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Abstract
Basal sliding and other processes affecting ice flow are challenging to constrain due to limited
direct observations. Inversion methods, which typically fit an ice-flow model to observed surface
velocities, enable the reconstruction of basal properties from readily available data. We present
a numerical inversion framework for reconstructing the glacier basal sliding coefficient, applied
to both synthetic and real-world alpine glacier scenarios. The framework employs automatic dif-
ferentiation (AD) to generate adjoint code and runs in parallel on graphics processing units. We
explore two inversionworkflows using the shallow ice approximation as the forwardmodel: a time-
independent approach fitting to a single snapshot of annual ice velocity and a time-dependent
inversion accounting for both ice velocity and changes in geometry. We find that the time-
dependent inversion yields more robust and accurate velocity fields than the snapshot inversion.
However, it does not significantly improve the problematic initial transients often encountered
in forward model runs that employ sliding fields from snapshot inversions. This is likely due to
the limitations of the forward model. This methodology is transferable to more complex forward
models and can be readily implemented in languages supporting AD.

1. Introduction

Variations in bed properties that affect basal sliding, such as the distribution of deformable sed-
iment versus hard bedrock, significantly impact the dynamics of large ice masses. To account
for the impact of these bed heterogeneities on ice flow, models of ice-sheet and glacier evolu-
tion require appropriate boundary conditions at the ice-bedrock interface. As the glacier bed
remains challenging to observe, these basal boundary conditions can only very rarely be directly
specified (e.g. Cohen and others, 2000; Iverson and others, 2007; Vincent and Moreau, 2016).
Instead, inferring basal properties such as basal sliding can be achieved by assimilating remotely
sensed or direct measurements of surface flow with an ice-flow model in an inverse modelling
framework. Practically, observed surface flow velocities are commonly used to constrain basal
sliding. The increase in both spatial and temporal resolution in datasets has driven and will
continue to drive developments that deliver more accurate projections of ice flow in a changing
climate.

Many previous studies have deduced basal stresses or sliding coefficients under modern ice
sheets and glaciers, pioneered by MacAyeal (1992, 1993) and adapted, for instance, by Vieli
and Payne (2003) and Joughin and others (2004). These early studies were applied to limited
regional-scale applications using the shallow shelf approximation equations appropriate for
stretching flowandusing control, or adjoint,methods to invert for basal properties. Recent stud-
ies using a similar approach have been applied, for example, to the Pine Island/Thwaites Glacier
areas and to continental Antarctica (Vieli and Payne, 2003;Morlighem and others, 2013). Other
examples are Price and others (2011), who applied a simpler inversion method to Greenland,
and Le Brocq and others (2009), who linked a similar method with a basal hydrology model for
West Antarctica. More recently, the initMIP-Greenland and initMIP-Antarctica intercompari-
son studies (Goelzer andothers, 2018a; Seroussi andothers, 2019) showedhowdata assimilation
improves ice-sheet model initialisation by comparing various methods to incorporate observa-
tional data. All these studies are based on fitting modelled ice velocities to observed surface
or balance velocities, with ice surface elevations prescribed based on digital elevation models.
A similar approach but fitting ice thickness instead of ice velocity has been used as well (e.g.
Pollard and DeConto, 2012; Le clec’h and others, 2019).

For alpine glaciers, significant research is focused on estimating the ice thickness and surface
mass balance (SMB) to project volume estimates into the future (Farinotti and others, 2009,
2017, 2021; Zekollari and others, 2019). In these studies, basal sliding is usually accounted for by
assuming that a fixed fraction of the surface velocity is attributed to sliding, and the inversion is
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typically based on a combination of physics-based and empirical
relations (Zekollari and others, 2022). In some cases, 1-D flowline
models are employed to reconstruct the bedrock topography using
Bayesian inference (Werder and others, 2020), with the glacier
sliding assumed to be constant. Notable exceptions that present
inversions for basal sliding include Gilbert and others (2020) and
Schäfer and others (2015), where an adjoint-based method is used
to invert spatially variable basal friction from observed surface
velocities using a 3-DStokesmodel, butwithout considering geom-
etry evolution, and Jouvet (2023), where the distribution of the
sliding parameter is reconstructed using a deep learning ice-flow
emulator.

Most inversions of basal properties in glaciologymake use of the
fact that glaciers and ice sheets behave as a Stokes flow, i.e. that the
flow velocity has no history dependence. This means that, in the-
ory, for a given ice geometry and boundary conditions the ice-flow
velocity is fully determined; conversely, given observations of ice
geometry and velocity, the boundary conditions can be inverted.
Notably, neither the SMB nor the evolution of the ice geometry is
needed for this type of inversion, which is called snapshot inversion
(Morlighem and Goldberg, 2023). Unlike the velocity, the evolu-
tion of the ice geometry, driven by ice flow, mass balance and mass
conservation, is history-dependent. Consequently, if an inversion
aims to use the often available observations of geometry evolution,
it will need to be a so-called time-dependent inversion (Morlighem
and Goldberg, 2023).

In general, it is desirable to use as much available data as possi-
ble to better constrain the quantity being inverted. For instance, it
has been observed that forward model runs using basal boundary
conditions from snapshot inversions frequently exhibit significant
initial changes in geometry, such as unrealistically high rates of sur-
face elevation change (e.g. Joughin and others, 2009; Goldberg and
Heimbach, 2013). Using the additional information of observed
geometry changes in time-dependent inversions may address such
issues (Morlighem and Goldberg, 2023).

The adjoint state method (Giles and Pierce, 2000) is one of
the few practical ways to perform high-resolution inversions and
is regularly applied in glaciology both for snapshot and time-
dependent inversions (Morlighem and Goldberg, 2023). The main
advantage of this method is that the cost of evaluating the gradient
of the objective function, i.e. the function which needs to be min-
imised in the inversion, is only one forward solve and one linear
adjoint solve. The main disadvantages are posed by the complex
derivation of the adjoint state equations and the risk of the inver-
sion being trapped in a local minimum. Adjoint-based inversions,
used to optimise parameters such as ice-flow properties, require
computing the gradient of an objective function, which is often
complex and high-dimensional. Deriving this gradient manually
is both time-consuming and error-prone.Therefore, automatic dif-
ferentiation (AD), which can differentiate computer code directly,
has become a preferred approach to accurately calculate such gra-
dients (e.g. Heimbach and others, 2002; Goldberg and Heimbach,
2013; Morlighem and Goldberg, 2023).

As stated above, time-dependent inversions are a way to include
more data in inversionswith the potential to achieve higher fidelity.
Compared to snapshot inversions, taking time into account adds an
additional dimension, resulting in a more demanding approach in
terms of both implementation, e.g. using the adjoint state method,
and computational resources. These kind of inversions were pio-
neered in glaciology over the last two decades (Morlighem and
Goldberg, 2023). Early time-dependent inversions used 1-D flow-
line models to examine the history of accumulation of ice sheets,

via internal layer information (Waddington and others, 2007;
Koutnik and others, 2016), or used time-dependent geometry
evolution data for ice thickness estimations of mountain glaciers
(Michel and others, 2013). Goldberg andHeimbach (2013), Larour
and others (2014) andGoldberg and others (2015) pioneered time-
dependent inversions on ice-sheet catchment scale using depth-
integrated, higher-order ice-flow models. They employed above-
mentioned adjoint state method combined with AD in order to
construct the needed gradients to optimise the time-dependent
cost function. The combination of these two methods made both
the code development and computation tractable. Since then a
number of studies have applied variations of this type of approach
(e.g. Koziol and others, 2021; Morlighem and others, 2021; Choi
and others, 2023). More recently, methods based on statistical
methods have been employed for time-dependent inversions, such
as Kalman filters (Gillet-Chaulet, 2020) or Bayesian approaches
(Brinkerhoff and others, 2024). While above research shows that
time-dependent inversions are becomingmore common in glaciol-
ogy, unlike snapshot inversions, they are not routinely employed
yet and are still in development in the major ice-sheet models the
community uses (Morlighem and Goldberg, 2023).

