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Abstract

We prove that the free uniform spanning forest of any bounded degree proper plane graph is
connected almost surely, answering a question of Benjamini, Lyons, Peres and Schramm. We
provide a quantitative form of this result, calculating the critical exponents governing the geometry
of the uniform spanning forests of transient proper plane graphs with bounded degrees and
codegrees. We find that the same exponents hold universally over this entire class of graphs provided
that measurements are made using the hyperbolic geometry of their circle packings rather than their
usual combinatorial geometry.

2010 Mathematics Subject Classification: 60D05 (primary); 05C10 (secondary)

1. Introduction

The uniform spanning forests (USFs) of an infinite, locally finite, connected
graph G are defined as weak limits of uniform spanning trees (USTs) of finite
subgraphs of G. These limits can be taken with either free or wired boundary
conditions, yielding the free uniform spanning forest (FUSF) and the wired
uniform spanning forest (WUSF), respectively. Although the USFs are defined
as limits of random spanning trees, they need not be connected. Indeed, a principal
result of Pemantle [43] is that the WUSF and FUSF of Zd coincide, and that
they are almost surely (a.s.) a single tree if and only if d 6 4. Benjamini, Lyons,
Peres and Schramm [10] (henceforth referred to as BLPS) later gave a complete
characterization of connectivity of the WUSF, proving that the WUSF of a graph
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is connected a.s. if and only if two independent random walks on the graph
intersect a.s. [10, Theorem 9.2].

The FUSF is much less understood. No characterization of its connectivity is
known, nor has it been proven that connectivity is a zero-one event. One class
of graphs in which the FUSF is relatively well understood are the proper plane
graphs. Recall that a planar graph is a graph that can be embedded in the plane,
while a plane graph is a planar graph G together with a specified embedding of
G in the plane (or some other topological disc). A plane graph is proper if the
embedding is proper, meaning that every compact subset of the plane (or whatever
topological disc G was embedded in) intersects at most finitely many edges and
vertices of the drawing (see Section 2.5 for further details). For example, every
tree can be drawn in the plane without accumulation points, while the product
of Z with a finite cycle is planar but cannot be drawn in the plane without an
accumulation point (and therefore has no proper embedding in the plane).

BLPS proved that the free and wired uniform spanning forests are distinct
whenever G is a transient proper plane graph with bounded degrees, and asked
[10, Question 15.2] whether the FUSF is a.s. connected in this class of graphs.
They proved that this is indeed the case when G is a self-dual plane Cayley
graph that is rough-isometric to the hyperbolic plane [10, Theorem 12.7]. These
hypotheses were later weakened by Lyons, Morris and Schramm [37, Theorem
7.5], who proved that the FUSF of any bounded degree proper plane graph that is
rough-isometric to the hyperbolic plane is a.s. connected.

Our first result provides a complete answer to [10, Question 15.2], obtaining
optimal hypotheses under which the FUSF of a proper plane graph is a.s.
connected. The techniques we developed to answer this question also allow us
to prove quantitative versions of this result, which we describe in the next section.
We state our result in the natural generality of proper plane networks. Recall that
a network (G, c) is a locally finite, connected graph G = (V, E) together with a
function c : E→ (0,∞) assigning a positive conductance to each edge of G. The
resistance of an edge e in a network (G, c) is defined to be 1/c(e). The uniform
spanning forest of a finite network gives each tree probability proportional to the
product of the conductances of its edges. The free and wired USFs of an infinite
network are obtained, as before, by taking weak limits over exhaustions. Graphs
may be considered as networks by setting c ≡ 1. A plane network is a planar
graph G together with specified conductances and a specified drawing of G in the
plane.

THEOREM 1.1. The FUSF is a.s. connected in any bounded degree proper plane
network with edge conductances bounded above.
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In light of the duality between the free and wired uniform spanning forests
of proper plane graphs (see Section 2.5.1), the FUSF of a proper plane graph G
with locally finite dual G† is connected a.s. if and only if every component of the
WUSF of G† is a.s. one-ended. Thus, Theorem 1.1 follows easily from the dual
statement Theorem 1.2. (The implication is immediate when the dual graph is
locally finite.) Recall that an infinite graph G = (V, E) is said to be one-ended if,
for every finite set K ⊂ V , the subgraph induced by V \K has exactly one infinite
connected component. In particular, an infinite tree is one-ended if and only if it
does not contain a simple bi-infinite path. Components of the WUSF are known
to be one-ended a.s. in several other classes of graphs [2, 10, 26, 28, 37, 43], and
are recurrent in any graph [41]. Recall that a plane graph is said to have bounded
codegree if its dual has bounded degree.

THEOREM 1.2. Every component of the WUSF is one-ended a.s. in any bounded
codegree proper plane network with edge resistances bounded above.

The uniform spanning trees of Z2 and other planar Euclidean lattices are very
well understood due to the deep theory of conformally invariant scaling limits.
The study of the UST on Z2 led Schramm, in his seminal paper [48], to introduce
the Schramm-Loewner Evolution (SLE) processes, which he conjectured to
describe the scaling limits of the loop-erased random walk and UST. This
conjecture was subsequently proven in the celebrated work of Lawler et al. [36].
Overall, Schramm’s introduction of SLE has revolutionized the understanding of
statistical physics in two dimensions; see for example, [17, 34, 46] for guides to
the extensive literature in this very active field.

Although our own setting is too general to apply this theory, we nevertheless
keep conformal invariance in mind throughout this paper. Indeed, the key to our
proofs is circle packing, a canonical method of drawing planar graphs that is
closely related to conformal mapping (see for example, [23, 25, 45, 46, 52] and
references therein). For many purposes, one can pretend that the random walk
on the packing is a quasiconformal image of standard planar Brownian motion:
Effective resistances, heat kernels, and harmonic measures on the graph can each
be estimated in terms of the corresponding Brownian quantities [4, 16].

It is natural to ask whether Theorem 1.1 extends to all bounded degree planar
graphs, rather than just those admitting proper embeddings into the plane. In the
sequel to this paper, we provide an example, which was analysed in collaboration
with Gady Kozma, to show that the theorem does not admit such an extension.
However, we also show there that the conclusion of Theorem 1.1 does continue to
hold on any bounded degree planar network that admits a proper embedding into
a domain with countably many boundary components.
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1.1. Universal USF exponents via circle packing. A circle packing P is
a set of discs in the Riemann sphere C ∪ {∞} that have disjoint interiors (that
is, do not overlap) but can be tangent. The tangency graph G = G(P) of a
circle packing P is the plane graph with the centres of the circles in P as its
vertices and with edges given by straight lines between the centres of tangent
circles. The Koebe–Andreev–Thurston Circle Packing theorem [33, 39, 53] states
that every finite, simple planar graph arises as the tangency graph of a circle
packing, and that if the graph is a triangulation then its circle packing is unique
up to Möbius transformations and reflections (see [14] for a combinatorial proof).
The Circle Packing theorem was extended to infinite plane triangulations by
He and Schramm [23, 24], who proved that every infinite, proper, simple plane
triangulation admits a locally finite circle packing in either the Euclidean plane
or the hyperbolic plane (identified with the interior of the unit disc), but not both.
(Recall that in the Poincaré disc model, Euclidean and hyperbolic circles in the
disc coincide as sets but may have different centres and radii.) We call an infinite,
simple, proper plane triangulation CP parabolic if it admits a circle packing in
the plane and CP hyperbolic otherwise.

He and Schramm [24] also initiated the use of circle packing to study
probabilistic questions on plane graphs. In particular, they showed that a bounded
degree, simple, proper plane triangulation is CP parabolic if and only if simple
random walk on the triangulation is recurrent (that is, visits every vertex infinitely
often a.s.). Circle packing has since proven instrumental in the study of planar
graphs, and random walks on planar graphs in particular. Most relevantly to us,
circle packing was used by Benjamini and Schramm [11] to prove that every
transient, bounded degree planar graph admits nonconstant harmonic Dirichlet
functions; BLPS [10] later applied this result to deduce that the free and wired
uniform spanning forest of a bounded degree plane graph coincide if and only
if the graph is recurrent. We refer the reader to [52] and [46] for background on
circle packing, and to [4, 5, 7, 11, 12, 16, 18, 19, 24, 27, 29, 30, 42] for further
probabilistic applications.

A guiding principle of the works mentioned above is that circle packing endows
a triangulation with a geometry that, for many purposes, is better than the usual
graph metric. The results described in this section provide a compelling instance
of this principle in action: we find that the critical exponents governing the
geometry of the USFs are universal over all transient, bounded degree, proper
plane triangulations, provided that measurements are made using the hyperbolic
geometry of their circle packings rather than the usual combinatorial geometry
of the graphs. It is crucial here that we use the circle packing to take our
measurements: The exponents in the graph distance are not universal and need
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Figure 1. A finite polyhedral plane graph (left) and its double circle packing
(right). Primal circles are filled and have solid boundaries, dual circles have
dashed boundaries.

not even exist (see Figure 2). In Remark 5.2 we give an example to show that no
such universal exponents hold in the CP parabolic case at this level of generality.

In order to state the quantitative versions of Theorems 1.1 and 1.2 in their full
generality, we first introduce double circle packing. Let G be a plane graph with
vertex set V and face set F . A double circle packing of G is a pair of circle
packings P = {P(v) : v ∈ V } and P†

= {P†( f ) : f ∈ F} in C ∪ {∞} satisfying
the following conditions (see Figure 1):

(1) (G is the tangency graph of P .) For each pair of vertices u and v of G, the
discs P(u) and P(v) are tangent if and only if u and v are adjacent in G.

(2) (G† is the tangency graph of P†.) For each pair of faces f and g of G, the
discs P†( f ) and P†(g) are tangent if and only if f and g are adjacent in G†.

(3) (Primal and dual circles are perpendicular.) For each vertex v and face f
of G, the discs P†( f ) and P(v) have nonempty intersection if and only if
f is incident to v, and in this case the boundary circles of P†( f ) and P(v)
intersect at right angles.

It is easily seen that any finite plane graph admitting a double circle packing
must be polyhedral, meaning that is it both simple (that is, not containing any
loops or multiple edges) and 3-connected (meaning that the subgraph induced by
V \ {u, v} is connected for each u, v ∈ V ). Conversely, Thurston’s interpretation
of Andreev’s theorem [39, 53], or the Brightwell–Scheinerman theorem [14],
implies that every finite, polyhedral plane graph admits a double circle packing.
The corresponding infinite theory was developed by He [22], who proved that
every infinite, polyhedral, proper plane graph G with locally finite dual admits a
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double circle packing in either the Euclidean plane or the hyperbolic plane, but not
both, and that this packing is unique up to Möbius transformations and reflections.
(He phrased his results more generally than this, see Section 2.6 for an explanation
of how the statement given here follows from the one in [22].) In particular, in the
hyperbolic case, the packing is unique up to isometries of the hyperbolic plane.
As before, we say that G is CP parabolic or CP hyperbolic as appropriate. As for
triangulations [24], CP hyperbolicity is equivalent to transience for graphs with
bounded degrees and codegrees [22].

Let G be CP hyperbolic and let (P, P†) be a double circle packing of G in
the hyperbolic plane. We write rH(v) for the hyperbolic radius of the circle P(v).
For each subset A ⊂ V (G), we define diamH(A) to be the hyperbolic diameter
of the set of hyperbolic centres of the circles in P corresponding to vertices in
A, and define areaH(A) to be the hyperbolic area of the union of the circles in P
corresponding to vertices in A. Since (P, P†) is unique up to isometries of the
hyperbolic plane, rH(v), diamH(A), and areaH(A) do not depend on the choice of
(P, P†).

We say that a network G has bounded local geometry if there exists a constant
M such that deg(v) 6 M for every vertex v of G and M−1 6 c(e) 6 M for every
edge e of G. Given a plane network G, we let F be the set of faces of G, and
define

M =MG = max
{

sup
v∈V

deg(v), sup
f ∈F

deg( f ), sup
e∈E

c(e), sup
e∈E

c(e)−1
}
.

Given a spanning tree F and two vertices x and y in G, we write ΓF(x, y) for
the unique path in F connecting x and y. In the following theorem, the graph G
satisfies the conditions of Theorem 1.1 and so the path ΓF is well defined a.s.

THEOREM 1.3 (Free diameter exponent). Let G be a transient, polyhedral,
proper plane network with MG <∞, let F be the FUSF of G, and let e = (x, y)
be an edge of G. Then there exist positive constants

k1 = k1(M, rH(x)),

increasing in rH(x), and k2 = k2(M) such that

k1 R−1 6 P(diamH(ΓF(x, y)) > R) 6 k2 R−1

for every R > 1.

Given a spanning forest F of G in which every component is a one-ended tree
and an edge e of G, the past of e in F, denoted pastF(e), is defined to be the
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Figure 2. Two bounded degree, simple, proper plane triangulations for which the
graph distance is not comparable to the hyperbolic distance. Similar examples
are given in [52, Figure 17.7]. Left: In this example, rings of degree seven
vertices (grey) are separated by growing bands of degree six vertices (white),
causing the hyperbolic radii of circles to decay. The bands of degree six vertices
can grow surprisingly quickly without the triangulation becoming recurrent
[50]. Right: In this example, half-spaces of the 8-regular (grey) and 6-regular
(white) triangulations have been glued together along their boundaries; the circles
corresponding to the 6-regular half-space are contained inside a horodisc and have
decaying hyperbolic radii.

unique finite connected component of F \ {e} if e ∈ F and to be the empty set
otherwise. The following theorem is equivalent to Theorem 1.3 by duality (see
Sections 2.5.1 and 4.6).

THEOREM 1.4 (Wired diameter exponent). Let G be a transient, polyhedral,
proper plane network with MG <∞, let F be the WUSF of G, and let e = (x, y)
be an edge of G. Then there exist positive constants k1 = k1(M, rH(x)), increasing
in rH(x), and k2 = k2(M) such that

k1 R−1 6 P(diamH(pastF(e)) > R) 6 k2 R−1

for every R > 1.

By similar methods, we are also able to obtain a universal exponent of 1/2 for
the tail of the area of the past of an edge in the WUSF.
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THEOREM 1.5 (Wired area exponent). Let G be a transient, polyhedral, proper
plane network with MG <∞, let F be the WUSF of G, and let e = (x, y) be an
edge of G. Then there exist positive constants

k1 = k1(M, rH(x)),

increasing in rH(x), and k2 = k2(M) such that

k1 R−1/2 6 P(areaH(pastF(e)) > R) 6 k2 R−1/2

for every R > 1.

