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Abstract
Global Navigation Satellite Systems (GNSS) positioning and integrity monitoring models and algorithms currently
generically assume that measurement errors follow a Gaussian distribution. As this is not always the case, there is a
trade-off affecting system safety and availability, emphasising the need for better error characterisation in mission-
critical applications. Research to date has shown advantages of Generalised Extreme Value (GEV) distribution for
mapping extreme events. However, it is more complex than the Gaussian distribution, especially in the error
convolution process. This paper derives a distribution, referred to as the GEV-based Gaussian distribution, that
benefits from the advantages of both the GEV and Gaussian distributions in mapping extreme events and simplicity,
respectively. The proposed distribution is tested against Gaussian, GEV and Generalised t distribution. The results
show that the proposed distribution can provide a better bound for extreme events than the tested distribution both
for pseudorange and carrier phase errors.

1. Introduction

Global Navigation Satellite Systems (GNSS) offer a wide range of benefits across multiple sectors such
as transportation, agriculture, surveying, emergency services and telecommunications. Among GNSS
applications, there are mission-critical ones that require a high level of integrity, defined as a navigation
system’s ability to raise an alarm when it should not be used.

At the user receiver level, integrity is traditionally monitored by a Receiver Autonomous Integrity
Monitoring (RAIM) algorithm, which has two main functions: (1) detecting and if possible excluding
failures; and (2) raising an alarm when the system should not be used due to the impact of a failure
resulting in the estimated accuracy (Protection Level – PL) being larger than a specified the maximum
allowable position error referred to as the Alarm Limit (AL). Specifically, the PL is the upper bound that
position error must not exceed without being detected with a given probability, called integrity risk. The
PL is computed by considering faulty measurements and their impact within the positioning domain
while ensuring conservative assumptions in the positioning algorithm.

One of the main assumptions in the positioning algorithm is that the error distribution follows a
Gaussian distribution. The advantages of characterising GNSS errors using a Gaussian distribution in
system design and analysis (Ober et al., 2001) include: (1) representation by only two parameters, with a
mean of zero and only the standard deviation requiring transmission; (2) the convolution of two
Gaussian distributions resulting in Gaussian distribution, which is useful in differential GNSS
positioning; (3) the widespread availability of probability and cumulative density function computations
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for the Gaussian distribution in standard software packages; and (4) reduced computational complexity
compared with higher-order moments, as the required parameters are easily derived from a dataset.
However, GNSS errors are not always well-characterised by a Gaussian distribution, particularly in the
tail regions (Panagiotakopoulos et al., 2014). Consequently, research efforts have been made to replace
the Gaussian distribution by alternatives, overbounding the Gaussian distribution or using an
overbounded alternative distribution.

In replacing the Gaussian distribution with alternatives, two main types of distributions have been
used in GNSS error characterisation: the Generalised Extreme Value (GEV) distribution, which belongs
to the Extreme Value Theory (EVT) family, and Pareto distributions. The Pareto distribution, which is
based on three parameters, has been used to model GNSS errors in the positioning domain (Ahmad
et al., 2014; Li et al., 2023).

The early implantation of EVT in the GNSS field included modelling tropospheric delay to account
for extreme events (Collins and Langley, 1998). More recently, EVT has been used to model
tropospheric delay and derive residual tropospheric delay error models through extreme value analysis
techniques (Rózsa et al., 2020).

In the context of error characterisation, Panagiotakopoulos et al. (2014) proposed the use of the GEV
distribution, unifying three types of EVT distributions – the Gumbel, Fréchet and Weibull distributions
– demonstrating that replacing the Gaussian distribution with the GEV distribution provides: (1) a more
accurate representation of residual errors and a better characterisation of extreme errors in the tail, due to
the inclusion of an additional shape parameter that allows for varying rates of tail decay; (2) a less
conservative safety threshold than that derived from a Gaussian-based safety threshold for a given
missed detection probability; and (3) improved position accuracy due to the adoption of a more
appropriate distribution.

