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An orthodox semigroup S is termed quasi-F-orthodox if the greatest inverse semigroup homomorphic image of
S1 is F-inverse. In this paper we show that each quasi-F-orthodox semigroup is embeddable into a semidirect
product of a band by a group. Furthermore, we present a subclass in the class of quasi-F-orthodox
semigroups whose members S are embeddable into a semidirect product of a band 8 by a group in such a
way that B belongs to the band variety generated by the band of idempotents in S. In particular, this subclass
contains the F-orthodox semigroups and the idempotent pure homomorphic images of the bifree orthodox
semigroups.
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1. Introduction

The structure of £-unitary inverse semigroups is described in McAlister's P-theorem
(cf. [10, VII. 1.14]) by means of partially ordered sets, semilattices and groups. By
applying the P-theorem, O'Carroll [7] proved that each £-unitary inverse semigroup is
embeddable into a semidirect product of a semilattice by a group. On the other hand, it
is easy to obtain a P-representation of an £-unitary inverse semigroup S provided S is
embedded into a semidirect product of semilattice by a group. This idea led the second
author in [13] to try to generalize McAlister's P-theorem for E-unitary regular
semigroups by investigating whether each £-unitary regular semigroup is embeddable
into a semidirect product of a band by a group. Notice that a semidirect product of a
band by a group, and so each regular subsemigroup in it is necessarily £-unitary.

For brevity, we will say that an £-unitary regular semigroup S is embeddable if it is
embeddable into a semidirect product of a band 6 by a group. If B can be chosen from
the band variety generated by the band of idempotents in S then S is called strictly
embeddable. A class of £-unitary regular semigroups is termed embeddable [strictly
embeddable] if each member in it is embeddable [strictly embeddable].

So far, two embeddable classes of E-unitary regular semigroups has been known,
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namely, that of all £-unitary regular semigroups with regular band of idempotents (cf.
[13]) and that of all idempotent pure homomorphic images of the bifree orthodox
semigroups (cf. [14]). In fact, these classes are also strictly embeddable. The aim of this
paper is to present a new embeddable class and a strictly embeddable subclass in it.

An F-inverse semigroup is an inverse semigroup whose congruence classes modulo the
least group congruence contain greatest elements with respect to the natural partial
order. The structure of F-inverse semigroups which are easily seen to be £-unitary
monoids is well known (cf. [10, VII.6.9]). Regular semigroups satisfying the same
condition were investigated by Edwards [1]. They turned out to be orthodox, what is
more, E-unitary regular monoids, therefore she called them F-orthodox semigroups. Here
we introduce a larger class. By a quasi-F-orthodox semigroup we mean an orthodox
semigroup S such that the greatest inverse semigroup homomorphic image of S1 is
F-inverse. Moreover, we introduce a subclass in the class of quasi-F-orthodox semi-
groups whose members are called generalized F-orthodox semigroups. It contains all
F-orthodox semigroups and all idempotent pure homomorphic images of the bifree
orthodox semigroups.

In the main result of the paper we prove that the quasi-F-orthodox semigroups are
embeddable and the generalized F-orthodox semigroups are strictly embeddable. The
latter result provides us with a new, purely algebraic proof for the main result in [14].

1. Preliminaries

In this section we summarize the notions and results needed in the paper. For the
undefined notions and notations the reader is referred to [4].

The equality relation on a set A is denoted by id,, or, briefly, by id.
If A is a non-empty set then A+ and (A+)1 stands for the free semigroup and for the

free monoid on A, respectively.
If (f>:S-*T is a homomorphism then the congruence on S induced by <j> is denoted

by =*.
Given a regular semigroup S, its set of idempotents is denoted by £s or, if it causes

no confusion, then simply by E. The identity element of a monoid, in particular, of a
group is denoted by 1.

We will use the notation ^ a for the quasi-order relation defined on a semigroup S by
means of principal right ideals. Namely, we define a^#b for some a,beS if aSl^bSl.
Obviously, we have ^&n ^.# = 01. If we want to indicate that Green's relation ^ is
considered on semigroup S then we will write 0ls.

The following useful property of relation ^ on regular semigroups was proved in [3].

Result 1.1. Let S be a regular semigroup and 9 a congruence on it. If s,feS/0 such
that s!%SieI then there exist ses and t ef such that s0ts t.