Recent advances in computer hardware, programming lan-
guages and computational tools have led to significant progress
in scientific computing in glaciology. Graphics processing units
(GPUs) offer orders of magnitude speed-up over traditional CPU-
based computations (Sandip and others, 2024) and have been
utilised in glaciology since the early days of general-purpose GPU
computing (Bræ dstrup and others, 2014). Today, GPUs have been
used for large-scale, 3-D, Stokes models (Räss and others, 2020)
and climate inversions based on palaeo-glacier extents (Visnjevic
and others, 2018).However, GPUs remain underused in glaciology,
particularly compared to their adoption in fields such as climate
modelling. To date, none of the widely used numerical ice-sheet
models incorporate GPU capabilities, highlighting the need for
further development in this area.

Recent developments, largely driven by artificial intelligence
research, have enhanced tools and programming languages that
support AD of CPU and GPU codes, making these approaches
more accessible and efficient. Frameworks such as dolfin-
adjoint enable adjoint code generation on CPUs (Mitusch and
others, 2019), while GPU-enabled computational frameworks
like TensorFlow have enabled deep learning-based surrogates
(Brinkerhoff and others, 2021; Jouvet and Cordonnier, 2023;
Jouvet, 2023) and physics-informed neural networks for ice-flow
simulations and inversions (Jouvet and Cordonnier, 2023).

However, these frameworks often have limitations in terms of
flexibility and performance. Newer programming languages, such
as Julia (Bezanson and others, 2017), overcome many of these
issues by combining ease of use with state-of-the-art performance
across multiple computing platforms, including GPUs (Räss and
others, 2022). Additionally, Julia supports AD for nearly the entire
language, further enhancing its utility in scientific computing.
For example, Bolibar and others (2023) utilise Julia to develop
an approach that combines physics-based and machine learning-
based simulations to invert for ice-flow parameters of mountain
glaciers.

The main aim of this study is to provide an automated and
computationally efficient AD and GPU-based procedure for time-
dependent inversions of the spatial distribution of the basal sliding
coefficient. This inversion procedure is then assessed by (i) study-
ing the differences between snapshot and time-dependent inver-
sions; (ii) verifying our approach on a synthetic test case; and (iii)
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applying it to the Aletsch glacier in the Swiss Alps. First, we present
the methods detailing our approach to inverse modelling using the
adjoint state method. Next, we outline the numerical implemen-
tation, demonstrating how we leverage AD on GPUs using Julia.
Subsequently, we describe the two different model configurations
that we investigate: the snapshot and time-dependent cases, which
are applied to both a synthetic example and Aletsch glacier. Finally,
we present the results, discuss their implications and provide an
outlook on how to extend this work.

2. Methods

By using inverse modelling, we seek a better understanding of
the complex motion of glaciers partially sliding over the bed. To
achieve this goal, we solve an optimisation problem to estimate the
hidden basal state of glaciers by leveraging observations of ice sur-
face velocities from remote sensing or sparse direct measurements.
Additionally, aswe continue to develop themethod,we incorporate
ice surface elevation changes recorded in digital elevation models
taken at different moments in time.

In this study, we consider two inversion approaches: snapshot
and time-dependent. In snapshot inversion, the geometry of the
glacier is assumed to be known from observations at a given time,
and only the instantaneous velocity distribution at that point in
time is used to reconstruct the sliding parameter. Snapshot is a
commonly used inversion approach since it has the advantage of
not requiring any information on the SMB. However, when using
the results of the snapshot inversion to integrate the ice-flowmodel
forward in time, the predicted velocities and geometry changes
might exhibit unrealistic variations due to the lack of temporal
information (Joughin and others, 2009; Goldberg and Heimbach,
2013), discrepancies between different data products and insuffi-
cient spatial coverage of the observations. These issues can be par-
tially addressed by the time-dependent inversion, which takes into
account both the velocity and geometry change observations and
assimilates them in a transient ice-flow model. While producing
potentially more robust reconstructions of the sliding parameter
with respect to the observations, this inversion approach is more
computationally demanding, especially for large-scale inversions.
Our framework has the potential to enable inverse modelling on
larger problems by leveraging massively parallel GPU computing
both for running the forward model and for the computation of
the gradients.

In this study, we are using the depth-averaged shallow ice
approximation (SIA) as the forward model with the assumption
that the horizontal scale of the ice extent is much larger than the
vertical extent (Cuffey andPaterson, 2006).TheSIAprovides a sim-
plification of the Stokes equations at the expense of less accurate
results near the margin and ice divide. Despite the limitations of
SIA when modelling mountain valley glaciers or ice sheets (e.g.
only 3 out of the 37 simulations included in ISMIP6 for both
Greenland and Antarctica use SIA (Goelzer and others, 2018b;
Seroussi and others, 2019)), the computational efficiency and sim-
plicity of SIA represent an advantage for large-scale applications
and long-term simulations. A decrease in computational cost ren-
ders the SIA model also attractive in providing an efficient way to
initialise more complex ice-flow models for specific conditions or
to fit observational data (Arthern and Gudmundsson, 2010). The
SIA model is thus sufficient for the present work, the purpose of
which lies mainly in exploring the inversion methods and their
efficient numerical implementation.

In both snapshot and time-dependent inversion approaches,
our goal is to determine the spatially varying sliding parameter As
that minimises the following objective functional:

𝒥(As) = 𝒥obs(As) + 𝛾𝒥reg(As). (1)

Here, 𝒥obs is the observational component of the total misfit, 𝒥reg is
the Tikhonov regularisation component and γ is a tunable param-
eter designed to prevent overfitting.

In this study,we define𝒥reg as the normof the gradient of logAs:

𝒥reg(As) = 1
2 ∑

i
(∇ logAsi)

2 , (2)

where i is the grid point index. With this choice of regularisation,
larger values of γ result in a smoother distribution ofAs. It is impor-
tant to note that the regularisation term involves the logarithm of
As. This approach is adopted because the inversion is performed in
a logarithmic scale, allowing us to better capture the wide range of
values while ensuring the positivity of As.

2.1. Snapshot inversion

In the snapshot approach, we fix the surface elevation data from the
observations and seek to find the sliding coefficient distribution
that leads to modelled surface velocities matching observations.
We define the observational part of the objective function as a
spatially integrated difference between surface velocity magni-
tude obtained from the model and the observed surface velocity
magnitude:

𝒥s
obs(As) = 𝜔V

2 ∑
i

(Vi(As) − Vobs
i )2 , (3)

whereVi(As) is the surface velocity computed according to the for-
wardmodel,Vobs

i denotes the observed surface velocitymagnitude.
To normalise the first term, we use the parameter ωV as the

inverse of the L2-norm of the observed velocity field:

𝜔V = [∑
i

(Vobs
i )2]

−1

. (4)

2.2. Time-dependent inversion

In the time-dependent approach, we seek to reconstruct the slid-
ing coefficient As distribution by fitting both the magnitude of
the modelled surface velocity and the geometry of the ice over
a defined time period. In this case, the observational part of the
objective functional𝒥td

obs(As)measures the total spatially integrated
differences between modelled and observed surface velocity and
ice thickness with ωV and ωH as normalisation weights:

𝒥td
obs(As) = 𝜔V

2 ∑
i

(Vi(As) − Vobs
i )2+𝜔H

2 ∑
i

(Hi(As) − Hobs
i )2 ,

(5)
where Hi(As) is the modelled ice thickness corresponding to the
parameterAs, andHobs

i is the observed ice thickness.Themodelled
ice thicknessH in (5) is defined at the same moment in time as the
observed ice thickness Hobs. We approximate the average annual
velocity using the velocity distribution V at the end of the time
integration period. Note that (5) does not include summation over
time. In this study, we assimilate only one velocity and ice thick-
ness dataset in the time-dependent inversion, and thus, we omit
the summation.
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Table 1. Forward ice-flow model parameters

Constants Value Units

A0 Ice-flow parameter 2.5×10−24 Pa−3 s−1
As0 Basal sliding parameter 10−22 Pa−3m2 s−1
ρ Ice density 910 kgm−3

g Gravitational constant 9.81 m s−2
n Exponent in Glen’s flow law 3 –

We define the parameters ωV and ωH as the weighted inverse
of the L2-norm of the observed velocity and ice thickness fields,
respectively:

𝜔V = 𝜔n
V [∑

i
(Vobs

i )2]
−1

, (6)

𝜔H = 𝜔n
H [∑

i
(Hobs

i )2]
−1

, (7)

√(𝜔n
V)2 + (𝜔n

H)2 = 1, (8)

where 𝜔n
V and 𝜔n

H are normalised weights representing the relative
influence of velocity and ice thickness, respectively.