In the field of error distribution overbounding, the first mathematical definition of overbounding,
known as CDF overbounding, was introduced by DeCleene (2000), followed by paired CDF
overbounding, proposed by Rife et al. (2004a). Subsequent research has focused on achieving CDF
overbounding and/or paired CDF overbounding, leading to methods such as Excess-Mass CDF (EMC)
and Excess-Mass PDF (EMP) (Rife et al., 2004b), Normal Inverse Gaussian (NIG) (Braff and Shively,
2005), symmetric overbounding of correlated errors (Rife and Gebre-Egziabher, 2007), and the
combination of CDF bounding and paired overbounding techniques (Blanch et al., 2017; Blanch
et al., 2018).

While none of these methods have fully achieved overbounding, Alghananim and Ochieng (2025)
developed the first overbounding method, known as the Maximum Non-Bounded Difference (MnBD)
method, capable of achieving both CDF and paired overbounding definitions. Their analysis, based on
data from 20 Ordnance Survey (OS) National GNSS reference stations in the UK, revealed that the
standard deviation of an overbounded Gaussian distribution can be more than 17 times greater than that
of the fitted Gaussian distribution. They also applied the MnBD method to both Gaussian and GEV
distributions, demonstrating that the use of an overbounded GEV distribution significantly enhances
system availability.

Although the GEV distribution has advantages in mapping extreme events, it faces implementation
challenges, as the convolution of GEV-distributed errors has not yet been thoroughly explored, which
adds complexity to its implementation compared with the Gaussian distribution.

To take advantage of the GEV distribution in mapping extreme events, and the simplicity of the
Gaussian distribution both in terms of representation and error convolution, this paper derives a
distribution from the two, referred to as the GEV-based Gaussian distribution. The proposed
distribution is evaluated using Kolmogorov–Smirnov test (KS) and graphical assessment against the
traditional Gaussian, GEV and Generalised t distribution.

This paper is structured as follows. Section 2 summarises the mathematical models for the
Probability Density Function (PDF) and Cumulative Density Function (CDF) for the Gaussian, GEV
and Generalised t distributions, along with Maximum Likelihood estimation and KS assessment.
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Section 3 details the proposed GEV-based Gaussian distribution, including its mathematical derivation.
Section 4 presents the results from graphical and KS assessments.

2. Error distributions, maximum likelihood and Kolmogorov–Smirnov assessment

2.1. Error distributions

The Gaussian distribution is a symmetric distribution which is a function of two parameters: mean (µ�
and standard deviation (σ). The Gaussian distribution PDF (f x� �) and CDF (F x� �) are given by

f x� � � 1
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The Gaussian distribution’s mean, median, mode and variance are represented by

mean � mode � median � µ (3)

variance � σ2 (4)

The Generalised t distribution is a function of three parameters: location (µt�, scale σt� � and degree of
freedom (v). The Generalised t distribution PDF (f x� �) and CDF (F x� �� are expressed as
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The Generalised t distribution’s mean, median, mode and variance are given by

mean � µt; v > 1 (7)

variance � σt
v

v � 2
; v > 2 (8)

mode � median � µt (9)

The GEV distribution (Jenkinson, 1955) is a function of three parameters: location (μ), scale (σ) and
extreme value index or shape (ξ�. GEV combines three types of extreme value theory distributions:
Gumbel, Fréchet and Weibull � also known as type (I), type (II) and type (III), respectively. For ξ � 0,
the distribution is of the type (I); ξ> 0 is of type (II) and ξ< 0 is of type (III). The GEV distribution has
a finite left boundary and has a positive skewness for ξ> 0, a finite right boundary and a positive
skewness for ξ< 0, and extends to infinity in both directions for ξ= 0. GEV PDF(f x� �� and CDF(F x� ��
are expressed as

f x� � � 1
σ

Q x� �ξ�1 e�Q x� � (10)

F x� � � e�Q x� � (11)
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The GEV distribution’s mean, median, mode and variance are expressed as
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gk � Γ 1 � kξ� � (16)
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2.2. Maximum likelihood

Maximum likelihood estimates PDF parameters θ� � by maximising the likelihood function, and is
given by

Ln θjx1 . . . ; xn� � �
Yn
i�1

f θjxi� � (18)

where x1; . . . :; xn� � is the data sample, f �xjθ� the probability density function with θ� � parameters and n
the sample size.

