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ABSTRACT. Satellite-altimeter data over ice sheets
provide the best tool for mapping their topography and its
possible climatic variations. However, these data are affected
by measurement errors, orbit errors, and slope errors. We
develop here a three-step inversion technique which
accommodates the a priori information on the expected
topography and correctly handles and propagates the data
errors: it estimates first a large-scale reference surface, then
maps the residuals related to undulations, and finally
iteratively corrects the slope error. The method is tested on
overlapping small fragments of the Antarctic ice sheet, using
a sub-set of Seasat data. Finally, a topographic map of
Terre Adelie is produced. Over areas of small slopes, the a
posteriori error should be of the order of 0.4 m. Using
ERS-I data, it is therefore expected that climatic variations
in the ice-sheet topography since the introduction of Seasat
will be observable.

INTRODUCTION

The use of Geos-3, Seasat, or Geosat altimeter
measurements over Antarctica and Greenland give major
information for use in glaciological studies. From the three
classical altimetric parameters (transit time, width of the
leading edge of the radar wave forms, and total intensity of
the received energy), such different geophysical parameters
are provided as topography (e.g. Brooks and others, 1978;
Zwally and others, 1983), or wind intensity (Remy and
others, in press). Here, we will study the altimetric height
as given by the Seasat altimeter over East Antarctica.

The topography of continental ice is useful for models
of ice-sheet flow, for climatic surveys, or for undulation
studies. Ice-sheet topographies have been derived from
Geos-3, Seasat, and Geosat data (Brooks and others, 1982,
1983; Zwally and others, 1983, 1987). The error estimation
is as important as the topographic map itself. Up to now,
the error has been estimated, mostly from internal con-
sistency checks, at around I m. These estimates do not
adequately take into account the error in the orbit nor the
errors introduced by the slope of the ice surface. The
objective of the present note is to propose, implement, and
test a technique to derive reproducible ice-sheet topo-
graphies and their error estimates. We will show that
precision of less than I m is achievable with Seasat data. It
is therefore suggested that the long-term evolution of ice-
sheet topographies can indeed by estimated from satellite
data.

In the first section we discuss the various sources of
error in satellite-altimeter measurements. The second section
explains how unbiased estimates of the topography and its
error can be obtained by an inverse technique. It relies on
a priori covariances of the expected parameters and realistic
estimates of the measurement errors which are described in
section 3. The slope-error correction is further discussed in
section 4 and an optimized technique to correct this error is
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proposed. The method is then tested on small parts of the
Antarctic ice sheet, and applied to Terre Adelie, using
Seasat data (section 5). Further possible improvements and
the consequences of the results are then discussed in
sections 6 and 7.

1. THE ERRORS OF SATELLITE-ALTIMETER
MEASUREMENTS OVER ICE SHEETS

A radar altimeter transmits pulses toward the sub-
satellite point and receives the returned signal, after
reflection at the surface (see, for example, MacArthur,
1978). The transit time of the signal will provide the
altimetric height. Three kinds of distinct errors affect its
estimation.

a. The measurement error
This is the error in the distance between the satellite

and the nearest point of the ice surface. The main
difficulty arises from a correct estimation of the first return
time of the signal, because return wave forms cannot be
accurately described by a simple analytical model such as
Brown's (1977). Also, as the distance to the surface varies
quickly, the tracking system (which pre-positions the
receiving window based on previous measurements) cannot
follow the variations in height, and consequently (in the
case of Seasat) the on-board estimate of height is
inaccurate. A re-estimation of this height, named
"retracking" must be applied. Brooks and others (1983)
proposed to estimate the return time of the signal as the
time when the received energy is 50% of the maximum
return power. Martin and others (1983) fitted a functional,
derived from Brown's model, to the altimeter wave form
for retracking. Remy and others (in press) deduced the
position of the middle of the leading edge from the total
energy. The last method, tested on repeat profiles of the
Seasat altimeter data, provides a reproducibility of
50 em Lm.S. This method, which is easier than that of
Martin and others and more reproducible than that of
Brooks and others, will be used here. Ridley and Partington
(1988) recently suggested that volume retrodiffusion from
the ice affects the wave forms of a radar altimeter. In this
case, the height, with any retracking technique, would not
correspond to the ice surface but to a level somewhat below
(of the order of I m). This effect still requires further
studies.

In addition to the estimate of the transi t time of the
signal, effects of propagation through the atmosphere should
be considered. As the troposphere above continental ice is
very dry (less than I g/cm2 of water vapor), the so-called
wet tropospheric corrections can be neglected (see, for
example, Tapley and others, 1985). On the other hand, a
dry tropospheric correction should be applied, related to the
pressure at the surface.