The exponents 1 and 1/2 occurring in Theorems 1.4 and 1.5 should,
respectively, be compared with the analogous exponents for the survival time
and total progeny of a critical branching process whose offspring distribution has
finite variance (see for example, [38, §5,12]).

For uniformly transient proper plane graphs (that is, proper plane graphs in
which the escape probabilities of the random walk are bounded uniformly away
from zero), the hyperbolic radii of circles in (P, P†) are bounded away from
zero uniformly (Proposition 4.16). This implies that the hyperbolic metric
and the graph metric are rough-isometric (Corollary 4.17). Consequently,
Theorems 1.3–1.5 hold with the graph distance and counting measure as
appropriate (Corollary 4.18). This yields the following appealing corollary,
which applies, for example, to planar Cayley graphs of cocompact Fuchsian
groups.

COROLLARY 1.6 (Free length exponent). Let G be a uniformly transient,
polyhedral, proper plane network with MG < ∞ and let F be the FUSF of G.
Let p > 0 be a uniform lower bound on the escape probabilities of G. Then there
exist positive constants k1 = k1(M,p) and k2 = k2(M,p) such that

k1 R−1/2 6 P(|ΓF(x, y)| > R) 6 k2 R−1/2

for every edge e = (x, y) of G and every R > 1.

See [9, 13, 31, 37, 40, 49] and the survey [8] for related results on Euclidean
lattices.

1.2. Rough outline of the proof. The proof of Theorem 1.2 goes by showing
that for every edge e = (x, y) of the graph, the conditional probability that e is
in the WUSF conditioned on having two long disjoint WUSF paths, one starting
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at x and the other starting at y, is small as the length of the paths grows. Taking a
limit one gets (7) from which we obtain that a.s. no bi-infinite paths in the WUSF
exist. To prove this we take the rightmost path from x and the left most path from
y and use the circle packing embedding to infer that no matter what these paths
are, a large quantity of electric current can flow from one path to the other (with
voltage difference 1) within the space that has not been explored by the WUSF.
This current is also allowed to flow ‘via infinity’ since the boundary is wired,
which handles the case where the space between the two paths is large.

It turns out that this approach already yields the correct order of the upper
bound in Theorem 1.4. The lower bound, proved in Section 4, is significantly more
complicated. The intuition is as follows: If we consider the intersection of the
past of the origin in the WUSF with the hyperbolic shell B(0, r + 1)\B(0, r), the
hyperbolic area of this intersection behaves similarly to the number of particles at
generation n in a critical (finite variance) branching process; See (25) and below.
The bulk of the work in Section 4 is to bound the first and second moments of
the hyperbolic areas of these intersections. The bounds we obtain are analogous
to the fact that the nth generation of a critical (finite variance) branching process
has first moment 1 and second moment of order n.

Organization. Section 2 contains definitions and background on those notions
that will be used throughout the paper. Experienced readers are advised that
this section also includes proofs of a few simple folklore-type lemmas and
propositions. Section 3 contains the proofs of Theorems 1.1 and 1.2, as well as
the upper bound of Theorem 1.4 in the case that G is a triangulation. Section 4
completes the proofs of Theorems 1.3–1.5 and Corollary 1.6; the most substantial
component of this section is the proof of the lower bound of Theorem 1.4.
Section 4 also includes the statement and proof of an extension of the Ring lemma
to double circle packings. We conclude with a remark and an open problem in
Section 5.

2. Background and definitions

2.1. Notation. We write E→ for the set of oriented edges of a network G =
(V, E). An oriented edge e ∈ E→ is oriented from its tail e− to its head e+, and
has reversal −e.

For each r ′, r > 0, and z ∈ C, we define the open ball and closed annulus

Bz(r) = {z′ ∈ C : |z − z′| < r} and Az(r, r ′) = {z′ ∈ C : r 6 |z′ − z| 6 r ′}.

We write dC for the Euclidean metric on C and write dH for the hyperbolic metric
on D.
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2.2. Hyperbolic geometry. Let D be the open unit disc. The hyperbolic metric
dH on D is defined by

dH(z1, z2) = 2 tanh−1

∣∣∣∣ z1 − z2

1− z1 z̄2

∣∣∣∣.
Some basic facts we will make frequent use of include:

(1) Möbius transformations and reflections fixing D are isometries of the
hyperbolic plane.

(2) Euclidean circles in D are hyperbolic circles with different centres and radii.

(3) For every a <∞ there exists A such that if C ⊆ D is a circle with hyperbolic
radius rH 6 a and Euclidean centre z and radius r , then

r
A(1− |z|)

6 rH = 2 tanh−1

∣∣∣∣ 2r
1+ r 2 − |z|2

∣∣∣∣ 6 Ar
1− |z|

.

See for example, [3] for further background on hyperbolic geometry.

2.3. Uniform Spanning Forests. We begin with a succinct review of some
basic facts about USFs, referring the reader to [10] and [38, Chs 4 and 10] for
a comprehensive overview. For each finite, connected graph G, we define USTG

to be the uniform measure on the set of spanning trees of G (that is, connected
subgraphs of G containing every vertex and no cycles). More generally, for a finite
network G = (G, w), we define USTG to be the probability measure on spanning
trees of G for which the measure of each tree is proportional to the product of the
conductances of the edges in the tree.

An exhaustion of an infinite network G is a sequence 〈Vn〉n>0 of finite,
connected subsets of V such that Vn ⊆ Vn+1 for all n > 0 and

⋃
n Vn = V .

Given such an exhaustion, let the network Gn be the subgraph of G induced
by Vn together with the conductances inherited from G. The free uniform
spanning forest measure FUSFG is defined to be the weak limit of the sequence
〈USTGn 〉n>1, so that

FUSFG(S ⊂ F) = lim
n→∞

USTGn (S ⊂ T )

for each finite set S ⊂ E , where F is a sample of FUSFG and T is a sample of
USTGn . For each n, we also construct a network G∗n from G by gluing (wiring)
every vertex of G \ Gn into a single vertex, denoted ∂n , and deleting all the self-
loops that are created. We identify the set of edges of G∗n with the set of edges
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of G that have at least one endpoint in Vn . The wired uniform spanning forest
measure WUSFG is defined to be the weak limit of the sequence 〈USTG∗n 〉n>1, so
that

WUSFG(S ⊂ F) = lim
n→∞

USTG∗n (S ⊂ T )

for each finite set S ⊂ E , where F is a sample of WUSFG and T is a sample of
USTG∗n . These weak limits were both implicitly proven to exist by Pemantle [43],
although the WUSF was not considered explicitly until the work of Häggström
[20]. Both measures are easily seen to be concentrated on the set of essential
spanning forests of G, that is, cycle-free subgraphs of G including every
vertex such that every connected component is infinite. The measure FUSFG

stochastically dominates WUSFG for every infinite network G.

2.3.1. The spatial Markov property. Let G = (V, E) be a finite or infinite
network and let A and B be subsets of E . We write (G − B)/A for the
(possibly disconnected) network formed from G by deleting every edge in B and
contracting (that is, identifying the two endpoints of) every edge in A. We identify
the edges of (G − B)/A with E \ B. Suppose that G is finite, and that

USTG(A ⊆ T, B ∩ T = ∅) > 0.

Then, given the event that T contains every edge in A and none of the edges in
B, the conditional distribution of T is equal to the union of A and the UST of
(G − B)/A. That is, for every event A ⊆ {0, 1}E ,

USTG(T ∈ A | A ⊂ T, B ∩ T = ∅) = UST(G−B)/A(T ∪ A ∈ A ).

This is the spatial Markov property of the UST. Taking limits over exhaustions,
we obtain a corresponding spatial Markov property for the USFs: if G = (V, E)
is an infinite network and A and B are subsets of E such that

WUSFG(A ⊆ F, B ∩ F = ∅) > 0

and the network (G − B)/A is locally finite, then

WUSFG(F ∈ A | A ⊂ F, B ∩ F = ∅) =WUSF(G−B)/A(F ∪ A ∈ A ). (1)

(If (G − B)/A is not connected, we define WUSF(G−B)/A to be the product of the
WUSF measures on the connected components of (G − B)/A.) A similar spatial
Markov property holds for the FUSF.

The UST and USFs also enjoy a strong form of the spatial Markov property.
Let G be a finite or infinite network, and suppose that H is a random element of
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{0, 1}E , which we think of as a random subgraph of G. We say that a random
element K of {0, 1}E , defined on the same probability space as H , is a local set
for H if for every set W ⊆ E , the event {K ⊆ W } is, up to a null set, measurable
with respect to the σ -algebra generated by the collection of random variables
{H(e) : e ∈ W }.

For example, suppose that F is a random spanning forest of a network G, and
that u and v are vertices of G. Let K = K (F) be the random set of edges that
is equal to the path connecting u and v in F if such a path exists, and otherwise
equal to all of E . Then K is a local set for F, since, for every proper subset W of
E , the event {K ⊆ W } is equal (up to the null event in which F is not a forest)
to the event that u and v are in the same component of F and that the unique
path connecting u and v in F is contained in W , which is clearly measurable with
respect to the restriction of F to W .

An example of a random set K that is not a local set for F is, for instance,
the edges of F incident to a given vertex v. If v has degree at least 2 and e is
some edge incident to v, then the event {K ⊂ {e}} cannot be determined just by
knowing F(e). Note also that Proposition 2.1 does not hold for this K , since if
we know which edges are included in K then we also know that F(e) = 0 for all
edges e 6∈ K incident to v.

Given a random subgraph H of a network G and a local set K for H , we write
FK to denote the σ -algebra generated by K and the random collection of random
variables {H(e) : e ∈ K }. We also write Ko = {e ∈ E : e ∈ K , H(e) = 1} and
Kc = K \ Ko for the sets of edges in K that are included (open) in H and not
included (closed) in H , respectively.

PROPOSITION 2.1 (Strong Spatial Markov Property for the WUSF). Let
G = (V, E) be an infinite network, let F be a sample of the WUSF of G,
and let K be a local set for F that is either finite or equal to all of E a.s.
Conditional on FK and the event that K is finite, let F̂ be a sample of the WUSF
of (G − Kc)/Ko. Let F′ = Ko ∪ F̂ if Ko is finite and F′ = F if Ko = E. Then F
and F′ have the same distribution.

Proof. Expand the conditional probability

WUSFG(F ∈ A | FK )1(K 6= E)

=

∑
W1,W2⊂E finite

WUSFG(F ∈ A | Ko = W1, Kc = W2)1(Ko = W1, Kc = W2).

Since K is a local set for F, the right-hand side is equal to∑
W1,W2⊂E finite

WUSFG(F ∈ A | W1 ⊆ F,W2 ∩ F = ∅)1(Ko = W1, Kc = W2).
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Applying the spatial Markov property gives

WUSFG(F ∈ A | FK )1(K 6= E)

=

∑
W1,W2⊂E finite

WUSF(G−W2)/W1(F̂ ∪W1 ∈ A )1(Ko = W1, Kc = W2)

=WUSF(G−Kc)/Ko(F̂ ∪ Ko ∈ A )1(K 6= E),

from which the claim follows immediately.

Similar strong spatial Markov properties hold for the FUSF and UST, and admit
very similar proofs.

2.4. Random walk, effective resistances. Given a network G and a vertex u
of G, we write PG

u for the law of the simple random walk on G started at u, and
will often write simply Pu if the choice of network is unambiguous. For each set
of vertices A, we let τA be the first time the random walk visits A, letting τA =∞

if the walk never visits A. Similarly, τ+A is defined to be the first positive time that
the random walk visits A. The conductance c(u) of a vertex u is defined to be the
sum of the conductances of the edges emanating from u.

Let A and B be sets of vertices in a finite network G. The effective
conductance between A and B in G is defined to be

Ceff(A↔ B;G) =
∑
v∈A

c(v)Pv(τB < τ+A ),

while the effective resistance Reff(A ↔ B;G) is defined to be the reciprocal of
the effective conductance, Reff(A ↔ B;G) = Ceff(A ↔ B;G)−1. Now suppose
that G is an infinite network with exhaustion 〈Vn〉n>0 and let A and B be finite
subsets of V . Let 〈Gn〉n>0 and 〈G∗n〉n>0 be defined as in Section 2.3. The free
effective resistance between A and B is defined to be the limit

RF
eff(A↔ B; G) = lim

n→∞
Reff(A↔ B; Gn),

while the wired effective resistance between A and B is defined to be

RW
eff(A↔ B; G) = lim

n→∞
Reff(A↔ B; G∗n).

Free and wired effective conductances are defined by taking reciprocals. The free
effective resistance between two, possibly infinite, sets A and B is defined to be
the limit of the free effective resistances between A ∩ Vn and B ∩ Vn , which are
decreasing in n. We also define

Reff(A↔ B ∪ {∞}) = lim
n→∞

Reff(A↔ B ∪ {∂n};G∗n).
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See for example, [38] for further background on electrical networks.
We will make frequent use of Rayleigh monotonicity principle [38, Ch. 2.4],

which states that the effective conductance between any two sets in a network
is an increasing function of the edge conductances. In particular, it follows that
the effective conductance between two sets decreases when edges are deleted
from the network (which corresponds to taking the conductance of those edges
to zero), and increases when edges are contracted (which corresponds to taking
the conductance of those edges to infinity).

The proof of Theorem 1.2 will require the following simple lemma.

LEMMA 2.2. Let A and B be sets of vertices in an infinite network G. Then

RW
eff(A↔ B; G) 6 3 max{Reff(A↔ B ∪ {∞}; G), Reff(B ↔ A ∪ {∞}; G)}.

Proof. Let M = max{Reff(A↔ B ∪ {∞}; G), Reff(B ↔ A∪ {∞}; G)}. Recall
that for any three sets A, B and C in G∗n (or any other finite network) [38, Exercise
2.33],

Reff(A↔ B ∪ C;G∗n)
−1 6 Reff(A↔ B;G∗n)

−1
+Reff(A↔ C;G∗n)

−1.

Letting C = {∂n} and taking the limit as n→∞, we obtain that

M−1 6 Reff(A↔ B ∪ {∞};G)−1 6 RW
eff(A↔ B;G)−1

+Reff(A↔∞;G)−1.

Rearranging, we have that

Reff(A↔∞;G) 6
MRW

eff(A↔ B;G)
RW

eff(A↔ B;G)− M
.