Maximum likelihood estimation is based on maximising the log-likelihood function, formed to
simplify the original function. The function is given by

l θ; xi� � � In L θ; xi� �� � (19)

The partial derivative with respect to θ can be set to zero to estimate the parameter, since the goal is to
maximise the log-likelihood function.

@l
@θi

� 0 (20)

Then, an iterative numerical procedure (e.g. Newton–Raphson) can be employed to solve the
equations returned from the partial derivative of the log-likelihood function.
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2.3. The Kolmogorov–Smirnov (KS) test

KS tests whether a sample of data came from a population with a specific distribution. This test is based
on computing the maximum difference between the empirical CDF (eCDF) and CDF of the
hypothesised distribution. The KS test is given by

D � max
n

D1; D2� � (21)

D1 � max
n

F xI� � � eCDF xI� �� � (22)

D2 � max
n

eCDF xI� � � F xI� �� � (23)

The hypothesis that the error sample follows a given error distribution is given by

- Null-Hypothesis H0: the error sample x1; . . . ; xn� � follows a hypothesised error distribution

χ2 > χ2
1�α;k�s (24)

- Alternate Hypothesis H1: the error sample x1; . . . ; xn� � does not follow a hypothesised error
distribution

χ2 ≥ χ2
1�α;k�c (25)

The KS test values are employed in this paper to evaluate the overall fitting performance of the
candidate distributions.

3. The derived GEV-based Gaussian distribution

GEV-based Gaussian is a Gaussian distribution generated from the GEV distribution (Figure 1). The
first step in creating this distribution is to estimate the GEV distribution parameters (mean, scale
parameter, shape parameter) using the maximum likelihood estimation. The GEV distribution’s mean
and variance are then computed from the GEV distribution’s estimated parameters.

The mathematical derivation of the GEV-based Gaussian distribution starts from the likelihood
function for the GEV distribution, which is represented by

Figure 1. Derivation of GEV-based Gaussian distribution.
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f �x1; . . . ; xnjµGEV ; σGEV ; ξ� �
Yn
i�1

f �xijµGEV ; σGEV ; ξ� (26)

where mGEV ; σGEV ; ξ are the GEV distribution parameters.
Then, the log-likelihood function of the GEV distribution is represented by

l µGEV ; σGEV ; ξ; xi� � � In L µGEV ; σGEV ; ξjxi� �� � (27)
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To maximise the likelihood function l µGEV ; σGEV ; ξ; xi� �, let the partial derivative of the function
with respect to the parameters equal zero.

The partial derivative of the function with respect to the mean is represented, step by step, by
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The partial derivative of the function with respect to the shape parameter is represented by
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To simplify the partial derivative of the function with respect to the sigma, the likelihood function
l µGEV ; σGEV ; ξ; xi� � is rewritten as

l µGEV ; σGEV ; ξ; xi� � � l1 n; σGEV� � � l2 yi; ξ� � (35)

From Equation (36), the partial derivative of the likelihood function with respect to the sigma is
derived step by step as follows:
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From Equations (32), (35) and (41), the three GEV parameters are estimated using the Newton–
Raphson method. Then, the GEV distribution variance is computed using the estimated parameters,
represented by
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gk � Γ 1 � kξ� � (43)

Then, the GEV-based Gaussian distribution parameters µGbG; σGbG

� �
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4. Results

This section provides a summary of the results from Graphical and KS assessments. The GEV-based
Gaussian distribution is tested against the Gaussian, GEV and Generalised t distributions.

In total, 26 datasets were collected over 26 different days in dynamic mode and in mixed
environments (urban, semi-urban and open sky). The data were collected using a vehicle-mounted
multi-constellation GNSS receiver (Ublox’s F9 receiver) and Trimble’s Applanix reference system.
Data collection was carried out in Switzerland, spanning a route of approximately 3,455 km through
various cities and regions, as illustrated in the map presented in Figure 2. The data encompass a variety
of environments: highways represent open-sky conditions, sometimes bordering on semi-urban areas,
while cities like Zürich and Thalwil exemplify urban environments. The vehicle maintained an average
speed of approximately 70 km/h, with a minimum of 42 km/h and a maximum of 142 km/h.