Let S be a regular semigroup. As usual, y stands for the least inverse semigroup
congruence on S and a for the least group congruence on S. The greatest factor group
S/o of S will be denoted by Gs or, simply, by G.
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Let 8 be a congruence on S. Then, as usual, we denote its kernel {seS:s8e for some
eeE} by ker0 and its trace 0\E by trO. Obviously, we have £sker0 . It is well known
that if S is orthodox then ker 6 is an orthodox subsemigroup in S. On the other hand, if
6 is a group congruence then ker 8 = {s e S: s6 — 1} and ker 8 is a regular subsemigroup
in S.

We will need to consider (S/8)1 as a factor semigroup of Sl. It is easy to check that
(S/0)1 is isomorphic to S1/^1 where

0J=0u{(s, 1),(1,s):seS such that s8 is an identity in S/0}u(l,l).

We will identify (S/8)1 with S1/^1 under this isomorphism. Furthermore, we notice that
if 0£(j then 8l(^al, a/8 and al/9l are the least group congruences on S/6 and S^d1,
respectively, and Gs/e is isomorphic to GSi/9i.

A regular semigroup is called E-unitary if £ is a (left and/or right) unitary subset in S.
A regular semigroup is easily seen to be £-unitary if and only if ker a = E, and hence an
£-unitary regular semigroup is necessarily orthodox.

We will need the following property of £-unitary regular semigroups (cf. [13]).

Result 1.2. In every E-unitary regular semigroup, we have Jf n ff = id.

The natural partial order on an inverse semigroup S is defined in the following way:
for any s,teS, we say that s^t if s = et for some eeE. The following is well known (cf.
[10, H.1.6]):

Result 1.3. In an inverse semigroup S, we have s^t for some s,teS if and only
if s = st~ls.

The notion of the natural partial order was generalized by Nambooripad [6] for
regular semigroups as follows: if S is a regular semigroup and s, t e S then we define s ̂  t
if s ^ a t and s = et for some eeEnRs. The relation ^ is shown to be self-dual. It is easy
to see that if S is an inverse semigroup then the partial order defined in this way
coincides with the former one. Moreover, the following assertion is also straighforward
from the definition.

Result 1.4. Let S be a regular semigroup and 8 a congruence on it. If s,teS such that
^td in S/0.

A band is termed left normal {left regular] if it satisfies the identity abc = acb
[aba = ab]. Recall from Petrich [9] the following properties of such bands.

Result 1.5. (i) A band B is left normal if and only if aB is a semilattice for every aeB.
(ii) A band is left regular if and only if {% = id in it.
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A semigroup is called 3%-unipotent [y-unipotent] if each ^-class [if-class] contains a
unique idempotent. The following characterization is from Venkatesan [18].

Result 1.6. The following two conditions are equivalent for a semigroup S.
(i) S is £%-unipotent.

(ii) S is an orthodox semigroup whose band of idempotents is left regular.

Given a regular semigroup S, it is standard to verify that there exists a least
^-unipotent [Jzf-unipotent] congruence on S. We will denote it by as[/3s] or, simply, by
a[/?]. It is straightforward that a,/JEySa.

As far as the £-unitary ^2-unipotent semigroups is concerned, we need the following
property from Takizawa [16].

Result 1.7. In every E-unitary $-unipotent semigroup, we have 0lno = id.

Now we recall the basic notions on graphs and semigroupoids needed later. We
follow the terminology in Tilson [17].

A graph X consists of a set of objects denoted by Obj(.X') and, for every pair
i, jeObj(X), a set of arrows from i to j which is denoted by X(i,j) and is called a
horn-set. The different hom-sets are supposed to be disjoint. If aeX(i,j) then we also
write that a(a) = i and co(a) = j . The set of all arrows will be denoted by Arr(X). The
arrows a,b are called coterminal if a,beX(i,j) for some i, jeObj(X) and are termed
consecutive provided co(a) = cc(b).

By a subgraph of a graph X we mean a graph Y such that Ob}(Y)sOb}(X) and
Y(i, j) £ X(i, j) for every i, j e Obj(Y).