2.3. Forwardmodel

In this study, we use the isothermal SIA as the forward model
both for the snapshot and time-dependent inversion approaches.
According to the SIA, the surface velocity V is given by:

V = (𝜌g)n [ 2
n + 1AH

n+1 + AsHn] |∇S|n , (9)

where S = B + H is the ice surface elevation, B is the bed ele-
vation, ρ is the ice density, g is the gravitational acceleration, A
is the ice-flow parameter, As is the sliding parameter and n is
Glen’s flow law exponent (Glen, 1958). The first term in brack-
ets of (9) represents the flow due to ice deformation and the
second term due to sliding following a Weertman-like sliding
law (Fowler and Frank, 1997) where all constants are lumped
into As.

The constants of the ice-flow model are listed in Table 1. To
account for the discrepancies introduced by using the simplified
ice-flow description, we introduce the correction factor E to define
the ice-flow parameter A:

A = EA0, (10)

where A0 is the reference value of the ice-flow parameter. We vary
the value of E depending on the problem set-up but keep it con-
stant in time and space, assuming that most of the variability in the
results can be attributed to the local changes in sliding.We consider
the ice to be temperate, and all temperature-dependent constants
listed in Table 1 are computed at T = 0∘C.

The evolution of the ice thickness H is described by the depth-
averaged mass conservation equation:

𝜕H
𝜕t = −∇ ⋅ q +

.
b, (11)

where q is the horizontal ice flux and
.
b is the volumetric SMB

rate, i.e. the rate of ice accumulation and ablation at a point. The

horizontal ice flux q is defined as the vertically integrated velocity
field:

q = ∫
S

B
V(z) dz. (12)

We define the SMB
.
b as:

.
b = min{c(S − zELA),

.
bmax} , (13)

where c is the mass-balance rate gradient, S is the surface eleva-
tion, zELA is the equilibrium line altitude and

.
bmax is the maximum

ice accumulation rate (Meier, 1962). This piecewise linear relation
reflects the observation that the dependence of the mass balance
on the elevation is usually stronger in the ablation area than in the
accumulation area (Mayo, 1984).

Following the approach of Hindmarsh and Payne (1996), the
ice-flow equation (11) can be regarded as a nonlinear diffusion-
reaction equation with a nonlinear diffusion coefficient D and
horizontal diffusion flux q:

q = −D ∇S, (14)

D = (𝜌g)n [ 2
n + 2AH

n+2 + AsHn+1] |∇S|n−1 , (15)

which we numerically solve using the accelerated pseudo-transient
(APT) method (Räss and others, 2022). At the boundaries of the
computational domain, we specify ‘zero-flux’ boundary condi-
tions: q ⋅n = 0, where n is the normal to the boundary. In practice,
the boundary condition is not important as long as the extent of
the ice never touches the domain boundary, which is the case in all
model set-ups considered.

2.4. Numerical implementation

In this section, we describe the numerical implementation of the
snapshot and time-dependent inversion approaches, along with
the employed algorithms, which are summarised in Tables 2–4. To
reconstruct the distribution of the sliding parameter As, we use a
gradient-based optimisation algorithm from the nonlinear conju-
gate gradient family, whichnecessitates efficient computation of the
gradients or derivatives of the objective functionwith respect to the
parameter of interest.

In the snapshot inversion, the forward model consists of com-
puting the SIA ice velocity V according to (9) while setting the
ice thickness H = Hobs. This algebraic equation is linear in
As, which allows solving the inverse problem analytically in the
absence of regularisation and computing the gradients of the objec-
tive function analytically as well. In this study, we use AD to
compute gradients for the snapshot inversion nevertheless to keep
the same implementation structure for both the snapshot and the
time-dependent approaches. Since the forward model is just one
function, we compute the gradient of 𝒥s in a single call to the AD
tool.

In contrast to the snapshot inversion, the forward model in the
time-dependent inversion case is the time-dependent SIA model.
If using an explicit time integration to solve the SIA equations (11),
(14) and (15), computing the gradient of the objective function
𝒥td would require storing all the time steps in memory or using
checkpointing algorithms, trading memory for redundant com-
putations (Heimbach and Bugnion, 2009). Given the sparsity of
glacier observations in time, in this work, we use an implicit time
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Table 2. Overview of the optimisation procedure which is identical for both
the snapshot and the time-dependent workflow, with the exception of step II.3
to compute the gradient of the objective function

Optimisation

I Compute initial objective value and gradient
II Nonlinear conjugate gradient loop

1. Find the step size α by two-way backtracking
2. Update current solution
3. Compute gradient ∇𝒥 (see Tables 3 and 4)
4. Compute parameter β using the Hager–Zhang rule
5. Update search direction

III Report results

integration instead, allowing us to advance the state of the simula-
tion in one large time step equal to the gap between observations.
Note that the presented approach would work for schemes tak-
ing several intermediate time steps at the expense of needing a
scheme to store or recalculate results of the intermediate time steps.
Using an AD tool, computing the gradient of the objective func-
tion 𝒥td with implicit time integration in the forward model can
leverage the adjoint state method to avoid the substantial mem-
ory and computational overhead associatedwith differentiating the
solver algorithm directly (Giles and Pierce, 2000). The adjoint state
method requires solving one additional linear adjoint problem
after solving the nonlinear forward problem (Reuber and others,
2020).

We accelerate computations by specifically targeting Nvidia
GPUs using the CUDA.jl package in Julia (Besard and others,
2019a, 2019b) together with the AD tool Enzyme.jl (Moses and
Churavy, 2020). In order to allow GPUs to deliver their full par-
allel performance, specific care needs to be taken regarding the
choice of discretisation and algorithms. We use a conservative
finite-difference scheme on a structured Cartesian grid, as it facil-
itates regular memory access, and use the APT method (Räss and
others, 2022). The APT method is a matrix-free iterative algorithm
which involves only local updates at each point of the computa-
tional grid, trading the increased number of iterations for efficient
massive parallelism. In Sandip and others (2024), solving the shal-
low shelf approximation byAPTmethod achieves 1.5 × speedup by
leveragingGPUprocessing power. In our study, we apply theGPU-
based APTmethod to solve both the forward and adjoint problems
required to compute the gradient of the objective function for the
time-dependent inversion.

2.4.1. Optimisation algorithm
To minimise the objective function defined for the snapshot (3)
and the time-dependent (5) cases, we use a modified version of
the nonlinear conjugate gradient method developed by Hager and
Zhang (2005).The optimisation procedure, summarised in Table 2,
consists of two steps: (i) updating the solution logAs with the gra-
dient of the objective function ∇𝒥 using a suitable step size α and
(ii) using the Hager–Zhang rule to update the search direction. We
perform the updates in the log space to avoid negative values and
more accurately span the expected range of values for As:

logAk+1
s = logAk

s + 𝛼kpk, (16)

𝛽k = 1
pkTyk

(yk − 2pk
‖yk‖2

pkTyk
)

T

∇𝒥k+1, (17)

pk+1 = 𝛽kpk − ∇𝒥k+1, (18)

where k is the iteration index, αk is the step size, pk is the search
direction, β is the parameter computed using the Hager–Zhang
rule (Hager and Zhang, 2005), ∇𝒥k+1 is the gradient of the objec-
tive function with respect to logAk+1

s and yk = ∇𝒥k+1 − ∇𝒥k.
Here we use bold symbols as all the quantities are vectors with
components corresponding to grid points of the computational
domain.