This correction, for an altitude varying from 1000 to
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3000 m above sea-level, varies from 1.9 to 1.4 m
(Saastamoinen, 1972). An additional correction related to
meteorological pressure variations should in principle be
applied: a 20 mbar difference induces a 4 cm difference. In
the absence of reliable meteorological data, at the date of
the measurements, we have only applied the pressure
correction related to altitude. Finally, the effect of the
ionosphere is estimated from models of the total electron
content, which is Quite uncertain in auroral belt areas (see,
for example, Lorell and others, 1982). A long wavelength
residual error of the order of 30 cm in the altimeter value
can be expected from this uncertainty. In what follows, it
will be assumed for simplicity that this error is "absorbed"
in the orbit error of similar wavelength.

b. The orbit error
This is the uncertainty in the radial position of the

satellite. The satellite ephemerides are computed from the
dynamic laws of motion combined with laser- or
doppler-tracking data. The accuracy of the nominal orbit
over high latitudes is probably worse than over temperate
regions because of the lack of tracking stations and of the
relatively larger error in existing geopotential models. For
Seasat, this error is of the order of 70 cm r.m.s. (Lerch and
others, 1982). A value of 1 m will be used here. The
orbit-error spectrum is dominated by the one cycle per
orbit revolution "free" frequency of the satellite. This allows
us to represent the radial orbit error along each altimeter
profile of length less than 10 000 km by a linear or
Quadratic polynomial fitted in order to minimize the height
departures from the other crossing profiles. This procedure
is frequently applied as a preliminary step before mapping
oceanic or ice-sheet topography.

However, this inexpensive method of orbit-error
reduction does not satisfy the requirement of high-accuracy
mapping. It does not take into account the high correlation
between the error in two successive arcs. Also, it has
recently been recognized that a non-negligible fraction of
the orbit error only depends on the geographic coordinates.
This part of the radial error cannot be removed by the
crossing-arc analysis and is mapped within the topography
(Tapley and Rosborough, 1985; Wagner, 1985; Mazzega,
1986). This difficulty is overcome by the inverse method of
data analysis adopted in the present paper: the description
of the statistical properties of the orbit error by a
time-autocovariance function naturally specifies its space
correlations (see, for example, Bretherton and others, 1976;
Moritz, 1978). For altimetry, this approach has been
pioneered by Wunsch and Zlotnicki (1984) in a sensitivity
study using a set of simulated altimeter tracks. It has
recently been extended by Mazzega and Houry (1988) to the
determination of the Mediterranean mean sea-level from
Seasat data. This paper is the first attempt to obtain
regional topography of the Antarctic ice sheet by inversion
of the altimeter data.
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c. The slope-induced error
The altimeter measures the distance to the nearest point

of the surface, within the radar footprint (Fig. 5a). Because
of the slope of the surfac.e and because of the large size of
the footprint, the impact point can be as far as a few
kilometers from the nadir point. The difficulty is that the
position of the nearest point is not known a priori. If it is
assumed to be at the (known) nadir position, an error of
the order of several tens of meters is introduced for typical
ice-sheet slopes of the order of 0.5 o. Two correcting
methods have been proposed by Brenner and others (1983):
the "relocation method", which estimates the true impact
point, and the "direct method", which consists in estimating
the height for the nadir position. Here, we will generalize
this point of view and propose a method which should
minimize the residual error after correction. This method
will then be used in the inverse calculation of the
topography. In brief, the situation of altimeter errors over
an ice sheet is very different from that over the ocean. For
the latter, the measurement error is of the order of a few
centimeters and the "slope error" is negligible, so that orbit
errors dominate. Above continental ice, in the case of Seasat
and probably ERS-I, the measurement error and the orbit
error are similar, of the order of 50 cm to I m, and the
slope error dominates.

2. THE INVERSE METHOD OF ICE-SHEET MAPPING

The data used for this study are the Specialized Data
Record (SDR) of the Seasat altimeter. They consist of an
altimeter return wave form every 0.1 s, corresponding to an
along-track resolution of 670 m. The data-set coverage is
shown in Figure I, and is enlarged for the test areas in
Figures 6a and 7a. The retracking technique (Remy and
others, in press) is first applied to these wave forms. To
reduce the noise and the number of data, averages over
three consecutive 0.1 s retracked heights have been
performed, leading to a 2 km along-track resolution.

The altimeter data d(r ,t) taken at the geographical
position r(x,y) and at time t are related to the height h(r)
of the ice-sheet topography relative to the reference
ellipsoid by the following relation:

where e1 is the instantaneous instrumental error, eorb is the
radial component of the orbit error, and e.1o(r) is the
slope-error correction.

