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An orthodox semigroup S is termed quasi-F-orthodox if the greatest inverse semigroup homomorphic image of
S!' is F-inverse. In this paper we show that each quasi-F-orthodox semigroup is embeddable into a semidirect
product of a band by a group. Furthermore, we present a subclass in the class of quasi-F-orthodox
semigroups whose members S are embeddable into a semidirect product of a band B by a group in such a
way that B belongs to the band variety generated by the band of idempotents in S. In particular, this subclass
contains the F-orthodox semigroups and the idempotent pure homomorphic images of the bifree orthodox
semigroups.
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1. Introduction

The structure of E-unitary inverse semigroups is described in McAlister’s P-theorem
(cf. [10, VIL.1.14]) by means of partially ordered sets, semilattices and groups. By
applying the P-theorem, O’Carroll [7] proved that each E-unitary inverse semigroup is
embeddable into a semidirect product of a semilattice by a group. On the other hand, it
is easy to obtain a P-representation of an E-unitary inverse semigroup S provided § is
embedded into a semidirect product of semilattice by a group. This idea led the second
author in [13] to try to generalize McAlister’s P-theorem for E-unitary regular
semigroups by investigating whether each E-unitary regular semigroup is embeddable
into a semidirect product of a band by a group. Notice that a semidirect product of a
band by a group, and so each regular subsemigroup in it is necessarily E-unitary.

For brevity, we will say that an E-unitary regular semigroup § is embeddable if it is
embeddable into a semidirect product of a band B by a group. If B can be chosen from
the band variety generated by the band of idempotents in S then S is called strictly
embeddable. A class of E-unitary regular semigroups is termed embeddable [strictly
embeddable] if each member in it is embeddable [strictly embeddable].

So far, two embeddable classes of E-unitary regular semigroups has been known,
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namely, that of all E-unitary regular semigroups with regular band of idempotents (cf.
[13]) and that of all idempotent pure homomorphic images of the bifree orthodox
semigroups (cf. [14]). In fact, these classes are also strictly embeddable. The aim of this
paper is to present a new embeddable class and a strictly embeddable subclass in it.

An F-inverse semigroup is an inverse semigroup whose congruence classes modulo the
least group congruence contain greatest elements with respect to the natural partial
order. The structure of F-inverse semigroups which are easily seen to be E-unitary
monoids is well known (cf. [10, VIL.6.9]). Regular semigroups satisfying the same
condition were investigated by Edwards [1]. They turned out to be orthodox, what is
more, E-unitary regular monoids, therefore she called them F-orthodox semigroups. Here
we introduce a larger class. By a quasi-F-orthodox semigroup we mean an orthodox
semigroup S such that the greatest inverse semigroup homomorphic image of S! is
F-inverse. Moreover, we introduce a subclass in the class of quasi-F-orthodox semi-
groups whose members are called generalized F-orthodox semigroups. It contains all
F-orthodox semigroups and all idempotent pure homomorphic images of the bifree
orthodox semigroups.

In the main result of the paper we prove that the quasi-F-orthodox semigroups are
embeddable and the generalized F-orthodox semigroups are strictly embeddable. The
latter result provides us with a new, purely algebraic proof for the main result in [14].

1. Preliminaries

In this section we summarize the notions and results needed in the paper. For the
undefined notions and notations the reader is referred to [4].

The equality relation on a set A4 is denoted by id, or, briefly, by id.

If A is a non-empty set then A* and (4*)! stands for the free semigroup and for the
free monoid on A, respectively.

If ¢:S—T is a homomorphism then the congruence on § induced by ¢ is denoted
by =,.

Given a regular semigroup S, its set of idempotents is denoted by Eg or, if it causes
no confusion, then simply by E. The identity element of a monoid, in particular, of a
group is denoted by 1.

We will use the notation < 4 for the quasi-order relation defined on a semigroup S by
means of principal right ideals. Namely, we define a< 4b for some a,be§ if aS' =bS".
Obviously, we have 4N = 4=4%. If we want to indicate that Green’s relation £ is
considered on semigroup S then we will write %s.

The following useful property of relation # on regular semigroups was proved in [3].

Result 1.1. Let S be a regular semigroup and 0 a congruence on it. If §,f€S/60 such
that 5%, then there exist se§ and tef such that sZst.

Let S be a regular semigroup. As usual, y stands for the least inverse semigroup

congruence on § and ¢ for the least group congruence on S. The greatest factor group
S/o of S will be denoted by G or, simply, by G.
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Let 0 be a congruence on S. Then, as usual, we denote its kernel {s€ S:s0e for some
e E} by ker @ and its trace 6| E by tr 6. Obviously, we have Ecker6. It is well known
that if S is orthodox then ker 8 is an orthodox subsemigroup in S. On the other hand, if
6 is a group congruence then ker§={seS:s6=1} and ker @ is a regular subsemigroup
in S.

We will need to consider (S/6)! as a factor semigroup of S'. It is easy to check that
(8/6)* is isomorphic to S'/0' where

6 =6 {(s,1),(1,s):s€ S such that s6 is an identity in §/6} U (1,1).

We will identify (5/6)' with S'/0" under this isomorphism. Furthermore, we notice that
if <o then 0'cq’, /0 and ¢'/0" are the least group congruences on S/6 and S'/6",
respectively, and Gy is isomorphic to Ggp:.

A regular semigroup is called E-unitary if E is a (left and/or right) unitary subset in S.
A regular semigroup is easily seen to be E-unitary if and only if ker o= E, and hence an
E-unitary regular semigroup is necessarily orthodox.

We will need the following property of E-unitary regular semigroups (cf. [13]).

Result 1.2, In every E-unitary regular semigroup, we have 3¢ no=id.

The natural partial order on an inverse semigroup S is defined in the following way:
for any s,teS, we say that s<t if s=et for some ee E. The following is well known (cf.
[10, I1.1.6]):

Result 1.3. In an inverse semigroup S, we have s<t for some s,teS if and only
if s=st!s.

The notion of the natural partial order was generalized by Nambooripad [6] for
regular semigroups as follows: if S is a regular semigroup and s,t€S then we define s<¢
if s< 4t and s=et for some e€e E N R,. The relation < is shown to be self-dual. It is easy
to see that if S is an inverse semigroup then the partial order defined in this way
coincides with the former one. Moreover, the following assertion is also straighforward
from the definition.

Result 1.4, Let S be a regular semigroup and 0 a congruence on it. If s,t€ 8§ such that
s<t then s6<t0 in §/6.

A band is termed left normal [left regular] if it satisfies the identity abc=acb
[aba=ab]. Recall from Petrich [9] the following properties of such bands.

Result 1.5. (i) A band B is left normal if and only if aB is a semilattice for every ae B.
(i) A band is left regular if and only if #=id in it.

https://doi.org/10.1017/50013091500019192 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500019192

364 BERND BILLHARDT AND MARIA B. SZENDREI

A semigroup is called Z-unipotent [ .£-unipotent] if each #-class [ .£-class] contains a
unique idempotent. The following characterization is from Venkatesan [18].

Result 1.6. The following two conditions are equivalent for a semigroup S.
(1) S is Z-unipotent.
(ii) S is an orthodox semigroup whose band of idempotents is left regular.

Given a regular semigroup S, it is standard to verify that there exists a least
Z-unipotent [Z-unipotent] congruence on S. We will denote it by ag[fs] or, simply, by
a[f]. It is straightforward that a,fcy<o.

As far as the E-unitary Z-unipotent semigroups is concerned, we need the following
property from Takizawa [16].

Result 1.7. In every E-unitary R-unipotent semigroup, we have % N o =id.

Now we recall the basic notions on graphs and semigroupoids needed later. We
follow the terminology in Tilson [17].