The position, velocity, heading and accuracy data were generated using an Applanix reference
system and Applanix post-processing software, with an average among all datasets with horizontal
accuracy of 4 cm and vertical accuracy of 6 cm. Given the high level of accuracy from the reference
system, the range computed from this system was considered the true value. Subsequently,
measurement errors were estimated by comparing data from the GNSS receiver with the reference
system resulting in more than 2 million rows of pseudorange and carrier phase errors. The GNSS
receiver employed divergence-free carrier smoothing techniques, and the truth system’s results were
used as a baseline to estimate the residuals.
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4.1. Kolmogorov–Smirnov test assessment

KS assessment tests the GEV-based Gaussian distribution for overall fitting, which reflect the
positioning reliability. Since the test is based on the maximum difference between CDF and ECDF,
it gives an indication of the overall fitting, which might not be sufficient to evaluate the goodness-of-fit
in some cases.

By comparing the KS test values, the results show that the Generalised t distribution is the best of the
three candidate distributions in terms of fitting pseudorange and carrier phase error, as seen in all
datasets, as shown in Table 1.

Mixed results are seen when the remaining three distributions are compared: Gaussian, GEV and
GEV-based Gaussian distribution. Table 2 shows the number of times that the value of the test is the
lowest between the three distributions for carrier phase and pseudorange error datasets.

In more detail, for carrier phase error, the KS test values show that the GEV-based Gaussian
distribution was the best in terms of fitting between the three distributions in 12 datasets, followed by the
GEV distribution, which was the best in 11 datasets, while Gaussian was best in three datasets. For
pseudorange error, the results show that the Gaussian distribution is the best with 20 datasets, followed
by the GEV-based Gaussian distribution with 6 datasets.

Overall, as shown in Tables 1 and 2, the results overall show that Generalised t is the best in fitting
the error data, as the average value of KS test in Generalised t is the lowest. The table also shows that
GEV-based Gaussian shows better performance than Gaussian and GEV in fitting carrier phase error
(complex data sets), while the Gaussian distribution provides better fitting than GEV and GEV-based
Gaussian in pseudorange datasets.

Figure 2. Map of the data collection route (∼3,455 km) used in this study.
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4.2. Graphical assessment

The graphical assessment in this section evaluates the GEV-based Gaussian distribution against the
three distributions in terms of tail fitting and overbounding, both of which are of special importance for
mission-critical applications. The results show that none of the distributions overbound the empirical
distribution. However, the GEV-based Gaussian and GEV distributions provide a better bounding at the
tails than the Gaussian and Generalised t distributions.

In more detail, for carrier phase error, the results show that the GEV-based Gaussian distribution is
the best in terms of overall overbounding, as seen in almost all datasets. This is followed by the GEV
distribution, which also shows in many cases slightly better performance in terms of overbounding than
the GEV-based Gaussian distribution at the right tails. Figures 3–8 show that the GEV family

Table 1. Average, minimum and maximum KS test values for the 26 datasets.

Statistic Generalised t Gaussian GEV GEV-based Gaussian
Pseudorange error Average 0.044 0.320 0.375 0.345

Maximum 0.078 0.369 0.417 0.414
Minimum 0.024 0.269 0.316 0.320

Carrier phase error Average 0.076 0.481 0.479 0.474
Maximum 0.123 0.522 0.546 0.527
Minimum 0.046 0.438 0.425 0.440

Table 2. Number of datasets so that the value of the test is the
lowest between three distributions for carrier phase and

pseudorange error datasets.

Gaussian GEV GEV-based Gaussian
Pseudorange error 20 0 6
Carrier phase error 3 11 12
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Figure 3. Carrier phase error characterisation, in the PDF domain, for dataset 1.
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distribution overbounds more extreme events. This is clearly seen in the CDF left tail, where more
extreme events are covered under the distribution tails.