By symmetry, the inequality continues to hold when we exchange the roles of
A and B. Combining both of these inequalities with the triangle inequality for
effective resistances [38, Exercise 9.29] yields that

RW
eff(A↔ B;G) 6 Reff(A↔∞;G)+Reff(B ↔∞;G)

6 2
MRW

eff(A↔ B;G)
RW

eff(A↔ B;G)− M
,

which rearranges to give the claimed inequality.

2.4.1. Kirchhoff’s effective resistance formula. The connection between
effective resistances and spanning trees was first discovered by Kirchhoff
[32] (see also [15]).
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THEOREM 2.3 (Kirchhoff’s Effective Resistance Formula). Let G be a finite
network. Then for every e ∈ E→

USTG(e ∈ T ) = c(e)Reff(e− ↔ e+;G).

Taking limits over exhaustions, we also have the following extension of
Kirchhoff’s formula:

WUSFG(e ∈ F) = c(e)RW
eff(e

−
↔ e+;G). (2)

A similar equality holds for the FUSF.

2.4.2. The method of random paths. We say that a path Γ in a network G is
simple if it does not visit any vertex more than once. Given a probability measure
ν on simple paths Γ in a network G, we define the energy of ν to be

E(ν) = 1
2

∑
e∈E→

1
c(e)

(ν(e ∈ Γ )− ν(−e ∈ Γ ))2.

Effective resistances can be bounded from above by energies of random paths: In
particular, if G is an infinite network and A and B are two finite sets of vertices
in G, then

Reff(A↔ B ∪ {∞};G) = min

E(ν) : ν a probability measure on simple
paths in G starting in A that are
either infinite or finite and end in B.


See for example, [38, Section 3] and [44] for more detail. Obtaining resistance
bounds by defining flows using random paths in this manner is referred to as the
method of random paths.

It will be convenient to use the following weakening of the method of random
paths. Given the law µ of a random subset W ⊂ V (G), define

E(µ) =
∑
v∈V

µ(v ∈ W )2. (3)

LEMMA 2.4 (Method of random sets). Let A and B be two finite sets of vertices
in an infinite network G, and let µ be a measure on subsets W ⊂ V (G) such that
the subgraph of G induced by V a.s. contains a path starting at A that is either
infinite or finite and ends at B. Then

Reff(A↔ B ∪ {∞};G) 6 sup
e∈E

c(e)−1E(µ). (4)
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Proof. Given W , let Γ be a simple path connecting A to B that is contained in W .
Then, letting ν be the law of Γ ,

E(ν) 6 sup
e

1
c(e)

∑
e∈E→

ν(e ∈ Γ )2.

Letting Γ ′ be an independent random path with the same law as Γ , the sum above
is exactly the expected number of oriented edges that are used by both Γ and
Γ ′. Since these paths are simple, they each contain at most one oriented edge
emanating from v for each vertex v ∈ V . It follows that the number of oriented
edges included in both paths is at most the number of vertices included in both
paths. This yields that

E(ν) 6 sup
e∈E

1
c(e)

∑
v∈V

ν(v ∈ Γ )2 6 sup
e∈E

1
c(e)

∑
v∈V

µ(v ∈ W )2 = sup
e∈E

1
c(e)

E(µ).

2.5. Plane graphs and their USFs. Given a graph G = (V, E), let G be the
metric space defined as follows. For each edge e of G, choose an orientation of e
arbitrarily and let {I (e) : e ∈ E} be a set of disjoint isometric copies of the interval
[0, 1]. The metric space G is defined as a quotient of the union

⋃
e I (e)∪ V ,

where we identify the endpoints of I (e) with the vertices e− and e+, respectively,
and is equipped with the path metric.

Let S be an orientable surface without boundary, which in this paper will always
be a domain D ⊆ C ∪ {∞}. A proper embedding of a graph G into S is a
continuous, injective map z : G→ S satisfying the following conditions:

(1) (Every face is a topological disc.) Every connected component of the
complement S \ z(G), called a face of (G, z), is homeomorphic to the disc.
Moreover, for each connected component U of S \ z(G), the set of oriented
edges of G that have their left-hand side incident to U forms either a cycle
or a bi-infinite path in G.

(2) (z is locally finite.) Every compact subset of S intersects at most finitely
many edges of z(G). Equivalently, the preimage z−1(K ) of every compact
set K ⊆ S is compact in G.

A locally finite, connected graph is planar if and only if it admits a proper
embedding into some domain D ⊆ C ∪ {∞}. A plane graph G = (G, z) is a
planar graph G together with a specified embedding z : G → D ⊆ C ∪ {∞}.
A plane network G = (G, z, c) is a planar graph together with a specified
embedding and an assignment of positive conductances c : E → (0,∞).
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Given a pair G = (G, z) of a graph together with a proper embedding z of G
into a domain D, the dual G† of G is the graph that has the faces of G as vertices,
and has an edge drawn between two faces of G for each edge incident to both of
the faces in G. By drawing each vertex of G† in the interior of the corresponding
face of G and each edge of G† so that it crosses the corresponding edge of G but
no others, we obtain an embedding z† of G† in D. The edge sets of G and G† are
in natural correspondence, and we write e† for the edge of G† corresponding to
e. If e is oriented, we let e† be oriented so that it crosses e from right to left as
viewed from the orientation of e. If G = (G, z, c) is a plane network, we assign
the conductances c†(e†) = c(e)−1 to the edges of G†.

2.5.1. USF duality. Let G be a plane network with dual G†. For each set W ⊆ E ,
let W †

:= {e†
: e /∈ W }. If G is finite and t is a spanning tree of G, then t† is a

spanning tree of G†: the subgraph t† is connected because t has no cycles, and
has no cycles because t is connected. Moreover, the ratio∏

e∈t c(e)∏
e†∈t† c†(e†)

=

∏
e∈E

c(e)

does not depend on t . It follows that if T is a random spanning tree of G with law
USTG , then T † is a random spanning tree of G† with law USTG† . This duality
was extended to infinite proper plane networks by BLPS.

THEOREM 2.5 [10, Theorem 12.2 and Proposition 12.5]. Suppose that G is an
infinite proper plane network with locally finite dual G†. Then if F is a sample of
FUSFG , the subgraph F† is an essential spanning forest of G† with law WUSFG† .
In particular, F is connected a.s. if and only if every component of F† is one-ended
a.s.

2.6. Circle packing. We now give some background on circle packing. The
carrier of a circle packing P , denoted carr(P), is the union of all the discs of P
and of all the faces of G(P), so that the embedding z of G(P) defined by drawing
straight lines between the centres of tangent circles is a proper embedding of
G(P) into carr(P). Similarly, the carrier of a double circle packing (P, P†) is
defined to be the union of all the discs in P ∪ P†. Given a domain D ⊂ C ∪ {∞},
a circle packing P (or double circle packing (P, P†)) is said to be in D if its
carrier is D. In particular, a (double) circle packing P is said to be in the plane if
its carrier is the plane C and in the disc if its carrier is the open unit disc D. The
following theorems, which we stated in the introduction, are the cornerstones of
the theory for infinite proper plane graphs.
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THEOREM 2.6 (He–Schramm existence and uniqueness theorem [22–24, 47]).
Let G be an infinite, polyhedral, proper plane graph with locally finite dual. Then
G admits a double circle packing either in the plane or the disc, but not both, and
this packing is unique up to Möbius transformations and reflections of the plane
or the disc as appropriate.

THEOREM 2.7 (He–Schramm recurrence theorem [22, 24]). Let G be an infinite,
polyhedral, proper plane graph with bounded degrees and locally finite dual.
Then G is CP parabolic if and only if it is recurrent for simple random walk.

Let us now explain how these theorems follow from the more general
statements given in [22]. In that paper, He considers disc patterns of simple
proper plane triangulations, which are like circle packings except that circles
corresponding to adjacent vertices intersect at a specified angle, between 0 and
π , rather than being tangent. Given a proper plane network G = (V, E) with
locally finite dual and face set F , we can form a proper plane triangulation T
with vertex set V ∪ F by adding a vertex inside each face of G and connecting
this vertex to each vertex in the boundary of the face. It is easily verified that T
is simple if and only if G is polyhedral. Moreover, a double circle packing of
T , either in the plane or the disc, can now be obtained using [22, Theorem 1.3]
by requiring that the angle between a pair of circles that are adjacent in T is 0
if the pair corresponds to an edge of G and π/2 otherwise. It is straightforward
to check that conditions (C1) and (C2) of [22, Theorem 1.3] hold, and that the
packing obtained this way is indeed the double circle packing of G. Thus, the
existence statement of Theorem 2.6 follows. The uniqueness of this packing,
as formulated in Theorem 2.6, is the content of [22, Theorems 1.1 and 1.2].
Finally, Theorem 2.7 is a direct consequence of [22, Theorem 1.3] together with
[24, Theorems 2.6 and 8.1].

Given a double circle packing (P, P†) of a plane graph G in a domain D ⊆ C,
we write diamC(A) for the Euclidean diameter of the set {z(v) : v ∈ A}, and
write dC(A, B) for the Euclidean distance between the sets {z(v) : v ∈ A} and
{z(v) : v ∈ B}. We write r(v) and r( f ) for the Euclidean radii of the circles P(v)
and P†( f ). If (P, P†) has carrier D, we write σ(v) for 1 − |z(v)|, which is the
distance between z(v) and the boundary of D, and write rH(v) for the hyperbolic
radius of P(v). (Recall that Euclidean circles in D are also hyperbolic circles with
different centres and radii.)

We will also use the Ring lemma of Rodin and Sullivan [45]; see [21] and [1]
for quantitative versions. In Section 4.1 we formulate and prove a version of the
Ring lemma for double circle packings, Theorem 4.1.
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THEOREM 2.8 (The Ring Lemma). There exists a sequence of positive constants
〈km : m > 3〉 such that for every circle packing P of every simple triangulation
T in a domain D ⊆ C ∪ {∞}, and every pair of adjacent vertices u and v of T
such that P(v) does not contain∞, the ratio of Euclidean radii r(v)/r(u) is at
most kdeg(v).

An immediate corollary of the Ring lemma is that, whenever P is a circle
packing in D of a CP hyperbolic proper plane triangulation T and v is a vertex of
T , the hyperbolic radius of P(v) is bounded above by a constant C = C(deg(v)),
see the first paragraph of Section 4.3.

3. Connectivity of the FUSF

In this section we prove Theorem 1.2 and show it easily implies Theorem 1.1.
We will write �, � and � for inequalities that hold up to a positive multiplicative
constant depending only on sup f ∈F deg( f ) and supe∈E c(e)−1.

Disclaimer: The proof of Theorem 1.2 will also essentially yield a proof of
the upper bound of Theorems 1.3 and 1.4. In particular, the inequality (10) is a
direct analogue of this bound, see the inequality on the right-hand side of (31).
Unfortunately, since Theorems 1.1 and 1.2 require weaker assumptions on the
graph G than Theorems 1.3 and 1.4 do, it will be technically convenient for the
proofs of this section to use the circle packing of the triangulation obtained by
adding a star inside each face of G (sometimes referred to as the ball-bearing
packing), rather than the double circle packing of G: For Theorems 1.1 and 1.2 it
is better to use the ball-bearing packing than the double circle packing due to the
way the Ring lemma works, while the fact that the double circle packing defines
a good embedding of G in the sense of [4] makes it better to use in Theorems 1.3
and 1.4. Nevertheless, we will want to use the bound analogous to (10) for double
circle packing in Section 4, which holds for any polyhedral proper plane graph
with bounded local geometry. The proof of this bound follows by a superficial
modification of the proof of (10), the details of which are omitted. The reader
may wish to keep this in mind as they read this section, and observe that the
proofs are easily generalized to the alternative setting once the Ring lemma for
double circle packings (Theorem 4.1) is established.

3.1. Preliminaries. We begin with some preliminary estimates that will be
used in the proof. We first reduce the statement of Theorem 1.2 to the case where
the graph is simple and has no peninsulas.
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Let G be a bounded codegree proper plane network with locally finite dual G†.
Recall that a peninsula of G is a finite connected component of G \ {v} for some
vertex v ∈ V . In order to apply the theory of circle packing, we first reduce to the
case in which G is simple and does not contain a peninsula; this will ensure that
the triangulation T = T (G) formed by drawing a star inside each face of G is
simple. We will then use the circle packing of T to analyse the WUSF of G. We
first deal with the case that every vertex of G is in a peninsula.

LEMMA 3.1. Let G be a network such that every vertex v of G is contained in a
peninsula of G. Then every essential spanning forest of G is connected and one-
ended. In particular, it follows that the WUSF of G is connected and one-ended
a.s.

Proof. Let v0 be an arbitrary vertex of G, and for each i > 1 let vi be a vertex of
G such that vi−1 is contained in a finite connected component of G \ {vi}. Let u
be another vertex of G and let γ be a path from v0 to u in G. If u is contained
in an infinite connected component of G \ {vi}, then γ must pass through the
vertex vi . Since γ is finite, we deduce that there exists an integer I such that u
is contained in a finite connected component of G \ {vi} for all i > I . Thus, any
infinite simple path from u in G must visit vi for all i > I . We deduce that every
essential spanning forest of G is connected and one-ended as claimed.

Thus, to prove Theorem 1.2, it suffices to consider the case that there is some
vertex of G that is not contained in a peninsula. In this case, let G ′ be the simple
plane network formed from G by first splitting every edge e of G into a path of
length 2 with both edges given the weight c(e), and then deleting every peninsula
of the resulting network. The assumption that G has bounded codegrees and
edge resistances bounded above ensures that G ′ does also (indeed, the maximum
codegree of G ′ is at most twice that of G).

LEMMA 3.2. Let G be a plane network with at least one vertex that is not
contained in a peninsula, and let G ′ be as above. Then every component of the
WUSF of G is one-ended a.s. if and only if every component of the WUSF of G ′ is
one-ended a.s.

Proof. Let F be a sample of WUSFG , and let F′ be the essential spanning forest
of G ′ defined as follows. For each edge e ∈ F such that neither endpoint of e
is contained in a peninsula of G, let both of the edges of the path of length
two corresponding to e in G ′ be included in F′. For each edge e /∈ F such
that neither endpoint of e is contained in a peninsula of G, choose uniformly
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and independently exactly one of the two edges of the path of length two
corresponding to e in G ′ to be included in F′. Since F has no cycles, and since an
infinite simple path in F cannot enter a peninsula that it does not start inside, it is
easily deduced that F is one-ended if and only if F′ is one-ended. Thus, to prove
the claim it suffices to prove that F′ is distributed according to WUSFG ′ .