To compute the gradient ∇𝒥 with respect to logAs, we use the
chain rule analytically:

∇𝒥i = d𝒥
d logAsi

= d𝒥
dAsi

dAsi
d logAsi

= d𝒥
dAsi

Asi, (19)

where the products are calculated element-wise, i.e. without sum-
mation over the grid point index i. We compute the first term
in Eqn (19) using AD, and then multiply the result by As before
passing the gradient to the optimisation routine.

We implemented a two-way backtracking line search to com-
pute the step size αk which satisfies the Armijo–Goldstein condi-
tion (Armijo, 1966):

𝒥(Ak+1
s ) ≤ 𝒥(Ak

s ) + m𝛼k ∇𝒥kTpk, (20)

where m ∈ (0; 1) is a parameter which controls the sufficient
decrease in the objective function 𝒥 along the search direction pk.
In this study, we set m = 1/10.

To actually calculate αk, we did not use the line search from
Hager and Zhang (2005), as it requires evaluating the gradient
multiple times, which involves solving the adjoint system in the
case of time-dependent inversion, and instead use the simpler two-
way backtracking of Nocedal and Wright 1999, which results in
sufficiently fast convergence.

2.4.2. Forward model
We approximate the time derivative 𝜕H/𝜕t (11) with an implicit
backward Euler scheme and substitute the expression for q (15),
which yields:

H − Hold
Δt = ∇ ⋅ (D∇S) +

.
b, (21)

where Hold is the ice thickness at the beginning of the modelled
time period. Equation (21) is a nonlinear diffusion equation for the
surface elevation S, or, equivalently, for the ice thicknessH = S−B,
since the bedrock elevation B is fixed in this study.

We solve (21) using the APT method (Räss and others, 2022).
We define the residualℛf of the forward problemupon rearranging
terms from (21):

ℛf(H) = ∇ ⋅ (D∇S) +
.
b − H − Hold

Δt . (22)

According to the APT method, we introduce a two-step update
procedure:

𝒢k+1
H = 𝜉APT 𝒢k

H + ℛf(Hk), (23)

Hk+1 = Hk + Δ𝜏 𝒢k+1
H , (24)

where k is the APT iteration index, 𝒢H is the update rate of H,
𝜉APT ∈ [0, 1] is the damping parameter leading to improved con-
vergence (Räss and others, 2022) and Δ𝜏 is the pseudo-time step
size. At the first iteration, i.e. when k= 0, we set 𝒢0

H = ℛf(H0) and
H0 = Hold.
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Table 3. Overview of optimisation step II.3 of Table 2 for the snapshot case.
The words typeset in typewriter font refer to function names in the provided
model code, see Acknowledgements

Snapshot—3. Compute gradient ∇𝒥s

3.1 Solve forward model (evaluate surface_velocity!) to get
current V

3.2 Analytically evaluate 𝜕𝒥s/𝜕As
3.3 Solve adjoint problem

(i) Evaluate ∇surface_velocity! (generated using AD)
3.4 Add regularisation term

Table 4. Overview of optimisation step II.3 of Table 2 for the time-dependent
case. The words typeset in typewriter font refer to function names in the
provided model code, see Acknowledgements

Time-dependent—3. Compute gradient ∇𝒥td

3.1 Solve forward model: SIA solve (evaluate diffusivity!,
residual!, update_ice_thickness!) to get current V

3.2 Analytically evaluate 𝜕𝒥td/𝜕𝒮
3.3 Solve adjoint problem:

(i) Propagate partial velocity derivatives; evaluate
∇surface_velocity! (generated using AD)

(ii) Adjoint solve loop (evaluate ∇residual!, ∇diffusivity!,
update_adjoint_state!)

(iii) Propagate derivatives with respect to sliding parameter As (eval.
∇residual!, ∇diffusivity!)

3.4 Add regularisation term

We compute the pseudo-time step Δ𝜏 by performing the lin-
earised von Neumann stability analysis on the diffusion equa-
tion (21):

Δ𝜏 = [CDmax
h2 + 𝛽 + 1

Δt
]

−1
(25)

where C is the stability parameter, Dmax is the maximum value
of the diffusion coefficient D in space and h is the spacing of
the computational grid. We stop the iterative procedure when the
L∞-norm of the relative error drops below the defined tolerance,
i.e. when ‖Hk − Hk−1‖∞/‖Hk‖∞ < 𝜖tol, where 𝜖tol = 10−8 is the
solver tolerance.

2.4.3. Automatic differentiation
AD provides a general approach to compute derivatives of almost
arbitrary code by decomposing the source into primitive expres-
sions, for which the derivative rules are known, and propagat-
ing these derivatives during the code execution. The benefit of
AD compared to calculating derivatives using a finite difference
approximation is the absence of truncation errors, and higher per-
formance since finite differences require at least two function eval-
uations. Compared to manual or symbolic differentiation, apart
from the obvious advantage of not having to perform symbolic
computations, AD can provide more stable results in certain cases
(Griewank and Walther, 2008).

AD has typically two distinct modes of derivatives propagation:
forward mode and reverse mode (Giering and Kaminski, 1998).
Here, we are using the reverse mode, which is to accumulate the
derivatives starting from the end of the function. It is more efficient
for functions with more inputs than outputs (Moses and others,
2021, 2022), which is the case in our study, since the objective func-
tional 𝒥maps the vector with a component for each grid point to a
scalar value.

In this study, we use Enzyme (Moses and Churavy, 2020), a
high-performance AD compiler plugin for the LLVM compiler

framework (Lattner, 2002) capable of synthesising gradients of pro-
grams expressed in the LLVM intermediate representation. The
main benefit of working at the compiler level is the ability to
differentiate the code after optimisation, resulting in substantial
speedups compared to working on the source code level. Enzyme
is one of the few existing AD tools that allows differentiating GPU
code. Enzyme’s Julia interface, Enzyme.jl, makes it possible to
differentiate GPU code written in a high-level language.

2.4.4. Adjoint problem
We compute the derivatives of the discrete objective functions
reported by (3) and (5), which are needed in the optimisation pro-
cedure (16)–(19), using AD. The gradient, computed according to
(19) in the inversion procedure, can be expanded using the chain
rule as:

d𝒥
dAs

= 𝜕𝒥
𝜕𝒮

d𝒮
dAs

+ 𝜕𝒥
𝜕As

, (26)

where 𝒮 = {H,V} is the solution vector including both ice thick-
ness and velocity. Note that the term d𝒮/dAs is dependent on the
full forward model calculation and thus may require the above-
mentioned storage of intermediate results in the reverse-mode AD
evaluation.

However, in the snapshot case, the forward model is computed
with just the algebraic evaluation of the surface velocity V from
(9). Because the evaluation does not involve an iterative solver, the
derivative calculation of d𝒮/dAs via reverse-mode AD is straight-
forward and efficient as no intermediate results are generated.

Conversely, the time-dependent inversion requires solving the
differential equation (11) for a given time span.The forwardmodel,
after discretising the time derivative, is a nonlinear degenerate
elliptic equation, which we solve using an implicit time integra-
tion with the iterative APT algorithm described above. Thus, the
reverse-mode AD calculation would require storing all interme-
diate iteration steps since the result of an iterative solve formally
depends on the initial guess. While feasible for small problems
based on 1-D models such as flowline models, for high-resolution
2-D and 3-D models, the amount of memory required to store
intermediate results becomes prohibitively large.