The reconstruction of a high-accuracy map of the ice
sheet from these complex measurements is not straight-
forward: the data coverage exhibits large gaps as well as
local oversampling; the orbit error eorb has quasi-periodic
correlations in time, whereas the instrumental error is almost

Dumont
D'Urville

Area

B Dome C
Areas

A2

Fig. 1. Map of the Seasat altimeter data over Antarctica used in this study. The three areas AI. A2,
and B which are mapped in Figures 6-]3 are also indicated.
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The (i,j) element of the symmetric definite positive matrix
S is constructed by:

Sij = Ch(ri,r) + Cl(ti,t) + Corb(ti,t). (5)

The height of the ice topography above the reference
ellipsoid is then:

(10)

(9)

surface can be derived from independent estimates of the
geoid and dynamic topography, derived from gravimetric
data, and hydrography. Here, the existing independent
ice-sheet topographies are either much less precise than
altimetric data or provide too little coverage (McIntyre,
unpublished). Hence they do not provide a useful initial
reference. We will derive the latter from the data
themselves, using an a priori description of the ice
topography.

Indeed, if the ice sheet is assumed to be perfectly
plastic in steady state and frozen to a flat bed, its surface
is given by:

where z is the height at a distance d from the center of
the ice sheet, Z and L are the maximum reference height
and horizontal distance from the center (Paterson, 1981). If
one writes Equation (9) with Cartesian coordinates, and
neglecting the variations in z2 compared to the variations in
z4, one can show that z4 can be written as a second-
degree polynomial.

For an arbitrary altimetric profile, if one assumes that
the satellite path is rectilinear, the surface height above the
reference ellipsoid will then be:

where x is the along-track distance.
We will use this description of the large-scale

topography to estimate the reference surface. The difficulty
with this approach is that it will be contaminated by the as
yet uncorrected slope errors. This will also affect the
residual heights above this reference. For a large surface,
this difficulty will be overcome by an iterative approach.

As shown in Figure 2, relation (10) fits plainly the

3250 ALTIMETRIC HEIGHT
M AND MEAN PARABOLIC

2930

(2)

(6)

(3)

(4)

her) + &h(r)

nd
r Ch(r,ri)vi
i= 1

her)

nd
,r [S-llij{d(rj,t) - ho(r)}.
I = 1

her) = ho(r) + &h(r).

V·
I

where nd is the number of data and Vi is given by:

a white noise (see section 3). Finally, the slope-error
correction e I (r) is related to the local maximum gradient of
the topography her) itself. We consider the ice topography
her) as consisting of the superposition of two independent
components (see, for example, McIntyre and Drewry, 1984),
say:

ho(r) is the large-scale shape of the ice sheet, with
kilo metric amplitudes, corresponding to the average shape of
the ice sheet. In a first approximation, it can be
represented by a two-dimensional functional of geographic
position fitted to the data in a preliminary step (see section
3). The resulting surface is then used as a first guess to
analyse the reduced data d(r,t) - ho(r). The latter are
dominated by short-distance scale undulations created by the
flow of ice over the bedrock rugosities. This separation can
be well justified by along-track wave-number spectra of the
altimeter profiles.

The quantities &h, el' and eorb are considered as the
results of stochastic processes. We anticipate their statistical
properties by specifying their covariance functions,
respectively Ch, Cl' and Corbo Using the least-squares
criterion, the optimal estimation of the residual topography
&h at any location r(x,y) is obtained by a linear
combination of the reduced data including the covariance
functions (Tarantola and Valette, 1982; Mazzega and Houry,
1988):

with an a posteriori covariance computed from the relation:

where the term A(r,r) is the information gained from the
data analysis:

M

+1.

-15.

+15. RES I DUES

(7)~r) = Ch(r,r) - A(r,r)

nd nd
A(r,r) .r .r Ch(r,ri)[S-l]ijC[S-l]iFh(r j,r) . (8)

1= 1 J= 1

The use of the various covariance functions in
Equations (3), (4), and (5) ensures uniqueness and stability
of the inverse solution her). In the limiting case of perfect
data sampling (in space and time as the covariances show
both dependencies), the optimal map her) would not depend
on the first guess ho(r). C0'lversely, in the regions A of large
data gaps, the final map her) and its variance cr(r) tend
respectively to the a priori map ho(r) and the covariance of
the topography Ch(r,r). The following section is devoted to
the estimation of the starting map ho(r) and to the choice
of the a priori covariance functions Ch' Cl' and Corb which
(with the altimeter data set) determine the optimal solution
h and its accuracy.