A graph X consists of a set of objects denoted by Obj(X) and, for every pair
i, jeObj(X), a set of arrows from i to j which is denoted by X(i,j) and is called a
hom-set. The different hom-sets are supposed to be disjoint. If ae X(i, j) then we also
write that a(a)=i and w(a)=j. The set of all arrows will be denoted by Arr(X). The
arrows a,b are called coterminal if a,be X(i, ) for some i, je Obj(X) and are termed
consecutive provided w(a)=a(b).

By a subgraph of a graph X we mean a graph Y such that Obj(Y)=Obj(X) and
Y(i, j)= X(i, j) for every i, je Obj(Y).

A semigroupoid is a graph C equipped with a composition which assigns to every pair
of consecutive arrows ae C(i, j), be C(j, k) an arrow abe C(i,k) such that the compo-
sition is associative, that is, for any arrows ae C(i, j), be C(j,k) and ce C(k,I), we have
(ab)c=a(bc). If, furthermore, for every ie Obj(C), we have an element 1;€ C(i,i) such
that

l,a=a and bl;=b for every a,beArr(C)
with a(a)=i and w(b)=i, (1.1)

then we term C a category.

Observe that C(i, i) is either empty or a semigroup for each ie Obj(C). For the sake of
uniformity, we will consider the empty set also as a semigroup, and we term C(i,i) the
local semigroup of C at i.

If C is a category then 1; is the identity in the local semigroup at i. If C is a
semigroupoid then, for every ieObj(C), we can adjoin a new element 1; to C(i,i)
provided it has no element satisfying (1.1). Thus we obtain a category which we denote
by C'.
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In particular, a set A can be considered as a graph with one object whose unique
hom-set is A and, similarly, a semigroup S can be considered as a semigroupoid with
one object whose unique hom-set is S.

Let X,Y be two graphs. A graph function f:X—Y consists of an object function
f:0bj(X)—Obj(Y) and, for every, i, je Obj(X), a hom-set function f: X(i, j)— Y(if, jf). If
C, D are semigroupoids then by a morphism of semigroupoids ¢: C—D we mean a graph
function ¢ such that a¢-b¢ =(ab)¢ for every pair a,b of consecutive arrows in C. If the
hom-set functions are injective then ¢ is termed a faithful morphism. If the object
function is bijective and the hom-set functions are surjective then ¢ is said to be a
quotient morphism. If both the object and the hom-set functions are bijective then ¢ is
called an isomorphism.

By a congruence y on a semigroupoid C we mean a family

y={»(i, j):i, je Obj(C)}

of equivalence relations y(i, j) on C(i, j) such that, for every ae C(i, j), b,ce C(j, k) and
de C(k, 1) (i, j,k,1e Obj(C)), the relation by(j,k)c implies aby(i,k)ac and bdy(j,l)cd. For
simplicity, we will often write y instead of y(i, j). Note that y(i,i) is a congruence on the
local semigroup C(i,i). If aeC(i,j) then the equivalence class containing a will be
denoted by ay(i, j) or, simply, by ay.

Given a congruence y on a semigroupoid C, we can define the quotient semigroupoid
C/y as follows: Obj(C/y)=0bj(C), (C/y)(i, j) is the set of all y(i, j)-classes of C(i, j) and
the composition rule is given by

ay-by=(ab)y (ae C(i,j),be C(j,k)).

Obviously, the congruence y on C determines a quotient morphism y*: C—C/y whose
object function is identical and whose hom-set functions assign the respective y-class to
each arrow. Conversely, if ¢:C—-D is a quotient morphism then the family of
equivalence relations on the hom-sets in C determined by the hom-set functions is a
congruence on C which we will denote by =,. Moreover, ¢ induces an isomorphism
1.C/=,4—D such that ¢==31.

Let X be a graph. A non-empty path in X is a finite sequence of consecutive arrows in
X. If p=e,e,...e, (n=1) where a(e,)=i and w(e,)=j then we say that p is a non-empty
(i, j)-path. If p is a non-empty (i, j)-path and ¢ is a non-empty (j,k)-path for some
i, j, k€ Obj(X) than their concatenation pg is a non-empty (i, k)-path.

Given any graph X, we will consider the free semigroupoid on X and denote it by
X*. It can be represented in the following way:

Obj(X ") =Obj(X),
X*(i, j)={p:p is a non-empty (i, j)-path in X}

and the composition is given by concatenation. If we add an empty path 1, to X *(i,i) for
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every ie Obj(X ™) and extend the composition by putting 1,p=pl;=p for each (i, j)-path
p then the free category on X is obtained which will be denoted by (X *)!.

Notice that a non-empty path p=e,e,...e, (n21, e, Arr(X), 1<k<n)in X* spans a
subgraph in the graph X whose set of objects is {a(e,): 1 £k <n} U {w(e,)} and whose set
of arrows is {e,,...,e,}.

Let X be any graph. Denote Arr(X) by A. Clearly, there is a natural morphism 5
from (X *)! to (4*)! which maps all objects of (X*)* to the single object of (4*)! and
which maps each path in (X *)! to the corresponding word in (A*)!. In particular, n'
maps each empty path to the empty word. For notational convenience, we will often
denote the word pn' corresponding to the path p also by p. Denote the restriction of #*
to X* and A" by . Obviously, both #' and # are faithful morphisms.

We conclude this section with the notion and the main properties of a semidirect
product of a band by a group and recall the embeddability criterion in [13].

Let B be a band and H a group. Suppose that H acts on B by automorphisms on the
left, that is, for every he H, an automorphism of B is given, denoted by h: B— B, b+ hb,
such that h(gb)=(hg)b holds for every g, he H and b e B. Briefly, we will say only that H
acts on B. The semidirect product B H is defined on the underlying set Bx H by the
multiplication

(a.g)(b,h)=(a gb,gh) (a,beB,g heH).

The following properties of this semidirect product are straightforward.

Result 1.8. Let B be a band and H a group acting on B.

(i) The semidirect product B*H is an orthodox semigroup with Eg, ={(b,1):be B},
and Eg,y is isomorphic to B.

(i) The second projection n,: Bx H—H, (b,h)—h is a homomorphism of Bx H onto H
with ker(=,,)=Eg,y. Consequently, =,,=0 and B+ H is E-unitary.

We present here the embeddability criterion in [13] in a slightly modified form
(cf. [15]).
Let V be a variety of bands and S an E-unitary regular semigroup. First we define a
graph C=Cjs as follows.
Obj(C) =G,
Cg. h)={(g,s)eGxS:g-so=h} (g, heC).

One can equip C with the following multiplication: if (g,s)e C(g,h) and (h,t)e C(h,i)
then

(g, 5)o(h, t) =(g, st).

Clearly, (g, st)e C(g,i) and this multiplication is associative. Thus C=(C; o) constitutes a

https://doi.org/10.1017/50013091500019192 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500019192

ON QUASI-F-ORTHODOX SEMIGROUPS 367

semigroupoid. It is also straightforward that the local semigroups in C are isomorphic
to E=kero. Note that this semigroupoid is closely related to the derived semigroupoid
of the homomorphism ¢°:S—G, cf. [17].

It is easily seen that if S has an identity then Cg is a category. What is more, in
general, Cg is isomorphic to Ci. If S has no identity then, (g,1) (geG) will be
considered as an empty arrow. More precisely, for every ge G, the arrow (g,1)e Cs:(g,2)
will be identified with the empty path 1, in (C4)', and so, in fact, (Cdi)' will be
identified with (C§)'. In particular, this ensures that (g, 1)n' is the empty word in (4%)*
where A= Arr(C).

Consider the identity graph function 1 on C. The unique extension i:C*—C of 1 to
C* is a quotient morphism. So it determines a congruence =; on the semigroupoid C*.
Denote the image of =; under n, namely, {(pn,qn):(p,qg)e =;} by v. Consider the
congruence 7y on A* generated by o(V,4)uv where g(V,A) is the fully invariant
congruence on A" corresponding to the band variety V.

The following statement is routine to verify.