However, the result of a converged iterative solve only varies
for changes in the initial guess in a small range within the non-
linear solver tolerance, and thus we can remove the dependence
on the initial guess and with it the need to save the intermediate
calculations. Using this approach requires modifications to the AD
workflow, which go under the name of adjoint statemethod. In this
method, the gradient given by (26) is calculated with:

d𝒥td

dAs
= 𝜓𝜕ℛf

𝜕As
+ 𝜕𝒥td

𝜕As
, (27)

where the adjoint state 𝜓 can be calculated with the adjoint
equation:

𝜓𝜕ℛf
𝜕𝒮 = −𝜕𝒥td

𝜕𝒮 . (28)

Note that now the gradient can be calculated without employ-
ing the solution of the forward model and thus without needing
memory-intensive storage for reverse-mode AD at the cost of a
relatively cheap linear solve of (28). Further note that formally
the residual ℛf depends only on H according to (22), therefore,
𝜕ℛf/𝜕V = 0. In the numerical implementation, we do not
include the unnecessary degrees of freedom to save computational
resources, but here we keep the extended notation for consistency.
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Table 5. Parameters for the synthetic and Aletsch configurations. Parameters not applicable for the Aletsch configuration are marked with ‘–’

Synthetic Aletsch

Asini Sliding parameter initial guess 10−22 10−22 Pa−3m2 s−1

As0 Background sliding parameter value 10−22 – Pa−3m2 s−1

Asa Sliding parameter perturbation amplitude 2 – –
ω Sliding parameter perturbation wavelength 3π – –
Lx Domain extent in x dimension 2 × 104 – m
Ly Domain extent in y dimension 2 × 104 – m
B0 Background topography elevation 103 – m
BA Maximum topography elevation 4 × 103 – m
W1 Characteristic width in x dimension 104 – m
W2 Characteristic width in y dimension 3 × 103 – m
zELA Equilibrium line altitude 1800 3265 m
c Mass-balance gradient 0.01 0.0112 a−1
.
bmax Maximum accumulation rate 2.5 1.14 ma−1
E Correction factor 1.0 0.25 –
h Spatial resolution 25 25, 50, 100, 200 m
Δt Time step 15 1 a
γ Regularisation parameter 10−6 10−6 (snapshot), 3 × 10−8 (time-dependent) –
𝜔n

V Normalised velocity weight 0,
√

2/2, 1 1 (snapshot), 0.01 (time-dependent) –
𝜔n

H Normalised thickness weight 1,
√

2/2, 0 1 –

Toprove that the gradientd𝒥td/dAs computed using (27) is con-
sistent with (26), we use the fact that at the solution, the residual of
the forward problem vanishes for allAs, i.e.ℛf(𝒮) = 0. Computing
the derivative with respect to As and using the chain rule yields

dℛf
dAs

= 𝜕ℛf
𝜕𝒮

d𝒮
dAs

+ 𝜕ℛf
𝜕As

= 0 . (29)

Solving this for 𝜕ℛf/𝜕As, inserting into (27) and further simpli-
fying with (28) transforms (27) into (26) and thus completes the
proof.

We solve (28) using the same APT procedure as for the forward
problem, by employing the two-stage procedure, updating the rate
of change of the variable 𝜓 with the damped residual, and then
updating 𝜓 with the pseudo-time step Δ𝜏:

𝒢k+1
𝜓 = 𝜉APT 𝒢k

𝜓 + ℛa(𝜓k), (30)

𝜓k+1 = 𝜓k + Δ𝜏 𝒢k+1
𝜓 , (31)

where 𝒢𝜓 is the rate of change of 𝜓. We use the same pseudo-
time step Δ𝜏 reported by (25) for the adjoint problem since the
spectral properties of the adjoint operator are the same as those of
the linearised forward operator. We summarise the steps to com-
pute the gradient of the time-dependent objective function ∇𝒥td in
Table 4.

We investigate two different model configurations for which we
will perform snapshot and time-dependent inversions. The first
model configuration uses synthetic glacier geometry and SMB.The
second model configuration uses elevation, velocity and SMB data
from the Aletsch glacier in the Swiss Alps. Hereafter, we describe
the initial conditions and model configurations. The values of the
parameters used in both the synthetic and Aletsch case are listed
in Table 5.

In a synthetic model set-up, we compare the results using
different weights (𝜔n

V , 𝜔n
H) in the objective function of the time-

dependent inversion (5). We use the Aletsch glacier configuration
over the hydrological years 2016–17 to assess how using snapshot
versus time-dependent inversion results impact surface velocity
distributions and geometry changes and perform a mesh conver-
gence test for both the snapshot and time-dependent cases.

2.5. Synthetic glacier

For the synthetic case, we generate a synthetic bed topography
inspired by what Visnjevic and others (2018) suggested for bench-
marking purposes and define the bedrock B as a combination of
two Gaussian shapes (Fig. 1a):

B = B0 + BA
2 {exp [− ( x

W1
)

2
− (

y
W2

)
2
]

+ exp [− ( x
W2

)
2

− (
y
W1

)
2
]} , (32)

where B0 is the background elevation, BA is the mountain height,
W1 andW2 are characteristic widths, and x and y are the horizontal
coordinates.

With this configuration, using a uniform distribution of the
sliding coefficient As = As0 and the simple altitude-dependent
SMB model (13), we run the forward model to steady state, setting
Δt = ∞ in (21), in order to generate synthetic initial ice thickness
H init (Fig. 1c) and velocity fields V init (Fig. 1b).

We then define a synthetic perturbation of the sliding parameter
Asyn
s :

log10 A
syn
s = log10 As0 + Asa cos(𝜔 x

Lx
) sin(𝜔

y
Ly

) , (33)

where As0 is the background value, Asa is the perturbation ampli-
tude in log-space and ω is the perturbation wavelength. Lx and
Ly are the model extents in the x and y directions, respectively.
Additionally, we perturb zELA with a step increase of 20%. We then
useH init as the initial condition for a forward SIA run with the per-
turbed parameters over a time span of 15 years with one time step
of equal length to generate the synthetic thickness Hobs (Fig. 1f)
and velocity fields Vobs (Fig. 1e).

2.6. Aletsch glacier

As the second configuration, we use the Aletsch glacier, the largest
glacier in the Alps (Fig. 2). With this configuration, we show that
our inversion framework is capable of inferring a spatially variable
sliding coefficient As by using surface velocity V and changes in
the ice geometry H as observational data during the hydrological

https://doi.org/10.1017/jog.2025.40 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.40


8 Ivan Utkin et al.

Figure 1. Synthetic glacier configuration. (a) Bedrock elevation and glacier outline; (b) initial (steady) state ice velocity magnitude; (c) initial (steady) state ice thickness
distribution; (d) perturbed sliding coefficient distribution; (e) synthetic ice velocity magnitude after Δt = 15 years; (f) synthetic ice thickness after Δt = 15 years.

Figure 2. Aletsch glacier configuration. (a) Bedrock elevation and glacier outline; (b) measured ice velocity magnitude for the years 2016–17; (c) mass-balance mask; (d)
reconstructed ice thickness distribution for the year 2016 interpolating data from years 2009 and 2017; (e) change in ice thickness in the hydrological years 2016–17; (f) surface

mass-balance model depicting
.
b as a function of altitude z showing data points and fitted piece-wise linear model.

years 2016–17. To generate the input data for the Aletsch glacier,
we process elevation (bedrock and surface), ice surface velocity and
SMB data.

We extract bedrock and surface elevation from Grab and oth-
ers (2021) combined with swissALTI3D (Swiss Federal Office of
Topography swisstopo, 2022) in ice-free regions (Fig. 2a). Since
we do not have ice surface elevation data for the year 2016, we
create it by assuming a linear variation between the years 2009
and 2017, for which digital elevation models are available. We
then compute ice thickness from bedrock and ice surface elevation
(Fig. 2d,e).

We extract annual ice surface velocity data V from Rabatel
and others 2023 for the hydrological years 2016–17 (Fig. 2b). We

replace missing values with zeros to run the numerical codes and
resample the data tomatch the bedrock extent and resolution using
cubic spline interpolation. We also mask the velocity data with the
ice mask, ensuring consistency among velocity and ice thickness
datasets.