To prove this, first notice that if v is a vertex in a finite connected network H
such that v’s removal disconnects H into components H1, . . . , Hk , then the UST
of H is the union of k independent USTs on Hi ∪ {v} for 1 6 i 6 k. Applying
this argument on finite subgraphs of G and taking appropriate limits, it follows
that the forest obtained by deleting every edge of F that has at least one of its
endpoints in a peninsula of G is distributed as the WUSF of the network obtained
from G by erasing all its peninsulas.

Now suppose that H is a finite network on n vertices and m edges and that H ′

is obtained from H by splitting every edge of H into a path of length 2 with both
edges given conductance c(e) so that H ′ has n + m vertices and 2m edges. For
each spanning tree T ′ of H ′, we obtain a spanning tree φ(T ′) of H by erasing
each leaf of T ′ that is one of the newly added vertices and replacing each path
of length 2 in which the middle vertex is newly added by a single edge. Each
spanning tree T of H has exactly 2m−n+1 preimages under the map, and every
preimage T ′ ∈ φ−1(T ) has

∏
e′∈T ′

c(e′) =
[∏

e∈E

c(e)
][∏

e∈T

c(e)
]
.

Indeed, if e ∈ T then both of the corresponding edges in H ′ must be included in
any tree in φ−1(T ), while if e /∈ T then each tree in φ−1(T ) must include exactly
one of the corresponding edges of H ′, and any combination is possible. Thus,
we deduce that if T′ is distributed as a uniform spanning tree of H ′ then φ(T′)
is distributed as a uniform spanning tree of H . Applying this argument on finite
subgraphs of G and taking appropriate limits, we deduce by this and the previous
paragraph that the law of F′ is WUSFG ′ as claimed.

Thus it suffices to consider the case that G is simple and has no peninsulas.
This assumption allows us to circle pack G as follows. Let T be the triangulation
obtained by adding a vertex inside each face of G and drawing an edge between
this vertex and each vertex of the face it corresponds to. The assumption that G is
simple and does not contain a peninsula ensures that T is a simple triangulation.
We identify the vertices of T with V (G) ∪ F(G), where F(G) is the set of faces
of G. Let P = {P(v) : v ∈ V (G)} ∪ {P( f ) : f ∈ F(G)} be a circle packing of T
in either the plane or the unit disc. (Note that this is not the double circle packing
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of G, which is less useful for us at this stage since we are not assuming that G
has bounded degrees.)

We proceed with two geometric lemmas. For each r ′ > r > 0 and z in the carrier
of P let Vz(r, r ′) be the set of vertices v of G such that either the intersection of the
circle P(v) with the annulus Az(r, r ′) is nonempty or the circle P(v) is contained
in the ball Bz(r) and there is a face f incident to v such that the intersection
P( f ) ∩ Az(r, r ′) is nonempty. We define the set Wz(r) := Vz(r, r) similarly by
using a circle instead of an annulus.

LEMMA 3.3 (Existence of a uniformly large number of disjoint annuli around a
point close to the boundary). Suppose that T is CP hyperbolic so that the carrier
of P is D. Then the following hold:

(1) There exists a decreasing sequence 〈rn〉n>0 with rn ∈ (0, 1/4) such that for
every z ∈ D with |z| > 1− rn , the sets

Vz(ri , 2ri) 1 6 i 6 n

are disjoint.

(2) If G has bounded degrees, then there exists a constant C = C(MG) such that
we may take rn = C−n in the previous statement.

Proof. We first prove item (1). We construct the sequence recursively, letting
r0 = 1/8. Suppose that 〈ri 〉

n
i=0 satisfying the conclusion of the lemma have already

been chosen, and consider the set of vertices

Kn =

{
v ∈ V (G) : r(v) >

rn

4
or r( f ) >

rn

4
for some face f incident to v

}
.

Since the carrier of P has finite area Kn is a finite set. We define rn+1 to be

rn+1 = sup{r 6 rn/4 : P(v) ⊆ B0(1− 3r) for all v ∈ Kn}

which is positive since Kn is finite. We claim that 〈ri 〉
n+1
i=0 continues to satisfy the

conclusion of the lemma. That is, we claim that Vz(rn+1, 2rn+1) ∩ Vz(ri , 2ri) = ∅

for every 1 6 i 6 n and every z ∈ D with |z| > 1− rn+1.
Indeed, let z be such that |z|> 1−rn+1 and let v ∈ Vz(rn+1, 2rn+1). By definition

of Vz(rn+1, 2rn+1), the intersection P(v)∩ Bz(2rn+1) is nonempty, and we deduce
that P(v) is not contained in the closure of B0(1 − 3rn+1). By definition of rn+1,
it follows that v /∈ Kn and hence that r(v) 6 rn/4 and r( f ) 6 rn/4 for every face
f incident to v. Thus, since rn+1 6 rn/4,

P(v) ⊆ Bz(2rn+1+2rn/4) ⊆ Bz(rn) and P( f ) ⊆ Bz(2rn+1+2rn/4) ⊆ Bz(rn)
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for every face f incident to v. It follows that Vz(rn+1, 2rn+1) ∩ Vz(ri , 2ri) = ∅ for
every 1 6 i 6 n as claimed.

To prove (2), observe that, by the Ring lemma (Theorem 2.8), there exists a
constant k = k(M) such that for every C > 1, every z with |z| > 1 − C−m , and
every 0 6 n 6 m, every circle in P that either has centre in Az(C−n, 2C−n) or
is tangent to some circle with centre in Az(C−n, 2C−n) has radius at most kC−n .
Thus, this set of circles is contained in the ball Bz((2 + 4k)C−n). It follows that
taking C = 1/(4+ 8k) suffices.

Finally, we estimate the energy of a random set of vertices that we will
frequently use.

LEMMA 3.4. Let z be a point in the carrier of P (which may be either C or D),
let U be a uniform random variable on the interval [1, 2] and, for each r > 0, let
µr be the law of the random set of vertices Wz(Ur) = Vz(Ur,Ur). Then

E(µr ) � 1

uniformly in r > 0, where E(µr ) was defined in (3).

Proof. For a vertex v of G to be included in Wz(Ur), the circle

{z′ ∈ C : |z′ − z| = Ur}

must either intersect the circle P(v) or intersect P( f ) for some face f incident to
v. The union of P(v) and all the P( f ) incident to P(v) is contained in the ball of
radius r(v)+ 2 max f∼v r( f ) around z(v). Since the codegrees of G are bounded,
the Ring lemma implies that r( f ) � r(v) for all incident v ∈ V and f ∈ F , and
so

µr (v ∈ Wz(Ur)) 6
1
r

min
(

2r(v)+ 4 max
f 3v

r( f ), r
)
�

1
r

min{r(v), r}. (5)

We claim that ∑
v∈Vz(r,2r)

min{r(v), r}2 6 16r 2. (6)

To see this, replace each circle of a vertex in Vz(r, 2r) that has radius larger than
r with a circle of radius r that is contained in the original circle and intersects
Bz(2r): The circles in this new set still have disjoint interiors, are contained in
the ball Bz(4r), and have total area π

∑
v∈Vz(r,2r) min(r(v), r)2, yielding (6). The

claim follows from (5) and (6) by definition of the energy E(µr ).

We are now ready to prove Theorem 1.2.
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3.2. Proof of Theorem 1.2. Let G be a simple proper plane network with
bounded codegrees and bounded edge resistances. By Lemma 3.2 we can assume
that G does not contain a peninsula. Let F be a sample of WUSFG and given an
edge e = (x, y) let A e be the event that x and y are in distinct infinite connected
components of F \ {e}. It is clear that every component of F is one-ended a.s. if
and only if

WUSFG(e ∈ F ,A e) = 0 (7)

for every edge e of G.
Consider the triangulation T obtained from G and its circle packing P =
{P(v) : v ∈ V (G)}∪{P( f ) : f ∈ F(G)}, as described in the previous subsection.
By applying a Möbius transformation, we normalize P by setting the centres
z(x) and z(y) to be on the negative and positive real axes, respectively, setting
the circles P(x) and P(y) to have the origin as their tangency point and, in the
parabolic case, fixing the scale by setting z(y)− z(x) = 1.

Let ε > 0 be arbitrarily small. If T is CP hyperbolic, let Vε be the set of vertices
of G with |z(v)| 6 1 − ε. Otherwise, T is CP parabolic and we define Vε to be
the set of vertices of G with |z(v)| 6 ε−1. We also denote by Eε the set of edges
that have both endpoints in Vε.

Let Be
ε be the event that every component of F \ {e} intersects V \ Vε. On

the event Be
ε , we define ηx to be the rightmost path in F \ {e} from x to V \ Vε

when looking at x from y, and ηy to be the leftmost path in F \ {e} from y to
V \Vε when looking at y from x . Note that the paths ηx and ηy are not necessarily
disjoint. Nonetheless, concatenating the reversal of ηx with e and ηy separates
Eε \ (ηx ∪ ηy) into two sets of edges, L and R, which are to the left and right of
e (when viewed from x to y), respectively. See Figure 3 for an illustration of the
case when ηx and ηy are disjoint (when they are not, R is a ‘bubble’ separated
from V \ Vε).

On the event Be
ε , let K be the set of edges that are either in L or belong to

ηx ∪ ηy , setting K = E off of this event. The condition that ηx and ηy are the
rightmost and leftmost paths to V \ Vε from x and y is equivalent to the condition
that K does not contain any open path from x to V \ Vε other than ηx , and does
not contain any open path from y to V \ Vε other than ηy . It follows from this
characterization that K is a local set for F. (Indeed, we note that K can be explored
algorithmically, without querying the status of any edge in E \ K , by performing
a right-directed depth-first search of x’s component in F and a left-directed depth-
first search of y’s component in F, stopping each search when it first leaves Vε.)

Let A e
ε denote the event that Be

ε occurs and that K does not contain an open
path from x to y, or, equivalently, that ηx and ηy are disjoint (since ηx and ηy were
chosen to be rightmost and leftmost, respectively). Note that A e

ε is measurable
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Figure 3. Illustration of the proof of Theorem 1.2 in the case that T is CP
hyperbolic. Left: On the event A e

ε , the paths ηx and ηy split Eε \ (ηx ∪ ηy) into
two pieces, L and R. Right: We define a random set containing a path (solid blue)
from ηx to ηy

∪ {∞} in G \ Kc using a random circle (dashed blue). Here we see
two examples, one in which the path ends at ηy , and the other in which the path
ends at the boundary (that is, at infinity).

with respect to FK (as defined in Section 2.3.1), and that A e
=
⋂

ε>0 A e
ε . Thus,

WUSFG(e ∈ F ,A e) 6 WUSFG(e ∈ F | A e
ε ) = E[WUSFG(e ∈ F |FK ,A

e
ε )].

By the strong spatial Markov property (Proposition 2.1), conditioned on FK and
the event A e

ε , the law of F is equal to the union of Ko with a sample of the WUSF
of the network (G − Kc)/Ko obtained from G by deleting all the revealed closed
edges and contracting all the revealed open edges. In particular, by Kirchhoff’s
Effective Resistance Formula (Theorem 2.3),

WUSFG(e ∈ F |FK , A e
ε ) 6 c(e)RW

eff(η
x
↔ ηy

; G − Kc). (8)

Since the edge e was arbitrary, to prove (7) (and hence Theorem 1.2) it suffices to
prove that there is an upper bound on the effective resistance appearing in (8) that
tends to zero as ε→ 0 uniformly in FK . We perform this analysis now according
to whether T is CP hyperbolic or parabolic.

Proof of Theorem 1.2, hyperbolic case. Suppose that T is CP hyperbolic, let vx

be the endpoint of the path ηx and let z0 = z(vx). On the event A e
ε , for each

1−|z0| 6 r 6 1/4, we claim that the set Wz0(r), as defined just before Lemma 3.3,
contains a path in G from ηx to ηy

∪ {∞} that is contained in R ∪ ηx
∪ ηy , and is

therefore a path in G \ Kc.
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Indeed, consider the arc A′(r) = {z ∈ D : |z − z0| = r}, parameterized in the
clockwise direction. Let A(r) be the subarc of A′(r) beginning at the last time
that A′(r) intersects a circle corresponding to a vertex in the trace of ηx , and
ending at the first time after this time that A′(r) intersects either ∂D or a circle
corresponding to a vertex in the trace of ηy (see Figure 3). Thus, on the event A e

ε ,
the set of vertices of T whose corresponding circles in P are intersected by A(r)
contains a path in T from ηx to ηy

∪ {∞}, for every 1− |z0| 6 r 6 1/4. (Indeed,
for Lebesgue a.e. 1 − |z0| 6 r 6 1/4, the arc A(r) is not tangent to any circle in
P , and in this case the set is precisely the trace of a simple path in T .) To obtain
a path in G rather than T , we divert the path counterclockwise around each face
of G. That is, whenever the path passes from a vertex u of G to a face f of G and
then to a vertex v of G, we replace this section of the path with the list of vertices
of G incident to f that are between u and v in the counterclockwise order. This
construction shows that the subgraph of G \Kc induced by the set Wz0(r) contains
a path from ηx to ηy

∪ {∞}, as claimed.
Let 〈rn〉n>0 be as in Lemma 3.3 and let n(ε) be the maximum n such that ε < rn .

By Lemma 3.3 the measures µri are supported on sets that are contained in the
disjoint sets Vz(ri , 2ri). Thus, by Lemma 2.4, our assumption that edge resistances
are bounded above, and Lemma 3.4, we have

RW
eff(η

x
↔ ηy

∪ {∞}; G \ Kc) � E
(

1
n(ε)

n(ε)∑
i=1

µri

)
=

1
n(ε)2

n(ε)∑
i=1

E(µri ) �
1

n(ε)

and hence, by symmetry,

RW
eff(η

y
↔ ηx

∪ {∞}; G \ Kc) �
1

n(ε)
.