Result 1.9. For any words x,y in A*, we have xtyy if and only if there exists a finite
sequence of words x=wg,Wy,...,w,=y such that, for any i (0<i<n), the word w;,, is
obtained from w; by one of the following rules:

(S1) wie(V, A)w;yy,

(S2) w;=uabv, w; ., =ucv for some u,ve(A*)' and a,b,ce A with acb=c in C,

(82") w;=ucv, w;,, =uabv for some u,ve(A*)! and a,b,ce A with acb=c in C.

Remark 1.10. In particular, if V is the variety of all bands then (S1) can be
substituted by the following two rules:

[S1] w;=ux?v, w;, , =uxv for some u,ve(A¥)! and xe A™,

[S17] w;=uxv, w;, ; =ux?v for some u,ve(A*)! and xeA*.

The embeddability criterion in [13] is the following.

Result 1.11. Let V be a variety of bands and S an E-unitary regular semigroup. Then S
is embeddable into a semidirect product of a member in V by a group if and only if sot and
(1,s)ty(1,¢t) imply s=t for every s,teS.

2. A result on extensions of completely regular semigroups by groups

In this section we present the result which serves as a basis in the inductive proof of
strict embeddabilty in Section 4. We apply this result in this paper only for band
varieties but we decided to present it for any variety of completely regular semigroups
since its proof is not more complicated in this generality, and, on the other hand, we
consider it as an important tool in proving strict embeddability for regular semigroups
being extensions of completely regular semigroups by groups.

First we recall several notions, notations and results in connection with varieties of
completely regular semigroups due to Polak [11].

A completely regular semigroup is usually considered a unary semigroup where the
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unary operation assigns each element its inverse in the maximal subgroup containing it.
It is well known that the class of all completely regular semigroups forms a variety of
unary semigroups and it is defined by the following identities: (xy)z=x(yz), xx ™ 'x=x,
(x™HY '=x, xx T=x""x,

We introduce notation for the following varieties of completely regular semigroups:

CR —completely regular semigroups,
G —groups,

B —bands,

LRB—left regular bands,
RRB—right regular bands,
LNB—left normal bands,

S —semilattices.

Denote by U(A) the free unary semigroup on the non-empty set A. It is the least
subsemigroup T in the free semigroup on the alphabet 4 U {(,)™'} with the property
that (u) ' e T provided ue T. For any word u in the alphabet A L {(,)”!}, we denote by
i the word obtained from u by deleting all unmatched brackets.

Given a variety V of completely regular semigroups and an alphabet A, the fully
invariant congruence on U(A) corresponding to V is denoted by go(V, A). It is well
known that there is an antiisomorphism between the lattice of varieties of unary
semigroups and the lattice of fully invariant congruences on the free unary semigroup
on an infinite alphabet. When describing a property of the variety V, we will use g(V) to
denote the fully invariant congruence corresponding to V on an infinite alphabet.

For any word ue U(A4), we introduce the following notations:

A(u)—the content of u, that is, the set of all elements in A occurring in u,
O(u) —Ww where w is the longest initial segment v of u such that |A(v)|=|A4(u)|—1,
h(u) —the head of u, that is, the element of A occurring first in u from the left.

If Q is any of 4 and h then define the equivalence relation
{(u,v) € U(A) x U(A): Q(u) =Q(v)}
aﬁd denote it by A and h, respectively. Moreover, put
A ={(u,v) € U(A) x U(A): |A(u)| =|A(v)| and |A(u)— A(v)|S1}.
Given a congruence ¢ on U(A), we define the relation ¢, as follows:
00={(0(u),0(v)):u,ve A*,|A(w)|,|A(v)| 2 2 and ugv}.

Obviously, ¢ Sg,.
The next result follows from [11, Theorem 3(4)(5) and Lemmas 5(1) and 6].

Result 2.1. Let V be a variety of completely regular semigroups. Then just one of the
following conditions holds:
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() (@(V)o=4",

(i) (@(V))o=hn A

(iil) (e(V))oSA, in which case (0(V))o is fully invariant congruence and ((¢(V))o)o=
(e(V))o-

In case (iii), the variety of completely regular semigroups corresponding to the fully
invariant congruence (g(V)), is denoted by V,. Moreover, we note that if (g(V))oSA
then one can easily see that (¢(V)),<h is also valid.

Pastijn [8] noticed that the variety V, is closely related to the variety V;, defined in
the following way. Let U stand for the free unary semigroup on an infinite alphabet. If
and 9 are fully invariant congruences on U with go(CR) <, 3 then we put

oT,9 if and only if @/o(CR) v Zy,cry=9/2(CR) vV Ryjycry-

This relation T, is a complete congruence on the lattice of fully invariant congruences
on U. Therefore each T,-class is an interval. We denote by ¢”" the greatest element in
the interval containing the fully invariant congruence ¢. The variety corresponding to
the fully invariant congruence g(V)™ will be denoted by V..

It is shown in [8, Theorem 2] that ¢"/o(CR)=(¢/e(CR) v Ry, cn)’> the greatest
congruence on U/g(CR) contained in ¢/g(CR) v Zy,cr)- This implies by Result 1.1 that

e(V)/e(V) ='%’EJ/Q(V)' (2.1)

Combining Result 2.1 and [8, Lemmas 6 and 7], we infer the following statement.

Result 2.2. For any variety V of completely regular semigroups, we have
(i) (e(V))o=A"<=(e(V))oEh<Vr, =S,

(ii) (e(V))o=hnA'<=(e(V))o<h and (o(V))o %A <V, =LNB,

(1) (2(V)oSA=V,=Vg,.

The following lemma finds connection between the members of V and V.

Lemma 23. Let V be a variety of completely regular semigroups. If SeV then
S/RyeVr,.

Proof. Since SeV, we have a surjective homomorphism ¢: U/g(V)—S for some free
unary semigroup U. By (2.1) we see that (U/o(V))/%%ev, is isomorphic to U/g(V)™"
which belongs to V.. However, it is standard to verify that if y: T—S is a surjective
homomorphism then #5< =, 44, and so there exists a unique homomorphism
1 T/R— SRy with y(#2)*=(%%)7y. Clearly, y’ is also surjective. Applying this for
T =U/p(V), we obtain that S/#% is a homomorphic image of a member in V;, and so,
indeed, S/#%eVr,.

Combining Result 2.2 and Lemma 2.3, we infer the following lemma.
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Lemma 2.4. Let V be a variety of completely regular semigroups. If Se'V then

S, if(@(V)oEh,
S/#s€q LNB, if(e(V))o<h and (e(V))o £A,

Vo,  #(e(V)osA.

Now we are able to prove the main result in this section.

Theorem 2.5. Let V be a variety of completely regular semigroups. Let S be a regular
semigroup and 6 a group congruence on S such that ker e V. Put { =A% 0. Then 6/( is
a group congruence on S/( such that (S/0)/(6/() is isomorphic to S/6, and

S, if (e(V))o Eh,
ker(6/0)eq LNB, if(e(V))oShand(e(V)o %4,

Vo, if(e(V)o=A.

Proof. For brevity, denote ker 8 by K. Then ker (6/0)=K/({| K). We intend to prove
that #% = (|K. Since 8| K=K x K, it suffices to show that %% < %#%| K. Let k,le K such
that k#%l. In order to show that k%%, we have to verify that ksZls for every seS.
However, ks%skss' and Isdslss’ for any s'e V(s). Since s’ €e ESK, we have kss'#Ylss’.
This implies kss'%lss' because Byc=H,=HAs;. Thus we infer that ks@ls which
completes the proof of the inclusion Z%<(| K.

The inclusion implies that ker(6/() is a homomorphic image of K/#% where KeV.
However, by Lemma 2.4, we obtain that K/%% belongs to S, LNB and V, according to
@(V)oEh, (0(V))o=h and (o(V))o £ A, and (p(V))g <A, respectively. This completes the
proof.

