
SETS AND SUBSERIES 

G. M. PETERSEN 

Suppose an 9e 0 for all n. By replacing a set of terms from the series YLan 
by O's, we form a subseries of the original series. These subseries can be put 
in one to one correspondence with the non-terminating binary expansion of 
the points on the real line segment (0, 1). The point £ = .bib2 . . . bn . . . shall 
correspond to a subseries if and only if bn = 0 whenever the nth term of the 
original series has been replaced by 0 and bn — 1 whenever the nth term is 
retained. We can now speak of sets of subseries of the first category, measure 
zero, etc. 

If we have a series ]£an whose terms {an} form a positive monotone decreasing 
sequence, a,\ > a2 > . . . > an > . . . , then it is easy to show by a Dedekind 
section the existence of an index p such that ^an

q converges for q > p and 
diverges for q < p. The object of this note is to show that if the terms of a 
series are a positive monotone decreasing sequence, the set of subseries that 
have an index differing from the original series is of the first category. 

We first prove a lemma. 

LEMMA. If {cn} is a positive monotone decreasing sequence, ^cn diverges, 
lim sup ncn 7^ 0, then the set of subseries that converges is of the first category. 

Proof. We can assume that 2n(m)c2n(m) > k where {n(m)\ is a sub­
sequence of {n}. However, this implies n(m)cn(m) > \k and vcv > \k for 
n(m) < v < 2 n(m). We can associate with this sequence a regular summation 
method A, defined by 

t = __L_ y 
n[m) v=n(m) 

Suppose now that c'n = cn if the term is retained for the subseries and c'n = 0 
otherwise. For any subseries Y,c'n we shall choose a sequence of O's and Ts, 
{sf

n}, so that s'n = 1 if c'n ^ 0 and s'n = 0 otherwise. There is an evident 
correspondence between the sequence [s'n) and the point corresponding to 
the subseries. We now see that if J^cf

n converges, {s'n} must be A summable 
to 0. For if tm > X > 0 for an infinite set f/x}, then 

2n(nifj) 

J2 c'v> \ nim») f2«(mM) > X 2 
p = n(mfi) 

and the series diverges. 
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However, it has been shown by Hill that the set of points on (0, 1) in the 
binary expansion corresponding to such a set of 0's and l's is of the first 
category. 

We are now ready to prove our theorem. 

THEOREM. If {an} is a positive monotone decreasing sequence, the set of 
subseries of YLan with a different index is of the first category. 

Proof. The index for the series J2an niay be assumed to be 1. For if the 
index is p, J^an

p will have an index 1 and the set with a different index will be 
the same for Ylan and J^a/. 

If r < 1, then lim sup n an
r > 0, for if 

lim n an
r — 0, 

w->oo 

then an = 0(n~1/r) and for r < q < 1, Y^anq would converge, contrary to our 
assumption. Hence the set of subseries of Y<anr that converges for any r is of 
the first category. 

If a subseries has an index less than 1, then it will belong to the set Ev of 
convergent subseries of 

£ a.1-1", v = 2, 3, . . . 
for some v. The set of all subseries with index less than 1 will be contained in 
the union of these sets and so will be of the first category. 
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