A semigroupoid is a graph C equipped with a composition which assigns to every pair
of consecutive arrows aeC(i,j), beC(j,k) an arrow abeC(i,k) such that the compo-
sition is associative, that is, for any arrows aeC(i,j), beC(j,k) and ceC(k,I), we have
(ab)c = a(bc). If, furthermore, for every ieObj(C), we have an element l,eC(i,i) such
that

\sa = a and blt = b for every a,fceArr(C)

with <x(a) = i and a>{b) = i, (1.1)

then we term C a category.
Observe that C(i,i) is either empty or a semigroup for each (EObj(C). For the sake of

uniformity, we will consider the empty set also as a semigroup, and we term C(i,i) the
local semigroup of C at i.

If C is a category then 1, is the identity in the local semigroup at i. If C is a
semigroupoid then, for every /eObj(C), we can adjoin a new element 1, to C(i,i)
provided it has no element satisfying (1.1). Thus we obtain a category which we denote
by C1.
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In particular, a set A can be considered as a graph with one object whose unique
hom-set is A and, similarly, a semigroup S can be considered as a semigroupoid with
one object whose unique hom-set is S.

Let X, Y be two graphs. A graph function f:X->Y consists of an object function
/:Obj(X)-»Obj(y) and, for every, ij eObj(X), a hom-set function f:X(i,j)->Y(if,jf). If
C,D are semigroupoids then by a morphism of semigroupoids $:C->£) we mean a graph
function <f> such that a(pb4> = (ab)4> for every pair a, b of consecutive arrows in C. If the
hom-set functions are injective then </> is termed a faithful morphism. If the object
function is bijective and the hom-set functions are surjective then </> is said to be a
quotient morphism. If both the object and the hom-set functions are bijective then <f> is
called an isomorphism.

By a congruence y on a semigroupoid C we mean a family

of equivalence relations y(i,j) on C{i,j) such that, for every aeC(i,j), b,ceC(j,k) and
deC(k,l) (i,j,k,leOb'){C)), the relation by(j,k)c implies aby(i,k)ac and bdy{j,l)cd. For
simplicity, we will often write y instead of y(i, j). Note that y(i, i) is a congruence on the
local semigroup C(i,i). If aeC(i,j) then the equivalence class containing a will be
denoted by ay(i, j) or, simply, by ay.

Given a congruence y on a semigroupoid C, we can define the quotient semigroupoid
C/y as follows: Obj(C/y) = Obj(C), (C/y)(i,j) is the set of all y(i,;)-classes of C(i,y) and
the composition rule is given by

ay-by = (ab)y (a e C(i, j), b e C(j, k)).

Obviously, the congruence y on C determines a quotient morphism y~:C-*C/y whose
object function is identical and whose hom-set functions assign the respective y-class to
each arrow. Conversely, if <t>: C->D is a quotient morphism then the family of
equivalence relations on the hom-sets in C determined by the hom-set functions is a
congruence on C which we will denote by =^. Moreover, <p induces an isomorphism
/:C/ = 0-»D such that <£= =\i.

Let X be a graph. A non-empty path in X is a finite sequence of consecutive arrows in
X. If p = ele2...en ( n ^ l ) where a(e,) = i and co(en) = j then we say that p is a non-empty
(t,j)-path. If p is a non-empty (i, j)-path and q is a non-empty (j.k)-path for some
i,j,keOb}(X) than their concatenation pq is a non-empty (i,fc)-path.

Given any graph X, we will consider the free semigroupoid on X and denote it by
X + . It can be represented in the following way:

X*(i,j) = {p:p is a non-empty (i,_/)-path in X}

and the composition is given by concatenation. If we add an empty path 1, to X + (i,i) for
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every ieOb](X+) and extend the composition by putting l,p = plJ = p for each (i,y)-path
p then the free category on X is obtained which will be denoted by (X*)1.

Notice that a non-empty path p = ele2-..ea(n^l, ekeArr(X), 1 ^/crgn) in X+ spans a
subgraph in the graph X whose set of objects is {a(ek): 1 gfc^n} u {co{en)} and whose set
of arrows is {eu...,en}.