In Section 4 we will apply this theorem for band varieties. We conclude this section
with recalling the recursive solution of the word problem for the free objects in band
varieties. First of all, we notice that a band is a completely regular semigroup in which
the identity a~'=a holds. So, when working with band varieties, the unary operation
~! and the troubles with unmatched brackets can be eliminated and U(A4) can be
substituted by 4*. The notations A(u),0(u), h(u),A and h, correspondingly simplified, will
be used in this case. Furthermore, we introduce, for any ue 4%,

O(u)—the element a€ A such that O(u)a is an initial segment of u,

I(u)—the shortest initial segment v of u such that |A(v)|=|A(u)|.
Note that /(1) =0(u)0(u). Moreover, dually to O(u),0(u) and h(u), we define 1(u), 1(u) and

t(u) (called the tail of u), respectively. Analogously to the relations h and g, we
introduce also the relations t and ¢,, respectively.

https://doi.org/10.1017/50013091500019192 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500019192

ON QUASI-F-ORTHODOX SEMIGROUPS n

The following recursive solution of the word problem for the free objects in band
varieties can be obtained by [12, Theorem 1.3(1}].

Result 2.6. Let V be a band variety such that SV and let A be a non-empty set.
Then, for any u,ve A, we have ug(V,A)v if and only if the following conditions are
satisfied:

(i) A(w)=A0), o

(i1) if (o(V, A))o = A then O(u)=0(v) and, in case |A(u)

(i1i) if (e(V, A)); €A then 1(u)=1(v) and, in case |A(u)

(iv) if (e(V, A))o = h and (o(V, A))o £ A then h(u)=h(v),

(v) if (e(V, )y <t and (o(V, A)); £ A then t(u) =1t(v),

22, 0(u)(e(V, A))o0(v),
22, 1(u)(e(V, 4));1(v),

In particular, one can easily derive the following description of ¢(LNB, A) and
o(LRB, A) from the previous result (cf. also [9]).

Result 2.7. For any non-empty set A, we have

¢(LNB, A)={(u,v):u,ve A™, A(u)= A(v) and h(u)=h(v)}
and

o(LRB, A) = {(u,v):u,ve A", A(u)=A(v) and i(u) =i(v)}

where i(u), the initial part of u is the word obtained from u by retaining only the first
occurrence of each letter.

3. Quasi-F-orthodox semigroups

In order to generalize F-inverse semigroups, Edwards [1] investigated the regular
semigroups whose o-classes contain greatest elements with respect to the natural partial
order. Since these semigroups are orthodox monoids, she called them F-orthodox
semigroups. Moreover, she also verified that an F-orthodox semigroup is necessarily
E-unitary.

Given an F-orthodox semigroup S, we will denote by ¢, the greatest element in the
o-class g for every ge G. In particular, ¢, is the identity in S.

If S is an E-unitary regular semigroup and ¢ is an idempotent pure congruence on S
then e< o and o/ is the least group congruence on S/e. Clearly, o/¢ is idempotent pure
and hence S/¢ is also E-unitary. Furthermore, the mapping Gs— Gg,,, so+(se)(o/¢) is an
isomorphism. If g€ G5 and g=so for some seS then we write g* for (s&)(s/e).

Now we deal with the idempotent pure homomorphic images of an F-orthodox
semigroup.

Lemma 3.1. Let S be an F-orthodox semigroup and € an idempotent pure congruence
on S. Then we have t=t,¢ in S/e for every ge Gs. Consequently S/e is F-orthodox.

https://doi.org/10.1017/50013091500019192 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500019192

372 BERND BILLHARDT AND MARIA B. SZENDREI

Proof. By Result 1.4, we see that te is, indeed, the greatest element in g° for
every geG.

In particular, since y is idempotent pure, we obtain from Lemma 3.1 that the greatest
inverse semigroup homomorphic image of an F-orthodox semigroup is an F-inverse
semigroup. By means of this property, we introduce a notion generalizing that of an F-
orthodox semigroup.

An orthodox semigroup S will be termed quasi-F-orthodox if the greatest inverse
semigroup homomorphic image of S' is F-inverse. We obviously have the following
corollary.

Corollary 3.2. Each F-orthodox semigroup is quasi-F-orthodox.

It is well known that the free inverse monoids are F-inverse semigroups. Since the
greatest inverse semigroup homomorphic image of a bifree orthodox semigroup is a free
inverse semigroup, hence it follows that each bifree orthodox semigroup is quasi-F-
orthodox. However, we will see at the end of this section that the bifree orthodox
monoids are not F-orthodox. In fact, quasi-F-orthodox semigroups were found to be
worth investigating because they possess the following property (R) which, in the special
case of the bifree orthodox semigroups, plays a crucial role in the proof of the
embedding theorem in [14]:

(R) each non-identity g-class ge G contains an element r, such that sr s=s for every
seg™ .

Proposition 3.3. For an orthodox semigroup S, the following two conditions are
equivalent:

(i) S is quasi-F-orthodox.

(ii) S is E-unitary and possesses property (R).

Proof. Assume first that S is quasi-F-orthodox. Then § is E-unitary. For, S'/y is
F-inverse and hence E-unitary. This implies S' to be E-unitary, and so S is also
E-unitary. Now we show that S has property (R). Again utilizing that S'/y is F-inverse,
for every ge G, g+#1, there exists re S, such that ry is the greatest element in the (a/y)-
class g?. Then, by Result 1.3, we clearly have srsys for every seg~!. However, since
srsesS N Ss, we obtain that srs=s is valid. Thus S has property (R).

Conversely, suppose that S is E-unitary and possesses property (R). This implies by
Result 1.3 that (r,-1y)~' is the greatest element in the (g/y)-class of sy, that is, in g
Taking into account that S is E-unitary, the identity in S'/y is the greatest element in
the identity (o/y)-class. Thus S'/y is shown to be F-inverse, and so S is
quasi-F-orthodox.

Notice that, in this proof, we have verified the following lemma:

Lemma 3.4. Let S be a quasi-F-orthodox semigroup. For every ge G with g+# 1, the set
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g={reg:srs=s forevery seg”'}
constitutes a y-class. In fact, g is the greatest element in the (a/y)-class g.

Let S be a quasi-F-orthodox semigroup. By an F-cross-section in S, we mean a
mapping R: G\{1}—S such that gReg for every ge G, g#1. An extended F-cross-section
in S is defined to be a mapping R: G—S' such that R|G\{1} is an F-cross-section in §
and IR=1. Clearly, each F-cross-section R in S can be uniquely extended to an
extended F-cross-section which we will denote by R!. We will find it convenient to
denote the F-cross-section R and the extended F-cross-section R also by (gR:geG,g#1)
and (gR: g e G), respectively.

In particular, if S is F-orthodox, then Ty=(t,:g€G) is the unique extended F-cross-
section in S. The analogue of Lemma 3.1 holds for quasi-F-orthodox semigroups and
for F-cross-section in them.

Lemma 35. Let S be a quasi-F-orthodox semigroup and R=(r,;geGs,g#1) an
F-cross-section in S. Let & be an idempotent pure congruence on S. Then R°=
(Fp 8 €Gsp, g8 #1) with Fe=r,e (g€ G,g#1) is an F-cross-section in Sfe. Consequently, S/e
is quasi-F-orthodox.

Proof. It is straightforward to check that, since r,eg for every geGg, g#1, we have
r,e€g® for every g°eGg,, g°#1. Thus R® is, indeed, an F-cross-section. Since S/e is
E-unitary, Proposition 3.3 implies that S/¢ is quasi-F-orthodox.

In connection with the extended F-cross-sections, we can add the following remark to
Lemma 3.5.

Remark 3.6. If S is a quasi-F-orthodox semigroup, R=(r,;geGs,g#1) is an
F-cross-section in S and ¢ is an idempotent pure congruence on S, then (R%)!=(R')"
where (R')" =(F1: 8" € Ggi/n) With Fp =76 (g€ G).

Now we turn to introducing the notion of a generalized F-orthodox semigroup.