We extract SMB data for the 2016–17 hydrological year (Fig. 2f)
from GLAMOS - Glacier Monitoring Switzerland (2023) to fit our
simple altitude-dependent parameterisation (13). One caveat of
using a simple altitude-dependent SMB model is that it does not
account for lateral variations in mass balance, which may result
in nonzero ice thickness in regions where the observed surface is
ice-free. Here, we use a distributed correction for the mass bal-
ance by introducing a mass-balance mask (Fig. 2c), which removes
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Figure 3. Time-dependent inversion of As on synthetic set-up. (a) Synthetic basal sliding parameter distribution (ground truth to be reconstructed); (b) ice surface velocity
distribution after Δt = 15 years (the observed ice velocity to be used in the objective function during reconstruction); (c) ice thickness and geometry after Δt = 15 years
(the observed ice thickness to be used in the objective function during reconstruction); (d–f) time-dependent inversion of As using both Vobs and Hobs in the objective
function setting 𝜔n

V = 𝜔n
H (Eqns (6) and (7)); (g–i) time-dependent inversion of As using only Vobs in the objective function setting 𝜔n

H = 0; ( j–l) time-dependent inversion
of As using only Hobs in the objective function setting 𝜔n

V = 0. For the three inversion scenarios, we report comparison of reconstructed versus synthetic sliding parameter:
As err = ∣As − Asynth

s ∣ /Asynth
s ; (d, g, i) a comparison of reconstructed versus observed velocity Verr = ∣V − Vobs∣ /Vobs; and (e, h, k) geometry (thickness) Herr = ∣H − Hobs∣ /Hobs.

ice accumulation in regions where the observed ice thickness is
zero.

3. Results

3.1. Time-dependent inversion on synthetic geometry

We perform a time-dependent inversion to reconstruct the spatial
distribution of the basal sliding parameter As in a synthetic model
set-up (Fig. 1).We aim at reconstructing the synthetic sliding coef-
ficient distribution (Fig. 3a) using synthetic velocity observations
Vobs (Fig. 3b) and ice geometry observations Hobs (Fig. 3c) which
were generated by running the forward SIA model with Asyn

s (33)
for one time step of Δt = 15 years. We achieve this inversion by
minimising the objective function (5) using the optimisation algo-
rithm described above. We stop the optimisation procedure after
1000 iterations of the algorithm (Eqns (16)–(18)), ensuring con-
vergence and achieving a reduction in the objective function by
more than three orders of magnitude.

We have performed systematic numerical experiments to deter-
mine the values of regularisation parameter γ and normalised
weights 𝜔n

V and 𝜔n
H . Since we do not include any artificial noise in

the synthetic observations andparameters, and the synthetic distri-
bution of sliding parameter Asynth

s is sufficiently smooth, the value
of γ does not affect the inversion results below a certain thresh-
old 𝛾 ≈ 10−6, since there is an exact solution for As. However,
selecting γ values significantly smaller than 10−6 results in slower
convergence of the implicit SIA solver due to the highly irregular
intermediate distributions of As.

Using any combination of weights for the velocity and ice thick-
ness data accurately reconstructs the synthetic As field in regions
far from the ice margin, with the largest discrepancies occurring
near the glacier boundaries. Inversion relying solely on synthetic
velocity data, as shown in Figure 3g–i, achieves the best fit for
the sliding parameter As within the glacier interior. However,
near the boundaries, the reconstruction error increases to over
100%. Conversely, inversion using only synthetic ice thickness
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data, illustrated in Figure 3j–l, provides the most accurate fit near
the ice margin but yields the poorest reconstruction quality within
the glacier interior.

Finally, incorporating both ice thickness and velocity data
with 𝜔n

V = 𝜔n
H in the time-dependent inversion offers a bal-

anced approach between these two extremes. As demonstrated in
Figure 3d–f, this hybrid time-dependent inversion reproduces the
synthetic As field more effectively than the velocity-only inversion
near the boundaries and outperforms the thickness-only inversion
in the interior.

A possible explanation for this phenomenon is that, near the
ice margin, the ice thickness H decreases rapidly, while the gradi-
ent ∇S increases in magnitude, as described by (9). Consequently,
the sensitivity of velocity V to changes in As diminishes towards
the ice margin. In contrast, the ice thickness remains sensitive to
variations in As near the glacier boundary. These results suggest
that time-dependent inversions incorporating both velocity and
thickness data in the objective function provide the most accurate
reconstruction.

3.2. Time-dependent versus snapshot inversions for Aletsch
glacier

In the following numerical experiments, we aim to assess the qual-
ity of the modelled surface velocity and ice thickness fields on
Aletsch glacier for basal sliding distributions reconstructed using
the snapshot and the time-dependent inversion strategies. We also
investigate the impact of refining the spatial resolution in a mesh
convergence experiment. In the time-dependent inversion, we run
the forward model for Δt = 1 year (2016–17). We stop both
the snapshot and time-dependent optimisation procedures after
1000 iterations of the algorithm (Eqns (16)–(18)). In all cases, the
objective function stopped decreasing further before reaching 1000
iterations.

3.2.1. L-curve analysis
We use the L-curve method to empirically select the regularisation
parameter γ in the inversion. We systematically perform multiple
inversions with different values of γwithin the range [5×10−9; 5×
10−7] and plot the corresponding values of the observational part
𝒥obs of the objective functional against the values of the regularisa-
tion component 𝒥reg. These points geometrically form an L-shaped
curve, where large values of 𝒥reg indicate overfitted solutions, and
large values of 𝒥obs indicate excessively smoothed solutions. The
corner of this L-curve identifies the optimal balance between fitting
the data and applying regularisation. Figure 4 shows an example
of an L-curve, where each point represents the result of a time-
dependent inversion for the Aletsch glacier with a different value of
γ. We have performed a similar analysis to determine the optimal
range of the normalised weights of the contributions of the veloc-
ity and the ice thickness 𝜔n

V and 𝜔n
H , respectively. The values of the

parameters selected by the L-curve method are listed in Table 5.

3.2.2. Mesh convergence
In this section, we investigate mesh convergence by systematically
running inversions to find the coarsest resolution atwhich the solu-
tion does not exhibit mesh dependence. The impact of refining the
computational mesh on reconstructed As for the Aletsch glacier
configuration is assessed for both the time-dependent (Fig. 5a–d)
and snapshot (Fig. 5e–f) inversions. The coarse grid with grid cell
sizes of 200m (Fig. 5a,e) does not capture finer structures that may
impact the ice-flow velocity field.Thefinest grid, with grid cell sizes

Figure 4. L-curve for the time-dependent Aletsch inversion. The point corresponding
to the optimal regularisation parameter 𝛾 ≈ 3.5 × 10−8 is highlighted in red.

of 25m (Fig. 5d,h), accurately captures variations in As. The fact
that the features and patterns do not significantly change for resolu-
tions of 50mand25msuggests thatwe achievedmesh convergence
for discretisation using grid cell sizes of 25m and motivates our
numerical resolution choice throughout the paper.

3.2.3. Reconstructed velocity field
We report the surface velocity distribution on the Aletsch glacier
for the hydrological years 2016–17 using a spatial resolution of
25m. We compare three inverted surface velocity distributions,
shown in Figure 6b–d, to the observed surface velocity data taken
from Rabatel and others (2023), shown in Figure 6a. In the snap-
shot case, the reported velocity field, shown in Figure 6b, is
obtained by computing the SIA velocity from (9) for the recon-
structed distribution of the sliding parameter As (Fig. 5h), while
keeping the glacier geometry set to the ice thickness distribution
from Grab and others (2021). Discrepancies such as high-velocity
patches and other artefacts are clearly visible when comparing the
modelled velocity (Fig. 6b) to the observed velocity (Fig. 6a).

