crucial

influence on phase transitions, which can only occur as such in the thermo-

dynamic limit.

A number of approaches have been proposed aimed at generalizing ther-

modynamics to such situations. Gibbs [7] already discussed the effect of

surfaces and surface curvature in thermodynamics and the theory was later

extended by Tolman [8]. An interesting approach that takes into account

surface and large fluctuation effects has been proposed by Hill [9]. Let us

briefly introduce Hill’s ideas. Consider a small system with volume V that,

for the sake of simplicity, will be considered as the only scalar property

relevant to characterize the state of the whole system. Hill considered an

ensemble of N independent replicas of a fixed volume of such a system that

can exchange heat and matter with a (macroscopic) reservoir characterized

by a temperature T and chemical potential µ. Therefore, internal energy

and number of particles of the members of the ensemble must be considered

as fluctuating quantities. Hill’s basic hypothesis is that for large enough
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16 Introduction to phase transitions

N , this ensemble follows the laws of macroscopic thermodynamics. Then a

thermodynamic identity for the ensemble can be written as

dUe = TdSe − pNdV + µdne +ΠdN , (1.35)

where Ue, Se and ne are the internal energy, entropy and number of particles

of the whole ensemble of replicas, which are functions of the independent

variables, T , V and µ, respectively.8 The so-called replica energy Π is given

by

Π =

(
∂Ue
∂N

)
[T,V,µ]

. (1.36)

The term ΠdN can thus be interpreted as the work required to increase the

volume of the ensemble by adding a new member. This is in contrast with

the term −pNdV that is related to the work associated with changes in the

volume of the ensemble by changing the volume of each replica. Integration

of Eq. 1.35 at constant T , V , µ and Π leads to

Ue = TSe + µne +ΠN . (1.37)

Average values of the internal energy, entropy and number of particles of a

representative member of the ensemble can be defined as

U(T, V, µ) ≡ Ue(T, V, µ,N )

N
, (1.38)

S(T, V, µ) ≡ Se(T, V, µ,N )

N
, (1.39)

n(T, V, µ) ≡ ne(T, V, µ,N )

N
. (1.40)

Replacing these expressions into Eq. 1.37, it is obtained that

U(T, V, µ) = TS(T, V, µ) + µn(T, V, µ)− π(T, V, µ)V, (1.41)

which is an equation formally equivalent to Eq. 1.34 that expresses extensiv-

ity. Note, however, that in the present equation the generalized field is not

the pressure but instead the so-called integral pressure, π. Differentiating

the preceding equation and combining with Eq. 1.35 after expressing Ue, Se,

and ne as a function U , S and n for a given value of N , the corresponding

Gibbs–Duhem equation for the small system is obtained as

d[πV ] = SdT + pdV + ndµ, (1.42)

8 It is important to note that this ensemble thermodynamic identity is not equivalent to the
thermodynamic identity for macroscopic extensive systems, since the thermodynamics of
small systems depends on the choice of environmental control variables. Therefore, changing
the set of independent variables cannot be done via Legendre transforms [10].

https://doi.org/10.1017/9781009549776.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009549776.003


1.3 Simple microscopic lattice models. The Ising model 17

where πV is often denoted as the subdivision potential. Note that the rela-

tionship between p and π is given by

p =

(
∂[πV ]

∂V

)
T,µ

= π + V

(
∂π

∂V

)
T,µ

. (1.43)

It is then convenient to define a function ϕ ≡ (π − p)V that satisfies

dϕ = SdT − V dp+ ndµ, (1.44)

which indicates that in the thermodynamic limit, when π coincides with

pressure p the Gibbs–Duhem equation for an extensive system is recovered.

An important consequence of this result is the fact that there is no exact

analogue of the Clausius–Clapeyron equation (Eq. 1.25 with x = V/n and

y = −p) for small systems. As a matter of fact, this can be understood by

taking into account that isotherms in a small system are smooth analytical

curves with no sharply defined end point of the coexistence region.

1.3 Simple microscopic lattice models. The Ising model

Lattice models are simple microscopic models, which are especially adapted

to study phase transitions in solid materials.9 In general, a lattice model is

any model defined in a d-dimensional lattice (or network), not necessarily

regular, that contains N nodes or lattice sites, so that each site is occupied

by a microscopic variable that can be in a number of discrete or continuous

microscopic states. These variables are supposed to interact according to

given rules that define the hamiltonian of the model. This class of models

represents a simplified description of certain physical systems that incorpo-

rate only those ingredients that are essential to describe phase transitions

that take place associated with given degrees of freedom.

It is common and convenient to describe this class of models using mag-

netic language. Then, the variables defined on each lattice sites are called

spin variables. Among the wide variety of lattice models that have been

proposed, the best known and the most paradigmatic is the so-called Ising

model. In this model, a classical two-state spin variable Si is defined at each

node of a lattice, which is usually regular, that can take values, Si = ±1
corresponding to the spin-up and spin-down states, respectively. For this

9 In spite of being specially adequate for solids, similar models can also be formulated to study
fluids. In that case, there is no underlying lattice but it is possible to divide the fluid into cells
of a given microscopic volume. It is convenient to choose this volume in such a way that only
one particle can occupy one cell. Therefore, cells may be either in an occupied or an empty
state.
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18 Introduction to phase transitions

reason, often the Ising model is classified as a spin-1/2 lattice model. The

hamiltonian of the Ising model is

H({Si}) = −J
∑
⟨ij⟩nn

SiSj − h
N∑
i=1

Si, (1.45)

where the first sum extends over all nearest neighbour pairs of spins given by
1
2zN . Here z is the coordination number or number of nearest neighbours

of a given lattice site, which is an intrinsic property of the lattice. This

term determines the interaction between the spin variables and therefore J

represents a measure of the interaction energy. J > 0 favours neighbouring

spins to align parallel to each other and therefore allows a ferromagnetic

order to be established. Instead, J < 0 favours that the neighbouring spins

align antiparallel and, thus, the possibility that an antiferromagnetic order

be established. The second sum of the hamiltonian takes into account the

possible interaction of the spins with an external field, h. It is the so-called

Zeeman term. It is interesting to note that the model does not include a term

associated with the kinetic energy of the constituents (spins). Consequently,

collective excitations of the lattice are not considered and, thus, the model

is only adequate to study static properties. This represents a quite drastic

simplification that anyhow captures the essential physics of the problem and,

as will be shown, is sufficient to deal with the study of phase transitions,

which are a consequence of the interaction between spins. Note that it is

possible to extend this class of models to include the possibility of dealing

with spin dynamics effects by, for instance, simulating collective excitations

by means of a heat bath [11]. Moreover, these models can also be extended

with the aim of taking into account more complex effects such as long-range

dipolar-like interactions [12].

Within the framework of magnetism, the Ising model can be understood

as the limiting case of the Heisenberg model of magnetism. This can be

seen taking into account that Dirac showed that in materials with electrons

localized in orthogonal orbitals, the effect of the Pauli principle can be taken

into account by adding to the hamiltonian a term of the type −
∑

i<j Jij(
1
2+

2Si · Sj), where the sum extends over all pairs of spins in the system. This

term suggests that the spin-dependent contribution to the energy can be

written as the following pair interaction quantum operator

HH = −2
∑
i<j

JijSi · Sj , (1.46)

which is usually known as the Heisenberg hamiltonian. Here, Jij is an ex-

change energy integral associated with the exchange of electrons between
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1.3 Simple microscopic lattice models. The Ising model 19

states i and j, and S is a spin operator related to the magnetic moment

µ = gµBS, where g is the Landé factor10 and µB the Bohr magneton [104].

This model is in fact very accurate in the case of atoms with orbital angular

momentum L = 0 and is a reasonable approximation in the case of many

transition metals. It is, however, a poor approximation in the case of rare

earths (except for those for which L = 0). In this approach, demagnetization

and anisotropy effects are not taken into account.

Often the above model is treated in the classical approximation assum-

ing that magnetic moments are vector quantities that can be continuously

oriented in space. In this framework, the magnetic anisotropy can be taken

into account assuming that the term JijSi · Sj can be written in the form

JxijSixSjx + JyijSiySjy + JzijSizSjz , where Siα (α = x, y, z) are the Cartesian

coordinates of the classical spin vector Si. If it is assumed, for example, that

the exchange interaction in the z-direction is different from the interaction

in the x-y plane, the hamiltonian of the system can be written in the form

H = −J
∑
⟨ij⟩nn

aSizSjz + b(SixSjx + SiySjy). (1.47)

Indeed, the Ising limit corresponds to the strong uniaxial limit for which

a ≃ 1 and b ≃ 0. In this case, the spin variable can be treated as a scalar

that can take only two values, ±1. Another interesting model corresponds to

the limit of strong planar anisotropy. In this case, it is assumed that a ≃ 0,

and b ≃ 1. This model is called the XY-model or planar Heisenberg model.

1.3.1 The Ising model for non-magnetic systems

A particularly interesting aspect of the Ising model is the fact that, through

a reinterpretation of spin variables, it can be easily adapted to describe

systems characterized by a two-state microscopic property that can be of

a very different nature than that of the spin giving rise to the magnetic

moment. A well-known example is that of binary alloys. In that case, lattice

sites are occupied by atoms of species A or B so that a spin variable can be

defined in each lattice site that takes values ±1 when the site is occupied by

an atom A or B, respectively.

Suppose, in general, a system is such that each lattice site is characterized

by a constituent that can be in two states denoted as 1 and 2. Of course,

this can correspond to a spin that can be in a state up or in a state down, or

to an atom that can be of the species A or B, among other examples. In all

10 The Landé factor is given as, g = 1 +
J(J+1)+S(S+1)−L(L+1)

2J(J+1)
, where S is the spin, L the

orbital angular moment and J the total angular moment. Note that when L = 0, g = 2.
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20 Introduction to phase transitions

these systems, if pair interactions between nearest neighbour constituents

are assumed, the configuration energy of the system can be written in the

form

Ec = N11ε11 +N22ε22 +N12ε12, (1.48)

where εαβ (α, β = 1, 2) are interaction energies of pairs α-β. Introducing

occupation variables P
(α)
i defined as P

(α)
i = 1 if the constituent in the lattice

site i is in the state α and 0 otherwise, the configurational energy can be

expressed as

Ec =
∑
⟨ij⟩nn

∑
α,β

εαβP
(α)
i P

(β)
j . (1.49)

Now a spin variable Si can be defined in each lattice site in such a way

that Si = +1 if the constituent in the lattice site i is in the state 1 and

Si = −1 if it is in the state 2. Then, the occupation variables can be given

as, P
(1)
i = 1

2(Si + 1) and P
(2)
i = 1

2(Si − 1). Replacing these expressions in

Eq. 1.49, the following Ising-like hamiltonian is obtained

H({Si}) = E0 − ϵ
∑
⟨ij⟩nn

SiSj − V
∑
i

Si. (1.50)

In the preceding equation E0 = 1
4Nz(ε11 + ε22 + 2ε12), ϵ = −1

4(ε11 + ε22
− 2ε12) and V = 1

2z(ε22 − ε11), where z is the lattice coordination number,

N is the number of lattice sites and E0 is a constant. The second term of

the hamiltonian is the relevant term that describes the interaction between

the constituents. Here, ϵ is the parameter that quantifies this interaction

and must be identified with the magnetic exchange energy J in the case of

magnetic systems. It is interesting to note that, as in the magnetic case,

this parameter represents, in general, an exchange energy since it can be

interpreted as the difference between having nearest neighbour constituents

in the same state (1-1 or 2-2), or in different states (1-2 or 2-1). Therefore,

if ϵ > 0, each constituent will prefer to be surrounded by nearest neigh-

bour constituents in the same state and, thus, the model will be suitable

to describe ferromagnetism in the case of magnetism or phase separation

for atom-like constituents. On the other hand, in the case ϵ < 0, each con-

stituent will prefer to be surrounded by constituents in a different state and

the model will be suitable to describe antiferromagnetism in the case of mag-

netic systems and order–disorder transitions in other cases. The third term,

which must not be identified with the Zeeman term in the magnetic Ising

model, is also a constant. It must be zero in the case of magnetic systems
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since, for symmetry reasons, it is expected that a pair of spin-up and a pair

of spin-down constituents have the same interaction, and can be non-zero in

other cases. Besides this difference, it is important to remark that magnetic

systems comprising spins and atom-like systems are not strictly equivalent

since in the former case the number of constituents in one state is not con-

served, while it is conserved in the second case. For instance, the number of

A and B atoms are conserved quantities in a binary alloy, while the number

of spin-up and spin-down constituents are not.11 We will see that, strictly

speaking, from a Statistical Mechanics point of view, the two models are

only equivalent when the magnetic model is treated in the canonical ensem-

ble and the alloy (and, in general, atom-like mixtures) in the grand-canonical

ensemble. In this case, it is necessary to add to the hamiltonian of the alloy

a term of the type −µ
∑

i Si, where µ is the difference of chemical potentials

of the two species A and B. This is the term that plays the same role as the

Zeeman term in the magnetic Ising model.