Let § be an Z-unipotent quasi-F-orthodox semigroup and R=(r,:g€ G) an extended
F-cross-section in S. We say that R is left normal if sr,=tr, holds for any s,teS and
8,he G such that s#t and s¢-g=to - h.

The following lemma justifies this terminology.

Lemma 3.7. Let S be an (Z-unipotent) quasi-F-orthodox semigroup whose band of
idempotents is left normal. Then each extended F-cross-section in S is left normal.

Proof. Let R=(r;;geG) be an extended F-cross-section in S and let s,teS and
g, he G such that s#t and so-g=to-h. Since § is Z-unipotent, the first relation implies
that ss'=tt’' for any s'e V(s) and '€ V(t). By applying to S'/y the well-known structure
theorem [10, VIL.6.9] for F-inverse semigroups, we can easily check that sr,r,-.s' and
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tryry-1t’ are P-related idempotents in S. Thus, since sr,Zsr,r,-s'=(ss5)(sr,r,-1s") and,
similarly, tr,Z(et')(tryr,-1t’), we infer by Result 1.5() that sr,%tr,. However, the
assumption so-g=to-h implies also sr,otr,. Hence we see by Result 1.7 that sr =tr,.
The proof is complete.

A similar assertion holds for Z-unipotent F-orthodox semigroups.

Lemma 3.8. Let S be an R-unipotent F-orthodox semigroup. Then the unique extended
F-cross-section in S is left normal.

Proof. The unique extended F-cross-section in S is (t,:g€G). Suppose that a,beS§
and g, he G such that a#b and ao-g=bo- h. In the same way as in the previous lemma,
it suffices to show that at,Zbt,. Since aZb by assumption, there exists ue S such that
a=bu. Therefore we have at,=but, where (ut,)o=h. Hence ut,<t,, and so ut, <4t
follows. This implies at, < 4bt,. Changing the roles of a and b, we see that bt, < zat, also
holds, completing the proof.

Now we will show that left normality of an extended F-cross-section is preserved by
forming idempotent pure homomorphic images.

Lemma 3.9. Let S be an R-unipotent quasi-F-orthodox semigroup and ¢ an idempotent
pure congruence on it. If R is an F-cross-section in S such that R" is left normal then (R®)!
is a left normal extended F-cross-section in S/e.

Proof. Put R=(r,;geGs,g#1). Let §FeS'/e’ with 2. By Result 1.1, there exist
se5 and tef such that s#t in S'. Let g heGs with so-g=ta-h, or, equivalently,
g k"' € Ggin with §(c'/e')-g" =#o'/e')-h*". Then the equality sr,=tr,, which is valid
since R' is left normal, implies §7 1 =se' - r ¢! =te' -r,e' =iF,. Hence, by Remark 3.6, we
see that (R®)! is also left normal which completes the proof.

Dually to the notion of a left normal extended F-cross-section in an Z-unipotent
semigroup, we can introduce that of a right normal extended F-cross-section in an %-
unipotent semigroup.

Let S be a quasi-F-orthodox semigroup. Recall that a,f=¢ and hence a and f are
idempotent pure. We will term S a generalized F-orthodox semigroup if there exists an F-
cross-section R in S such that (R*)* is left normal and (R#)! is right normal.

We can strengthen Corollary 3.2 as follows.

Proposition 3.10. Each F-orthodox semigroup is generalized F-orthodox.
Proof. Let S be an F-orthodox semigroup. Corollary 3.2 shows that S is quasi-F-
orthodox. By Lemma 3.1 and Remark 3.6, S/a is an %-unipotent F-orthodox semigroup

and Ty, =Ts where a=a'. Lemma 3.8 implies that Ty, is left normal, and so Tj is also
left normal. Similarly, we can show that T% is right normal which completes the proof.
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Finally, we verify the analogue of Lemmas 3.1 and 3.5 for generalized F-orthodox
semigroups.

Lemma 3.11. Let S be a generalized F-orthodox semigroup and ¢ an idempotent pure
congruence on S. Suppose that R is an F-cross-section in S such that (R®) is left normal
and (R#)! is right normal. Then ((R®)" )} is q left normal extended F-cross section in
(S/e)/((x v €)/e) and ((R®)®¥ %) is a right normal extended F-cross-section in (S/e)/
((B v €)/e) where (a v &)fc and (B v €)/e are the least R-unipotent and the least %-
unipotent congruences, respectively, on Sfe. Consequently, S/e is generalized F-orthodox.

Proof. It is obvious that (x v g)/e is the least Z-unipotent congruence on Sje.
Moreover, a v ¢ is an idempotent pure Z%-unipotent congruence on S, and ¢:
Sia v e)=(S/a)/((a v e)fa), (s(x v e))o=(sa)(x v &)/a) and y:S/(a v &)—(S/e)/((x v €)/e),
(s(a v &)y =(se)((« v €)/e) are isomorphisms. Since (R*)' is left normal by assumption,
Lemma 3.9 ensures that ((R*)“Y®%)! is also left normal. Applying the isomorphism
¢~ 'y, which maps the members of (R*)©@Y ¥ just into those of (R®)“®Y®% one can
immediately see that ((R®)“" */%)! must also be left normal. Similarly, we can verify that
((R?)¥ ¥ )1 is right normal. Since S/e is quasi-F-orthodox by Lemma 3.5, we infer that
S/e is also generalized F-orthodox. This completes the proof.

We conclude this section by investigating the properties of certain relatively bifree
orthodox semigroups. For completeness, after recalling the main facts concerning e-
varieties of orthodox semigroups, we present the models of these bifree objects obtained
in [5]. We mainly follow the formulation in [14]. For more details, the reader is
referred to [5] and [14].

An e-variety (called also bivariety) of regular semigroups is a class of regular
semigroups closed under forming direct products, regular subsemigroups and homo-
morphic images. For example, for any band variety C, the class O¢ of all orthodox
semigroups whose band of idempotents belongs to C forms an e-variety. In particular,
Oy is the class of all orthodox semigroups which we will denote simply by O. .

Let A be a non-empty set. We “double” it in the following manner. Let 4* be a set
disjoint from A together with a bijection *: A— A*, a—a* (a€ A), and put A=A U A*
Consider the free semigroup on A4 and denote it by 4%,

A biidentity in the alphabet A is a pair of words u=v with u,ve A%. An orthodox
semigroup S satisfies a biidentity u(a,,at,...,a,a*)=v{a,,a%,...,a,a*) if, for every
S1,.--,8,€S and every s eV(s),...,s,eV(s,), we have u(s,Ss},...,s,,5,)=
V(815815550 Sp) in S.

It is proved in [5] that the e-varieties of orthodox semigroups are just the classes of
orthodox semigroups defined by biidentities. Moreover, the notion of a biinvariant
congruence is introduced and a one-to-one correspondence is found between the e-
varieties of orthodox semigroups and the biinvariant congruences on an infinite
alphabet. Given an e-variety V of orthodox semigroups and an alphabet A, the
biinvariant congruence on A® corresponding to V is defined by

UV, A)={(u,v)e A® x A®: the biidentity u=v is satisfied in V}.

https://doi.org/10.1017/50013091500019192 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500019192

376 BERND BILLHARDT AND MARIA B. SZENDREI

The factor semigroup BFV(4)=A®/{(V, A) turns out to be the so-called bifree object in
V on the set A. Namely, BFV(A) together with the mapping 11 A—BFV(4), a—a((V, A)
have the following property. Given an orthodox semigroup SeV and a matched mapping
9: A— S, which means that a*3e V(a9) (ae A), there exists a unique homomorphism
¢: BFV(A)—S such that 1¢=3.

A model of BFO(A) yields as follows. Consider the Cayley graph ¢ of the free group
G = BFG(A). For brevity, denote wl(G, A) by w for every we A®. The vertices of ¢ are
the elements of G and, for any g, he G, the set of edges from g to h is

Y(g,h)={(g,a)e G x A:ga=h}.

We denote the set of all edges in 4 by Arr(9).