Applying Lemma 2.2 and (8), we have

WUSF(e ∈ F |FK , A e
ε ) �

c(e)
n(ε)

, (9)

which by Lemma 3.3 converges to zero as ε → 0, completing the proof of
Theorem 1.2 in the case that T is CP hyperbolic. If G has bounded degrees,
then combining (9) with Lemma 3.3 implies that there exists a positive constant
C = C(M) such that

WUSF(e ∈ F |FK , A e
ε ) 6 C

c(e)
log(1/ε)

(10)

for all ε 6 1/2. This inequality is a direct analogue of the upper bound of
Theorem 1.4, see the inequality on the right of (31).

https://doi.org/10.1017/fms.2019.14 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.14


Uniform spanning forests of planar graphs 27

Proof of Theorem 1.2, parabolic case. Suppose that T is CP parabolic. Let r1 = 1
and define 〈rn〉n>1 recursively by

rn = 1+ inf{r > rn−1 : V0(r, 2r) ∩ V0(rn−1, 2rn−1) = ∅}.

Since V0(rn−1, 2rn−1) is finite, this infimum is finite. By definition, the sets
V0(ri , 2ri) are disjoint. A similar analysis to the hyperbolic case shows that, on
the event A e

ε , for each r > 1, the set W0(r) contains a path in G from ηx to ηy that
is contained in R∪ ηx

∪ ηy , and is therefore a path in G \ Kc. For each ε > 0, let
n(ε) be the maximal n such that rn 6 ε−1. Then on the event A e

ε , by Lemma 2.4
and Lemma 3.4,

RF
eff(η

x
↔ ηy

; G \ Kc) � E
(

1
n(ε)

n(ε)∑
i=1

µri

)
6

1
n(ε)2

n(ε)∑
i=1

E(µri ) �
1

n(ε)
.

Thus, by (8),

WUSFG(e ∈ F |FK , Be
ε) �

c(e)
n(ε)

. (11)

The right-hand side converges to zero as ε → 0, completing the proof of
Theorem 1.2.

REMARK 3.5. Since the random sets used in the CP parabolic case above are
always finite, they can also be used to bound free effective resistances. Therefore,
by repeating the proof above with the FUSF in place of the WUSF, we deduce that
every component of the FUSF of G is one-ended a.s. if T is CP parabolic. Since
the FUSF stochastically dominates the WUSF, and an essential spanning forest
with one-ended components does not contain any strict subgraphs that are also
essential spanning forests, we deduce that if T is CP parabolic, then the FUSF
and WUSF of G coincide. In particular, using [10, Theorem 7.3], we obtain the
following result: If T is a CP parabolic proper plane triangulation then T does not
admit nonconstant harmonic functions of finite Dirichlet energy.

This result can alternatively be obtained by noticing that the usual proof of
the He–Schramm theorem establishes that every bounded degree CP parabolic
polyhedral proper plane map is recurrent (that is, bounded codegree is not needed).
Thus, if T is a CP parabolic proper plane triangulation then the dual of T is
recurrent, so that in particular its free and wired spanning forests coincide, and
the claim in the previous paragraph follows by duality.
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3.3. The FUSF is connected.

Proof of Theorem 1.1. First suppose that G† is locally finite. Since G has
bounded degrees and bounded conductances, G† has bounded codegrees and
bounded resistances. Thus, Theorem 1.2 implies that every component of the
WUSF on G† is one-ended a.s. and consequently, by Theorem 2.5, that the FUSF
of G is connected a.s.

Now suppose that G does not have locally finite dual. In this case, we form a
plane network (G ′, c′) from G by adding edges to triangulate the infinite faces
of G while keeping the degrees bounded. We enumerate these additional edges
〈ei 〉i>1 and define conductances

c′(ei) = 2−i−1RF
eff(e

−

i ↔ e+i ;G)
−1.

Since G ′ has bounded degrees, bounded conductances and locally finite dual,
its FUSF is connected a.s. By Kirchhoff’s Effective Resistance Formula
(Theorem 2.3), Rayleigh monotonicity and the union bound, the probability
that the FUSF of G ′ contains any of the additional edges ei is at most∑

i>0

c′(ei)R
F
eff(e

−

i ↔ e+i ;G
′) 6

∑
i>0

c′(ei)R
F
eff(e

−

i ↔ e+i ;G) 6 1/2.

In particular, there is a positive probability that none of the additional edges are
contained in the FUSF of G ′. The conditional distribution of the FUSF of G ′ on
this event is FUSFG by the spatial Markov property, and it follows that the FUSF
of G is connected a.s.

4. Critical exponents

4.1. The Ring lemma for double circle packings. In this section we extend
the Ring lemma to double circle packings. While unsurprising, we were unable to
find such an extension in the literature.

THEOREM 4.1 (Ring Lemma). There exists a family of positive constants
〈kn,m : n > 3,m > 3〉 such that if (P, P†) is a double circle packing in C ∪ {∞}
of a polyhedral plane graph G and v is a vertex of G, then for every f ∈ F
incident to v such that P(v) does not contain∞, then

r(v)/r( f ) 6 kdeg(v),maxg⊥v deg(g)

where g ⊥ v means that the face g is incident to the vertex v.
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As for triangulations, the Ring lemma immediately implies that whenever a
polyhedral, CP hyperbolic proper plane network G with bounded degrees and
codegrees is circle packed in D, the hyperbolic radii of the discs in P ∪ P†

are bounded above by a constant C depending only on the maximal degree and
codegree.

Proof of Theorem 4.1. Let n be the degree of v and let m be the maximum degree
of the faces incident to v in G. We may assume that r(v) = 1. Note that for
each two distinct discs P†( f ), P†( f ′) ∈ P† that are not tangent, there is at most
one disc P(u) ∈ P that intersects both P†( f ) and P†( f ′), while if P†( f ) and
P†( f ′) are tangent, there exist exactly two discs in P that intersect both P†( f )
and P†( f ′). For each two faces f and f ′ incident to v, the complement ∂P(v) \
(P†( f1) ∪ P†( f2)) is either a single arc (if P†( f ) and P†( f ′) are tangent), or is
equal to the union of two arcs (if P†( f ) and P†( f ′) are not tangent).

We claim that there exists a function ψm(·, ·) : (0,∞)2 → (0, 2π ], increasing
in both coordinates, such that if f and f ′ are two distinct faces of G incident to
v, then each of the (one or two) arcs forming the complement ∂P(v) \ (P†( f1) ∪

P†( f2)) have length at least ψm(r( f ), r( f ′)). Indeed, let r( f ) and r( f ′) be fixed,
and suppose that one of the arcs forming the complement ∂P(v)\ P†( f )∪ P†( f ′)
is extremely small, with length ε. Let the primal circles incident to f be
enumerated v1, . . . , vdeg( f ), where v1 = v, P(v2) is the primal circle that is tangent
to P(v) and intersects P†( f ) on the same side as the small arc, P(v3) is the next
primal circle that is tangent to P(v2) and intersects P†( f ), and so on. Since ε is
small, P(v2) must also be very small, as it does not intersect P†( f ′). Similarly, if
ε is sufficiently small, P(v3) must also be small, since it also does not intersect
P†( f ′). See Figure 4. Applying this argument recursively, we see that, if ε is
sufficiently small, then the circles P(v2), . . . , P(vdeg( f )) are collectively too small
to contain ∂P†( f )\P(v) in their union, a contradiction. We writeψm(r( f ), r( f ′))
for the minimal ε that is not ruled out as impossible by this argument.

Let the faces incident to the vertex v be indexed in clockwise order f1, . . . ,

fn , where n = deg(v) and f1 has maximal radius among the faces incident to v.
For each face f incident to v, the arc ∂P(v) ∩ P†( f ) has length 2 tan−1(r( f )).
Since ∂P(v) =

⋃n
i=1(∂P(v) ∩ P†( fi)), we deduce that r( f1) is bounded below

by tan(π/n). By definition of ψm , we have that r( fk) satisfies

ψm(tan(π/n), r( fk)) 6 ψm(r( f1), r( fk)) 6
k−1∑
i=2

2 tan−1(r( fi)) (12)

for all 3 6 k 6 n. For each such k, (12) yields an implicit upper bound on r( fk)

which converges to zero as r( f2) converges to zero. This in turn yields a uniform
lower bound on r( f2): if r( f2) were sufficiently small, the bound (12) would
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Figure 4. Proof of the Double Ring lemma. If two dual circles are close but do not
touch, there must be many primal circles contained in the crevasse between them.
This forces the two dual circles to each have large degree. The right-hand figure
is a magnification of the left-hand figure.

imply that
∑n

k=2 2 tan−1(r( fk)) would be less than π , a contradiction (since we
have trivially that 2 tan−1(r( f1)) 6 π ). We obtain uniform lower bounds on r( fk)

for each 3 6 k 6 n by repeating the above argument inductively.

4.2. Good embeddings of planar graphs. If G is a plane graph and (P, P†)

is a double circle packing of G in a domain D ⊆ C, then drawing straight lines
between the centres of the circles in P yields a proper embedding of G in D in
which every edge is a straight line. We call such an embedding a proper straight-
line embedding of G in D. Following [4], a proper straight-line embedding of a
graph G in a domain D ⊆ C is said to be η-good if the following conditions are
satisfied:

(1) (No near-flat, flat, or reflexive angles.) All internal angles of every face in
the drawing are at most π − η. In particular, every face is convex.

(2) (Adjacent edges have comparable lengths.) For every pair of edges e, e′

sharing a common endpoint, the ratio of the lengths of the straight lines
corresponding to e and e′ in the drawing is at most η−1.

Let G be a plane graph with bounded degrees and codegrees and let
e = (u, v) and e′ = (v,w) be two edges of a face f meeting at a vertex v and
consider its double circle packing (P, P†). By the Ring lemma (Theorem 4.1)
P(u), P(v) and P(w) all have comparable sizes. On the other hand, if the angle
between the straight lines of e and e′ was very close to π , this would imply that
P( f ) is much larger than P(v), contradicting the previous assertion. Thus we
have the following corollary.
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COROLLARY 4.2. The proper straight-line embedding given by any double circle
packing of a plane graph G with bounded degrees and bounded codegrees in a
domain D ⊆ C is η-good for some positive η = η(MG).

We remark that, in contrast, the embedding of G obtained by circle packing the
triangulation T (G) formed by drawing a star inside each face of G (and then
erasing these added vertices), as done in Section 3, does not necessarily yield a
good embedding of G.

For the remainder of this section and in Sections 4.3, 4.5 and 4.6, G will be
a fixed transient, polyhedral proper plane network with bounded codegrees and
bounded local geometry, and (P, P†) will be a double circle packing of G in
D. We will write �, � and � to denote inequalities or equalities that hold up to
positive multiplicative constants depending only upon M. We will also fix an edge
e = (x, y) of G and, by applying a Möbius transformation if necessary, normalize
(P, P†) by setting the centres z(x) and z(y) to be on the negative real axis and
positive real axis, respectively, and setting the circles P(x) and P(y) to have the
origin as their tangency point.

In [4] and [16], several estimates are established that allow one to compare the
random walk on a good embedding of a planar graph with Brownian motion. The
following estimates, proven for general good embeddings of proper plane graphs
in [4, Theorems 1.4 and 1.5], are of central importance to the proofs of the lower
bounds in Theorems 1.4 and 1.5. Recall that σ(v) is defined to be 1− |z(v)|.

THEOREM 4.3 (Diffusive time estimate [4, Theorem 1.5]). There exists a
constant C1 = C1(M) > 1 such that the following holds. For each vertex v of G,
let 〈Xn〉n>0 be a random walk on G started at v, let r(v) 6 r 6 C−1

1 σ(v) and let
Tr be the first time n that |z(Xn)− z(v)| > r . Then

Ev

Tr∑
n=0

r(Xn)
2
� r 2.

Murugan [42] has shown that the constant C1 above can in fact be taken to be 1.

THEOREM 4.4 (Cone estimate [4, Theorem 1.4]). Let η = η(M) > 0 be the
constant from Corollary 4.2. There exists a positive constant q1 = q1(M) such that
the following holds. For each vertex v of G, let 〈Xn〉n>0 be a random walk on G
started at v, let 0 6 r 6 σ(v), and let Tr be the first time n that |z(Xn)−z(v)| > r .
Then for any interval I ⊂ R/(2πZ) of length at least π − η we have

Pv(arg(z(XTr )− z(v)) ∈ I ) > q1.
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We also apply the following result of Benjamini and Schramm [11, Lemma
5.3]; their proof was given for simple triangulations but extends immediately to
our setting.

THEOREM 4.5 (Convergence estimate [11]). For every vertex v of G, we have
that

Pv(|z(Xn)− z(v)| > tσ(v) for some n > 0) �
1

log t
.

We remark that the logarithmic decay in Theorem 4.5 is not sharp. Sharp
polynomial estimates of the same quantity have been obtained by Chelkak [16,
Corollary 7.9].

4.3. Preliminary estimates. For each vertex v of G, let aH(v) denote
the hyperbolic area of P(v) (recall that by the uniqueness of Theorem 2.6
this quantity does not depend on the choice of packing). Consider a Möbius
transformation of the unit disc taking z(v) to the origin. Then by the Ring lemma
(Theorem 4.1), the Euclidean radius of the image of P(v) under this Möbius
transformation must be bounded by a constant c = c(M) < 1 and we deduce that
the hyperbolic radii of the discs in P are bounded from above. Thus,

aH(v) � rH(v)2 � σ(v)−2r(v)2 (13)

for every vertex v of G.
Recall that given a set of vertices B we write τB for the first time the random

walk visits B, letting τB = ∞ if no such time exists. In the following section, we
will wish to estimate sums of the form∑

u∈A

aH(u)Pu(τB <∞) (14)

where A and B are subsets of V . We begin with a useful preliminary estimate.
For r ∈ (0, 1] and a vertex v let H(v, r) be the half-plane containing z(v) whose
boundary is the unique straight line with distance rσ(v) to z(v) that is orthogonal
to the line connecting z(v) to the origin.

LEMMA 4.6 (Remain in half-plane estimate). For any r ∈ (0, 1] there exists a
positive constant q2 = q2(M, r), increasing in r , such that for any vertex v the
probability of the random walk starting at v to remain in H(v, r) forever is at
least q2. That is,

Pv(z(Xn) ∈ H(v, r) for all n) > q2. (15)
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Proof. This estimate is similar to those used in the proof of [4, Theorem 1.4]. We
will use Theorem 4.4 to ‘push’ the walker deep inside the half-plane H(v, r) (the
number of times we apply Theorem 4.4 will only depend on r ) and once it is close
enough to the boundary Theorem 4.5 will ensure that it stays close forever with
positive probability. We now make this precise. For each vertex u, let Cv(u) be
the cone

Cv(u) = {z ∈ C : | arg(z − z(u))− arg z(v)| 6 π/2− η/2}.