On the other side of the spectrum, performing time-dependent
inversion for the 2016–17 period (Fig. 6d) provides a much bet-
ter fit between modelled velocity and data (Fig. 6a) (see next
subsection for the quantitative analysis).The corresponding recon-
structed basal sliding distribution (Fig. 5d) for the time-dependent
case features less high-frequency detail compared to the distribu-
tion of As in the snapshot case (Fig. 5h).

As an additional case, we consider a scenario, which we call
‘Snapshot+’, where the distribution of the sliding parameter As is
taken from the snapshot inversion, but the velocity field is com-
puted by running the forward SIA model for the time period
2016–17 with the same parameters as for the time-dependent
inversion. This scenario is inspired by previously used combina-
tions of inversion and spin-up to avoid transient shocks at the
beginning of prognostic model runs e.g. Gillet-Chaulet and oth-
ers (2012), Lipscomb and others (2021). We observe that the
Snapshot+ model run delivers a slightly improved surface veloc-
ity field, as shown in Figure 6c, although being outperformed by
the results from the time-dependent inversion.

3.2.4. Errors of velocity and ice thickness after inversion
Using the results of the snapshot and time-dependent inversion,
we evaluate the difference between the observed surface velocity
for the hydrological years 2016–17 and the modelled one, as well
as the difference between observed surface elevation at the end of
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Figure 5. Mesh convergence for the Aletsch glacier configuration for time-dependent (a–d) and snapshot (e–h) inversions showing the As field. Spatial grid resolution
refinement reducing from 200 m (a, e), 100 m (b, f), 50 m (c, g) and to 25 m for the highest resolution (d, h).

Figure 6. Observed and predicted ice surface velocity distribution for different inversion scenarios. (a) Observed distribution on the Aletsch glacier for the hydrological years
2016–17 (same as panel Figure 2b); (b) predicted distribution retrieved upon convergence of the snapshot inversion; (c) predicted distribution running the ice-flow solver for
one time step of Δt = 1 year using As reconstructed by the snapshot inversion; (d) predicted distribution from the time-dependent inversion.

that hydrological year and the modelled one. The error is evalu-
ated as the percent relative local difference between modelled and
observed quantities V̂err = (Vs − Vobs)/Vobs × 100% and equiv-
alently for the ice thickness H. Note that this is different from
the synthetic case where we computed fractions and not percent
(Fig. 3).

We report better quality velocity fields, thus lower V̂err, for
the time-dependent case (Fig. 7a), compared to the snapshot case
(Fig. 7b). Averaged over the whole glacier, V̂err is −26% and −13%
for the snapshot and time-dependent inversion, respectively. This
contrasts with the thickness error, Ĥerr, which is slightly lower for
the snapshot than for the time-dependent inversion (Fig. 7c,d).
However, the glacier-averaged thickness errors, which are between
−3 and −4%, are significantly lower for both types of inversions
than either of the velocity errors.

In both Snapshot+ and time-dependent cases, the relative error
in velocity is larger closer to the glacier margins than closer to
the central flowline. The main reason for that is the magnitude of
velocity is small nearmargins, and small mismatches result in large
relative errors. For time-dependent case, these relative errors are

larger than for the Snapshot+ case. One possible explanation is the
inconsistency between the ice surface and velocity datasets, which
leads to locally contradicting optimisation objectives, especially
near the margins where the ice thickness changes abruptly.

3.3. Performance

We evaluate the performance improvements achieved by
enabling GPU acceleration in our code by benchmarking the
forward SIA solver of Glaide.jl against a parallel CPU code
PISM (Winkelmann and others, 2011). The benchmark involves a
100 years forward simulation of our synthetic glacier case without
sliding, tested at spatial resolutions (grid cell sizes) of 25, 50, 100
and 125 m. PISM is chosen for comparison due to its reliance on
finite differences, inclusion of a SIA ice-flow solver, and support
for distributed memory parallelisation on CPUs using MPI, which
maximises CPU compute capabilities. Wall-time is used as the
primary performance metric, as it reflects practical concerns
regarding time-to-solution. More complex metrics would neither
aid the reader nor enhance the comparison of fundamentally
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Figure 7. Inversion errors for Aletsch glacier reported
as percent error relative to the locally observed quan-
tity. Error in velocity (top row, a, b); and in geometry
(ice thickness) (bottom row, c, d); errors for Snapshot+,
i.e. snapshot inversion results advanced forward in time
by 1 year (left column, a, c); and time-dependent inver-
sions (right column, b, d). Note that (a) corresponds to
the relative difference of panel (c) and (a) of Figure 6 and
(b) of panel (d) and (a).

different computing processors. Benchmark runs were conducted
on HPC hardware, specifically a single Nvidia A100 GPU (40
GB) and an AMD EPYC 7282 16-Core CPU, with peak memory
bandwidths (data transfer speed between memory and processor)
of approximately 1555 GB/s and 85 GB/s, respectively. Note that
the CPU’s monetary value is about an order of magnitude smaller
than the GPU’s.

The PISM SIA solver employs an explicit time-stepping scheme
with step sizes adjusted to satisfy the CFL condition. In contrast,
Glaide.jl uses implicit time steps Δt = 2 years. Simulations were
conducted for the four resolutions, and wall-times were recorded.
GPU-accelerated Glaide.jl runs completed within seconds, while
MPI-parallel PISM simulations required hours for the finest tested
grid resolution of 25m (array size 800×800).TheGPU implemen-
tation achieved speedups of up to three orders of magnitude in the
25 m case (Table 6). To assess accuracy, the L2 error norm of the
scaled difference ΔH = |HGlaide.jl − HPISM|/|max(HGlaide.jl)| was
calculated at a 50 m resolution, yielding ||ΔH||2 = 2.66 × 10−5.

4. Discussion

The comparison between snapshot and time-dependent inversions
for the Aletsch case highlights differences in the recovered sur-
face velocities (Fig. 6) and associated basal sliding coefficient fields
(Fig. 5d,h). The snapshot inversion tends to produce unrealistic

distributions ofAs, particularly concerning lateral distribution and
patchiness, resulting in significant errors in the modelled velocity
field (Figs. 6c and 7a). Conversely, the time-dependent inversion
incorporates changes in ice geometry and velocities over time,
allowing, in a sense, limited nonlocal influences on ice velocity
through evolving geometry. This yields less patchy results that
better conform to the observed data. Nonetheless, the bed likely
remains too slippery along the lateral margins. We identify two
main factors affecting results of inversions, stemming from limi-
tations of the forward model and the quality of datasets.

The first factor that could probably explain these unrealistic dis-
tributions of As and the mismatches between the modelled and
observed velocities is the absence of membrane stresses in the
SIA framework, resulting in the velocity being only a function of
local geometry (this is why V can be calculated with an algebraic
relation according to (9)). Even the nonlocal nature of the time-
dependent forward SIAmodel is not enough to compensate for the
lack of membrane stresses, suggesting the need for a more com-
plex ice-flow model. This includes governing equations, rheology
and other parameterisations, such as the sliding law and the SMB
model.

The second factor involves uncertainties in the observational
datasets. Errors in measured surface velocities or ice surface ele-
vation can propagate through the inversion process, leading to
deviations in the reconstructed basal properties. Additionally,
mismatches between the velocity and ice surface datasets, which
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Table 6. Solver performance comparison. We use wall-time as a metric to compare the time it takes to solve the forward problem without sliding on our synthetic
geometry. The Glaide.jl code runs on a single Nvidia A100 GPU, while the PISM code runs on 16 MPI ranks (16 cores) on a single data-centre AMD EPYC 7282 16-Core
CPU

Wall-time (s)

Resolution (m) Grid size Glaide.jl PISM Speedup (-)

125 160 × 160 0.38 26.80 71
100 200 × 200 0.92 59.63 65
50 400 × 400 2.54 893.89 352
25 800 × 800 15.44 14274.07 924

Figure 8. Time evolution simulation of the Aletsch glacier
over 2 years (hydrological years 2016–18) using the sliding
coefficient from the snapshot (left column) or time-dependent
(right column) inversion. Panels depict the change in veloc-
ity (top row) and in thickness (bottom row) for the two
simulations over the second year (2017).

arise from these products being derived from different source data,
could further affect the quality of the inversion.