For any (g,a) e %9(g, h), let us add to 4 a new edge (h,a*) from h to g and consider the
bijection *:(g,a)i—(h,a*). So we “double” the graph %. The graph obtained in such a
way is denoted by #. Consider the free semigroupoid (category without identities) on &
and denote it by ¥°.

The graph ¢ is a connected tree. Thus, for any two different vertices g,he G, there
exists a unique (g, h)-path of minimal length in ¢ which we denote by r(g, h). Moreover,
define r(g,g) to be the empty path at g for every geG. Obviously, each (g, h)-path
contains r(g, h) as a subpath.

Let us interpret (Arr(%))® in such a way that Arr(%)=Arr(%) and the bijection of
Arr(%) onto (Arr(%))* is the mapping defined in the previous paragraph. Then the paths
in 9% can be considered as words in (Arr(%))®, and the concatenation of non-empty
paths in ¥® coincides with the concatenation of the respective words in (Arr(%))®.

A left action of G on % can be defined by putting h(g,a)=(hg,a) for any g,he G and
ae A. This action can be extended to a left action of G on the semigroup (Arr(%))® in
the usual way which, in particular, determines a left action of G on ¥®.

Let C be a band variety. Denote by & the restriction of {(C,Arr(%)) to 4®. More
precisely, two paths in ¥® are defined to be ec-related if they are coterminal and they
are {(C, Arr(9))-related as words. It is easy to see that ¢ is a congruence on ¥® which
is compatible with the action of G. Consider the subset

S(%,C)={pec: pe %°(1, —)}
in the quotient semigroupoid ¥®/e.. Define a multiplication in the following way:
pec * gec=pec-(0(p)@)ec  (p,qe9%(1, ).
Then S(%4,C) with 1: A-S8(%,C), a—(1,a)ec is a bifree object in O on the set A.
Moreover, pec and gec (p,qe%®(1, —)) are congruent modulo the least group congru-

ence on S(%4,C) if and only if w(p)=w(g).

Proposition 3.12. For any band variety C and for any non-empty set A,
(i) the monoid BF'Oc(A) is F-orthodox if and only if C<S, and
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(i) the semigroup BFO((A) is generalized F-orthodox.

Proof. The “if” part of (i) is well known. Now let C be a band variety and 4 a
non-empty set. Observe that Rc=(r(1,g)ec:g€G,g+#1) is an F-cross-section in BFO¢(A).
For, one can immediately see that p-r(g~', 1) pecp, that is, pec *r(1,g)ec * pec=pec is
valid for every geG, g#1 and for every pe9®(1,g7"). Since BFO(A) is E-unitary,
hence it follows by Proposition 3.3 that BFO(A) is quasi-F-orthodox.

In order to prove the “only if” part of (i), assume that BF'Og(A4) is F-orthodox.
Then Rc is the unique F-cross-section in it. Let ae A and consider the path
p=(1,a*)(a* a)(1,a) in %®. Clearly, (1,a)=r(1,a) and pec,(1,a)ec are in the same
congruence class modulo the least group congruence on S(¥4,C). Thus the inequality
pec £(1, a)ec must hold. This implies pec £ 4(1, a)ec whence (1,a)(1, a)* pecp follows. Here
the edge (1,a) is different from both (1,a*) and (a* a)=(1,a*)*, so we see that the
biidentity xx*yy*x=yy*x holds in C. Thus we obtain that CSRRB. A dual argument
shows that C<LRB also holds whence we infer that C<S.

(it) Since BFO¢(A) is an idempotent pure homomorphic image of BFO(A), it suffices
to show by Lemma 3.11 that BFO(A) is generalized F-orthodox. For brevity, denote Ry
and &5 by R and ¢, respectively. By the observation at the beginning of the proof, all we
have to prove is that (R®)" is left normal and (R?)! is right normal. We will verify the
former property, the latter one follows dually. First we determine the least #-unipotent
congruence a on BFO(A). By Result 1.6, we see that Opgg is just the class of all
ZR-unipotent semigroups. Thus, by the definition of a bifree object, the mapping
A—BFO(A)/a, a—(al(0, A))x (ae A) can be uniquely extended to a homomorphism of
BFOgg(A) to BFO(A)/a. This implies that ¢, gg/e Sa. However, the former relation is an
Z-unipotent congruence on BFO(A) whence it follows that it must be equal to a.

Now we verify that (R*) is left normal. We should prove that if pe%®(1,i),
qe%®(1, j) (i, je G), respectively, with

pr*eLreqq* (3.1)

and g, heG with ig= jh=k, say, then we have pe gg*r(l,2)eLrs= gerre * (1, h)egp oOF,
equivalently,

pr(i,K)e g r(J, k). (3.2)
If i=j then we have pe ggq and this relation clearly holds. Now suppose that i#j. Let s

be the longest common final segment of r(i, k) and r(j, k), s may be also empty. Suppose
that se 9°®(l, k). Then we have

r(i,ky=e,e,...e,,s and r(j,k)=1,15...1,s
where e,, f,eArr(9) (1Su<m,1<v<n) with e, #f,. Clearly, ee,...e,=r(i,l) and

Nifa-.. fy=r(j,1). Thus the latter inequality ensures that e,e,...e, f*... f¥=r(i j). By
(3.1), the paths p and g span the same subgraph & in 4. Hence i, j are vertices in & and
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& is connected. So r(i, j) and, consequently e,e,...e,, and f, f,.. f, are paths in &, It is
easy to see by Result 2.7 that (3.1) implies pe,e,... e, ersqfs f255, [, Since g pp is a
congruence, multiplying on the right with s, we obtain the relation (3.2) which was to be
proved.

Finally, we summarize the main results of this section in a theorem. Denote by U, F,
QF and GF the classes of all E-unitary regular, F-orthodox, quasi-F-orthodox and
generalized F-orthodox semigroups, respectively.

Theorem 3.13. (i) We have FcGF<QFcU.

(i) All classes F, GF, QF and U are closed under forming idempotent pure
homomorphic images.

(ii1) The bifree orthodox semigroup on any non-empty set belongs to GF.

Proof. (iii) follows from Proposition 3.12(ii).

(i) The inclusion GF = QF follows by definition. The inclusions FEGF and QFcU
are proved in Propositions 3.10 and 3.3, respectively. By (iii) and since BFO(A) has no
identity, we see that BFO(A)e GF\F for every non-empty set A. Thus FcGF. The
strict inclusion QF cU follows from the fact that there exist E-unitary inverse monoids
that are not F-inverse.

(i) The statement for U is well known. For F, GF and QF it is implied by Lemmas
3.1, 3.11 and 3.5, respectively. The proof is complete.

4. The embedding theorems

This section is devoted to proving the main results of the paper.
Theorem 4.1. Each quasi-F-orthodox semigroup is embeddable.
Theorem 4.2. Each generalized F-orthodox semigroup is strictly embeddable.

Observe that each orthodox semigroup whose band of idempotents is rectangular is

a rectangular group, that is, a direct product of a rectangular band and a group.
Therefore we can restrict ourselves to proving Theorem 4.1 [4.2] for quasi-F-orthodox
{generalized F-orthodox] semigroups whose bands of idempotents are not rectangular.

Let S be a quasi-F-orthodox semigroup such that E is not rectangular and let V be a
band variety such that E€ V. Then, obviously, we have ScV. Recall that E=kero. Let
us construct the semigroupoid C=Cg. Put A=Arr(C). Define the label of a non-empty
path p=a,a,...a, (a,eArr(C),i=1,2,...,m) in C* by lab(p)=s,s,,,,s, provided
a;=(g;,s;) (i=1,2,...,m). Obviously, we have lab(pg) =lab(p)lab(g) for any consecutive
paths p,q in C.

Let us choose and fix an F-cross-section R=(r,:g€ G,g#1) in S. By means of R, we
define arrows in C! connecting the objects: for every g, he G, we put
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zg.h=(ga rg"h)'

Clearly, zg‘,,eC‘(g, h). Recall that z, , (g€ G) is an empty arrow at g.