3. THE MEAN SURFACE AND THE COVARIANCE
FUNCTIONS

a. Choice of the mean ice-sheet surface
In the case of the mean sea surface, the reference

-1. C

100 200 DISTANCE KM

Fig. 2. Treatment of an altimetric profile before inversion.
Fitting of a parabolic surface (a). extraction of the
residual altimetric height (b). and calculation of the
along-track covariance functions of residual heights (c).
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ORBIT ERROR CORRELATION

0.8 ~

MN
I I

TIME LAG

o

o~o

c 0

'"

I I I I I

200 400
Fig. 4. Autocorrelation function of the Seasat radial orbit

error. The decorrelation time is for five revolution periods,
and two points belonging to independent arcs are taken as
uncorrelated.

by:
Thus, the complete data error covariance C defined

o.

where 5t is the time lag between two data points, (7~rb is
the orbit error variance, here set to (l m2), and
T '" I0 I min is the Seasat orbital period. 5T is a
characteristic decor relation time, about five revolution
periods (Fig. 4). The autocorrelation between two points
belonging to independent arcs is set to zero. This
description could easily be improved once a better
orbit-error description becomes available. In particular, short
wavelength orbit errors are not well described by this
functional.

c. Covariance of the errors
The instrumental error, after retracking, can be

considered a white noise of 50 em r.m.s., as tested by the
comparison of repetitive altimeter profiles (Remy and others,
in press). Thus, the covariance C1 will be a Dirac-delta
function of amplitude 0.25 m2. This should overestimate the
noise of the three-point mean values.

The Seasat orbit was calculated as consecutive 6 d
independent arcs. The orbit error is dominated by
frequencies around I cycle/revolution due mainly to errors
in the gravity field and erroneous initial elements in the
orbit integration (Wagner, 1985). Wunsch and Zlotnicki
(1984) suggested that the orbit covariance error can be
described by a cosine with an exponential dumping:

While doing so, we a priori lose some of the
information contained in the data, which were described by
the negative lobe of Figure 2c. One of the reviewers
suggested that a scale-invariant model (Poisson type) should
be more adequate in view of the observations. Though this
suggestion seems appropriate, we have not used it, as this
work is mostly a demonstration of the approach.

.,"'0
o

~
00

- 0.8

(12)

Ch('X,'Y) = I/A II h(x,y)h(x + 'x,r + 'y)<lx'y (II)

D

b. Choice of covariance of the model parameters
The model parameters (the residuals) are only

space-dependent. The covariance function expresses the
behaviour of h(x,y) relative to a shift 6x,6y:

large-scale pattern of altimetric profiles. The residuals are
dominated by meso-scale undulations of amplitude 4 m and
wavelength 20 km, which correspond to "type 2 surface
features" as named by McIntyre and Drewry (1984).

Using a least-squares analysis, we therefore fit all the
retracked altimeter data to a two-dimensional quadratic
form. This was done for areas Al and A2 (Figs 6b and
7b). The mean r.m.s. for all altimetric profiles in these
areas is 3.5 m: for this scale ("'100 km), the near-parabolic
surface fits the data very well and the induced surface
should be a good reference. The larger the scale is, the less
impressive the fit should be. Indeed, the mean surface of
area B (Fig. 10) cannot be correctly represented by this
technique. We will return to this in section 5c.

where A is the area of the domain D.
Undulations, which dominate the residuals, are thought

to be elongated along the ice-flow direction and are
altitude-dependent (McIntyre and Drewry, 1984). Thus,
Ch(6x,6y) is neither stationary nor isotropic. Although it is
theoretically feasible to construct the correct covariance
matrix, we will assume, as is usually done, that it is
stationary (i.e. independent of position) and isotropic (i.e.
identical in all directions).

In Figure 2c, the calculated correlations of the residuals
along an altimetric profile show a large component
expressing the behaviour of the residuals on wavelengths of
the order to 20 km, superimposed by a smaller sinusoidal
component. The latter should express the behaviour of the
residuals on short wavelengths. When several profiles with
different undulations are mixed, this component disappears.
It will therefore be neglected in further calculations. The
presence of a negative lobe is very constraining: a particular
point, not sampled by the altimeter, but situated at about
80 km from the satellite tracks, should have a residual
height which is very strongly constrained by the data. This
is probably related to the regularity of the undulations.

Using purely empirical correlation functions generally
leads to unstable matrix inversions in Equation (4). One
should rather fit a theoretical covariance function to an
empirical one. If undulations are described by Gaussian
functions like the "bell-shaped mounts" of McIntyre and
Drewry (1984), the covariance function will also be
Gaussian. In further calculations, we selected a
semi-empirical covariance by fitting a Gaussian one to the
positive part of the empirical covariance (Fig. 3). The
amplitude is the mean variance of the residuals (3.5 m)2 and
the characteristic decorrelation length is 9 km.

-1.

(14)

4. THE SLOPE-ERROR CORRECTION

quantifies the confidence we have in each datum.

In all that follows, a will be the maximum local slope.
Whenever it is deduced from the data, this means that it is
deduced from the two-dimensional maps as estimated using
the inversion technique.

a. Problem: geometrical approach
The impact point of the radar wave front, which is

the nearest point from the satellite, is shifted from the
nadir N as soon as a slope exists (Fig. 5a).