The procedure discussed to obtain an Ising-like hamiltonian in systems

with two-state constituents can be easily generalized to systems comprising

n-state constituents. For instance, in the case of a three-state system a spin

variable that takes values Si = +1, 0,−1 corresponding to states 1, 2 and 3

respectively, can be defined such that, P
(1)
i = 1

2(S
2
i + Si), P

(2)
i = 1

2(1− S
2
i )

and P
(3)
i = 1

2(S
2
i − Si). Then, the corresponding spin-1 hamiltonian reads

H({Si}) = −ϵ
∑
⟨ij⟩nn

SiSj +K
∑
⟨ij⟩nn

S2
i S

2
j + L

∑
⟨ij⟩nn

S2
i Sj

+M

N∑
i=1

S2
i + V

N∑
i=1

Si + V0. (1.51)

This model is often called the Blume–Emery–Griffiths model since these au-

thors proposed for the first time a reduced version of the spin-1 model to

study He3-He4 mixtures [14] (see Exercise 1.10). In the preceding hamilto-

nian, ϵ = −1
4(ε11 + ε33 − 2ε13), K = 1

4(ε11 + ε33 + 2ε23) + ε22 − ε12 − ε32,
L = 1

2(ε11 − ε33)− (ε12 − ε32), M = 1
3(ε12 + ε32 − 2ε22), V = 1

2z(ε12 − ε32)
and V0 = 1

2Nzε22, where z and N are the lattice coordination number and

number of constituents, respectively.

11 A spin-up can flip to spin-down while an atom of a given species cannot turn into an atom of
another species.
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1.4 Statistical mechanics of lattice models and the mean-field

approximation

Consider an Ising model for a system with N constituents in contact with

a thermal bath at temperature T . In the canonical ensemble, the partition

function is given by

Q(β) =
∑
{Si}

e−βH({Si}), (1.52)

where β = 1/kBT (kB is the Boltzmann constant) and H({Si}) is the Ising

hamiltonian (with or without an external applied field). The sum must be

performed over all the spin configurations. This number of configurations

depends obviously on whether there is a conservation of the number of

constituents in a given state or not. The relevance of this conservation is

perhaps better reflected if occupation numbers are used to express the par-

tition function. To be specific, let us first consider the case of a magnetic

system without conservation of the numbers N+ and N− of spins in the up

and down states, respectively, which correspond to states 1 and 2. The Ising

hamiltonian (Eq. 1.45) can then be expressed as

H = −J(N++ +N−− −N+−)− h(N+ −N−), (1.53)

where N++, N−− and N+− are the number of nearest neighbour pairs of

up-up, down-down and up-down spins. Taking into account that the total

number of pairs is 1
2zN , and that N++N− = N , it is straightforward to see

that H can be expressed in terms of two independent occupation numbers,

N+ and N++ as

H = −J(4N++ − 2zN+ +
1

2
zN)− h(2N+ −N). (1.54)

Note that N+ and N++ can be given in terms of the probabilities of finding

a spin-up and a pair of nearest neighbours of spin-up, given, respectively,

as, p+ = N+/N and p++ = 2N++/zN .

Then, the canonical partition function can be given by

Q(β, h) = eβN( 1
2
z−h)

N∑
N+=0

e−β(zJ−h)N+
∑
{N++}

g(N+, N++)e
4βJN++ , (1.55)

where the second sum must be performed over all pairs N++ consistent with

the number N+ of spins in the state up. Here, g(N+, N++) is the number of

different configurations that can be established with the same numbers N+

and N++.
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Consider now the case of a binary alloy as an example of a system with

conservation of the number of constituents in a given state. The states 1 and

2 are now denoted as A and B corresponding to the two species of atoms.

In this case, the canonical partition function can be written as

Q(β) = e(
1
2
βzN−2zϵNA)

∑
{NAA}

g(NA, NAA)e
4ϵJNAA , (1.56)

where, for the sake of simplicity, a symmetric alloy has been considered for

which, εAA = εBB. Note that in this case there is no sum over NA, which is

a fixed quantity. Indeed, the sum over pairs NAA must be performed consis-

tently with the number NA of A-atoms. We can overcome the conservation

restriction by computing the partition function in the grand canonical en-

semble, which is given as

Q(β, µ) = eβN( 1
2
z−µ)

N∑
NA=0

e−2β(zϵ−µ)NA
∑
{NAA}

g(NA, NAA)e
4ϵJNAA , (1.57)

where µ is the difference between chemical potentials of A and B atoms.

Comparing expressions given by Eqs. 1.55 and 1.57, it is clear that the grand

canonical partition function of the binary alloy is equivalent to the canonical

partition function of the magnetic system. In addition, this corroborates that

µ plays the role of the magnetic field in the case of the binary alloy.

1.4.1 Mean-field approximation

As we have already discussed, lattice models represent very simplified rep-

resentations of physical systems that undergo phase transitions. Despite the

crude approximation to reality, the calculation of the corresponding partition

function is very difficult and has only been obtained in very few cases. In the

case of the Ising model, exact solutions are only known for 1d and 2d models

[15]. In general, it will be necessary to use some kind of approximation to find

a solution that at least provides us with a qualitatively reasonable descrip-

tion of the thermodynamic behaviour of the system under consideration.

The most common approximation is the mean-field approximation, which,

in general, can be understood as a self-consistent, variational approach in

which correlations are treated in an approximate manner. As pointed out by

Kadanoff [16], mean-field theory provides a partial, and partially imprecise,

answer to the problem of phase transitions, but it is important to remark

that partially imprecise means that it is partially right. There are several

ways to perform this class of approximations, which are not all equivalent.12

12 As we will discuss later, all of them give the same description of critical behaviour.

https://doi.org/10.1017/9781009549776.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009549776.003


24 Introduction to phase transitions

One of the most convenient methods is the Bragg–Williams approach, in-

troduced by Bragg and Williams to study the order–disorder transition in

the β-(Cu-Zn) brass [17]. In its original version, they introduced the method

using occupation variables. We will begin by discussing it starting from the

Ising hamiltonian expressed in spin variables [18]. The partition function is

then given by Eq. 1.52. We will begin by assuming that J > 0 and define

the magnetization m per spin of a given configuration as

m ≡ 1

N

N∑
i=1

Si =
N+

N
− N−

N
= 2p+ − 1, (1.58)

which is a convenient order parameter for a ferromagnetic system. We can

now rewrite the partition function in the form

Q(β, h) =
∑
{m′}

∑
{r}

e−βEr , (1.59)

where the second sum over {r} is performed over all spin configurations with

the same value of m′. Therefore, Er are the energies of these configurations.

If g(m′) is the number of configurations corresponding to a given value of

m′, the average energy of these configurations can be obtained as

Ē(m′) =
1

g(m′)

∑
{r}

Er. (1.60)

Then, the exponential term of the partition function can be written as

e−βEr = e−βĒe−β(Er−Ē), and expanding the second exponential in power

series it is obtained that

e−βEr = e−βĒ

{
1− Er − Ē

kBT
+

1

2!

(
Er − Ē
kBT

)2

− 1

3!

(
Er − Ē
kBT

)3

+ ...

}

= e−βĒ
∞∑
j=0

(
−1
kBT

)j (Er − Ē)j

j!
. (1.61)

Defining the moment of j-order of the energy distribution as

Mj ≡
1

g(m′)

∑
{r}

(Er − Ē)j , (1.62)

the term e−βEr can be expressed as

e−βEr = g(m′)e−βĒ
∞∑
j=0

(
−1
kBT

)j Mj

j!
. (1.63)
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The logarithm of the sum in the preceding expression can be given as

ln
∑∞

j=0(Mjx
j)/j! =

∑
n=1(Bnx

n)/n!, where x ≡ (−1/kT ). Differentiating

both sides of this equation with respect to x yields

∞∑
n=1

∞∑
j=0

n

n!j!
BnMjx

n+j−1 =

∞∑
j=0

jMj

j!
xj−1. (1.64)

Then, equating equal powers in x on both sides of the obtained equation

leads to

B1M0 =M1,

B1M1 + B2M0 =M0,

B3M0 + 2B2M1 +B1M2 =M3,

..., (1.65)

and taking into account thatM0 = 1 andM1 = 0, it is obtained that B1 = 0,

B2 = M2, B3 = M3, B4 = M4 − 3M2
2 , ... Therefore, the partition function

can be written as

QN =
∑
{m′}

g(m′) exp

[
− Ē

kBT
+

M2

2(kBT )2
+

M3

3!(kBT )3
+ ...

]
. (1.66)

Now, applying the saddle point method, the preceding sum can be approx-

imated by its maximum term, which corresponds to m′ = m. This value

represents the magnetization per spin in the equilibrium state of the system

at T and h. It is obtained from the condition of minimum of the following

free energy function

F (m′) = Ē − M2

2kBT
− M3

3!(kBT )2
− ...−NkBT ln g(m′). (1.67)

Therefore, the approach must be considered as a variational method and

thus, m is a solution of the equation(
∂F

∂m′

)
m′=m

= 0. (1.68)

In the Bragg–Williams approximation, all moments of order higher than the

first are omitted, which supposes that correlations between neighbouring

spins are neglected. Therefore, taking into account this fact, the mean value

Ē is given by

Ē(m′) = −1

2
zJNm′2 −Nhm′, (1.69)
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which is simply obtained by substituting the spin variables Si for their mean

values in the Ising hamiltonian. This equation assumes the self-consistent

condition, which imposes that the mean spin value is the same for all lattice

sites.

On the other hand, g(m) is the number of spin configurations that have

the same order parameter m and, thus, the same average energy. Since the

Bragg–Williams approximation neglects correlations between neighbouring

spins, it is simply given by, g(m′) = N !/(N+!N−!). Taking into account that

N+ = N(1+m′)/2 and N− = N(1−m′)/2, the following free energy function

per spin is obtained:

f(m′, T, h) = −1

2
zJm′2−hm′+kBT

(
1 +m′

2
ln

1 +m′

2
+

1−m′

2
ln

1−m′

2

)
,

(1.70)

where the Stirling approximation has been used to compute ln g(m′). After

minimization, it is obtained that the equilibrium magnetization per spin

must satisfy the following equation:

m = tanh

(
zJm+ h

kBT

)
. (1.71)

The solution m = m(T, h) of the preceding equation can be obtained nu-

merically. For m close to zero, the hyperbolic tangent can be expanded in a

power series of m. It is then easy to see that for h = 0, the solution is m = 0

above a temperature Tc = zJ/z. Below this temperature, this solution cor-

responds to a maximum of the free energy function and is thus an unstable

solution. Two stable symmetric solutions occur at ±m0 ̸= 0. For h ̸= 0, a

non-zero solution is obtained at all finite temperatures, which has the same

sign as that of h. Thus, a phase transition cannot occur in the presence

of an external field (that breaks the symmetry of the up and down spins).