In order to prove that S is embeddable into a semidirect product of a band in V by a
group, we should prove by Result 1.11 that sot and (1,s)ty(1,t) imply s=t for every
s,teS. The second relation holds by Result 1.9 if and only if there exists a sequence
(1,8)=wg,w,,...,w,=(1,t) of words in A* such that w;,, is obtained from w;
(i=0,1,...,n—1) by one of the rules (S1), (S2) and (S2').

Proof of Theorem 4.1 If we want to prove that S is embeddable, we can choose V to
be B, and so, by Remark 1.10, we can assume that w;,, is obtained from w;
(i=0,1,...,n—1) by one of the rules [S1], [S1'], (82), (S2).

Let us connect any word w in A* by means of the z,,’s in the following way: if
w=a,qa,...a, where a;e C(g;,h;) (j=1,2,...,m) then define

W=AyZp, 9,022k5,9533 - Om— 128, 1, gm8m-
Notice that we C* (g, h,,).

Lemma 4.3. If W, weA* such  that W' is obtained fgm w by one of the rules [S1] and
[S17] then a(w)=a(w"), w(W)=w(w') and lab(w)=lab(w").

Proof. Without loss of generality we can suppose that w' is obtained from w by rule
[S1]. The equalities concerning the starting and ending points of the paths are clear.
Moreover, we obviously have

~
W=z, ,Xz; yXz; ;6 and w' =iz, ,Xz; ;U

where w(i)=g, a(X)=h, w(X)=i and a(d)=j. In order to check that lab(W)=lab(»7’), it
suffices to show that

lab(%) =lab(Xz; ,%). 4.1)

Put s=lab(%). Since X is an (h, i)-path, we have sc=h"'i. If h=i then s is necessarily an
idempotent, and z;, is an empty arrow whence (4.1) follows. In the opposite case,
lab(z; ,)=r;-1,. Taking into consideration the definition of r;-.,, we see that sri-y,s=s
which implies (4.1). This completes the proof.

Lemma 44. Ifw, weAdt such_that w' is obtained f~rom w by one of the rules (S2) and
(S2) then a(w)=a(w'), w(W)=w(w') and lab(w)=Ilab(w").

Proof. In the same way as above, we can assume that w’ is obtained from w by rule

(S2), and we can restrict ourselves to proving the last equality, the others being obvious.
Clearly, we have
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W=ﬁzg_,-azj_jbzk',,5 and \,;/ =azg.,~cz,‘_,,l7

where w(@)=g, ae C(i, j), be C(j,k), ce C(i, k) and a(f)=h. By definition, z; ; is an empty
arrow. Moreover, since aob=c, we obtain that lab(ab)=1lab(c). Hence it follows that
lab(w)=lab(w’) which completes the proof.

Returning to the proof of Theorem 4.1, Lemmas 4.3 and 4.4 imply that (1,s)=
Wo, Wy,...,W,=(1,1) are (l,g)-paths with g=so=tc and s=lab((l,s))=lab(wy)=
lab(w;)= - =lab(w,) =lab((1,t)) =t. Thus the proof of Theorem 4.1 is complete.

The main idea in the proof of Theorem 4.2 is similar. However, we should handle all
band varieties. Therefore we will make an induction by applying the recursive solution
of the word problem for band varieties formulated in Result 2.6. Since, in the case of
certain band varieties, the first or the last letter in a word is not preserved when
applying rule (S1), we should modify the definition of the path assigned to a word.

Let we A™. Suppose that w=aq,a,...a, where a;e C(g;,h;) (i=1,2,...,m). We assign a
subgraph [w] in C to w as follows.

Obj([w))={gi, h:i=1,2,...,m},

(€U k) A Aw) if j=k,
[wlC = {(C(j, kK)o Aw) v {z;,} if j#k,
((j, k) € Obj([w])).

Notice that if A(u)= A(v) for some u,ve A* then [u]=[v]. Furthermore, we define the
notion of a V-starting point and a V-ending point of a word w. We say that ge Obj(C)
is a V-starting point of w if ge Obj([w]) and, in case g(V)<h, also g=a(h(w)). Dually,
we define a V-ending point of w. Put

Tv(w)={(g, h): g is a V-starting point of w and

h is a V-ending point of w}.

Clearly, if ug(V, A)v then T(u)= Ty(v). For any (g, h)e Obj([w]), we assign a path in C
to w in the following way:

~g9.h _
Wht=z, 12 00220, 0,05 A1 Zh, g O, b

Notice that w9 is a (g, h)-path in [w].
Now we find connection between C,A,lab, %" corresponding to S and
C*, A%, 1abs, ~*9“* corresponding to an idempotent pure homomorphic image S/e of S.
Consider an idempotent pure congruence ¢ on S. Construct C%, A° and lab® by means
of S/e and o/e. Notice that the morphism ¢: C* —(C*)* extending the graph function
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Obj(C)—~Obj(C%),g— ¢
Clg, h)—»C(g", h*), (g, s)—(g",58)  ((8,5)€ Clg, h)

is a quotient morphism. Moreover, it is clear by definition that lab*(pp)=(lab(p))¢ for

every peC™.
Furthermore, defining z% , by means of (R%)! and “f.r o by means of the z%. ,’s (as
before for S) for every we(A4A%)*, we see that wgp - =w?"@ for every weA' and

g heObj(C). Here by ¢ we mean the homomorphism A*—(4°)* extending the
mapping A— A°, a—ap. These observations allow us to apply a statement concerning
C, A,1ab,w*" for an idempotent pure homomorphic image of S.

In particular, the local semigroups in the semigroupoid C' are semilattices. Thus
Simon’s Theorem ([2]) implies that lab’(p) =lab’(q) for any coterminal paths, p,q in C’
with A(p) = A(q). By the previous argument, this ensures the following property in C.

Lemma 4.5. For any coterminal paths p,q in C* with A(p)=A(q), we have
lab(p)ylab(q).

This property helps us to prove the following statement which will play a crucial role
in the sequel.

Lemma 4.6. If ucA™*, g heObj([u]) and p and q are (g, h)-paths in [u] such that
A(u) S A(p), A(q) then lab(p)ylab(q). In particular, if u,veA* with A(u)=A(v) and
g,he Obj([u]) then lab(a¢*)ylab(5").

Proof. The second statement immediately follows from the first one because
A(u) = A(v) implies [u] =[v]. As far as the first statement is concerned, by Lemma 4.5, it
suffices to show that if r is a (g, h)-path in [u] with A(u) < A(r) then there exists a (g, h)-
path s such that s spans [u] and lab(r)=lab(s). Since Arr([u])\A(u) contains only edges
z;; (i, je Obj([u]),i# j), we can get such an s step by step by applying the following
observation. If r is a (g, h)-path in [u] such that A(u)< A(r) then, for every i, je Obj{[u])
with i# j, r is of the form r, r,r; where r, is either an (i, j)-path or a (j,i)-path. Without
loss of generality, we can assume that r, is an (i, j)-path. Then F=r r,z; 2, ;z; ;rors is a

(g, h)-path such that lab(?) =lab(r) and A(r) U {z; ;,z; ;} = A(P). The proof is complete.

By making use of this lemma, we can easily prove the following statement.

Lemma 47. If we A*,g,h,ic Obj([w]) then lab(#*)#1ab({w)").

Proof. We clearly have [w]=[l(w)]. Put w=Il(w)w, (A(w,)< A(w)=A((W)), j=
w(t(I(w))) and k=a(h(w,)). Then we have
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lab(#*-%) Rlab(#¥ 4z, ) =lab(i(w)’ 'z, ,#;42, )
=lab(iw)" 'z, lab(i(w)’ 'z, ,Wi*"2,.,)
=lab(I(w)’ 'z, ;) lab(#9z, ,)
and, similarly
lab(i(w)" )R lab(i(w)" 'z, ;) =lab(iw)’ 'z, iz ,)
=lab({(w)" 'z, )lab((w)’ ’z; ;2. ,)
~ g.j ~ g,i
=lab(l(w) “z; )lab(i(w) z,).
Here wotz, ., I(w) z , and l(w) z ¢ are (g,g)-paths in [w] contammg all the edges in
A(w). Therefore Lemma 4.6 ensures that lab(w¥*z, g)ylab(l(w) z, g)ylab(l(w) zJ o)

Moreover, these clements are idempotent, so we infer from the previous relations that
lab(w?’ ").@lab(l(w) ). The proof is complete.