DISTANCE

50 km
function of the
function used for

25
Fig. 3. Averaged empirical correlation

parameter superimposed on the Gaussian
the inversion. The variance is 12 m2•

+1.
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The measured range (H) is too small, compared to the
nadir distance, so that the apparent ice elevation h, above
the reference ellipsoid, is higher than the real one hN:

Fig. 5. a. Geometry for the slope error. The impact point I
of the radar wave form is shifted along the maximum
slope with respect to the nadir N. The induced a/timetric
height h will be too high. There is a point M between N
and I such that its altitude is the measured one.
b. Geometry of the altimeter measurement. f(x) is the real
profile along a maximum slope section; g( x) is the
measured one. The impact of the radar pulse is at a
distance ox from the nadir such that the range H is
minimum. In the intermediate method, one searches for the
point where the real range is H. It is at a dis an tee p
from the nadir. The height correction c in the direct
method is the difference between g(x) and f(x) at the
nadir.

(17)

(20)

(19)

(24)

MN '" aH/2.

c* = H/2g' 2.

p* = H/2g'

c = g(x) - f(x) = H/2 I' 2/(1 - HI")

From Equations (22) and (18), one derives the "real"
value for p (to the second order):

g(x) = f(x + p) f(x) + pf' (x) + p2/2 I"(x). (22)

b. Residual errors: analytical approach
In this section, we evaluate the residual second-order

error after the slope correction in the various methods.
Let us consider f(x) as the real ice-surface height

along a maximum slope section. The measured range H is
the distance between the satellite and the surface at a
position x + ox such that H is minimum. This provides an
apparent profile g(x). To the second order:

If the curvature I"(x) is negligible, one finds relation
(15). However, H f" is not necessarily small above the ice
sheet.

In the direct method, the real correction c should be
the difference between g(x) and f(x), that is:

g(x) = f(x) + H/2 I' 2(x)/(1 - HI"(x)). (18)

p = -1'/1"[1 - 1/(1 - HI")!J. (23)

We propose to search for the location of point M. This
is easier than using the "relocation" method, because only
the position has to be corrected. Also, we will show in
section 4b that the residual error after correction is smaller
in the "intermediate" method than in the "direct" one.

c - c* = -H2/2 I' 21"/(1 - HI")2 = -cHI" /(1 - HI").
(21)

term a?-H/2. In the second method, named the "relocation"
method, the location of the impact point is estimated and
the height of this point corrected by adding the error term.
For both cases, the slope being deduced from the data, an
iterative scheme is used. It is clear that these methods are
the two extremes of a range of possibilities.

What we propose here can be called an "intermediate"
method. From Equations (15)-(16), one can see that there is
a unique point between the nadir and the impact, for
which the range measurement H is the correct one. The
horizontal distance between the nadir N and this point M
is:

where the derivatives are calculated at position x.
As the slope is deduced from g(x), the correction c*

which is actually made is:

In the intermediate method, one is looking for the
position x + p such that the actual range is the measured
one H. Thus:

By derivation of relation (18), one obtains a
second-order residual error after slope correction:

The residual error after the slope correction in the
intermediate method can be estimated either as a pOSItIon
error or an a height error. The actual position correction,
from Equation (17) is:

G(X)

F(X)

o RBI T

REFERENCE

~
ELLIPSOID

REFERENCE

LEVEL

RADAR

-,'WAVEFRONT

"""".& ICE SURFACE

X+ P X+OXx

SAT E LLI T E

SATELLITE

b

a

(15) Therefore, the residual position error is:

On the other hand, this apparent height h is smaller
than the real height at the impact I:

(16)

For correcting this effect, Brenner and others (1983)
proposed two methods: in the "direct" method, the measured
range of the nadir is estimated by subtracting the error

p - p*

p

f (1 - HI"/2 - (I - HI")!

f" 1 - HI"

1 - HI"/2 - (1 - HI")!

1 - HI" - (1 - HI")!

(25)
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whereas the method attributes a height g(x) to this pOSItIon.
Hence, the residual height error after the correction is:

Note that the error will be of the third order if HI"
is small. Alternatively, it can be stated that the real height
at position x + p* is:

I(x + p*) - g(x)

I(x + p*) I(x) + p*!, (x) + p*21"(x)/2

H2/4!, 2/"/(1 - H/")2

cH/2 1"/2(1 - HI") .

(26)

(27)

work, Equations (3) and (4) were iteratively applied without
modifying s-l, in order to decrease the computation cost.
Obviously, from this point of view, it would be easier to
apply the direct method for slope correction, as S would be
strictly constant, and only d(ri.ti) would have to be changed
in Equation (4) at each iteratIon. On the other hand, in
view of the expected values of p, which are an order of
magnitude smaller than the radar footprint and the
undulations' half -wavelength, the expected modification of
the S matrix is small.