Let X be any graph. Denote Arr(X) by A. Clearly, there is a natural morphism nl

from (X+)1 to (A+y which maps all objects of (X+)1 to the single object of (A+)1 and
which maps each path in (A"1")1 to the corresponding word in (A*)1. In particular, n1

maps each empty path to the empty word. For notational convenience, we will often
denote the word pn1 corresponding to the path p also by p. Denote the restriction of nl

to X+ and A+ by n. Obviously, both nl and n are faithful morphisms.
We conclude this section with the notion and the main properties of a semidirect

product of a band by a group and recall the embeddability criterion in [13].
Let B be a band and H a group. Suppose that H acts on B by automorphisms on the

left, that is, for every heH, an automorphism of B is given, denoted by h:B->B, bi->hb,
such that h(gb) = {hg)b holds for every g,heH and beB. Briefly, we will say only that H
acts on B. The semidirect product B*H is defined on the underlying set BxH by the
multiplication

(a, g)(b, h) = (a- gb, gh) (a,beB,g,heH).

The following properties of this semidirect product are straightforward.

Result 1.8. Let B be a band and H a group acting on B.
(i) The semidirect product B*H is an orthodox semigroup with EB,H = {(b,l):beB},

and EBtH is isomorphic to B.
(ii) The second projection n2'. B* H—*H, (b,h)i—>h is a homomorphism of B*H onto H

with ker( = ^2) = EBtH. Consequently, =ni = u and B*H is E-unitary.

We present here the embeddability criterion in [13] in a slightly modified form
(cf. [15]).

Let V be a variety of bands and S an E-unitary regular semigroup. First we define a
graph C = Cs as follows.

Obj(C) = G,

C{g,h) = {(g,s)eGxS:gsa = h} (g,heG).

One can equip C with the following multiplication: if (g,s)eC(g,h) and (h,t)eC(h,i)
then

{g,s)o(h,t)=(g,St).

Clearly, (g, st) e C(g, i) and this multiplication is associative. Thus C — (C; °) constitutes a
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semigroupoid. It is also straightforward that the local semigroups in C are isomorphic
to £ = ker<r. Note that this semigroupoid is closely related to the derived semigroupoid
of the homomorphism o::S->G, cf. [17].

It is easily seen that if S has an identity then Cs is a category. What is more, in
general, Csi is isomorphic to Cj. If S has no identity then, (g, 1) (geG) will be
considered as an empty arrow. More precisely, for every geG, the arrow (g, l)eCsi(g,g)
will be identified with the empty path lg in (Cjji)1, and so, in fact, (C^i)1 will be
identified with (Cj ) ' . In particular, this ensures that (g, l)nl is the empty word in (A+)1

where A = Arr(C).
Consider the identity graph function / on C. The unique extension T:C+^>C of i to

C+ is a quotient morphism. So it determines a congruence = r on the semigroupoid C+.
Denote the image of =, under n, namely, {(pn,qn):(p,q)e =T} by v. Consider the
congruence TV on A+ generated by Q(V, A) u v where Q(V, /I) is the fully invariant
congruence on A+ corresponding to the band variety V.

The following statement is routine to verify.

Result 1.9. For any words x,y in A + , we have xiwy if and only if there exists a finite
sequence of words x = wo,wl,...,wn = y such that, for any i ( 0^ i<n) , the word wi+1 is
obtained from w( by one of the following rules:

(51) wie(\,A)wi+l,
(52) Wi = uabv, wi+l=ucv for some u,ve(A+)1 and a,b,ceA with a°b = c in C,
(S2') wt = ucv, w1 + 1 =uabv for some u, ve(A+)i and a,b,ceA with aob = c in C.

Remark 1.10. In particular, if V is the variety of all bands then (SI) can be
substituted by the following two rules:

[SI] wt = ux2v, wi+l = uxv for some u,ve(A+)1 andxeA+,
[SI'] Wi — uxv, wl+l=ux2v for some u,ve(A+)1 and xeA + .
The embeddability criterion in [13] is the following.

Result 1.11. Let V be a variety of bands and S an E-unitary regular semigroup. Then S
is embeddable into a semidirect product of a member in V by a group if and only if sat and
(l,s)tv(l,t) imply s = t for every s,teS.

2. A result on extensions of completely regular semigroups by groups

In this section we present the result which serves as a basis in the inductive proof of
strict embeddabilty in Section 4. We apply this result in this paper only for band
varieties but we decided to present it for any variety of completely regular semigroups
since its proof is not more complicated in this generality, and, on the other hand, we
consider it as an important tool in proving strict embeddability for regular semigroups
being extensions of completely regular semigroups by groups.