Therefore, the present model displays a continuous phase transition at the

critical point, hc = 0 and Tc = zJ/k from a high-temperature paramagnetic

phase (m = 0) to a low-temperature ferromagnetic phase (m ̸= 0). It is

easy to show that close to the critical point thermodynamic quantities show

a power-law behaviour, characterized by the following exponents: α = 0

(corresponding to a discontinuity of the heat capacity), β = 1/2, γ = 1,

δ = 3. These are the mean-field critical exponents that are obtained in any

mean-field theory.

Equation 1.71 plays the role of the equation of state of the system. It is

worth remarking that this equation of state is formally equivalent to the

paramagnetic equation of state of a spin-1/2 system subjected to an ef-

fective or mean-field heff = zJm + h, which is a function of the mean
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magnetization, m. Therefore, it can be assumed to result from an effec-

tive hamiltonian of the type, Heff = −
∑

i heff (m)Si. This point of view

precisely represents the approach proposed within the molecular field the-

ory. This approach was first introduced by Weiss [19] as an extension of the

Langevin theory of paramagnetism aimed at taking into account the interac-

tion between magnetic moments. Indeed, the obtained results are equivalent

to those obtained within the Bragg–Williams approximation. It is interest-

ing to note that the effective field can simply be obtained as the mean value

of the local field hi acting on a spin Si, which is given as

hi = −
∂H({Si})

∂Si
= J

∑
j nn i

Sj + h, (1.72)

where the sum must be performed over the z nearest neighbours of Si. As

first proposed by Bethe [20], this procedure can be generalized by treating

exactly the interactions of a given spin with its nearest neighbour spins

exactly and the interactions of these spins with the rest through a mean-

field. From this point of view, the Bragg–Williams theory corresponds to

a first-order mean-field theory, while the Bethe approximation is of second

order.

The mean-field treatment discussed so far is self-consistent in the sense

that it is imposed that all spins see the same effective field, which reduces

the N -body original problem to a one-body or to a few-body problem, as

happens in the Bethe approximation. Therefore, these approximations sup-

pose neglecting the fluctuations of hi that extend beyond the length scale

associated with a single atom in the case of the Bragg–Willaims or Weiss

approximation, and to the length scale of two atoms in the case of the Bethe

approximation. This is an important fact given that the fluctuations of hi
is the mechanism that couples the state of a given spin with the state of its

neighbouring spins. Therefore, neglecting fluctuations results in the fact that

correlations between spins are not treated correctly. Therefore, although the

solution obtained is qualitatively correct, it will be inadequate when the cor-

relations extend over great distances, as happens at critical points. This is

essentially evidenced by the fact that the critical exponents of the theory are

independent of space and order parameter dimensions and, in general, differ

from those measured experimentally. Actually, in mean-field theories, the

lattice only plays a role through the number of neighbours. This means, for

instance, that assuming interactions between nearest neighbour constituents,

in this approximation, the same result is obtained if the system is defined on

a simple cubic 3d lattice (z = 6) or in a triangular 2d lattice (z = 6). In the

particular case of the Bragg–Williams approximation, it is found that a 1d
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chain exhibits a phase transition, although this is known to be an incorrect

result.13 Notwithstanding, the mean-field exponents are correct in systems

with long-range interactions between the constituents and, as we will see

later when the space dimension is large enough (often this dimension is

greater than 3).

In principle, one might think that it is possible to find a better approxi-

mation by considering more terms in the series of moments given by Eq. 1.62

that determines the partition function. Actually, high-order moments have

been estimated by Kirkwood [21, 22], which show that taking them into ac-

count only allows to improve the prediction of the critical temperature, but

the obtained critical behaviour is exactly the same than that predicted by

the Bragg–Williams approximation. The problem comes from the fact that

the series of moments converges very weakly and, considering only a finite

number of terms in the expansion, supposes again to treat the fluctuations

(and consequently the correlations) in an approximate form, which always

brings to the same mean-field critical behaviour. In fact, the Kirkwood ap-

proach with a finite number of moments represents a kind of high-order

mean-field approximation, which, apart from criticality, gives results which

are not strictly the same as those obtained in other mean-field approxima-

tions such as the Bethe approximation.

Generalization to q-state spin lattice models

The Bragg–Williams method introduced above can be easily generalized to

systems with a spin variable that can take more than two states. Consider

that the spin variables Si defined at each lattice point can take values {Sα}
where α = 1, 2, ..., q. In the Bragg–Williams approximation, spin variables

in the hamiltonian must be replaced by their mean value, which, in this

general case, will be given by

m = ⟨Si⟩ =
q∑

α=1

p(Sα)Sα, (1.73)

13 This can be seen using the Peierls argument. This supposes a ferromagnetic Ising chain of N
sites with free boundary conditions for which the ground-state energy is E0 = −(N − 1)J .
Consider now configurations corresponding to lower-energy excitations with the first l spins of
the chain up and the rest N − l down. The excess of energy of such states is E − E0 = 2J .
Therefore, at a temperature T , the free energy change due to these excitations is
∆F = 2J − kT ln(N − 1). In the limit N →∞, ∆F < 0 for all T . This means that at any
finite temperature, the disordered m = 0 phase is stable. Therefore, there cannot be a phase
transition to a ferromagnetic state in 1d with finite-range interactions. A generalization of
this argument to higher dimensions shows that a 2d Ising model should show a phase
transition at a finite temperature.
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where p(Sα) is the probability that the spin takes the value Sα, which is

the same for all lattice sites, i.14 The corresponding number of spin config-

urations for a given m is now g(m) = N !/
∏q
α=1[Np(S

α]! Therefore, for a

hamiltonian which has the Ising form with nearest neighbour interactions

between q-state spins, the corresponding free energy function per particle

will be of the form:

f({p(Sα}) = −1

2
zJ [

q∑
α=1

p(Sα)Sα]2 + kBT

q∑
α=1

p(Sα) ln p(Sα), (1.74)

which is equivalent to that given by Eq. 1.70. In this case, equilibrium prob-

abilities should be found by minimizing the free energy function with respect

to the probabilities {p(Sα)} under the normalization constraint

q∑
α=1

p(Sα) = 1, (1.75)

which must be done using the method of Lagrange undetermined multipli-

ers. In some cases, due to symmetry reasons, some probabilities must be

equal, which may simplify the problem. Finally, note that this method can

easily be extended to the case of systems with continuous spin variables (see

Exercise 1.3 as an example).

The infinite range Ising model: gaussian integral method

The infinite-range Ising model is interesting since it can be exactly solved

and, in the thermodynamic limit, the solution coincides with the correspond-

ing mean-field solution. To address this problem, consider a ferromagnetic

Ising model defined on a lattice with N sites where the exchange pair in-

teraction is J/N for all pairs, which can be interpreted as if the range of

the interactions would extend to infinity. Indeed, the model may look quite

artificial, but it is interesting in the following two aspects. First, because it

highlights that the mean-field approach is essentially correct in real systems

where long-range effects are relevant,15 and second because the formal treat-

ment used to obtain the solution is important in the study of spin glasses,

as will be seen in Chapter 7.

In the absence of an applied field, the hamiltonian of the system considered

is thus the following:

14 Note that in the case of the two-sates Ising model, we have defined ⟨Si⟩ = (
∑
i Si)/N =

(N+/N)(+1) + (N−/N)(−1) = p(S = +1)− p(S = −1) = p+ − p− = 2p+ − 1, where
p+ = N+/N and p− = N−/N .

15 This is important, for instance, to justify that in systems where elasticity plays an important
role or in magnetic systems with dipolar interactions mean-field provides an excellent solution.
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H({Si}) = −
J

2N

∑
i ̸=j

SiSj , (1.76)

that can be written in the form

H({Si}) = −
J

2N

( N∑
i=1

Si

)2

− 2

N∑
i=1

S2
i

 , (1.77)

where the term,
∑N

i=1 S
2
i = N . Therefore, the partition function is given by

Q(β) = e−βJ
∑
Si=±1

exp

 βJ

2N

(∑
i

Si

)2
 . (1.78)

Now we take into account the gaussian integral identity

eax
2/2 ≡

√
aN

2π

∫ ∞
−∞

dm′ e−Nam
′2/2+

√
Nam′x. (1.79)

Then, the partition function can be rewritten in the form

Q(β) = e−βJ
∑
Si=±1

√
βJN

2π

∫ ∞
−∞

dm′ e−NβJm
′2/2+βJ

∑
i Si . (1.80)

Therefore, the summation can be performed independently from the integral

and it gives

Q(β) = e−βJ
√
βJN

2π

∫ ∞
−∞

dm′ e−NβJm
′2/2+N ln[2 cosh(βJm′)]. (1.81)

It is clear that the problem has been reduced to a single integral problem.

While the integral cannot be evaluated, taking into account that the argu-

ment of the exponential in the integrand is proportional to N , we can apply

the saddle point method that provides an excellent approximation in the

thermodynamic limit. Therefore, in this limit

Q(β) ≃ e−βJ
√
βJN

2π
e−βNf(m), (1.82)

where f(m) ≡ Jβm2/2− ln[2 cosh(βJm)] and m is the value of the variable

m′ that maximizes f(m′). Thus, it is a solution of (∂f/∂m′)m′=m = 0, which

leads to

m = tanh

(
Jm

kBT

)
. (1.83)
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This is the same equation as Eq. 1.71 of the mean-field approximation in

the case h = 0, with zJ replaced by N(J/N). Therefore, the coordination

number z in the infinite-range model is the number of spins N − 1 that

in the thermodynamic limit is given by N . Note as well that the variable

m, which has been introduced as an artificial variable to use the gaussian

integral method, can now be identified with magnetization.

The preceding result shows that the mean-field solution is the exact solu-

tion in the case of the infinite-range Ising model. As a matter of fact, this is

not a surprising result. In fact, if the term
(∑N

i=1 Si

)2
in the hamiltonian

Eq. 1.77 is rewritten in the form −(J/2)
∑N

i=1 Si(N
−1∑N

j=1 Sj), where, in

the thermodynamic limit, the sum in the parenthesis is the magnetization

m. Therefore, if this term is replaced by its average value m, the problem

reduces to a single-body problem, which is precisely the solution given by

Eq. 1.83.

1.4.2 Antiferromagnetic case: sublattices

Let us consider now the same Ising hamiltonian as given in Eq. 1.45, but now

with the exchange parameter J < 0. In this case, the exchange will favour

an antiparallel alignment of the spins. We will assume that the lattice has

a symmetry that allows a subdivision into two sublattices so that all the

z nearest neighbours of a spin that belong to a sublattice are located on

the other sublattice. This condition ensures that a perfect antiferromagnetic

order can be established. This subdivision is possible in simple cubic (sc)

and in body-centred cubic (bcc) lattices, but not in face-centred cubic (fcc)

or triangular lattices. In these cases, geometrical frustration effects may

arise that prevent that the perfect long-range antiferromagnetic order can

be established [23].16

In the case of a bcc lattice, the two sublattices are interpenetrating sc lat-

tices constituted of the vertex and central nodes of the lattice, respectively.