5. ICE-SHEET MAPPING

a. Mapping the test areas
As a test, the method is first applied to two small

overlapping areas (named A I and A2 in Figure I).
Figures 6 and 7 show the complete treatment sequence:

(a) selection of altimetric tracks; (b) calculation of the mean
surface; (c) calculation of the residual altimetric height using
the inverse method; (d) reconstruction of the topography; (e)
estimation of the error; and (f) correction of the slope
error, estimated by one iteration.

On the residual maps, undulations a few meters high
and a few tens of kilometers in length can be identified.
Note that most of the track interruptions, which can been
seen in Figures 6a and 7a, occurred where these undulations
are important (see Partington and Rapley, 1986). The slope-
error correction mostly modifies these undulations (Figs 6e
and 7e). For area A2, some undulations are shifted up to
4km.

The error result is not unexpected: at a maximum
(equal to the input variance, here set to 12 m2) for those
areas of poor data density, and at a minimum for those
areas of high data density, for instance near lat. 72 oS. Near
crossing tracks, the error is of the order to 40 cm. To this
error, one should add the residual error of slope correction.
From section 4, it should be of the order of 0.2 m r.m.s.

b. Tests
The area between lat. 72 ° and 71.5 oS., and between

long. 105 ° and 102.5 DE. is mapped in both Figures 6 and
7. The difference between the two maps (Fig. 8) reaches
3 m along the boundary due to border effects. Half of the
surface is reproducible within I m, which is compatible with
the error maps.

For such small areas, none of the altimeter tracks were
covered on the same day. Hence, one of the most
significant benefits of the method, which is to handle
accurately the orbit-error spectrum, was not used in these
tests.

As a further test, we underestimated the a priori
variance by taking a value of 3.5 m2 instead of 12 m2. The
result is illustrated in Figure 9. This produces a tilt in the
surface. What probably happens is that less flexibility is
allowed for the surface to adjust itself through undulations,
so that the inverse calculation essentially modifies the
reference surface.

Mazzega and Houry (1988) provided other tests for the
technique, as applied to the mean sea-surface estimation.

As a whole, these tests raise confidence in the method.
The error, in places with sufficient data, is of the order of
0.5 m r.m.s. This is encouraging.

c. Terre Adelie map
In this section, we map a region of 300 km by 500 km

chosen around the line from Dumont d'Urville to Dome C
(Fig. 1), where the data could be useful to many
expeditions. The method is consuming of computer time,
because of the inversion of a square matrix, the dimension
of which is equal to the number of data. Therefore\, a
complete map of Antarctica (to the north of lat. 72 S.)
would be achievable only with array processors.

As is shown in Figure 10, the mean surface cannot be
approximated as explained in section 3a. In order to
overcome this difficulty, we used an iterative scheme. This
is possible because the topography is a simple combination
of two dominant wavelengths. Figure 10e is obtained from a
reduced set of data (15%) using the inversion method. The
variance is set to (2000 m)2 because the range of heights is
between 1000 m and 3000 m, and the spatial radius of

(28)

880 mc* = 0, p*

effect is of the order of
0.10 (e.g. in Figure 2, the
is then of the order of 700 m.

I(x) = 7sin (21lx/20) .

(5h(r- .)
I.}

x is in kilometers and I is in meters. HI", for
H = 800 km, is of the order of 0-0.5 and cannot be
neglected in Equation (18). Then, at the first iteration for
x = 3 km, c = 0.65 m, and c - c* = 0.21 m, p* 355 m
and p - p* = 30 m.

For x = 0, c = 1.93 m, and c
and p - p* = O.

The large-scale slope
c "" 1.5 m for a slope of
large-scale slope of 0.060

). p

By comparing Equations (21) and (27), it is apparent
that the residual height error after slope correction is twice
smaller using the intermediate method than by using the
direct method. This difference will be the same at each
iteration. Note also that Equations (21) and (27) are of
opposite signs. c - c* is of the opposite sign to 1", which
is, because of the curvature of the parabolic profile, often
negative: the direct method will tend to smooth the
undulations. On the contrary, the intermediate method will
tend to amplify these undulations.

In order to get orders of magnitude of these effects,
imagine that I(x) is an undulation of strong amplitude,
14 m, and of wavelength 20 km

nd
5h(ri _ I})/S = I [C(ri.j-rk) - C(ri _ t.j,rk)]vk/S

k=I
(29)

where vk is defined in Equation (4). To the residual slope,
on the i and j directions, one should add the mean surface
slope. This provides the slope a as defined previously, so
that Equation (17) can be applied to the data points. In this

c. Insertion of the error correction in the inverse method
Zwally and others (1981) argued that a similar altimeter

will give the same slope error so that it is not necessary to
correct for it. This is only true to the extent that a dense
enough coverage of observations is achieved. Even then,
however, the separation of the measurement positions will
be of a few hundreds of meters, so that the actual slope
error will differ by a few tens of centimeters. This is close
to the required accuracy for monitoring the climatic
evolution of ice sheets. Also, if the actual distance between
undulations and their relation to the bedrock are studied, it
is necessary to correct the maps for the slope error.