Define numbers 〈ρi 〉i>0 and stopping times 〈Ti 〉i>0 by putting T0 = 0 and ρ0 =

rσ(v) and recursively setting for i > 1

Ti = min{n > 0 : |z(Xn)− z(XTi−1)| > ρi−1/2},

and setting ρi to be the distance between z(XTi ) and ∂H(v, r) ∪ ∂D. Since the
closed ball of radius ρi−1/2 around z(XTi−1) is contained in D, it has only finitely
many vertices in it and therefore Ti <∞ a.s. for all i > 1.

Denote by Ai the event that z(XTi ) ∈ Cv(XTi−1). That is, Ai is the event that the
random walk starting from XTi−1 exits the ball of radius ρi−1/2 around z(XTi−1)

inside the cone that is parallel to Cv(0) and is centred at z(XTi−1). By basic
trigonometry this event implies that

σ(XTi ) 6 σ(XTi−1)− ρi−1 sin(η/2)/2, (16)

and
dC(XTi , ∂H(v, r)) > dC(XTi−1, ∂H(v, r))+ ρi−1 sin(η/2)/2. (17)

In particular, on the event
⋂n

i=0 Ai the distance between z(XTi ) and ∂D is
decreasing in i for 0 6 i 6 n and the distance between z(XTi ) and ∂H(v, r) is
increasing in i for 0 6 i 6 n.

By Theorem 4.5 there exists t0 = t0(M) > 1 such that we have

Pu(|z(Xn)− z(u)| > t0σ(u) for some n > 0) 6 1
2 ,

for every vertex u. Set δ = min{r(2t0)
−1, sin(η/2)} and put n0 = 2d1/δ2

e.
We first note that by (17) the event

⋂n0
i=0 Ai implies that z(Xn) ∈ H(v, r) for

0 6 n 6 Tn0 . Next we have that if XTi has distance at least δσ (v) from ∂H(v,
r) ∪ ∂D, then ρi sin(η/2) > δ2σ(v). Therefore, if the event

⋂n0
i=0 Ai occurs, then

XTn0
has distance at most δσ (v) from ∂D (otherwise the contradictory assertion

that σ(XTn0
) 6 0 follows by (16)) and has distance at least rσ(v) from ∂H(v, r)

by (17). That is,

σ(XTn0
) 6 r(2t0)

−1σ(v) and dC(XTn0
, ∂H(v, r)) > rσ(v).
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Therefore, by the definition of t0 and the strong Markov property, conditioned on
the event

⋂n0
i=0 Ai we have that |z(Xn)− z(XTn0

)| 6 rσ(v)/2 for all n > Tn0 with
probability at least 1/2. Thus, we deduce that

Pv
(

z(Xn) ∈ H(v, r) for all n > Tn0

∣∣∣∣ n0⋂
i=0

Ai

)
>

1
2
.

Theorem 4.4 and the strong Markov property imply that Pv(Ai | XTi−1) > q1, and
hence that

Pv
( n0⋂

i=0

Ai

)
> qn0

1 ,

which concludes our proof by taking q2 = qn0
1 /2.

Let p, r ∈ (0, 1]. We say that a set A ⊂ V is (p, r)-escapable if for every vertex
v ∈ A, the random walk started at v has probability at least p of not returning to A
after first leaving the set of vertices whose corresponding discs in P have centres
contained in the Euclidean ball of radius rσ(v) about z(v). To avoid trivialities,
we also declare the empty set to be (p, r)-escapable for all p and r . Lemma 4.6
leads to the following corollary.

COROLLARY 4.7. Let r ∈ (0, 1]. There exist positive constants δ2 = δ2(M, r)
and p1 = p1(M, r), both increasing in r , such that the set

{v ∈ V : (1− δ2)ε 6 σ(v) 6 ε}

is (p1, r)-escapable for every ε > 0.

Proof. Let η = η(M) be the constant appearing in Corollary 4.2, and set

δ2 = min{r sin(η/2)/2, 1/4}.

Let ε > 0 be arbitrary, let v ∈ {v ∈ V : (1 − δ2)ε 6 σ(v) 6 ε}, and let T be the
stopping time

T = min{n > 0 : |z(Xn)− z(v)| > rσ(v)}.

We apply Theorem 4.4 with rσ(v) in place of r to get

Pv(σ (XT ) 6 σ(v)− r sin(η/2)σ (v)) > q1(M) > 0. (18)

By definition of δ2, on the event appearing in the left-hand side of (18), we
have σ(XT ) 6 ε(1 − 2δ2). Therefore, the half-plane H(XT , δ2), defined above
Lemma 4.6, is disjoint from the ball {z ∈ C : |z| 6 1− (1− δ2)ε}. Thus, the claim
follows from (18) and Lemma 4.6 by taking p = q1(M)q2(M, δ2), where q2 from
Lemma 4.6.
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LEMMA 4.8. Let A ⊂ V be (p, r)-escapable for some p ∈ (0, 1) and r ∈ (0,
C−1

1 /2], where C1 = C1(M) is the constant appearing in Theorem 4.3. Then for
every vertex u ∈ V ,

Eu

[∑
n>0

aH(Xn)1(Xn ∈ A)
]
�

r 2

p
. (19)

Proof. Define the sequences of stopping times 〈T−i 〉i>0 and 〈T+i 〉i>0 by letting
T−0 = τA and recursively letting

T+i = min{n > T−i : |z(Xn)− z(XT−i
)| > rσ(XT−i

)}

and T−i = min{n > T+i−1 : Xn ∈ A}. Then

Eu

[∑
n>0

aH(Xn)1(Xn ∈ A)
]
6
∑
i>0

Eu

[
1(T−i <∞)

T+i −1∑
n=T−i

aH(Xn)

]
.

Since σ(Xn) > (1−r)σ (XT−i
) for all T−i 6 n < T+i , the Diffusive Time Estimate

(Theorem 4.3), the strong Markov property, and (13) imply that

Eu

[ T+i −1∑
n=T−i

aH(Xn)

∣∣∣∣ T−i <∞, XT−i

]

� (1− r)−2σ(XT−i
)−2Eu

[ T+i∑
n=T−i

r(Xn)
2

∣∣∣∣ T−i <∞, XT−i

]
� r 2.

Meanwhile, since A is (p, r)-escapable, we have that Pu(T−i < ∞) 6 (1 − p)i .
Combining these estimates yields the desired inequality (19).

We say that a set A ⊂ V is C-short-lived if

Eu

[∑
n>0

aH(Xn)1(Xn ∈ A)
]
6 C (20)

for every u ∈ V . Note that if A is a C-short-lived set of vertices, then every subset
of A is also C-short-lived. Also note that Lemma 4.8 states that escapable sets are
short-lived.
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LEMMA 4.9. Let A and B be two sets of vertices in G, and suppose that A is
finite and C-short-lived for some C > 0. Then∑

v∈A

aH(v)Pv(τB <∞) � CC F
eff(A↔ B).

Proof. Let the stopping times τi be defined recursively by setting τ0 = τA and
τi+1 = min{t > τi : X t ∈ A}, so that τi is the i th time the random walk 〈Xn〉n>0

visits A. As usual if A is not hit by the random walk we set the corresponding
stopping time to∞. Then∑
v∈A

aH(v)Pv(τB <∞) 6
∑
v∈A

∑
i>0

aH(v)Pv(B hit between time τi and τi+1)

=

∑
v∈A

∑
u∈A

∑
i>0

aH(v)Pv(τi <∞, Xτi = u)Pu(τB < τ+A ).

Reversing time gives that Pv(τi < ∞, Xτi = u) = (c(u)/c(v))Pu(τi < ∞,
Xτi = v) and since the degrees are bounded and conductances are bounded above
and below we get that∑
v∈A

aH(v)Pv(τB <∞) �
∑
v∈A

∑
u∈A

∑
i>0

aH(v)Pu(τi <∞, Xτi = v)Pu(τB < τ+A ).

By exchanging the order of summation and using our assumption on A we obtain
that ∑

v∈A

aH(v)Pv(τB <∞) �
∑
u∈A

Eu

[∑
n>0

aH(Xn)1(Xn ∈ A)
]

Pu(τB < τ+A )

� C
∑
u∈A

Pu(τB < τ+A ).

To conclude, let 〈V j 〉 j>1 be an exhaustion of V and let G j be the subgraph of G
induced by V j , with conductances inherited from G, and observe that∑

u∈A

c(u)PG
u (τB < τ+A ) = lim

j→∞

∑
u∈A

c(u)PG
u (τB < min{τ+A , τV \V j })

6 lim
j→∞

∑
u∈A

c(u)PG j
u (τB < τ+A ) = C F

eff(A↔ B),

concluding the proof since c(u) is bounded away from 0.

Recall that diamC(A) and dC(A, B) denote the Euclidean diameter of {z(v) :
v ∈ A} and the Euclidean distance between {z(v) : v ∈ A} and {z(v) : v ∈ B},
respectively.
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LEMMA 4.10. Let A and B be disjoint sets of vertices in G. Then

C F
eff(A↔ B) �

diamC(A)2

min{diamC(A), dC(A, B)}2
,

with the convention that the right-hand side is 1 if diamC(A) = 0.

Proof. Let D = diamC(A). If D = 0 then A is a single vertex v and
C F

eff(A ↔ B) 6 c(v) � 1, so assume not. Recall the extremal length
characterization of the free effective conductance [38, Exercise 9.42]: For
each function ` : E → [0,∞) assigning a nonnegative length to every edge e of
G, let d` be the shortest path pseudometric on G induced by `. Then

C F
eff(A↔ B) = inf

{∑
e∈E c(e)`(e)2

d`(A, B)2
: ` : E → [0,∞), d`(A, B) > 0

}
.

Let W be the set of vertices v of G whose corresponding circles intersect the
D-neighbourhood of z(A) in C. Define lengths by setting `(e) to be

`(e) =
{

min{|z(e−)− z(e+)|, D} if e has an endpoint in W
0 otherwise.

Then

d`(A, B) > min{D, dC(A, B)} > 0 (21)

while, since |z(e−)− z(e+)| = r(e−)+ r(e+),∑
e

c(e)`(e)2 �
∑
v∈W

∑
v′∼v

min{r(v)+ r(v′), D}2 �
∑
v∈W

min{r(v), D}2, (22)

where the Ring lemma (Theorem 4.1) is used in the second inequality. As in the
proof of Lemma 3.4, consider replacing each circle corresponding to a vertex in
W that has radius larger than D with a circle of radius D that is contained in the
original circle and intersects the D-neighbourhood of z(A). This yields a set of
circles contained in the 3D-neighbourhood of z(A). Comparing the total area of
this set of circles with that of the 3D-neighbourhood of z(A) yields that∑

v∈W

min{r(v), D}2 � D2. (23)

We conclude by combining (21), (22) and (23).
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4.4. Wilson’s algorithm. Wilson’s algorithm rooted at infinity [10, 54] is a
powerful method of sampling the WUSF of an infinite, transient graph by joining
together loop-erased random walks. We now give a very brief description of the
algorithm. See [38] for a detailed exposition. Let G be a transient network. Let γ
be a path in G that visits each vertex of G at most finitely many times. The loop
erasure is formed by erasing cycles from γ chronologically as they are created.
(The loop erasure of a random walk path is referred to as loop-erased random
walk and was first studied by Lawler [35].) Let {v j : j ∈ N} be an enumeration
of the vertices of G. Let F0 = ∅ and define a sequence of forests in G as follows:

(1) Given Fi , start an independent random walk from vi+1. Stop this random
walk if it hits the set of vertices already included in Fi , running it forever
otherwise.

(2) Form the loop erasure of this random walk path and let Fi+1 be the union of
Fi with this loop-erased path.

Then the forest F =
⋃

i>0 Fi is a sample of the WUSF of G [10, Theorem 5.1].

4.5. Proof of Theorems 1.3, 1.4 and 1.5. Recall that e = (x, y) is a fixed edge.
We write �e to denote a lower bound that holds up to a positive multiplicative
constant that depends only on M and rH(x), and that is increasing in rH(x).

Let (P, P†) be the double circle packing of G in D normalized so that z(x) and
z(y) lie on the negative and positive axes, respectively, and so that the tangency
point of P(x) and P(y) is the origin. By the Ring lemma (Theorem 4.1) there
exists a constant s = s(M) < 1 such that for any ε ∈ (0, 1) and any vertex v
with |z(v)| > 1 − ε which has a neighbour u with |z(u)| < 1 − ε we must have
that |z(v)| 6 1− sε. It follows that in any simple path starting at a vertex u with
|z(u)| < 1− ε, the first time we visit a vertex v with |z(v)| > 1− ε we must have
that |z(v)| > 1− sε. Thus, for every ε > 0, the set

{v ∈ V : z(v) ∈ A0(1− ε, 1− sε)}

disconnects e from∞ in G. An equivalent formulation that we will use is that if
(v, u) is an edge in the graph and 0 < ε1 < ε2, then

σ(v) ∈ [ε1, ε2] H⇒ σ(u) ∈ [sε1, s−1ε2]. (24)

For each ε > 0, we define

Wε := {v ∈ V : z(v) ∈ A0(1− ε, 1− s5ε)}.
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Recall the definition of a C-short-lived set from (20). We trivially have that unions
of boundedly many short-lived sets are short-lived with a larger constant. In
particular, letting s = s(M) be as above and letting δ = δ2(M,C−1

1 (M)), where C1

is the constant appearing in Theorem 4.3 and δ2 is the constant from Corollary 4.7,
we have that

Wε ⊆

d5 log1−δ(s)e⋃
m=0

{v ∈ V : (1− δ)m+1ε 6 σ(v) 6 (1− δ)mε}

for every ε > 0. Applying Corollary 4.7 and Lemma 4.8 immediately yields the
following.

COROLLARY 4.11. There exists a constant C2 = C2(M) > 0 such that the set Wε

is C2-short-lived for every ε > 0.

Let F be the WUSF of G and let ε ∈ (0, 1/2) be arbitrarily small. The proofs
in this section will be based upon the study of the random variable

Zε =
∑
v∈Wε

aH(v)1(v ∈ pastF(e)), (25)

and its moments. Intuitively, we think of the process 〈Z2−n 〉n>1 as behaving
similarly to a critical branching process, so that in particular we expect the random
variable Zε to be distributed similarly to the number of particles at generation
log(1/ε) in a critical branching process. In particular, we expect its first moment
to be of order 1 and its second moment to be of order log(1/ε). This is what we
prove below. We begin by bounding its first moment.