This division is shown in Figure 1.1. Then the problem can be solved us-

ing the Bragg–Williams solution that we have obtained in the ferromagnetic

case. If we denote the two sublattices as α and β sublattices, respectively, we

can define the spin magnetization of a sublattice or staggered magnetization

as,

16 In a triangular lattice with nearest neighbour spins antiferromagnetically coupled, once two
spins of the equilateral triangle are aligned antiparallel, the third one is frustrated because its
two possible orientations, up and down, give the same energy. Thus, the third spin cannot
mutually minimize its interaction energy with the other two spins. This is the geometrical
frustration effect that leads to multiple ground states with the same energy, and long-range
order is suppressed.
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ms =
2

N

∑
i∈s

Si, (1.84)

where the subindex s = α, β indicates the sublattice. Note that the two

sublattices have the same number of lattice sites, Nα = Nβ = N/2. Here ms

plays the role of the order parameter in this case since, in the absence of an

applied field, its mean value is expected to vanish at high temperature and

to be non-zero at low temperature. Therefore, in the absence of an external

Figure 1.1 Unit cell of the bcc lattice with the division in α and β sc
sublattices.

field h, the effective fields acting on the spins of the two sublattices are

hαeff = zJmβ, (1.85)

hβeff = zJmα. (1.86)

Therefore, the equations of state for the two sublattices are

mα = tanh

(
zJ

kBT
mβ

)
, (1.87)

mβ = tanh

(
zJ

kBT
mα

)
. (1.88)

Expanding these equations in a power series of mβ and mα, respectively,

it is obtained that, at high temperature, mα = mβ = 0 is the solution of

these equations. Below a temperature Tc, the following stable solutions are

possible, mα = mβ ̸= 0 and mα = −mβ ̸= 0. In the first case Tc = zJ/k,

while Tc = −zJ/k in the second case. The former solution is only physically

meaningful for J > 0, and corresponds to the ferromagnetic case. The second

solution is the antiferromagnetic solution that requires that J < 0. It is

worth noting that the critical temperature of the model, Tc = z|J |/k, is the
same in ferromagnetic and antiferromagnetic cases. The order parameters

of the ferromagnetic and antiferromagnetic transitions can be, respectively,

defined as m = (mα+mβ) and η = (mα−mβ), which show exactly the same
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temperature dependence in the absence of an applied field. Thus, the mean-

field critical exponents of antiferromagnetic and ferromagnetic transitions

are exactly the same.

An interesting issue to be considered is the effect of a magnetic field on

the transition. When a field is applied, the condition mα = −mβ is no longer

satisfied. However, the presence of the field does not prevent, as in the fer-

romagnetic case, that the system may experience symmetry breaking at a

finite temperature. Therefore, contrary to the case of ferromagnetism, the

transition from the paramagnetic phase to the antiferromagnetic phase may

continue to exist in the presence of an applied magnetic field. Actually, this

is easily understood from a thermodynamic viewpoint taking into account

that the magnetic field is not thermodynamically conjugated to the anti-

ferromagnetic order parameter. As a matter of fact, the field conjugated to

the staggered magnetization would be a field that points along opposite di-

rections in the α and β sublattices. Indeed, this field cannot be realized in

practice.

1.4.3 Multiple variables: the Deformable Ising model

The goal of this section is to discuss how Ising models, which are adequate to

deal with systems that undergo a phase transition between a disordered and

an ordered configurational or magnetic phases can be extended to address

secondary degrees of freedom that may affect the properties of the phase

transition. Thus, we will consider that these degrees of freedom are not

responsible for the phase transition but may have an influence on the phase

stability. As an interesting example of this situation. We will discuss how to

take into account lattice vibrations in the Ising model.

Both, in alloys and magnets (with localized magnetic moments), atoms

are not fixed at lattice sites as considered so far but rather oscillate around

these positions and, in spite of the fact that lattice vibrations are usually of

small amplitude, these oscillations can affect phase stability [24]. To deeply

understand this effect, it is instructive to consider a phase transition be-

tween ordered (o) and disordered (d) configurational or magnetic phases

and, for each phase, to decompose the free energy into configurational (c)

and vibrational (v) parts, that is,

F i = F im + F iv = (Eim + Eiv)− T (Sim + Siv), (1.89)

where the superscript i = o, d stands for the phase considered. At high

enough temperature Eiv is simply determined by the equipartition theo-

rem and is independent of the phase considered. Thus, in these conditions,
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the influence of vibrations on phase stability is determined by the change

of vibrational entropy between the two phases. This is a reasonable result

since the vibrational entropy can be understood as a measure of the average

stiffness of the system. The softer is the system, the larger should be the

oscillations and thus the entropy. Consequently, a phase with a large vibra-

tional entropy should be stabilized with respect to harder phases. From this

point of view, entropy plays a very relevant role in soft matter [25].

The effect of vibrations on the spin variables can be introduced through

the bond proportion model [24], which assumes that the force constant be-

tween pairs of nearest neighbour atoms i and j in microscopic states Si and

Sj , is of the form

Φcc
′

ij = (ϕ0)
cicj
ij (1 + λSiSj), (1.90)

where (ϕ0)
cc′
ij are constants, and the indices c, c′ denote cartesian coordi-

nates (x, y, z). Here, λ is the parameter that couples configurational and

vibrational degrees of freedom. Note that λ = 0 corresponds to the case in

which vibrational and configurational or magnetic degrees of freedom are not

coupled. Force constants are obtained as second derivatives of the potential

energy with respect to lattice displacements about equilibrium lattice posi-

tions as done usually in the harmonic treatment of lattice vibrations (see,

for instance, Ref.[26]). Then the hamiltonian of the model includes an Ising

configurational or magnetic term and a term accounting for the kinetic and

harmonic potential energies of lattice vibrations.

For the sake of generality, it is convenient to assume that the lattice can be

subdivided into two equivalent sublattices α and β as done in the preceding

section. This method is useful since it permits to consider systems with

ferro- and antiferromagnetic interactions simultaneously [27]. In the mean-

field approximation, the force constant parameters should be expressed as

Φcc
′

ij = (ϕ0)
cc′
ij (1 + λmαmβ). Therefore, in this approximation, the canonical

partition function will be

Q(β) = QmQv =
∑

{m′
α,m

′
β}

g(m′α,m
′
β)e

1
2
βzNm′

αm
′
β

3N∏
k=1

1

βℏωk(m′α,m′β)
, (1.91)

where we have not included an external field coupled to spin variables. In

the preceding expression

g(m′α,m
′
β) =

Ns!(
1+m′

α
2 Ns

)
!
(
1−m′

α
2 Ns

)
!
× Ns!(

1+m′
β

2 Ns

)
!
(
1−m′

β

2 Ns

)
!
, (1.92)
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with Ns = N/2 being the number of lattice sites in each sublattice. Here,

ωk(mα,mβ) denotes the normal vibrational frequency modes. Using the sad-

dle point method, the variational free energy function per particle is given

by

f = fm + fv, (1.93)

where

fm = −1

2
zJmαmβ +

kBT

2

{
1 +mα

2
ln

1 +mα

2
+

1−mα

2
ln

1−mα

2

}
+
kTB
2

{
1 +mβ

2
ln

1 +mβ

2
+

1−mβ

2
ln

1−mβ

2

}
, (1.94)

and

fv = kBT

3N∑
k=1

ln[βℏωk(mα,mβ)]. (1.95)

The square of the frequencies of the normal modes are the eigenvalues of the

dynamical matrix, with elements Dcc′(q) proportional to
∑
{i,j}Φ

cc′
ij exp[iq ·

(Rj −Ri)], where Ri and Rj are vector positions in the lattice of atoms i

and j, respectively. In the present mean-field approximation,

Dcc′(q,mα,mβ) = (1 + λmαmβ)Dcc′(q,mα = 0,mβ = 0). (1.96)

Therefore, the normal frequencies depend on the staggered magnetizations

as

ω2(q,mα,mβ) = (1 + λmαmβ) ω
2(q,mα = 0,mβ = 0), (1.97)

and thus the vibrational contribution to the free energy is

fv =
3

2
kBT ln(1 + λmαmβ) +

kBT

N

3N∑
k=1

ln[βℏωk(mα = 0,mβ = 0)], (1.98)

where the second term on the right-hand side member of the equation is in-

dependent of the order parameter. Minimization of the complete free energy

function given by the sum fm + fv with respect to mα and mβ leads to the

equations of state

mα = tanh

(
zJ

kBT
mβ +

3λmα

1 + λmαmβ

)
,

mβ = tanh

(
zJ

kBT
mα +

3λmβ

1 + λmαmβ

)
. (1.99)
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Indeed, these equations reduce to Eqs. 1.87 and 1.88 when λ = 0, as ex-

pected. Numerical analysis of these equations in the case of a magnetic

system [29] leads to the phase diagram of the system for J > 0 and J <

0. For low enough coupling parameter λ, both para-ferromagnetic (P -F )

and para-antiferromagnetic (P -A) transitions are found to be second or-

der. Transition temperatures can be found analytically and are given by,

TP−Fc (λ) = zJ/k(1 + 3λ), for J > 0, and TP−Ac (λ) = −zJ/k(1 − 3λ), for

J < 0. The line of second-order transitions ends at λ sgn(J) = 1/3, which

is a tricritical point.17 For higher values of coupling, the transition is first

order.

In general, for negative values of λ sgn(J), the transition temperature

is higher than in the absence of coupling since the low-temperature ferro-

magnetic phase is elastically softer than the paramagnetic phase and thus

vibrational entropy increases its range of stability. For λ sgn(J) < −1/3
the vibrational entropy difference between ordered and disordered magnetic

phases cannot be balanced by the corresponding magnetic entropy difference

and the ordered phase is stable at all temperatures. For positive λ sgn(J),

the paramagnetic phase is softer than the ordered low-temperature phase

and, consequently, the transition temperature is lower than in the absence

of coupling. For λ sgn(J) > 1/3, due to the large entropy difference be-

tween both phases, the phase transition becomes first order. It is interest-

ing to remark that for J > 0 (< 0), an antiferromagnetic (ferromagnetic)

phase can be stabilized at high enough temperature by vibrational entropy.

This allows that a triple point where ferro-, antiferro- and paramagnetic

phases coexist occurs at λ sgn(J) = 0.75. The phase diagram is shown in

Figure 1.2.

It is worth noting that, beyond the magnetic/configurational properties,

the model also enables us to study the elastic properties of the lattice in the

different magnetic phases. In particular, the elastic constants Cijkl of the

system can be obtained from the slopes at the origin of the dispersion curves

ω(q,mα,mβ). Therefore, they are found to show the following dependence

on the staggered magnetizations

Cijkl =
1 + λmαmβ

1 + λsgn(J)
Cijkl(0), (1.100)

where Cijkl(0) are the elastic constants at T = 0. This expression corrob-

orates that lattice hardening or softening occurs in the cases previously

discussed.

17 Tricritical points will be discussed later on in Section 1.5.2.
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Figure 1.2 Phase diagram of the deformable Ising model. The regions where
ferromagnetic (F ), antiferromagnetic (AF ) and paramagnetic (P ) phases
occur as a function of the coupling constant for positive and negative values
of the exchange parameter are indicated. Continuous and dashed lines stand
for continuous and first-order transitions, respectively.