One of the premises for this study, highlighted in Section 1 (e.g.
Joughin and others, 2009; Goldberg and Heimbach, 2013), is that
time-dependent inversions should minimise unrealistically large
initial changes in surface elevation or velocity when the inverted
sliding coefficient distribution is then used in a forward model
run. To assess this, we ran the model forward with inverted As for
both the snapshot and the time-dependent inversion for 1 year.The
results in Figure 8 show that for our case this premise is not true; in
particular, the velocity change during the modelled year (Fig. 8a,b)
is much larger for the simulation based on the time-dependent
inversion, with the exception of a few narrow patches that show
extreme velocity variations in the snapshot case. We believe that
this is probably due to (i) limitations of using SIA in such a setting,
which warrants future investigations with other forward models

and in different contexts, such as ice-sheet simulations; and (ii)
incompatibility of our forward model with the used bed geometry
(Grab and others, 2021) which itself is derived from an inver-
sion procedure using a different forwardmodel.The discrepancy is
more subtle for ice thickness change during themodelled year (Fig.
8c,d), where the simulation based on the time-dependent inversion
predicts, for instance, slightly less change on the glacier’s tongue.

Our study lays out a broadly applicable inversion method that
can be adapted to more sophisticated ice-flow models with ease;
the forward model could be replaced with a different physical ice-
flow model or even a machine learning model, such as a neural
net. This flexibility is possible as the employed AD tool (Enzyme
used within Julia) can differentiate through almost arbitrary Julia
code, including physical and statistical models. Recent advances
in machine learning have resulted in the development of promis-
ing data-driven parameterisations for surface processes, which
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capture spatiotemporal variations in climate and weather forc-
ing (Anilkumar and others, 2023; van der Meer and others, 2024).
Using AD would enable efficient fine-tuning of these data-driven
parameterisations to be used in combination with physics-based
ice-flow models, resulting in better predictions. The versatility of
our approach also extends towhich fields are inverted for and could
be readily adapted to target bed topography and/or SMB instead of
only reconstructing the basal sliding coefficient. This versatility is
made possible by the use of AD andGPU acceleration, allowing for
efficient and robust optimisation procedures.

We aim to enable predictive modelling at regional and global
scales, utilising the ever growing spatial and temporal resolution
of observational data. Physics-based forward models capture a
broad range of physical processes but demand substantial compu-
tational resources at target resolution. Overcoming this challenge
necessitates the use ofmodern supercomputers, which are predom-
inantly powered by GPUs. It is thus essential to develop models
with GPU optimisation in mind. The Julia programming language
uniquely combines high-level functionality with native support
for GPUs and AD. This study demonstrates the integration of
high-performance GPU computing and AD-powered adjoint sen-
sitivity analysis within a high-level programming environment.
Implemented entirely in Julia, the codebase enhances reproducibil-
ity and accessibility, making it both efficient and educationally
valuable. Unlike traditional implementations in low-level lan-
guages, this approach streamlines development and reduces com-
plexity, enabling faster, more accessible model refinement.

The performance benchmark for the forward SIA solver
demonstrates that GPU acceleration dramatically reduces time-to-
solution for the forward model. With speedups beyond two orders
of magnitude compared to a CPU code, the GPU-accelerated code
significantly shortens the runtime of the forward solver, making
larger-scale inversions feasible. Such inversion workflows often
require the forward solver to be executed numerous times, under-
scoring the importance of this performance gain. The substantial
bandwidth provided byGPUs, when effectively utilised, accelerates
computations in such memory-bound computations.

In this study, we included only two time points in the time-
dependent inversion, made possible by employing implicit time
integration of the forward model. This approach eliminates the
need to store intermediate results for reverse-mode AD evaluation.
In contrast, the often-used explicit time integration in glaciologi-
cal forward models requires numerous time steps and, thus, would
require complicated checkpointing schemes for practical inver-
sions to limit memory requirements during reverse-mode AD (see
Section 2.4). Given the typical temporal sparsity of many glacio-
logical datasets and the efficiency of implicit time stepping for
ice-flow simulations (Bueler, 2023), our approach, using implicit
time integration with larger time steps combined with the adjoint
state method, reduces the need for slow and complex checkpoint-
ing algorithms, which trade storage for redundant forward model
computations and thus can be a significant computational bottle-
neck (Stumm and Walther, 2010).

Previous studies have demonstrated that AD-based inver-
sions, including both snapshot and,more recently, time-dependent
approaches, are feasible and yield useful results (e.g. Goldberg and
Heimbach, 2013; Larour and others, 2014; Goldberg and others,
2015). However, the computational demands associated with these
methods remain a significant challenge (Choi and others, 2023).

This study demonstrates that such inversions can be effec-
tively performed on GPUs with good performance, suggesting that
this approach could enable broader adoption of these methods

in the future. An alternative approach to achieve potentially even
higher performance involves the use of statistical emulators (e.g.
Brinkerhoff and others, 2021; Jouvet, 2023). However, this comes
at the cost of reduced fidelity or the risk of failure when applied
outside the domain spanned by the training data.

The method employed in this study is similar to other adjoint-
based, time-dependent inversions. However, the solver used—the
APT method—is a matrix-free approach particularly well suited to
GPUs, as it requires very few global operations, which are typically
the primary bottlenecks in GPU computations.

Replacing the SIA forward model with a depth-integrated
higher-order model, such as DIVA or L1L2 (Schoof and
Hindmarsh, 2010; Goldberg, 2011; Robinson and others, 2022),
should improve the accuracy of parameter reconstructions and
enable inversions in regions where membrane stresses are signif-
icant, such as dynamic areas of ice sheets or faster-flowing alpine
glaciers. Adapting the code to support these higher-order models
is feasible, as the current design already solves nonlinear elliptic
equations and their corresponding linear adjoint state equations,
which are required for such models. Although this modification
will increase the computational cost of the model evaluations,
it remains feasible due to the GPU-based implementation. For
context, one of the presented Aletsch inversions takes a few
minutes on a single Nvidia A100 GPU, demonstrating that even
more computationally expensive model runs could be handled.

Our study supports the findings of, e.g., Goldberg and
Heimbach (2013); Larour and others (2014); Goldberg and others
(2015); Choi and others (2023) that time-dependent approaches
can accurately reconstruct basal properties of glaciers. This type
of inversion is particularly valuable for studying systems that are
inherently time-dependent, such as the ice geometry evolution
investigated in this study, or subglacial hydrology and its rela-
tionship to ice dynamics. In alpine environments, these advanced
inversion methods could provide insights into the evolution of
glacier sliding, for instance, improving our understanding of haz-
ards linked to sliding instabilities of steep glacier tongues (Faillettaz
and others, 2010).

5. Conclusion

Themain contribution of this work is the development of amethod
and numerical implementation to reconstruct a spatially vari-
able glacier basal sliding coefficient using automatic generation
of adjoint code via AD on GPUs. Our main findings highlight
that (i) combining both geometry change and velocity in the
objective function provides a more accurate reconstruction of the
sliding parameter; (ii) time-dependent inversion provides a bet-
ter quality fit of the basal sliding parameter improving surface
velocity reconstruction compared to the snapshot inversion; and
(iii) working with higher spatial resolution improves the inver-
sion quality on the Aletsch glacier, with converging results for
spatial resolutions between 50 and 25 m, close to that of the
observational dataset. Given the computational expense of run-
ning time-dependent inversions on high-resolution data, leverag-
ing new tools such as GPU processing and automatic generation
of adjoint code using AD is essential. These advancements are cru-
cial for advancing time-dependent inversions to a new level, both
in spatial and temporal resolution.
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