LEMMA 4.12. E[Zε] � 1 for all ε > 0.

Proof. If we generate F using Wilson’s algorithm, starting with the vertex v, then
v is in pastF(e) if and only if the loop-erased random walk from v passes through
e = (x, y). In particular P(v ∈ pastF(e)) 6 Pv(τx <∞). Thus, the claim follows
immediately from Corollary 4.11 and Lemma 4.9, taking A = Wε \ {x} and
B = {x}, since C F

eff(x ↔ V \ {x}) 6 c(x) � 1.

LEMMA 4.13. There exists a positive constant δ5 = δ5(M, rH(x)), increasing in
rH(x), such that E[Zε] �e 1 for all ε 6 δ5.

Proof. As in the previous lemma, v is in pastF(e) if and only if the loop-erased
random walk from v passes through e = (x, y). In particular, we obtain the lower
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bound

P(v ∈ pastF(e)) > Pv(τx <∞, Xτx+1 = y, 〈Xn〉n>τx+1 disjoint from 〈Xn〉
τx
n=0)

and hence, decomposing according to the value of τx ,

E[Zε] >
∑
v∈Wε

∑
m>1

aH(v)Pv(τx = m, Xm+1 = y, 〈Xn〉n>m disjoint from 〈Xn〉
m−1
n=0 ).

Letting 〈Yn〉n>0 be a random walk started at x independent of 〈Xn〉n>0 and
reversing time yields that

E[Zε] �
∑
v∈Wε

∑
m>1

aH(v)Px(Xm = v, Cm) = Ex

[∑
m>0

aH(Xm)1(Xm ∈ Wε, Cm)

]
,

where Cm is the event

Cm = {Y1 = y, and 〈Xn〉
m
n=1 disjoint from 〈Yn〉n>0}.

(Note that on the event Cm the walk 〈Xn〉
m
n=0 does not return to x after time 0.)

Let τ1 be the first time that the random walk 〈Xm〉m>0 visits

{v ∈ V : s3ε 6 σ(v) 6 s2ε},

which is finite a.s. since this set separates x from∞ by definition of s. Let τ2 be
the first time m after τ1 that |z(Xm)− z(Xτ1)| > C−1

1 s3ε, where C1 = C1(M) > 1
is the constant from Theorem 4.3. By the triangle inequality

s3ε − C−1
1 s3ε 6 σ(Xτ2−1) 6 s2ε + C−1

1 s3ε,

and hence by (24) we get that

s4ε − C−1
1 s4ε 6 σ(Xτ2) 6 sε + C−1

1 s2ε.

We may assume that s is sufficiently small that Xm ∈ Wε for all τ1 6 m 6 τ2.
Therefore,

E[Zε] � Ex

[ τ2∑
m=τ1

aH(Xm)1(Cm)

]
> Ex

[ τ2∑
m=τ1

aH(Xm)1(Cτ2)

]

> Ex

[ τ2∑
m=τ1

aH(Xm)1(dC(Xτ1, {Yn : n > 0}) > 2ε/s and Cτ2)

]
,
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where the second inequality follows since the events Cm are decreasing and third
inequality is trivial. We have that

|z(Xτ2−1)− z(Xτ1)| 6 C−1
1 s3ε,

and since Xτ1−1 ∈ Wε we have

|z(Xτ2)− z(Xτ2−1)| 6 ε/s,

by the definition of s. By the triangle inequality |z(Xτ2) − z(Xτ1)| 6 2ε/s since
s 6 1/2. We deduce that the events Cτ1 ∩ {dC(Xτ1, {Yn : n > 0}) > 2ε/s} and
Cτ2 ∩ {dC(Xτ1, {Yn : n > 0}) > 2ε/s} are equal. Therefore,

E[Zε] � Ex

[ τ2∑
m=τ1

aH(Xm)1(dC(Xτ1, {Yn : n > 0}) > 2ε/s,Cτ1)

]

= Ex

[
Ex

[ τ2∑
m=τ1

aH(Xm)

∣∣∣∣ Xτ1

]
1(dC(Xτ1, {Yn : n > 0}) > 2ε/s,Cτ1)

]
.

Applying (13) and the Diffusive Time Estimate (Theorem 4.3), we obtain that

Ex

[ τ2∑
m=τ1

aH(Xm)

∣∣∣∣ Xτ1

]
� ε−2Ex

[ τ2∑
m=τ1

r(Xm)
2

∣∣∣∣ Xτ1

]
� 1,

and hence

E[Zε] � Px(dC(Xτ1, {Yn : n > 0}) > 2ε/s,Cτ1). (26)

We now set
δ5 =

s(r(x)+ r(y))
4

,

and note that, as usual, the Ring lemma implies that δ5 � rH(x). Since the degrees,
the edge conductances, and their inverses are bounded by M, the probability that
Y1 = y is at least M−3 and we may assume this indeed occurs. We now apply
Lemma 4.6 with r1 = r(x)/2σ(x) (note that by the Ring lemma σ(x) � 1 and
hence r1 � rH(x)) and establish that with probability at least q2 the walker {Xn}n>0

is confined to the half-plane H(x, r1) (which is just {(x, y) : x 6 −r(x)/2}).
Similarly, we put r2 = r(y)/2σ(y) and by Lemma 4.6 we get that with probability
at least q2 the walker {Yn}n>1 starting from y is confined to the half-plane
H(y, r2) (which is {(x, y) : x > r(y)/2}). If these two events occur, then the
distance between z(Xn) and z(Ym) is at least (r(x) + r(y))/2 for any n > 0 and
m > 1. By our choice of δ5 we deduce that for any ε 6 δ5

Px(dC(Xτ1, {Yn : n > 0}) > 2ε/s,Cτ1) �M−1q2(M, rH(x))2 �e 1,

concluding the proof.
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Figure 5. Left: The decomposition of Wε that it used to bound the second moment
of Zε. Each shaded region contributes at most a constant to the conditional
first moment. Right: Illustration of the trigonometric calculations used to prove
Lemma 4.14.

We now wish to estimate the second moment of Zε. Doing so amounts to
estimating the conditional first moment of Zε given that some specified vertex
of Wε is contained in the past of e. We will show that this conditional first
moment is O(log(1/ε)) by decomposing the annulus Wε into O(log(1/ε)) many
pieces, the sets U m

ε below, and then proving that each such piece contributes at
most a constant to the conditional first moment. Using the bounds established
in Section 4.3 will reduce the problem of bounding the contribution to the
conditional first moment of each piece to geometric estimates that can be proven
by elementary trigonometry.

We now begin to carry out this programme. For each ε > 0 and m ∈ Z \ {0},
we define

U m
ε =

{
z ∈ D : 1−ε 6 |z|6 1−s3ε and sgn(m)

4|m|

5|m|
π 6 arg z 6 sgn(m)

4|m|−1

5|m|−1
π

}
and define U m

ε (θ) to be the rotated set eiθU m
ε .

LEMMA 4.14. There exist universal constants δ3, δ4 > 0 and k <∞ such that

dC(U m
ε (θ), {reiθ

: r > 0}) > (2+ δ3)diamC(U m
ε (θ))

for all θ ∈ [−π, π], ε 6 δ4 and |m| 6 log5/4(1/ε)− k.

The constants here are more important than usual since we will later need to
estimate the difference 1

2 dC(U m
ε (θ), {reiθ

: r > 0})− diamC(U m
ε (θ)).
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Proof. We begin by calculating, using elementary trigonometry, that

diamC(U m
ε (θ)) 6

4|m|−1

5|m|
π + ε

and

dC(U m
ε (θ), {reiθ

: r > 0}) =


1− ε |m| 6 3,

(1− ε) sin
(

4|m|

5|m|
π

)
|m| > 4.

See Figure 5 for an illustration. By concavity of the function sin(t) on [0, π], we
have that sin(t) > 2t/π for all t ∈ [0, π/2], and in particular

diamC(U m
ε (θ))

dC(U m
ε (θ), {reiθ : r > 0})

6
1

8(1− ε)
π +

5|m|ε
2 · 4|m|(1− ε)

6
1

8(1− δ2)
π +

4kδ4

2 · 5k(1− δ4)

for all ε 6 δ4 and |m| 6 log5/4(1/ε)−k. This upper bound is less than π/7 < 1/2
when δ4 is sufficiently small and k is sufficiently large.

LEMMA 4.15. E[Z 2
ε ] � E[Zε] log(1/ε) for all 0 < ε 6 δ4, where δ4 is the

constant from Lemma 4.14.

Again, we remark that log(1/ε) is of the same order as the hyperbolic distance
between e and Wε.

Proof. For each two vertices u and v in G, let

H(u, v) := {w ∈ V : |z(w)− z(u)| 6 |z(w)− z(v)|}

be the set of vertices closer to u than to v with respect to the Euclidean metric on
the circle packing. Expand E[Z 2

ε ] as the sum

E[Z 2
ε ] =

∑
u,v∈Wε

aH(u)aH(v)P(u, v ∈ pastF(e)).

If u and v are both in the past of e in F, let w(u, v) be the first vertex at which the
unique simple paths in F from u to e and from v to e meet. Then

E[Z 2
ε ] 6 2

∑
u,v∈Wε

aH(u)aH(v)P(u, v ∈ pastF(e) and w(u, v) ∈ H(u, v)).
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Consider generating F using Wilson’s algorithm rooted at infinity, starting first
with u and then v. In order for u and v both to be in the past of e and for w(u, v)
to be in H(u, v), we must have that the simple random walk from v hits H(u, v),
so that

E[Z 2
ε ] 6 2

∑
u∈Wε

aH(u)P(u ∈ pastF(e))
∑
v∈Wε

aH(v)Pv(τH(u,v) <∞). (27)

Thus, it suffices to prove that

∑
v∈Wε

aH(v)Pv(τH(u,v) <∞) � log(1/ε) (28)

for all ε 6 δ4 and u ∈ Wε.
Recall the definition of U m

ε from Lemma 4.14. Let k be the universal constant
from Lemma 4.14, let `(ε) = dlog5/4(ε)− ke, and let θ = arg(u). For each m ∈ Z
with 1 6 |m| 6 `(ε), let Sm

ε (θ) be the set of vertices whose centres are contained
in U m

ε (θ), and let

S0
ε = S0

ε (u) :=
{
v ∈ Wε :

∣∣∣∣arg
z(v)
z(u)

∣∣∣∣ 6 5kπε

4k

}
.

Then

∑
v∈Wε

aH(v)Pv(τH(u,v) <∞) =

`(ε)∑
m=−`(ε)

∑
v∈Sm

ε

aH(v)Pv(τH(u,v) <∞)

6
`(ε)∑

m=−`(ε)

∑
v∈Sm

ε

aH(v)Pv(τH(u,Sm
ε )
<∞), (29)

where for a set A ⊂ V and a vertex u we denote H(u, A) =
⋃

v∈A H(u, v).
Since Sm

ε is contained in Wε, it is C-short-lived for some C = C(M) by
Corollary 4.11. Thus, applying Lemmas 4.9 and 4.10 yields that

∑
v∈Sm

ε

aH(v)Pv(τH(u,Sm
ε )
<∞) �

diamC(Sm
ε )

2

min(diam(Sm
ε ), dC(Sm

ε , H(u, Sm
ε )))

2
. (30)
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Our goal is to show that the last ratio is � 1. If the minimum in the denominator
is attained on the first term, then we are done. Otherwise, we bound

dC(Sm
ε , H(u, Sm

ε )) = inf
v1,v2∈Sm

ε

dC(v1, H(u, v2))

> inf
v1∈Sm

ε

dC(v1, H(u, v1))− sup
v1,v2∈Sm

ε

dC(v1, v2)

>
1
2

dC(u, Sm
ε )− diamC(Sm

ε ).

Since Sm
ε ⊂ U m

ε have that diamC(Sm
ε ) 6 diamC(U m

ε ) and furthermore dC(u, Sm
ε ) >

dC(U m
ε (θ), {reiθ

: r > 0}). Thus Lemma 4.14 implies that for ε 6 δ4 and
1 6 |m| 6 `(ε) we have that

dC(Sm
ε , H(u, Sm

ε )) � diamC(U m
ε ) .

We get that the right-hand side of (30) is � 1. We put this in (29) and use the
fact that

∑
v∈S0

ε
aH(v) � 1 to bound the term m = 0 there. This gives (28) and

concludes the proof.

We now have everything we need in place to prove Theorem 1.4.

Proof of Theorem 1.4. Denote by Re
ε the event that pastF(e) contains a vertex

whose centre is within Euclidean distance ε of the unit circle, and let D e
R be the

event that diamH(pastF(e)) > R. Then, letting ε(R) = 1 − tanh(R/2), we have
that Re

ε(R)/2 ⊆ D e
R ⊆ Re

ε(R). Thus, to prove Theorem 1.4, it suffices to prove that

log(1/ε)−1
�e P(Re

ε ) � log(1/ε)−1 (31)

for all ε 6 1/2.
As discussed at the beginning of Section 3, the proof of Theorem 1.2, and

in particular of the estimate (10), adapts immediately to yield the desired upper
bound when the analysis there is carried out using the double circle packing
(P, P†) of G rather than the circle packing of T (G). Indeed, we replace P( f )
with P†( f ) in the definition of Vz(r, r ′) above Lemma 3.3 and observe that part
(2) of Lemma 3.3 holds by the Ring lemma 2.8 since G has bounded degrees.
Furthermore, the proof of Lemma 3.4 applies as written once we replace P( f )
with P†( f ). The proof of Theorem 1.2 now follows almost verbatim; we only note
that the procedure of diverting the random path from T to G works seamlessly in
the double circle packing setting and (10) is obtained.

The remainder of this proof is devoted to proving the lower bound. Towards
that aim, note that by the definition of Wε, the random variable Zε defined in (25)
is positive if and only if Re

ε occurs. Let δ4 be the constant from Lemma 4.14 and
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let δ5 = δ5(M, rH(x)) be the constant from Lemma 4.13. The lower bound of
Theorem 1.4 now follows from Lemmas 4.13 and 4.15 together with the Cauchy–
Schwartz inequality, which imply that

P(Zε > 0) >
E[Zε]2

E[Z 2
ε ]
�e

1
log(1/ε)

for all ε 6 min{δ4, δ5}. Since P(Zε > 0) is an increasing function of ε and
min{δ4, δ5} is an increasing function of rH(x), it follows that

P(Zε > 0) > P(Zmin{δ4,δ5}ε > 0) �e
1

log(1/ε)

for all ε 6 1/2.