1.5 The Landau approach

In this section, we will introduce basic aspects of the Landau theory.18 We

will start by putting the theory into a proper perspective. The Landau the-

ory is a general phenomenological theory suitable to address and under-

stand phase transitions. It is based on the idea that a phase transition is

associated with a symmetry breaking that entails a change in system prop-

erties. The symmetry breaking is reflected by the behaviour of the order

parameter, which is the basic quantity of the theory. As usual, the (average)

order parameter represents a property of the system that vanishes in the

high-temperature phase and is different from zero below the transition. The

crucial hypothesis of the theory assumes that near the transition, the free

energy function can be expanded in a power series of the order parameter

and its spatial derivatives. Actually, this means admitting that the free en-

ergy function is an analytical function of the order parameter across the

transition. Therefore, the theory is, in principle, only appropriate to anal-

yse the behaviour of the studied system in the neighbourhood of a phase

transition, where the order parameter is small. It is somewhat surprising

that a polynomial free energy describes the singular behaviour expected in

the vicinity of any phase transition. In fact, in the theory, the singularity

is taken into account by the value of the order parameter resulting from

18 For a more comprehensive introduction to the Landau theory, Ref. [28] is recommended.
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the minimization of the free energy function, which is the value expected in

the thermodynamic equilibrium state. Therefore, the free energy function

corresponding to this value of the order parameter determines the thermo-

dynamic free energy. The symmetry properties of the considered system are

taken into account in the series expansion of the free energy function which

may contain only the terms allowed by the symmetry operations of the

high-temperature phase. This ensures that the Landau free energy is invari-

ant under the symmetry operations of this phase. As a phenomenological

approach, the Landau theory deals only with macroscopic quantities and

avoids requiring the microscopic hamiltonian to treat the system of interest.

Then, when the theory is combined with the thermodynamic formalism, it

gives rise to a very general and powerful method for the study at the ther-

modynamic scale of systems undergoing phase transitions. It allows to relate

measurable quantities with the parameters of the theory that appear in the

series expansion of the free energy. These parameters are phenomenological

but it is interesting to note that they can also be obtained from first princi-

ples calculations based, for instance, on the density functional theory. From

this point of view, the Landau theory can be understood as a bridge that

allows connecting microscopic models with the thermodynamic description.

In his first version, Landau proposed a theory for homogeneous systems

undergoing a continuous phase transition [62]. Some years later, Devonshire

realised that the theory may also be used to deal with first-order transi-

tions [31]. The generalization to inhomogeneous systems was proposed by

Ginzburg and Landau to study the phase transitions from a normal con-

ductor to a superconductor. The inhomogeneity requires including gradient

terms of the order parameter in the free energy expansion. This generalized

theory is often called the Ginzburg–Landau theory [32].

To formally introduce the Landau theory, let us consider a macroscopic

system in a d-dimensional space. Instead of looking at the microscopic lat-

tice scale, as done in the Ising model, let us consider a coarse-graining of

the system that consists of dividing the lattice into cells of linear size ℓ, as

illustrated in Figure 1.3. An order parameter density, m(r), is then defined

in each grain located at position r. For the sake of simplicity, we will sup-

pose that the order parameter is a scalar quantity. This approach assumes

that there are no fluctuations of m(r) with wavelength smaller than ℓ.19

Therefore, the procedure defines a field theory model and the corresponding

partition function can be expressed in the form

19 This means that m(r) has no Fourier components with a wave number greater than a cutoff
∼ 1/ℓ.
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Figure 1.3 Schematic illustration of the coarse-graining of the lattice.

QCG(β, h) = e−βF (β,h) =

∫
[Dm′]e−βHCG({m

′,h}), (1.101)

where h is an inhomogeneous external field conjugate to the order parameter,

and HCG({m′, h}) is the coarse-graining hamiltonian given by the functional

integral

HCG({m′, h}) =
∫
ddr f [m′(r), h(r)]. (1.102)

The integration measure [Dm′] in Eq. 1.101 includes a summation over all

functions {m′(r)}, which reflects all possible configurations of the order

parameter field. Note that f in Eq. 1.102 is usually referred to as the Landau

free energy density. For small m′(r), close to a phase transition, it can be

expanded in powers of m′(r) and its derivatives, that is,

f [m′(r), h(r)] = f0 − h(r)m′(r) +
1

2
b|∇m′(r)|2 + ...

+
1

2
a2m

′2(r) +
1

3
a3m

′3(r) +
1

4
a4m

′4(r) + ... (1.103)

In the preceding expression, all coefficients are phenomenological and may

depend on temperature and other parameters such as pressure or magnetic

field. In general, they are simply chosen based on the purposes of the model.

Here, f0 is the non-singular part of the free energy, which is often omitted.

Usually, a2 is assumed to be proportional to t = (T − Tc)/Tc, where Tc is a
critical temperature, and the remaining parameters are supposed to be tem-

perature independent. The coefficient of the linear term in m′(r) must obvi-

ously be h(r), to ensure that the thermodynamic expression h = −∂F/∂m
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is satisfied. Some terms of the expansion may vanish due to symmetry con-

ditions. In fact, the expansion must be invariant under all symmetry oper-

ations of the high-temperature phase. The general procedure to determine

the expansion based on the symmetries of the system is explained in detail

in the Appendix. As a simple example, we can consider systems that are

invariant under the reversal (or sign change) of the order parameter. In this

case the cubic term, a3 must vanish. This may correspond, for instance, to

the case of a magnetic system in the absence of an applied external field.

The number of terms taken in the expansion is also determined by purely

phenomenological criteria. Actually, the model must be as complex as nec-

essary and as simple as possible.20 If, for instance, the system undergoes a

continuous phase transition, the simplest model is the one in which the ex-

pansion is limited to fourth order with a4 > 0, and only a2 is assumed to be

a function of temperature such that it changes its sign from positive at high

temperature to negative at low temperature at the critical temperature Tc.

Note that, in this case, the coefficient of higher-order term must be positive

to ensure that the function shows minima associated with stable phases for

both a2 > 0 and a2 < 0. Concerning the gradient terms, in general, terms of

order higher than the second are not considered. The second-order gradient

term introduces a characteristic length scale in the system such as domain

wall width.

The Landau theory for homogeneous systems results from a saddle point

approximation consisting of replacing in the partition function given by

Eq. 1.101 the integrand by its maximum value. If we suppose that h is a

uniform field, the functional form of m′(r) that maximizes the integrand of

the partition function is indeed a function m(t, h), which must be a solution

of [
∂f

∂m′

]
m′=m

= a2m+ a3m
2 + a4m

3 + ...− h = 0. (1.104)

The solution corresponding to thermodynamic equilibrium must satisfy the

stability condition [∂2f/∂m′2]m′=m ≥ 0. In the case of a system that is

invariant under reversal of the order parameter, a3 = 0, and supposing that

a2 = a0t, the free energy function F is given as

F (m′, T, h)

V
= f0 +

1

2
a0tm

′2 +
1

4
a4m

′4 − hm′. (1.105)

The function f(m) is depicted in Figure 1.4 for h = 0 and temperatures

T > Tc, T = Tc and T < Tc.

20 This is the so-called Ockham’s razor criterion that is usually stated in the form, Entia non
sunt multiplicanda praeter necessitatem (entities should not be multiplied beyond necessity).
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Figure 1.4 Free energy function f(m) for temperatures T > Tc, T = Tc
and T < Tc, and h = 0.

It is easy to show that the same free energy function can be obtained from

the Bragg–Williams mean-field free energy function corresponding to a fer-

romagnetic Ising model (that will be denoted here as FBW ) given in Eq. 1.70,

by expanding the entropy term in a power series aboutm′ = 0. That is, close

to Tc, the Bragg–Williams free energy function can be expressed as

FBW
N

= kTc ln 2 +
1

2
zJtm′2 +

1

4

4kTc
3

m′4 + ... . (1.106)

Therefore, identification of coefficients yields, a0 → zJ , Tc → zJ/k (which

is, indeed, the critical temperature in the Bragg–Williams approximation),

a4 → 4kTc/3 and f0 → kTc ln 2. The fact that the same free energy function

is obtained in both the Bragg–Williams and Landau formalism is not sur-

prising since the ferromagnetic Ising model is also invariant under the change

Si → −Si, which implies that the free energy must be invariant under re-

versal of the order parameter sign. This result corroborates that the Landau

approach represents a mean-field treatment. In any case, it is important to

remark that although the Landau and mean-field approaches lead to the

same free energy close to the critical point, the Landau approach must be

considered as a more general theory based solely on the symmetry proper-

ties of the considered system in which the coefficients of free energy function

are purely phenomenological and not predetermined by the parameters of a

given microscopic hamiltonian.

Equilibrium solutions of the order parameter are solutions of

a0tm+ a4m
3 = h, (1.107)

which represents the equation of state of the system. Therefore, along the

critical isotherm (t = 0), m ∝ h1/3.
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For h = 0, the order parameter has the following behaviour:

m =

{
0 for t > 0,

±(a0/a4)|t|1/2 for t < 0.
(1.108)

Therefore, in the absence of an applied field, the model displays a continuous

transition at t = 0 (T = Tc). At this point, the coefficient of the harmonic

term of the free energy function changes from positive at t > 0 to nega-

tive at t < 0. It is interesting to note that the equilibrium order parameter

does not reach a saturation value in the limit T → 0, which is in contra-

diction with the third law of thermodynamics since the latter requires that

the order parameter become independent of temperature near absolute zero.

This behaviour reflects the fact that the Landau theory is only adequate to

describe the behaviour of the studied system close to the transition temper-

ature. In any case, it has been shown [33] that the saturation effect of the

order parameter can be incorporated in the theory assuming a temperature

dependence of the term a2 of the form

a2(T ) ∝
(
coth

θs
T
− coth

θs
Tc

)
, (1.109)

where θs is a characteristic temperature. With this choice the order param-

eter shows the same square root dependence on temperature close to Tc and

reaches saturation at low temperature.

The susceptibility χ can be obtained by differentiating the equation of

state with respect to h. It is given by

χ =
1

a0t + 3a4m2
=

{
1
a0
t−1 for t > 0,

1
2a0
|t|−1 for t < 0.

(1.110)

The heat capacity can be computed from the entropy, s = − ∂f
∂T = −1

2
a0
Tc
m2,

as C
T = ∂s

∂T . The obtained result is

C =

{
0 for t > 0,
a20

2T 2
c a4

T for t < 0.
(1.111)

From this expression, it is deduced that the heat capacity shows a disconti-

nuity, ∆C =
a20

2Tca4
, at Tc.

Therefore, as expected, the model reproduces a second-order transition at

T = Tc (t = 0), with mean-field critical exponents, α = 0, β = 1/2, γ = 1

and δ = 3.
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1.5.1 Ginzburg–Landau approach: spatial fluctuations

In some cases, it is important to take into account the existence of spatial

fluctuations that give rise to inhomogeneities in the system. In this case,

gradient terms must remain in the free energy density expansion given by

Eq. 1.103 and, using the saddle-point approximation, it results that the

function m′(r) in Eq. 1.101 should be the one that minimizes the following

free energy functional

F [{m′(r)}, {h(r)}, T ]

=

∫
ddr

[
1

2
a0tm

′2(r) +
1

4
a4m

′4(r)− h(r)m′(r)− 1

2
b|∇m′(r)|2

]
, (1.112)

where the case of a uniaxial ferromagnet that is invariant under reversal of

the order parameter has been considered and only the lowest order gradient

term has been kept. Indeed, the integral is over the whole hypervolume

V . The function m(r) that minimizes this functional is the solution of the

associated Euler–Lagrange equation21 given by[
∇2 − a0t

b

]
m(r)− a4

b
m3(r) = −1

b
h(r). (1.113)

Indeed, this equation reduces to the usual equation of state of the Landau

theory in the homogeneous case when h(r) = h and ∇m(r) = 0.