First we recall several notions, notations and results in connection with varieties of
completely regular semigroups due to Polak [11].

A completely regular semigroup is usually considered a unary semigroup where the
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unary operation assigns each element its inverse in the maximal subgroup containing it.
It is well known that the class of all completely regular semigroups forms a variety of
unary semigroups and it is defined by the following identities: (xy)z = x(yz), xx~1x = x,
(x~l)~1 = x, xx"1 = x~'x.

We introduce notation for the following varieties of completely regular semigroups:

CR —completely regular semigroups,
G —groups,
B —bands,
LRB—left regular bands,
RRB—right regular bands,
LNB—left normal bands,
S —semilattices.

Denote by U(A) the free unary semigroup on the non-empty set A. It is the least
subsemigroup T in the free semigroup on the alphabet A u {(,)"'} with the property
that {u)~1e T provided ueT. For any word u in the alphabet A u {(,)"'}, we denote by
it the word obtained from « by deleting all unmatched brackets.

Given a variety V of completely regular semigroups and an alphabet A, the fully
invariant congruence on U(A) corresponding to V is denoted by Q(X, A). It is well
known that there is an antiisomorphism between the lattice of varieties of unary
semigroups and the lattice of fully invariant congruences on the free unary semigroup
on an infinite alphabet. When describing a property of the variety V, we will use (?(V) to
denote the fully invariant congruence corresponding to V on an infinite alphabet.

For any word u e U(A), we introduce the following notations:

A(u)—the content of u, that is, the set of all elements in A occurring in u,
0(M)—w where w is the longest initial segment v of u such that |/l(y)| = |/l(u)| — 1,
h(u) —the head of u, that is, the element of A occurring first in u from the left.

If Q is any of A and h then define the equivalence relation

{(u,v)eU(A)xU(A):Q(u) = Q(v)}

and denote it by A and h, respectively. Moreover, put

A' = {(u,v)eU(A)xU(A):\A(u)\ = \A(v)\ and \A(u)-A(v)\^l}.

Given a congruence g on U(A), we define the relation g0 as follows:

Q0 = {(0(u),0(v)):u,veA+,\A(u)\,\A(v)\^2 and ugv}.

Obviously, Q^Q0-
The next result follows from [11, Theorem 3(4)(5) and Lemmas 5(1) and 6].

Result 2.1. Let X be a variety of completely regular semigroups. Then just one of the
following conditions holds:
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(i) (e(V))0=A',
00 (e(V))0 = *nA',

(iii) (e(V))0£A, in which case (e(V))0 is fully invariant congruence and ((e(V))0)0 =

(e(V))0.

In case (iii), the variety of completely regular semigroups corresponding to the fully
invariant congruence (e(V))0 is denoted by Vo. Moreover, we note that if (j(V))osA
then one can easily see that (g(V))0£/i is also valid.

Pastijn [8] noticed that the variety Vo is closely related to the variety VTr defined in
the following way. Let U stand for the free unary semigroup on an infinite alphabet. If Q
and 9 are fully invariant congruences on U with Q(CR)ZQ,9 then we put

QT,$ if and only if e/e(CR) v »UMCR) = 9/Q(CR) V »UMaLy

This relation Tr is a complete congruence on the lattice of fully invariant congruences
on U. Therefore each 7^-class is an interval. We denote by QT" the greatest element in
the interval containing the fully invariant congruence Q. The variety corresponding to
the fully invariant congruence o(\)Tr will be denoted by VTr.

It is shown in [8, Theorem 2] that QTr/Q(CR) = (g/Q(CR) v &vlelCR)f, the greatest
congruence on C//g(CR) contained in Q/Q(CR) V MVIS{CK). This implies by Result 1.1 that

/ (2.1)

Combining Result 2.1 and [8, Lemmas 6 and 7], we infer the following statement.

Result 2.2. For any variety V of completely regular semigroups, we have
(i) b(V))0=A'<*(e(V))0^oVr t = S,

(i>) (e(V))0 = hnA'o (g(V))0 £ h and (Q{V))O ̂  A o \Tr = LNB,
(iii)

The following lemma finds connection between the members of V and VTp.