For pseudorange error, the results show that the GEV and GEV-based Gaussian distributions are the
best for bounding. The GEV distribution shows a slightly better performance than the GEV-based
Gaussian distribution for overall overbounding, although the latter is best in terms of bounding in the
left tail.

-8 -6 -4 -2 0 2 4 6

Error [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti

v
e 

P
ro

b
ab

il
it

y

Histogram
Normal distribution

GEV distribution

t location Scale
GEV-based Gaussian distribution

Figure 4. Carrier phase error characterisation, in the CDF domain, for dataset 1.
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Figure 5. Carrier phase error characterisation, in the PDF domain, for dataset 2.
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In addition, the results also show that the Generalised t distribution provides the best fitting for the
majority of the datasets. Mixed results are observed when comparing the remaining three distributions:
Gaussian, GEV and GEV-based Gaussian distribution. For tail fitting, the results show that GEV and
GEV-based Gaussian distributions are the best of the four distributions.

Overall, the results show that the GEV-based Gaussian distribution is the best among tested
distributions in terms of overbounding carrier phase error, followed by the GEV distribution. The
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Figure 6. Carrier phase error characterisation, in the CDF domain, for dataset 2.
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Figure 7. Pseudorange error characterisation, in the PDF domain, for dataset 1.
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corresponding distributions for pseudorange error are GEV and GEV-based Gaussian. Furthermore,
both the GEV distribution and the GEV-based Gaussian distribution exhibit superior tail fitting
compared with the other two distributions, while Generalised t provides the best fitting for the core.

4.3. Summary

The proposed distribution has been tested against three distributions (Gaussian, GEV and Generalised t)
in two aspects: fitting (overall and tail) and overbounding.

The KS and graphical assessment show that Generalised t provides the best overall fitting for the
pseudorange and carrier phase error among the four distributions, followed by GEV-based Gaussian for
carrier phase error and Gaussian for pseudorange error. Furthermore, the graphical assessments show
that the GEV family (GEV and GEV-based Gaussian) provides the best fitting for the tail.

In addition, the graphical assessment shows that the GEV family provides better overall bounding for
pseudorange and carrier phase error. Specifically, the GEV-based Gaussian distribution exhibits better
overbounding for the carrier phase error, while the GEV distribution shows better overbounding results
for the pseudorange error.

5. Conclusions

This paper proposes a derived distribution generated from the GEV and Gaussian distributions, referred
to as the GEV-based Gaussian distribution, to take advantage of both distributions. The results have
shown that the distribution combines the GEV distribution’s ability in mapping extreme events, with
Gaussian distribution simplicity in computation and error propagation.

The GEV-based Gaussian distribution has been tested using Kolmogorov–Smirnov test (KS), and
graphical assessment against Gaussian, GEV distribution and Generalised t.

The assessments have shown that none of the tested distributions overbounds the empirical
distribution. However, the results show that the novel GEV-based Gaussian distribution is the best in
terms of bounding extreme events in the carrier phase error datasets, followed by the GEV distribution.
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Figure 8. Pseudorange error characterisation, in the CDF domain, for dataset 1.
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Furthermore, the GEV distribution is the best in terms of bounding the pseudorange error, followed by
the GEV-based Gaussian distribution.

Due to the GEV distribution’s complexity compared with the Gaussian distribution in the error
convolution process, this paper proposes using GEV-based Gaussian distribution for monitoring GNSS
integrity for mission-critical applications, while accounting for the needs for overbounding.

The GEV-based Gaussian distribution can be applied to both system-level and user-level integrity
monitoring. At the system level, errors can be characterised using this distribution through integrity
monitoring system reference stations and Continuously Operating Reference Station (CORS) networks,
with the distribution’s parameters transmitted to users via satellite-based or ground-based augmentation
systems. Users can then use this information to enhance positioning and navigation safety compared
with conventional Gaussian-based approaches. Research is ongoing to evaluate the impact of using the
GEV-based Gaussian distribution in the positioning domain.
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