The preceding Eq. 1.113 can be used to compute the correlation function

G(r) defined as

G(r) = ⟨m(r)m(0)⟩ − ⟨m(r)⟩⟨m(0)⟩, (1.114)

where ⟨·⟩ indicates averages over the distribution of functions {m′(r)} of the
coarse-grained system. Therefore,

⟨m(r)⟩ = 1

QCG(β, h)

∫
[Dm′]m′(r)e−βHCG({m

′,h}), (1.115)

and, thus, the correlation function can be obtained as

βG(r) =
δ⟨m(r)⟩
δh(0)

. (1.116)

The derivative on the right-hand side member of the preceding equation

can be obtained as follows. Consider an homogeneous system in equilibrium

at temperature T in the absence of an applied field and suppose that it

is perturbed by a local field, h(r) = h0δ(r), where δ(r) is the Dirac-delta

21 It must be taken into account that m vanishes over the boundary of the volume V .
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44 Introduction to phase transitions

distribution. As a consequence of the local perturbation, the magnetization

will change as

m(r) = m(T ) + φ(r), (1.117)

where m(T ) is given by Eq. 1.108, which depends on whether T > Tc or

T < Tc. Obviously,

δ⟨m(r)⟩
δh(0)

=
φ(r)

h0
. (1.118)

The responseφ(r) can be obtained by replacingm(r) into the Euler–Lagrange

Eq. 1.113. Neglecting non-linear terms in φ the following differential equa-

tion for φ is then obtained[
∇2 − a0t

b
− 3a4

b
m3

]
φ(r)− a0t

b
m− a4

b
m3 = −1

b
h0δ(r). (1.119)

Substituting m for the equilibrium values corresponding to T > Tc and

T < Tc, respectively, it turns out that φ(r) must be the solution of

[∇2 − ξ−2]φ(r) = −4πaδ(r), (1.120)

where 4πa = h0/b and the correlation length, ξ, is given by

ξ(t) =


[
b
a0t

]1/2
for t > 0,[

b
2a0|t|

]1/2
for t < 0.

(1.121)

Assuming spherical symmetry, in 3d the solution is,22

φ(r) =
h0
4πb

1

r
e−r/ξ(t). (1.122)

In arbitrary dimension d, it can be shown that for r ≪ ξ, φ(r) ∝ r2−d, while
for r ≫ ξ, φ(r) ∝ e−r/ξ. Therefore, the order of magnitude of the correlation

function is correctly given by

G(r) ≈ e−r/ξ

rd−2
. (1.123)

22 It is convenient to find the solution of the differential equation in Fourier k-space. In arbitrary
dimension d, writing, φ(r) = 1

(2π)d

∫
e−ik·rφ(k)ddk and

∇2φ(r) = − 1
(2π)d

∫
e−ik·rk2φ(k)ddk, and remembering that δ(r) = 1

(2π)d

∫
e−ik·rddk, the

equation can be written in Fourier space as, [k2 + ξ−2]φ(k) = 4πa. Therefore,

φ(k) = 4πa
[k2+ξ−2]

and, φ(r) will be obtained as the inverse Fourier transform of φ(k). It can

be shown that φ(r) ∝ (ξr)(2−d)/2K(d−2)/2(r/ξ), where K(d−2)/2 is a modified Bessel
function of the second kind.
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Taking into account that the correlation length ξ(t) diverges at the critical

point (t = 0) as ξ ∼ |t|−ν , with ν = 1/2, the correlation function must be of

the form23

G(r) ∼ r−(2−d+η), (1.124)

with η = 0.

Although Ginzburg–Landau theory takes into account the spatial fluctu-

ations of the order parameter, within the approximations considered in this

section it leads to the mean-field critical behaviour. This fact is a conse-

quence of the approximate treatment of the correlation function that as-

sumes a linear behaviour of the response to a local perturbation field and,

thus is not adequate to describe the behaviour of long-range (distance) cor-

relations. Therefore, the exponents α = 0, β = 1/2, γ = 1, δ = 3, ν = 1/2,

and η = 0, represent the set of mean-field critical exponents, which are inde-

pendent of space dimension and tensor-rank nature of the order parameter.

From this point of view, it is expected that a mean-field approximation pro-

vides a good thermodynamic description close to critical points when the

following inequality is satisfied∫
Ω(ξ) d

drG(r)∫
Ω(ξ) d

drm2
≪ 1, (1.125)

which is the so-called Ginzburg criterion. Integrals are performed over a d-

dimensional hypersphere of radius equal to the correlation length, ξ. Given

that m2 ∼ |t|2β, and G(r) ∼ exp (−r/ξ)/r(d−2), carrying out the integrals

in spherical coordinates, the Ginzburg criterion can be expressed as

|t|(2−d)ν−2β ≪ 1, (1.126)

which requires that

d > 2 +
2β

ν
. (1.127)

This inequality enables us to define an upper critical dimension dc ≡ 2 +

2β/ν, which is the space dimension above which mean-field behaviour pro-

vides a correct description of critical behaviour. Replacing mean-field values,

β = 1/2 and ν = 1/2, we obtain that dc = 4, which is the space dimension

above which the mean-field description is correct. It is worth noting that

these results are valid in systems with a short-range interaction. In systems

with long-range interactions, as shown above, mean-field provides the correct

critical behaviour [4].

23 This approximation is equivalent to the Ornstein–Zernike approximation, which is often used
to study density correlations in fluids [4].
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46 Introduction to phase transitions

The existence of an upper critical dimension can be understood in the

sense that for a given symmetry, the number of interacting entities of a

given spin is larger in higher dimension, which would yield a larger field

acting on each entity. This effect is expected to reduce fluctuations, which

should result in a better reliability of the mean-field treatment in which

fluctuations are ignored or treated in an approximate manner.

Note that a lower critical dimension is in general also defined as the space

dimension above which symmetry breaking can occur at a finite tempera-

ture. This lower critical dimension depends on space and order parameter

dimensions. For the Ising model, the lower critical dimension is d = 1. When

the order parameter has a continuous symmetry, the Mermin-Wagner theo-

rem [34] has to be taken into account. This theorem states that continuous

symmetries cannot be spontaneously broken at finite temperature in systems

with sufficiently short-range interactions in dimensions d ≤ 2. Actually, this

result supposes that in this class of systems, long-range fluctuations can be

created with little energy cost and since they increase the entropy they are

favoured and, consequently, avoid that the long-range order can be estab-

lished in 2d. Thus, in models such as the XY or the continuous Heisenberg

model, the lower critical dimension is d = 2.

1.5.2 First-order transitions and tricritical points

The Landau theory can also be used to account for first-order phase transi-

tions. Two general cases must be considered. First, in systems that are in-

variant under reversal of the order parameter, a first-order phase transition

can occur if the fourth-order term of the free energy expansion is negative.

In this case, the expansion must be, at least, extended up to the sixth-order

if a6 > 0. In the homogeneous case, the free energy density function in the

absence of an applied field is thus of the form

f(m′, T ) = f0 +
1

2
a0tm

′2 − 1

4
|a4|m′4 +

1

6
a6m

′6. (1.128)

The second case corresponds to systems that are not invariant under reversal

of the order parameter. In the simplest situations, the free energy function

is then of the form

f(m′, T ) = f0 +
1

2
a0tm

′2 +
1

3
a3m

′3 +
1

4
a4m

′4, (1.129)

where, again, no external field has been considered. In this case, a4 > 0

and a3 must be either positive or negative. Free energy functions given by

Eqs. 1.128 and 1.129 are shown in Figures 1.5 and 1.6, respectively, for

selected values of the temperature.
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Figure 1.5 Free energy function given by Eq. 1.128 for temperature T > Ts,
Ts > T > T0, T = T0, and T = Tc. T0 is the temperature at which a first-
order transition between m = 0 and m ̸= 0 can occur in equilibrium (the
case of three degenerate minima). Ts is the metastability limit of the low-
temperature phase.

Figure 1.6 Free energy function given by Eq. 1.129 for temperature T > T0,
T = T0 (two degenerate minima), T < T0 and T = Tc.

In both cases, at a temperature T0 > Tc a first-order transition can occur in

equilibrium. Therefore, at this temperature,

f(m ̸= 0, T0) = f(m = 0, T0), (1.130)

which is the condition that determines the equilibrium coexistence of the

low-temperature ordered phase withm ̸= 0 and high-temperature disordered

phase with m = 0 . The equilibrium values of the order parameter must be

solutions of the equation [
∂f(m′, T )

∂m′

]
m′=m

= 0. (1.131)

The equilibrium temperatures T0 of the first-order transition can be obtained

by solving the two preceding equations. For both models, they are given as,
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T0 − Tc

=


3
16

a24
a0a6

systems invariant under reversal of the order parameter,

2
9
a23
a0a4

systems non-invariant under reversal of the order parameter.

(1.132)

It is important to note that in both cases, the first-order transition may still

occur in the presence of an external field h thermodynamically conjugate to

the order parameter.

Tricritical points

Usually, the negative character of the fourth order term in Eq. 1.128 is a

consequence of the coupling of the primary order parameter, m, with a sec-

ondary parameter. This can, for instance, be the case of some antiferromag-

netic material subjected to an applied magnetic field, which plays the role

of a secondary field. For low values of the magnetic field, these systems un-

dergo a continuous transition from a high-temperature paramagnetic phase

to a low-temperature antiferromagnetic phase. However, when the magnetic

field is high enough, the transition is first order. The magnetic field is not

thermodynamically conjugate to the staggered magnetization, which is the

order parameter but, since it induces a non-zero magnetization that couples

to the order parameter, it can affect transition features. In the limit of high

magnetic anisotropy, it can be shown that this effect can be effectively taken

into account considering that the expansion coefficients of the free energy

given by Eq. 1.128 are functions of the magnetization and, thus, of the ap-

plied magnetic field [35]. Due to this dependence, for low fields a4 is positive,

but changes to negative for high enough fields and the transition changes

from continuous to first order. Then, an interesting situation occurs when

both, a2 = a0t, and a4 go to zero simultaneously. The points in the phase

diagram where this happens are denoted as tricritical points. They are those

points that separate a line of first order from a line of continuous transitions

and are controlled by the secondary field and temperature [18]. Actually, if

∆ is this secondary field, while a4(∆) > 0, a continuous transition occurs at

a2(Tc,∆ < ∆t) = 0, while for a4(∆) < 0, a first-order transition takes place

at a2(T0,∆) = 3a4(∆ > ∆t)/16a6. Therefore, assuming that a4 is not tem-

perature dependent, the tricritical point, (Tt,∆t) is given by the following

conditions:

a2(Tt,∆t) = 0,

a4(∆t) = 0.

The generic phase diagram of this class of systems is shown in Figure 1.7.
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1.6 Scaling and renormalization 49

Figure 1.7 Generic phase diagram of a system described by the free energy
1.128 that shows a tricritical point. The coefficient a4 is supposed to be a
function of a secondary field.

It is interesting to note that when the tricritical point is approached in such

a way that a4 goes to zero faster than a2, the system shows a tricritical

behaviour. It is easy to show that the tricritical behaviour is characterized

by mean-field exponents, αt = −1, βt = 1/4, γt = 1 and νt = 1/2, which are

different from mean-field critical exponents. Note that in this case, Ginzburg

criterion given by Eq. 1.127 leads to an upper critical dimension dt = 3. This

means that, except for logarithmic corrections that are practically unmea-

surable, mean-field description of tricritical behaviour is essentially correct.