The previous discussion uses the maximum slope.
Because of the altimeter sampling, the slope can be fairly
well estimated along-track, but it is more poorly known
across-track. For this reason, Brenner and others (1983)
estimated the local slope along-track (which is dominated by
undulations; see Figure 2) and the large-scale slope
across-track. Using the inverse technique, the slope can, in
principle, be derived directly from the a priori covariance
(Equation (3» or directly from the solution. Of course, in
the latter case, the error in the estimated heights, and
therefore in the estimated slope, will not be the same
everywhere. However, the technique provides an error map,
so that this could be taken into account. In what follows,
we show how we used the slope correction in the inverse
calculation. Equation (3), giving the residual solution, is
applied at a grid point (i,j). The grid spacing s is chosen
as 2 km: this is compatible with the along-track sampling
and is adapted to the scale required for slope estimation.
From Equation (3), the slope for residuals 5h(r) is:

103

https://doi.org/10.3189/002214389793701419 Published online by Cambridge University Press

https://doi.org/10.3189/002214389793701419


Journal of Glaciology

a d

t71°.5 S _

SEASAT GROUNDT RACKS TOPOGRAPHY

b e

c
MEAN SUR FACE

~lllllllllll <0.6 In D'·.....:: <1m

f
E R RO RS

111111111111
1 <-4 m >+4m

TOPOGRAPHY

Fig. 6. Treatment sequence as explained in the text for area Al shown in Figure 1. We select tracks
(a). calculate a mean surface (b), map the residual surface by the inverse method (c), add it to the
mean surface (d), estimate the a posteriori error (e), and correct the slope error (f).
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decorrelation is set to 140 km. This filters the undulations.
This "mean" surface is very close to that of existing maps
of this sector, as deduced from classical techniques (Brooks
and Norcross, 1982).

The variance of the residual altimetric profiles is about
12 m2 for areas Al and A2. We then applied the same
process as before. The resulting topography is given in
Figure II, at a 2 by 2 km2 resolution, and the error map
before slope correction is shown in Figure 12. Although the
data density is smaller than for the test areas, the minimum
error (0.35 m) is also smaller. Because the satellite radial
errors are correlated over large distances, a given point is
constrained from the whole are, which reduces the final
r.m.s. errors. Even on the scale of Figure 10, important
differences are obtained from the map of Brooks and
Norcross (1982). However, our retracking technique is more

accurate (Remy and others, in press); we correctly take the
orbit error into account, and our maps are also slope-
corrected. On the other hand, we have used only a fraction
of the Seasat data in this calculation: a map using more
data would present a more homogeneous error map.
However, the large-scale picture should be less sensitive to
the additional data coverage.

6. DISCUSSION

The error obtained here should be considered with
some care, because of the number of limitations already
mentioned: the ret racking technique does not exactly provide
the ice surface, some of the geophysical corrections leave
residual errors, the orbit error is described in a somewhat

<-1 ill

66°.9 S
134°.7 E

71° S
127°.5 E

100

100

68° S
141° E

200
DISTANCE KM

Fig. 11. Topography of area B (Fig. 1) obtained by
inverting the residual height with respect to Figure 10.
The square refers to Astrolabe Lake. which is enlarged in
Figure 13.

300

400

200

KM
DISTANCE

1:':::'1 >+1 m00':"0<-1 m~

Fig. 8. Difference between the maps shown in Figures 6d
and 7d for the common zone. The black areas correspond
to a reproducibility better than 1m.

Fig. 9. Difference between inversion shown in Figure 6d and
inversion where the variance of the parameters is
underestimated at 3.5 m2 instead of 12 m2.

abe d e
~ 100 KM

Fig. 10. Topography of area B (Fig. 1) using several techniques: (a) by aircraft in 1974: (b) adapted
from the Canadian Bathymetry chart of Ocean. in 1980; (c) by balloon in 1982; (d) by radar
altimetry (Brooks and Norcross. 1982); (e) here. by radar altimetry for the first inversion (see text).
The second inversion is shown in Figure 11. The (a-d) figures are adapted from Brooks and
Norcross (1982).
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Fig. 12. Error map before slope correction corresponding to
Figure 11. The precision is excellent ("'0.35 m) where the
density of data is high.

measurements have been obtained in a few areas, but this
will not give a general trend, because of the dynamical
redistribution of mass within the ice sheet (Zwally and
others, 1981) .