Now we verify the analogue of Lemma 4.4.

Lemma 48. Let wweAd™ such that w' is obtained from w by one of the rules (S2)
and (S2'). Then lab(w?: #)=lab(w' o ) for every g, he Obj([w]).

Proof. It suffices to consider the case when w' is obtained from w by rule (82). Then
w=uabv, w =ucw where u,ve(4%)! and a,b,ce A with aocb=c. So
~g.h_ i ~k,h MOk g skh
whh=i%igz; ;bi*" and w = =d%ici"

provided ae C(i, j), be C(j,k) and ce C(i,k). Since, by definition, z; ; is an empty arrow,
the assumption aob=c immediately implies the required equality.

Before turning to the proof of the analogous result with (S1) we treat the special case
V =LNB separately.

Lemma 49. If kerccLNB and w,weA* with wg(LNB, A)w' then lab(w#h) =
lab(w ) for every g, he Obj([w]).

Proof. Since wo(LNB, A)w’ we have A(w)= A(w') and h(w)=h(w') by Result 2.7. For
brevity, denote h(w) by a and assume that ae C(i, j). Then w=au,w' =av and wh=
z, 4", w W =z, a5"". We see that

lab(ai’*) Rlab(aii**z, ) =lab(az; ;)lab(ai*z, ,)

where e=lab(az;;) and f=lab(ai¥"z,;)=lab(w"*z, ) are idempotents in S. Thus we
obtain that
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lab(W"")%e .

Similarly, we have h
lab(w' " )%ef.

for the idempotent f=]ab(v7’ "hz,,_,.). Here f and f are @-related by Lemmai 4.6. Since
EeLNB, we obtain by Result 1‘2,(9,,that ef=ef. Hence lab(W"").%lab(x’ 'h) follows
which implies also lab(w¥*)Zlab(w’" ). Again utilizing Lemma 4.6, we infer by Result
1.7 the equality to be proved.

Lemma 4.10. Suppose that the F-cross-section R in S has the property that (R®) is left
normal and (R*)! is right normal. If keraeV and w,w e A" such that wo(V, A)w' then
lab(wé*)=lab(w ") for every g, he Obj(Ty(w)).

Proof. Since SCV, the assumptions imply A(w)= 4(w'), and so [w]=[w"]. Moreover,
recall that Ty(w)=Ty(w'). It suffices to show that lab(W**)Zlab(w’ *"). For, dually, we
can see that they are also #-related, and Lemma 4.6 ensures that they are y-related.
Hence the equality follows by Result 1.2.

Consider the congruence relation { =%% n ¢ on S. Clearly, { is idempotent pure.

If (0(V))o & h then ker(a/{)eS by Theorem 2.5, that is, S/ is an inverse semigroup. On
the other hand, { is idempotent pure and, since { €%, we see that { | Ec 9. Hence {=7y.
Thus Lemma 4.6 implies that lab(w?*)({ lab(v’;' ” ) for every g,heObj({w]). This
completes the proof in this case because { S 4.

If (e(V)o=h and (o(V))oEA then ker(o/()e LNB by Theorem 2.5. Utilizing the
remark before Lemma 4.5, Lemma 4.9 ensures that lab(w?*){ lab(vT;’ g"'), completing the
proof in this case, too.

Now assume that (g(V))o<A. Then we have 0(w)=0(w') and, if |A(w)|> 1, then also
O(w)o(V,, A)0(w') where |A(0(w))|<|A(w)|. We proceed by induction on |A(w)|. If
|A(w)| =1 then one can easily check that the statement of the lemma holds. Suppose that
the lemma is valid for any quasi-F-orthodox semigroup which possesses an F-cross-
section R such that (R%)! is left normal and (R#)! is right normal, for any variety V with
ScV and for any w,w e A" with |A(w)|<N (N>1). Consider S,R,V,w,w',g,h satisfying
the assumptions of the lemma such that |A(w)|=N. Since (¢(V))oSA, we have
[0(w)]=[0(w')]. Put i=w(t(0(w))), j=w(t(0(w"))) and k=a(0(w)),!=w(0(w)). Clearly, we
have i, je Obj([0(w)]) and k,leObj([w]). Since (g, h) e Ty(w) and (o(V))o<h, we see that
g=a(h(w))=a(h(0(w))). Thus (g,i),(g, j)€ Ty,(0(w)) = T,,(0(w’)). Applying the induction
hypothesis for S=S5/¢, V, and O(w)@,0(w')$ (see that remark before Lemma 4.5), we
infer that

lab(0(w)" )¢ lab(0(w)""). 4.2)

If (0(Vy)), St then we necessarily have i=j. Thus we obtain by multiplying (4.2) with
lab(z; ;) on the right that
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lab(0(w)" )¢ lab(0(w)" ). (4.3)

If (0(Vo)), &€t then V,cLRB, and so, by Theorem 2.5 and Result 1.6, S/{ is
Z-unipotent. The relation (4.2) implies

1ab(0(w)” )2 1ab(0(w)" ). (4.4)
For, we  see that lab(O(w) )gi’lab(O( ) ,g)—lab(O(w) ,g)—lab(O(w) z”)

lab(O(w) zl g) Wwhere O(w) z and O(W)g z;,, are (g,8)- paths in [0(w)] which
contain all the edges in A(O(w )). Hence it follows by Lemma 4.6 that
lab(O(w) zj g)ylab(O(w) z, g)- Since these are idempotents in S, we infer that
lab(O(w) z )@lab(O(w) z; ,)- Hence (4.4), indeed, follows. Since (R*?! is left normal
and { is an idempotent pure Z-unipotent congruence on S, Lemma 3.11 ensures that
(Rg)1 1s a left normal extended F-cross-section in S/{. This implies by (4.4) that

lab(O(w) zl k)(lab(O(w) ,_k), that is, (4.3) holds also in this case. However, we infer
from (4.3) that

lab(I(w)”") =1ab(0(w)" “0(w)){ lab(O(w)” D(w')) =lab(I(w)™").

This relation implies by Lemma 4.7 and by { = % that Iab(ﬁﬂ'")gllab(g’ g'h). The proof is
complete.

Proof of Theorem 4.2. Let (1,5)=wg,w,,...,w,=(1,t) be a sequence of words in 4™
such that s,te§ with sot and, for every i (i=0,1,...,n—1), w;,, is obtained from w; by
one of the rules (S1), (S2) and (S2). As we have mentioned at the beginning of this
section, we have to prove that s=t Put g=so=tes. Consider the sequence u_,=
(1,sr,-1), ug=(1,8)z, | =WoZ, 1, Uy =W Zg 1,y =W,Zy 1 =(1,8)2, 1, thy4 1 =(1,tr,-1). This
sequence inherits the property that each word can be obtained from the previous one by
one of the rules (S1), (S2) and (S2'). Moreover, 1€Obj([u;]) for i=—1,0,...,n+1. In
particular, if (o(V))o<h then a(h(u))=1 for every i. Thus (1,1)e Ty(u;) for every i.
Lemmas 4.8 and 4.10 imply that lab(™, ') =lab(iy"'1)=... =lab(@,* ) =lab(i;1, ).
Since lab(:t,l'l)=srg-l and lab(u::ll'l)=trg-l, thus we infer that sZ:. Dually, we
obtain that s.#t also holds. Since S is E-unitary, the equality s=t follows by Result 1.2
This completes the proof of our theorem.
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