Proof of Theorem 1.5. We continue to use the notation from the proof of
Theorem 1.4. We first prove the upper bound. Let R > 1. Applying Markov’s
inequality and Lemma 4.12 we obtain that

P
( R1/2∑

k=0

Zs−3k > R
)
6

1
R
E
[ R1/2∑

k=0

Zs−3k

]
� R−1/2, (32)

and hence

P(areaH(pastF(e)) > R) 6 P
( R1/2∑

k=0

Zs−3k > R
)
+ P

( ∞∑
k=R1/2

Zs−3k > 0
)
� R−1/2,

(33)

where the second inequality follows from Theorem 1.4 and (32).
We now obtain a matching lower bound. Let δ4 be the constant from

Lemma 4.14 and let δ5 = δ5(M, rH(x)) be the constant from Lemma 4.13,
and let

R0 = R0(M, rH(x)) = (4/9) log2
1/s(1/min{δ4, δ5}),

so that s−3R1/2/2 is less than both δ4 and δ5 for all R > R0. Let R > R0 and let

W =
R1/2⋃

k=(1/2)R1/2

Ws−3k and let Z =
R1/2∑

k=(1/2)R1/2

Zs−3k .

The argument used to derive (27) is imitated and yields that

E[Z 2
] 6 2

∑
u∈W

aH(u)P(u ∈ pastF(e))
∑
v∈W

aH(v)Pv(τH(u,v) <∞). (34)
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Let u ∈ W and let θ = arg(z(u)). Let `(s−3k) and let the sets Sm
s−3k (θ) be defined

as in the proof of Lemma 4.15. Then,

∑
v∈W

aH(v)Pv(τH(u,v) <∞) 6
R1/2∑

k=(1/2)R1/2

`(s−3k )∑
m=−`(s−3k )

[ ∑
v∈Sm

s−3k

aH(v)P(τH(u,Sm
s−3k )

<∞)

]
.

(35)
The proof of Lemma 4.15 showed that the left-hand side of (30) is bounded by a
constant depending only on M for any ε, and it follows that this also holds for the
sums appearing in the square brackets on the right-hand side of (35). Thus, we
deduce that ∑

v∈W

aH(v)Pv(τH(u,v) <∞) � R (36)

for all u ∈ W . Putting (34) and (36) together yields that

E[Z 2
] � RE[Z ].

Next, Lemma 4.13 implies that E[Z ] �e R1/2, while Theorem 1.4 implies that
P(Z > 0) � R−1/2. Thus, there exists a positive constant C = C(M, rH(x)) such
that E[Z | Z > 0] > C R. Applying the second moment estimate above, the
Paley–Zigmund Inequality implies that

P
(

Z >
C
2

R
∣∣∣∣ Z > 0

)
>

E[Z | Z > 0]2

4E[Z 2 | Z > 0]
=

E[Z ]2

4E[Z 2]P(Z > 0)
�e 1. (37)

Combining (37) with the lower bound of Theorem 1.4 yields that

P
(

areaH(pastF(e)) >
C
2

R
)
> P

(
Z >

C
2

R
)
�e R−1/2

for all R > R0. Since the probability on the left-hand side is decreasing in R, we
conclude that

P(areaH(pastF(e)) > R) �e R−1/2

as claimed.

Proof of Theorem 1.3. Let F be a spanning forest of G and let e† be the edge of
G† dual to e = (x, y). The past of e† in the dual forest F† is contained in the
region of the plane bounded by e and ΓF(x, y), so that

diamH(ΓF(x, y)) > diamH(pastF†(e†)).

Meanwhile, if pastF†(e†) is nonempty, then every edge in the path ΓF(x, y) is
incident to a face of G that is in pastF†(e†). By the Ring lemma (Theorem 4.1),
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the hyperbolic radii of circles in P ∪ P† are bounded above. We deduce that there
exists a constant C = C(M) such that

diamH(ΓF(x, y)) 6 diamH(pastF†(e†))+ C.

We deduce Theorem 1.3 from Theorem 1.4 by applying these estimates when F
is the FUSF of G and F† is the WUSF of G†.

4.6. The uniformly transient case. Recall that a graph is said to be uniformly
transient if p = infv∈V Pv(τ+v = ∞) is positive. If in addition the graph has
bounded degrees, this is equivalent to the property that Ceff(v ↔∞) is bounded
away from zero uniformly in v.

PROPOSITION 4.16. Then there exists a constant C = C(M) such that

rH(v) >
1
C

exp(−CReff(v ↔∞)).

Proof. By applying a Möbius transformation if necessary, we may assume that
the circle P(v) is centred at the origin. By the Ring lemma (Theorem 4.1), rH(v)
is bounded above by a constant depending only on the maximum degree and
codegree of G. Applying [18, Corollary 3.3] together with Theorem 4.1 yields
that Reff(v ↔ ∞) > c log(1/r(v)) for some constant c = c(M). Since the
hyperbolic radii are bounded from above, the Euclidean radius r(v) is comparable
to rH(v).

We are now ready to prove Corollary 1.6. In the rest of this subsection, we
will use �,� and � to denote inequalities or equalities that hold up to positive
multiplicative constants depending only on M and p.

Proof of Corollary 1.6. Let e = (x, y) be an edge of G and let F be sample of
FUSFG . By Theorem 2.5 the dual forest F† is distributed as WUSFG and so by
Theorem 1.2 it is a.s. one-ended. Hence pastF†(e†) (recall the definition above
Theorem 1.4), where e† the edge of G† dual to e, is well defined.

The past of e† in the dual forest F† is contained in the region of the plane
bounded by e and ΓF(e). The nonamenability of the hyperbolic plane implies that
the perimeter of any set is at least a constant multiple of its area, and so∑

v∈ΓF(x,y)

rH(v) � areaH(pastF†(e†)). (38)

On the other hand, if pastF†(e†) is nonempty, then every edge in the path
ΓF(x, y) is incident to a face of G that is in pastF†(e†). We deduce that if
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pastF†(e†) is nonempty then

areaH(pastF†(e†)) �
∑

v∈ΓF(x,y)

aH(v). (39)

Note that neither estimate (38) or (39) required uniform transience.
Proposition 4.16 and the Ring lemma (Theorem 4.1) imply that

|ΓF(x, y)| �
∑

v∈ΓF(x,y)

rH(v) �
∑

v∈ΓF(x,y)

aH(v).

Thus, we deduce Corollary 1.6 from Theorem 1.5.

Let (X1, d1) and (X2, d2) be metric spaces and let α, β be positive. A (not
necessarily continuous) function φ : X1 → X2 is said to be an (α, β)-rough
isometry if the following hold.

(1) (φ roughly preserves distances.) α−1d1(x, y) − β 6 d2(φ(x), φ(y)) 6
αd1(x, y)+ β for all x, y ∈ X1.

(2) (φ is almost surjective.) For every x2 ∈ X2, there exists x1 ∈ X1 such that
d2(φ(x1), x2) 6 β.

See [38, §2.6] for further background on rough isometries. We write dG for the
graph distance on V .

COROLLARY 4.17. Let G be a uniformly transient, polyhedral, proper plane
network with bounded codegrees and bounded local geometry. Let dG denote the
graph distance on V , let (P, P†) be a double circle packing of G in D, and let
z(v) be the centre of the disc in P corresponding to the vertex v. Then there exist
positive constants α = α(M,p) and β = β(M,p) such that z is an (α, β)-rough
isometry from (V, dG) to (D, dH).

Proof. Proposition 4.16 implies that for every vertex v of G, rH(v) is bounded
both above and away from zero by positive constants. Almost surjectivity is
immediate. For each two vertices u and v in G, the shortest graph distance
path between them induces a curve in D (by going along the hyperbolic
geodesics between the centres of the circles in the path) whose hyperbolic length
is � dG(u, v).

Conversely, let γ be the hyperbolic geodesic between z(u) and z(v), and
consider the set W of vertices w of G such that either P(w) intersects γ or
P†( f ) intersects γ for some face f incident to w. Let d be the length of γ .
Since all circles in (P, P†) have a uniform upper bound on their hyperbolic radii,
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we deduce that all circles in W are contained in a hyperbolic neighbourhood
of constant thickness about γ , and hence the total area of these circles is � d .
Since the radii of the circles are also bounded away from zero, we deduce that
the cardinality of W is also � d . Since W contains a path in G from u to v, we
deduce that dG(u, v) is � d as required.

We summarize the situation for uniformly transient graphs in the following
corollary, which follows immediately by combining Corollary 4.17 with
Theorems 1.3–1.5 and Corollary 1.6. We write diamG for the graph distance
diameter of a set of vertices in G.

COROLLARY 4.18 (Graph distance exponents). Let G be a uniformly transient,
polyhedral, proper plane network with bounded codegrees and bounded local
geometry, and let p > 0 be a uniform lower bound on the escape probabilities
of G. Then there exist positive constants k1 = k1(M,p) and k2 = k2(M,p) such
that

k1 R−1 6 FUSFG(diamG(ΓF(x, y)) > R) 6 k2 R−1,

k1 R−1 6 WUSFG(diamG(pastF(e)) > R) 6 k2 R−1,

k1 R−1/2 6 WUSFG(|pastF(e)| > R) 6 k2 R−1/2,

k1 R−1/2 6 FUSFG(|ΓF(x, y)| > R) 6 k2 R−1/2

for every edge e = (x, y) of G and every R > 1, where F is a sample of either the
free or wired uniform spanning forest of G as appropriate.

5. Two remarks and a problem

5.1. Two remarks.

REMARK 5.1. Theorem 1.1 fails without the assumption that the degrees and
edge conductances are bounded. Indeed, take two vertex-disjoint infinite simple
paths in Z2 and put conductance 22k on the kth edge in each of these paths. It is
not too hard to show using Wilson’s algorithm that the FUSF of this graph has 2
connected components. A similar affect can be achieved with a simple unweighted
graph by replacing the edges with large numbers of paths of length 2.

One may also wonder if this kind of pathological behaviour cannot occur when
the underlying graph G is itself random. This is indeed the case, and in fact much
more is true. It was proved by the first author [28] that a.s. every component of the
WUSF is one-ended on any transient unimodular random rooted graph (with no
planarity assumption). Using USF duality, one may deduce that the FUSF is a.s.
connected on any simply connected unimodular random map of finite expected
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degree whose dual is locally finite. Details are given in [6, Theorem 5.13], where
this result is also extended to the case that the dual is not locally finite.

REMARK 5.2 (Nonuniversality in the parabolic case). Unlike in the CP
hyperbolic case, the exponents governing the behaviour of the USTs of CP
parabolic, polyhedral proper plane graphs with bounded codegrees and bounded
local geometry are not universal, and need not exist in general.

Indeed, consider the double circle packing of the proper plane quadrangulation
with underlying graph N×Z4, pictured in Figure 6. Let the packing be normalized
to be symmetric under rotation by π/2 about the origin and to have r(0, 0) = 1.
It is possible to compute that r(i, j) = (3 + 2

√
2)i and hence that |z(i, j)| is

comparable to (3 + 2
√

2)i for every (i, j) ∈ N × Z4. Suppose that the edges
connecting (i, j) to (i ± 1, j) are given weight 1 for every (i, j) ∈ N×Z4, while
the edges connecting (i, j) to (i, j±1) are given weight c for each (i, j) ∈ N×Z4.
It can be computed that the probability that a walk started at (i, 0) hits (0, 0)
without ever changing its second coordinate is a(c)i := (1+ c−

√
c2 + 2c)i . Let

e = ((0, 0), (0, 1)). By running Wilson’s algorithm rooted at (0, 0) starting from
the vertices (i, 0) and (i, 1), we see that

UST(pastT (e) ∩ {i} × Z4 6= ∅) > P(i,0)(τ(0,0) < τN×{1,2,3})P(i,1)(τ(0,1) < τN×{0,2,3})

· P(0,1)(X1 = (0, 0))

=
c

2c + 1
a(c)2i .

The right-hand side is exactly the probability that the random walk from (i, 0)
hits (0, 0) without ever changing its second coordinate, and that the random walk
from (i, 1) hits (0, 1) without ever changing its second coordinate and then steps
to (0, 0).

Let q(c) be the probability that a random walk started at (i, j) visits every
vertex of {i} × Z4 before changing its vertical coordinate, which tends to one as
c → ∞. Let Y be a loop-erased random walk from (0, 0). It can be computed
that the probability that a random walk started from (i, j) visits {0} × Z4 before
hitting the trace of Y is at most b(c)i := (1− q(c))i . Thus, by Wilson’s algorithm
and a union bound,

UST(pastT (e) ∩ {i} × Z4 6= ∅) 6 4b(c)i .

It follows that there exist positive constants k(c), α(c) and β(c) such that
α(c)→ 0 as c→ 0, β(c)→∞ as c→∞, and

k(c)−1 R−α(c) 6 UST(diamC(pastT (e)) > R) 6 k(c)R−β(c).
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Figure 6. The double circle packing of N× Z4.

Thus, by varying c, we obtain CP parabolic proper plane networks with
bounded codegrees and bounded local geometry with different exponents
governing the diameter of the pasts of edges in their USTs: If c is large the
diameter has a light tail, while if c is small the diameter has a heavy tail.
Furthermore, by varying the weight of ((i, j), (i, j ± 1)) as a function of i in
the above example (that is, making c small at some scales and large at others), it
is possible to construct a polyhedral, CP parabolic proper plane network G with
bounded codegrees and bounded local geometry such that

log USTG(diamC(pastT (e)) > R)
log(R)

does not converge as R → ∞ for some edge e of G. The details are left to the
reader.

Similar constructions show that the behaviour of WUSFG(diamH(pastF(e)) >
R · rH(x)) is not universal over polyhedral, CP hyperbolic proper plane network
G with bounded codegrees and bounded local geometry in the regime that rH(x)
is small.

5.2. A problem. It is natural to ask to what extent the assumption of planarity
in Theorem 1.1 can be relaxed. Part (1) of the following question was suggested
by R. Lyons.

QUESTION 5.3. Let G be a bounded degree proper plane graph.
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(1) Let H be a finite graph. Is the free uniform spanning forest of the product
graph G × H connected almost surely?

(2) Let G ′ be a bounded degree graph that is rough-isometric to G. Is the free
uniform spanning forest of G connected almost surely?

Without the assumption of planarity, connectivity of the FUSF is not preserved
by rough isometries; this can be seen from an analysis of the graphs appearing in
[11, Theorem 3.5].
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