Because of the remarkable precision obtained over the
ocean, one can also propose a sea-level survey (Born and
others, 1986). Due to the surface ratio, the sea-level change
in relation to that of ice-sheet elevation is about 1/30.
However, sea-level elevation due to climatic warming is 70%
due to the expansion of warm water and 30% to ice-sheet
melting (Barth and Titus, 1984). The actual ratio, taking
into account the expansion of warm water, is hence 1/10.
Until now, the best ocean-topography precision (obtained
using the inverse method and Seasat data) is II cm
(Mazzega and Houry, 1988) for the Mediterranean Sea (this
precision is only relevant to wavelengths greater than
400 km, due to data coverage, but this is what is required
for the present problem). With the launch of Topex-
Poseidon in 1992, the precision attainable will be a few
centimeters for these wavelengths (Stewart and Lefebvre,
1987). Therefore, a precision of a few tens of centimeters
on ice sheets is required for the glaciologists to monitor the
same signal.

The mean accumulation rate over Antarctica and
Greenland is about 15 cm/year. It is of the order of a few
centimeters over the summit of the ice sheet and about 1 m
near the coast (Zwally and others, 1981). At a zero-order
level of description, a 30% mass imbalance would cause an
ice-sheet surface diminution of 50 cm over a decade. The
precision required to observe this effect is of the order of
a few centimeters above the summit of the ice sheet or of
I m near the coast.

The slope error of the classical radar altimeter is
important where the required precision would be accessible.
In order to overcome this difficulty, we suggest monitoring
the elevation of Antarctic "lakes". They are only a few tens
of kilometers in size and probably correspond to valleys in
the bedrock (Cudlip and McIntyre, 1986). For example,
Astrolabe Lake clearly appears in Figure II. It is enlarged
in Figure 13a. Up to 70 consecutive SDR measurements are
within I m of height. Thus, the middle of the lake should
be free of slope error. The propagated error (Fig. 13b) is
of the order of 40 cm in this area. The measurement of
accumulation rate is about 10 cm/year from in-situ data, and
between 20 and 30 cm/year when derived from the
microwave emissivity at 31 GHz (Rotman and others, 1982).
A mean value of 20 cm/year and a 30% mass imbalance
would give a change of 90 cm in 13 years (the time
interval between Seasat and ERS-I). Of course, the whole
dynamics of the ice sheet would have to be considered in
addition to this purely local effect. Anyway, I m change is
likely to be larger than the error bars. Such "lakes" are not
rare in Antarctica (one can find several in Figure 11). A
systematic survey of all available lakes would provide a
general trend of the ice sheet.

Finally, in addition to these height changes, if volume

200
DIS TAN CE I{M

100
EI <1m

100

200

schematic way, and the a prIOri covariance function of the
signal is also quite simplified relative to the observations.
Yet, the precision obtained here should be compared with
expected signals.

The problem of growth or shrinkage of the ice sheet
pre-occupies the climatologists, more particularly because of
the potential warming of the Earth as a result of human
activity. Two methods can provide additional information:
survey of the topography, or measurement of the input
(accumulation rate) and the output (above all iceberg
discharge of water and melting at bedrock level). Up
till now, precision attained using both methods does not
allow evaluation of any possible change: detailed surface

•400 •DISTAN CE
I{M (C=»

300 > 3.

36 km
b

TOPOGRAPHY
Fig. 13. Enlargement of the square drawn on Figure

(b) Error map. free from significant slope error.

ERRORS
11. around Astrolabe Lake. (a) Topographic map;

106

https://doi.org/10.3189/002214389793701419 Published online by Cambridge University Press

https://doi.org/10.3189/002214389793701419


echo affects the signal of altimetric height, changes could
also result from changes in the ice grain-size, which are
related to the accumulation rate (Zwally, 1977; Ridley and
Partington, 1988).

7. CONCLUSION

Because of computer limitations, our results are not yet
optimal. Dividing the domain into separate regions would
give the calculation shortcomings inherent in the data set:
correlated errors would be treated as independent. Handling
small matrices, by taking into account only the data
surrounding the prediction point, would also be inadequate
for the same reason. The method has to be used on a
high-speed and large-memory computer in order to invert
the whole data set.

We have developed a new method for slope-error
determination which converges quickly and leads to a small
residual error, but we have not correctly evaluated the
latter. The inverse method constitutes a flexible tool to mix
data of different natures by the use of cross-correlations.
For example, the local variations in the total energy return
of the altimeter are linked to the absolute slope (Remy and
others, in press). Since these data are simultaneous, this
information could be introduced, as well as the slope-
correction equations, directly into the calculation. The a
posteriori error would also, in this case, take into account
the slope error.

This method should be well adapted to the ERS-I data,
which will provide a wide and dense coverage up to lat.
82 oS. Its radial orbit error should be of the same order as
that of Seasat. It should benefit from present progress in
geopotential models. If a tracking station could be installed
near the ice sheet, orbit error would locally be considerably
smaller. We have shown that the a posteriori error should
then reach 0.35 m, depending on the data distribution and
the local slope. This suggests that after the launch of
ERS-I one should be able to detect possible climatic
variations in the ice sheet.
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