1.6 Scaling and renormalization

All mean-field theories give the same set of independent mean-field critical

exponents, regardless of space and order parameter dimension, the latter

determined by the ground-state degeneracy. Nevertheless, these results are

in contradiction with many experiments that suggest that both space and

order parameter dimension have a strong influence on criticality and, thus,

on critical exponents. Furthermore, it is also known that critical exponents

satisfy a number of equalities that suggest that they are not independent. In

other words, critical behaviour seems to be determined by a small number of

exponents. We are interested in justifying these results on the basis of plau-

sible physical arguments. We will first discuss the hypothesis of homogeneity

of the singular part of free energy that will enable us to obtain the so-called

scaling relations, which are the relations that must be satisfied by the set

of critical exponents. Next we will justify the hypothesis of homogeneity
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taking into account that criticality is characterized by the divergence of the

correlation length. This point of view can in fact be justified more rigorously

by means of the formalism of the renormalization group theory. However, in

the present book, we will not discuss this formalism that has been developed

in great detail in several recent books [36, 37].

As in the previous section, we will continue considering a system described

by a scalar order parameter m with states of equilibrium controlled by two

parameters, t and h that measure the proximity to the critical point. In

the previous section, we have seen that within the Landau approach, the

equation of state of such a system near the critical point is of the form

h ≃ a0m(t +
a4
a0
m2 + ...), (1.133)

from which the set of mean-field critical exponents can be obtained as shown

in the preceding section. Arbitrary values of the exponents might be obtained

assuming that the equation of state in the neighbourhood of the critical point

is of the form

h ≃ m(t + cm1/β + ...)γ , (1.134)

which means that the equation of state should be of the more general form,

h = mΨ(t,m1/β), where Ψ should be an homogeneous function of degree

γ of t and m1/β. This suggests that the singular part of the free energy

should also be an homogeneous function that under a change of scale λ that

modifies the proximity to the critical point, behaves, for all λ, as

f(t, h) = λf(λst, λrh). (1.135)

This is the hypothesis of homogeneity of the free energy that was first in-

troduced by Widom [38]. Thermodynamic relations permit to find the con-

nection between the exponents r and s and the critical exponents. This

connection can be determined as follows. From the free energy, close to the

critical point, the order parameter m is expected to scale as

m(t, h) = −∂f(t, h)
∂h

= −λ∂f(λ
st, λrh)

∂(λrh)

∂(λrh)

∂h
= λr+1m(λst, λrh).

(1.136)

Proceeding in a similar way, it can be obtained that the susceptibility scales

as

χ(t, h) =
∂m(t, h)

∂h
= λ2r+1χ(λst, λrh), (1.137)

and the heat capacity as

C(t, h) = −Tc
∂2f(t, h)

∂t2
= λ2s+1C(λst, λrh). (1.138)
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Choosing h = 0, λ = |t|−1/s and t = 0, λ = |h|−1/r, it is obtained that
m(t, 0) = m(−1, 0)(−t)(r+1)/s,

m(0, h) = m(0,±1)|h|−(r+1)/r,

χ(t, 0) = χ((±1, 0)|t|(2r+)/s,

C(t, 0) = C(±1, 0)|t|(2s+1)/s.

(1.139)

Note that the coefficients are all estimated far from the critical point. There-

fore, critical exponents should be related to r and s as
α = 2s+1

s ,

β = − r+1
s ,

γ = 2r+1
s ,

δ = − r
s+1 .

(1.140)

The following scaling relations are immediately obtained

α+ 2β + γ = 2, (1.141)

β(δ − 1) = γ. (1.142)

Kadanoff [39] showed that the hypothesis of homogeneity of the singular part

of the free energy can be justified by taking into account that close to the

critical point the properties of the system are determined by the fact that

the correlation length ξ of the order parameter is very large and diverges at

Tc. To be specific, let us consider an Ising model defined on a d-dimensional

hypercubic lattice with lattice parameter a0. The states of the system are

controlled by the two variables t and h that measure the separation from the

critical point. Therefore, for |t| ≪ 1 and |h| ≪ 1, we expect that ξ is much

larger than the characteristic microscopic length, a0. Then, as illustrated in

Figure 1.8, the idea is to define a lattice of blocks of size ba0 and replace

the spins within the original lattice with a new spin variable that can take

the same values as the original spins, Si. This is justified by taking into

account that, in general, each block may be in 2n states with n = bd but,

close to the critical point, since ξ/a0 ≫ b short-range correlations will be

very intense and many of the 2n states will have to be suppressed. In other

words, near the critical point, it is expected that homogeneous or quasi-

homogeneous states will be dominant, which justify that the state of the

block can be determined by a spin variable SI , where I is an index that

locates the blocks. The state of the system constituted of spin blocks will

be controlled by variables t′ and h′ that measure the distance of the block

system from the critical point. We expect that these parameters depend on
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Figure 1.8 Illustration of the Kadanoff construction. The original spins
(solid symbols) sit on the lattice of lattice parameter a. They are grouped
into blocks constituted of four spins that define the new lattice of parameter
ba where b is the scaling parameter. In this figure b = 2.

t, h and on the linear dimension b of the blocks. The simplest relationship

between the original variables and block variables that are consistent with

the symmetry conditions, h′ → −h′ when h → −h, t′ → t′ when h → −h
and t′ = h′ = 0 when t = h = 0, is

h′ = bxh, (1.143)

t′ = byt, (1.144)

where x and y are positive exponents to ensure that the block system is

further away from the critical point than the original system, as expected.

Indeed, the functional dependence of the singular part of the block-free

energy on t′ and h′ must be the same as that of the singular part of the

original free energy on t and h. Given that there are bd spins per block, it

will turn out that

f(t, h) = b−df(ty, hx). (1.145)

This equation determines how f changes under scale changes and, thus,

justifies Widom’s homogeneity hypothesis. Now, λ must be identified with

b−d, which leads to, s = −y/d and r = −x/d. Note that the present scaling

expression is interesting as it explicitly includes the space dimension d.

Given that the characteristic length of the block system is b times greater

than the characteristic length of the original system, we expect that the

correlation length decreases by the same factor, that is,

ξ(t, h) = b ξ(ty, hx). (1.146)

Then choosing b = |t|−1/y and h = 0, from Eqs. 1.145 and 1.146, we obtain,

f(t, 0) = |t|d/yf(±1, 0), (1.147)

ξ(t, 0) = |t|−1/yξ(±1, 0). (1.148)
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From the second of the preceding equations, it results that the critical ex-

ponent ν = 1/y and taking into account that C ∼ ∂2f/∂t2, the following

scaling relation is obtained:

d ν = 2− α, (1.149)

which is denoted as the hyperscaling relation since it includes explicitly the

space dimension d.

Scaling laws are interesting since they can be experimentally verified,

which provides a useful method to determine critical exponents. The most

common way to analyse experiments is as follows. Consider, for instance,

the case of the magnetization, m = −∂f/∂h, which scales as, m(t, h) =

|t|−(x−d)/ym(±1, h/|t|x/y), by choosing b = |t|−1/y. Taking into account that

d x/y = β and x/y = β + γ, the following scaling equation results,

m(t, h) = |t|βM±
[

h

|t|β+γ

]
, (1.150)

where M+ is the scaling function for t > 0 and M− the corresponding

function for t < 0. The preceding equation suggests that if we represent

measurements performed close to the critical point Tc as h/|t|(β+γ) versus

m/|t|β, results should collapse in the two universal curves, Φ+ and Φ+ corre-

sponding to the data obtained for t > 0 and t < 0, respectively. An example

of such a representation has been reported for the ferromagnetic compound

CrB3 in Ref. [40]

Let us conclude this section with a brief glance at the renormalization

group. This approach is based on and provides rigour to the ideas of

Kadanoff’s block transformation. It consists of a reduction of the degrees of

freedom followed by a proper rescaling of characteristic lengths. This rescal-

ing is performed by introducing an effective hamiltonian for the block of

spins system, which leads to the same behaviour as the original hamiltonian

for magnetization and spin correlations on distances large in comparison to

the block size. To be specific, suppose that the hamiltonian contains two

coupling parameters, K1 and K2, that, in the case of an Ising model are

given by K1 = −J/kT and K2 = −h/kT . After a block transformation of

scale b, the new parameters will be K1b and K2b . If K and Kb are vectors of

components (K1,K2) and (K1b ,K2b), respectively, the block transformation

equation is of the form, Kb = T K, where T is a transformation operator

that incorporates both the reduction of degrees of freedom and rescaling.

Since the transformed hamiltonian is formally equivalent to the original, the
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block transformation process may be applied as many times as required.

After applying the transformation s times, we will have:

Ksb = T Ks−1. (1.151)

If the system is not critical, the correlation length will be finite and, through

successive block transformations, the effective correlation length will de-

crease, reflecting a departure from the critical point. If, on the other hand,

the system is at a critical point, the correlation length will diverge and

through the transformation process a fixed point Kc will be reached at

which the operator T may satisfy,

Kc = T Kc. (1.152)

The transformation T is what is in fact called the renormalization group

even though it has semigroup properties from a mathematical point of view.

It is essential that the transformation operator T is not singular, at least not

close to the critical coupling Kc [41]. Critical behaviour can be determined

from flow properties of the effective hamiltonian coupling parameters about

the non-trivial fixed points of the transformation (see, for instance, a simple

example in Ref. [42]). It is worth remarking that application of this real space

renormalization group approach requires performing drastic approximations

and the obtained results are often quite poor. It must be noted that, in

contrast, the momentum space approach is much more powerful, especially

when applied within the framework of continuum field theory models, and

provides very accurate results [43].

Finally, it should be noted that a large number of experimental results also

point out that critical behaviour is independent of a large number of specific

microscopic features such as lattice symmetry or the nature of the interac-

tion (while remaining short range). Renormalization group shows the two

parameters that determine asymptotic phenomena such as critical behaviour

are space and microscopic spin variable dimension. These two properties al-

low to classify physical systems in universality classes. 3d systems with a

scalar order parameter, such as fluids, uniaxial or Ising magnets, and binary

mixtures among others belong to the same Ising universality class.
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Exercises

1.1 Consider a fluid consisting of N spherical molecules that are located

in a container of volume V . The interaction among the molecules is

approximated by an effective potential energy of the form:

u(r) =

{
∞ for r < r0,

−ū for r ≥ r0.

This represents a mean-field approximation that supposes that

molecules can be treated as independent molecules, since each molecule

sees the same effective potential created by the rest of the molecules.

Show that in this approximation, the gas can be described by a van

der Waals equation of state, p = RT
v−b −

a
v2
, where v = V/n is the molar

volume and n = N/NA the mole number (and NA is the Avogadro’s

number). Here a and b are related to the potential energy parameters

as, a = −ūNV/n2 and b = Vexc/n, where Vexc is an excluded volume

associated with the space occupied by the molecules.

1.2 The axial (or anisotropic) next-nearest neighbour Ising model, which is

usually known as the ANNNI model, is a variant of the Ising model in

which competing ferromagnetic and antiferromagnetic exchange inter-

actions couple spins at nearest and next-nearest neighbour sites along

one of the crystallographic axes of the lattice. The model is consid-

ered a suitable prototype to deal with complicated spatially modulated

magnetic superstructures that occur in certain alloys. The hamiltonian

of the model is

HA = −J0
∑
⟨nn⟩xy

SiSj − J1
∑
⟨nn⟩z

SiSj − J2
∑
⟨nnn⟩z

SiSj ,

where the spin variables Si can take values ±1. The first sum in the

right-hand side extends over all nearest neighbour pairs in the x-y

plane, the second sum is over nearest neighbour pairs along the axial

direction z and the third sum is over next-nearest neighbour pairs also

along the z-direction. Find the ground state of this model for positive

and negative values of the exchange parameters, J0, J1 and J2.

1.3 The classical Heisenberg model is an isotropic magnetic spin model

defined on a lattice with the hamiltonian,

HHC = −J
∑
⟨ij⟩nn

Si · Sj −H ·
∑
i

Si,
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where Si is the spin located at lattice site i that has modulus |Si| = S,

and can rotate continuously over space. The first sum in the hamilto-

nian extends over nearest neighbours and H is a magnetic field applied

along the z-direction. In the ferromagnetic case, corresponding to a

magnetic exchange J > 0, show that:

(a) In the mean-field approximation, the equation of state of the model

is:

m = L
(
SHeff

kBT

)
,

where m is the average magnetization per lattice site, Heff =

zJm + H with z being the number of nearest neighbours in the

lattice and L the Langevin function defined as L(x) ≡ cothx− 1
x .

(b) For H = 0, the model has a critical point at Tc =
zJS
3kB

.

1.4 Consider the free energy function given by Eq. 1.67 and suppose that

the moment expansion is truncated at second order instead of first order

as done in the Bragg–Williams approximation. Taking the expression

of M2 = 1
8NzJ

2(1 − m2)2 proposed in Ref. [21], and supposing that

g(m) is the same as in the Bragg–Williams approximation, show that

(a) The critical temperature of the model, Tc, is given by

Tc =
zJ

2kB

(
1 +

√
1− 1

z

)
. (1.153)

(b) The critical exponents of the model are mean-field exponents.

1.5 Consider a ferromagnetic Ising model defined on a lattice with z near-

est neighbours per site. Find a solution of this model within the Bethe

approximation, which consists of treating the interaction of any given

spin, or central spin S0, with its nearest neighbours exactly and the

interaction of these nearest neighbours with the remaining spins of the

lattice through a mean-field, heff . In this approximation, the hamil-

tonian of any group of z + 1 spins formed by the central spin and its

nearest neighbours is of the form,

Hz+1 = −hS0 − (h+ heff )

z∑
j=1

Sj − J
z∑
j=1

S0Sj ,

where J is the exchange energy that will be considered positive and h

is an external field. Show that:
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(a) Defining h̃ = h/kBT , h̃eff = heff/kBT and J̃ = J/kBT , the

partition function of the group of z + 1 spins can be written as,

Qz+1 = Q+
z+1 +Q−z+1 where

Q±z+1 = e±h̃
[
2 cosh(h̃+ h̃eff ± J̃

]z
.

(b) The self-consistency condition reads,

e2h̃eff =

[
cosh(h̃+ h̃eff + J̃)

cosh(h̃+ h̃eff − J̃)

]z−1
,

which is obtained by imposing that ⟨S0⟩ = ⟨Sj⟩, where ⟨S0⟩ is the
mean value of the central spin and ⟨Sj⟩ is the mean value of one of

its nearest neighbours.

(c) From the self-consistency equation, a critical point exists for h = 0

at the temperature

Tc =
1

ln z
z−2

2J

kB
.

1.6 Consider an alloy AxB1−x constituted of NA A-atoms and NB B-atoms

localized on the sites of a bcc-lattice (see Figure 1.1) of N -sites. x is

the fraction NA/N and 1 − x = NB/N , and the concentration of the

alloy is defined as c ≡ 2x − 1. Therefore, for a stoichiometric alloy,

x = 0.5 and c = 0. Suppose that the configurational energy of the alloy

is, Ec = NAAvAA+NBBvBB+NABvAB, where Nµν , with µ, ν standing

for A and B, are the number of nearest neighbour pairs of atoms µ and

ν and vµν is the corresponding interaction energy between these pairs

of atoms. Show that:

(a) Defining a spin variable Si that takes the values +1 when the site

i is occupied by an atom A and −1 when it is occupied by an atom

B, the configurational energy of the alloy can be expressed as an

Ising hamiltonian of the form,

H = E0 − J
∑
⟨ij⟩nn

SiSj − h
∑
i

Si,

where, E0 =
1
4zN(vAA + vBB + 2vAB), J = −1

4ϵ =
1
4(vAA + vBB −

2vAB), h = 1
2z(vBB − vAA). Note that, as in the Ising model, J

represents an exchange energy. Note, however, that compared with
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the magnetic Ising model, the term proportional to h is now a con-

stant and the first sum over nearest neighbour pairs is constrained

from the fact that NA and NB are constants.

For ϵ > 0 (J < 0) the model is adequate to describe an alloy that

undergoes an order–disorder transition from a high-temperature

disordered phase with A and B atoms randomly distributed over

the lattice according to their fraction and a low temperature or-

dered phase where A-atoms have a tendency to occupy one of

the two sublattices, α and β, of the bcc-lattice (indicated in Fig-

ure 1.1) and the B-atoms occupy the other sublattice. In the case

x ≥ 0.5, defining an order parameter for this transition as, S =

(Nα
A−N

β
A)/NA, where N

α,β
µ is the number of µ-atoms in sublattice

α or β and within the mean-field approximation show that:

(b) The order parameter is a solution of the transcendental equation,

zxϵS − 1

2
kBT ln

(1 + S)[1− x(1− S)]
(1− S)[1− x(1 + S)]

= 0.

(c) There is a line of critical points given by:

Tc(x) =
zϵx(1− x)

kB
.

1.7 Suppose the same binary alloy AxB1−x considered in the preceding

exercise. Compute the structure factor,

F(Q) =
∑
r

fre
iQ·r,

where r denotes position vectors of lattice sites and fr is the scattering

factor of the atom located at position r. Taking into account that the

detected intensity, I, in a scattering experiment is proportional to the

square of the structure factor, show that it will be given as:

I ∝ F2 = (fA − fB)S2,

where fA and fB are the scattering factors for atoms A and B, respec-

tively, and S is the order parameter defined in the preceding exercise.

This result shows that the intensity vanishes at T > Tc while super-

structure peaks will grow at T ≤ Tc. Show that these peaks occur at

reciprocal space positions Q = 2π
a (nx + ny + nz) such that the sum of

the natural numbers nx, ny, nz is odd.
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1.8 Consider the same model for a binary alloy as in Exercise 1.6 but now

with ϵ < 0 (J > 0). In that case, atoms of a given species prefer to have

nearest neighbours of the same species. The model is thus adequate for

dealing with phase separation in alloys. Show that in the mean-field

approximation:

(a) The free energy function of the alloy can be written as:

F(T,NA, NB) = E0 −
1

2
zϵ

NANB

NA +NB

+ kBT

(
NA ln

NA

NA +NB
+NB ln

NB

NA +NB

)
.

(b) Imposing the equilibrium coexistence condition, µA = µB, of A-rich

and B-rich separated phases, with µA and µB being the chemical

potentials of these phases, leads to the coexistence curve:

1

2
(vAA − vBB) +

1

2
zϵc+ ln

1 + c

1− c
= 0,

where c is the alloy concentration.

(c) For a symmetric alloy with vAA = vBB, a critical point exists at:

Tc =
z|ϵ|
4kB

.

1.9 Consider a system described by a Landau free energy of the form:

F(ϕ,∆, T ) = a0(∆, T ) +
1

2
a2(∆, T )ϕ

2 +
1

4
a4(∆, T )ϕ

4

+
1

6
a6(∆, T )ϕ

6,

where ϕ is the main order parameter assumed to be scalar and ∆ is

an external field thermodynamically conjugated to a secondary order

parameter, x = 1
N
∂F
∂∆ , where N is the number of constituents. This

model can be used to describe an antiferromagnetic material subjected

to an applied magnetic field or to a mixture of 3He-4He. In the first

case, ϕ is the antiferromagnetic order parameter and ∆ an applied

magnetic field that controls the net magnetization, while in the second

case, ϕ is the order parameter for the normal to superfluid transition

and ∆ the difference of chemical potentials of 3He and 4He constituents

that controls the molar fraction of 3He in the mixture.24 Consider that

as temperature is lowered, the coefficient a4 ≥ 0 while ∆ ≤ ∆t, and

changes sign for ∆ > ∆t. Show that:

24 For more details, see Ref. [18].
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(a) The model is adequate to describe a line of critical points, Tc(∆)

given by the condition a2(∆, Tc) = 0 that ends at a tricritical point

given by the condition a2(∆t, Tt) = a4(∆t, Tt) = 0. For ∆ > ∆t and

a4 < 0, the model predicts a line of first-order transitions, T0(∆),

given by the condition,

a2(∆, T0)−
3a24(∆, T0)

16a6(∆, T0)
= 0,

which requires that a2(∆, T0) ̸= 0 and a6 > 0.

(b) Close to the tricritical point, for ∆ > ∆t, the system undergoes a

phase separation at which the variable x, of the coexisting phases,

shows a discontinuity given by:

δx = x1 − x2 ≃
1

2N

∂a2(T,∆)

∂∆
ϕ2 ≃ 3|a4|

8a6N

∂a2(T,∆)

∂∆
.

(c) When the tricritical point is approached, the order parameter ϕ

behaves as

ϕ(T ) ∼ (Tt − T )β,

where, if a4 approaches zero faster than a2, β = 1/4 (tricritical

behaviour) while, if a2 approaches zero faster than a4, β = 1/2

(critical behaviour).

1.10 Consider the following simplified version of the Blume–Emery–Griffiths

model defined on a lattice with N sites,

HBEG({Si}) = −ϵ
∑
⟨ij⟩nn

SiSj +M

N∑
i=1

S2
i ,

where the variables Si can take values, −1, 0, +1, and ϵ > 0, which

supposes that the exchange is ferromagnetic. In the Bragg–Williams

mean-field approximation, show that:

(a) The free energy function can be expressed in the form:

F = −1

2
Nzϵ(p+ − p−)2 +NM(p+ + p−)

+ NkBT (p
+ ln p+ + p− ln p− + p0 ln p0),

where p+, p−, and p0 are the probabilities that any i-site is occupied

by a Si = +1, Si = −1, or Si = 0 spin, respectively.
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(b) Defining, m ≡ ⟨S⟩ = p+ − p−, x ≡ 1− ⟨S2⟩ = p0, minimization of

F under the condition, p+ + p− + p0 = 1, leads to:

p+=
1

Z
exp{β(zϵm−M)}, p−=

1

Z
exp{−β(zϵm+M)}, p0=

1

Z
,

where Z = 1+2e−β|M | cosh(βzϵm). Then, the free energy function

can be written as

F =
1

2
zϵm2 − kBT ln

[
1 + 2e−β|M | cosh(βzϵm)

]
. (1.154)

(c) Expansion of this free energy in a power series of m to the sixth

order leads to a free energy of the general type given in Exercise 1.9

with, a0(T,M) = −kBT ln(1 + 2e−βM ), a2(T,M) = zϵ
(
1− zϵ

ηkBT

)
and a4(T,M) = zϵ

2η2
(βzϵ)3

(
1− η

3

)
, where η = 1 + 1

2e
βM and M

must be identified with the field ∆.

(d) The tricritical point of this model occurs at xt =
2
3 .

1.11 Consider a 2d triangular lattice with an Ising spin Si = ±1 defined on

each of the N sites. In addition to the two-spin ferromagnetic inter-

action suppose that spins also interact via a three-spin interaction so

that the hamiltonian is of the form:

H− J1
∑
⟨ij⟩nn

SiSj − J2
∑
⟨ijk⟩nn

SiSjSk,

where the first sum extends over all pairs of nearest neighbour spins

and the second term extends over all the spins sitting on equilateral

triangles of nearest neighbour sites.

(a) Use the Bragg–Williams mean-field approximation to determine

the free energy function per spin, f(T,m), where m is the mean

value of the spin per site ⟨Si⟩ and show that the equation of state

of the system is given by

m = tanh[6β(J1m+ J2m
2)].

(b) Show that for J2 ̸= 0, the model may describe a first-order transi-

tion.

(c) Plot the phase diagram of this model for both positive and negative

values of J2 in a diagram giving kT/J1 vs. J2/J1.
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