Lemma 2.3. Let V be a variety of completely regular semigroups. If SeV then

Proof. Since SeV, we have a surjective homomorphism <f>: U/Q(\)-*S for some free
unary semigroup U. By (2.1) we see that (l / /e(V))/^ / e ( V ) is isomorphic to U/g(V)Tr

which belongs to \Tr. However, it is standard to verify that if / : T->S is a surjective
homomorphism then 0t\<=,~x(St\f, and so there exists a unique homomorphism
x'-.T/^-tS/^s with yA&s?={$Tfx'- Clearly, %' is also surjective. Applying this for
T = U/Q(\), we obtain that S/&s is a homomorphic image of a member in VTr, and so,
indeed, S/Si\ e \Tr.

Combining Result 2.2 and Lemma 2.3, we infer the following lemma.
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Lemma 2.4. Let V be a variety of completely regular semigroups. If S e V then

Now we are able to prove the main result in this section.

Theorem 2.5. Let V be a variety of completely regular semigroups. Let S be a regular
semigroup and 9 a group congruence on S such that ker 9 e V. Put ( = 0lsri9. Then 9/C is
a group congruence on S/C such that (S/C)/(9/C) is isomorphic to S/6, and

s,
ker (9/C) 6 ̂  LNB, if(g( V))o £ fc and (g(V))0 £ A,

Proof. For brevity, denote ker0 by K. Then ker{0/Q = K/(£\K). We intend to prove
that ^KsC\K. Since 6\K = KxK, it suffices to show that ^Ks3^s\K. Let fc,/eK such
that fe^/. In order to show that k0t\l, we have to verify that ksMsls for every seS.
However, ks82skss' and ls0islss' for any S'GK(S). Since ss'eEzK, we have kss'^Klss'.
This implies kss'@slss' because ^ S ^ ? K £ ^ S . Thus we infer that /cs^s/s which
completes the proof of the inclusion ^ t £ ( | K-

The inclusion implies that ker (9/Q is a homomorphic image of K/3%\ where K £ V.
However, by Lemma 2.4, we obtain that K/Mb

K belongs to S, LNB and Vo according to
(e(V))o^^, (e(V))0£/j and (Q(V))0£A, and (e(V))ocA, respectively. This completes the
proof.

In Section 4 we will apply this theorem for band varieties. We conclude this section
with recalling the recursive solution of the word problem for the free objects in band
varieties. First of all, we notice that a band is a completely regular semigroup in which
the identity a~1=a holds. So, when working with band varieties, the unary operation
~' and the troubles with unmatched brackets can be eliminated and U(A) can be
substituted by A + . The notations A{u), 0(u), h(u), A and h, correspondingly simplified, will
be used in this case. Furthermore, we introduce, for any ueA+,

0(M)—the element aeA such that 0(u)a is an initial segment of u,

l{u)—the shortest initial segment v of u such that |/4(u)| = |/l(u)|.

Note that /(u) = 0(u)0(u). Moreover, dually to 0(u),0(u) and h(u), we define l(u),T(u) and
t(u) (called the tail of u), respectively. Analogously to the relations h and Q0, we
introduce also the relations t and gt, respectively.
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The following recursive solution of the word problem for the free objects in band
varieties can be obtained by [12, Theorem 1.3(1)].

Result 2.6. Let V be a band variety such that S s V and let A be a non-empty set.
Then, for any u, veA + , we have ug(\,A)v if and only if the following conditions are
satisfied:

(i) A(u) = A(v),
(ii) if(g(V,A))0^A then 0(u) = 0(u) and, in case
(iii) if(g(y,A))1 £ A then T(u) = T(i>) and, in case

A(u)
A(u)

(iv) if(g(\,A))0<=h and {Q(\,A))0£A then h(u) = h(v),
(v) i/(c(V, A))^t and (Q(\, A))^A then t(u) = t(v),

In particular, one can easily derive the following description of g(LNB, A) and
g(LRB, A) from the previous result (cf. also [9]).

Result 2.7. For any non-empty set A, we have

e(LNB, A) = {(«, v): u, v e A+, A(u) = A{v) and h(u) = h(v)}

and
+ , A(u) = A{v) and i(u) = i(v)}

where i(u), the initial part of u is the word obtained from u by retaining only the first
occurrence of each letter.

3. Quasi-F-orthodox semigroups

In order to generalize F-inverse semigroups, Edwards [1] investigated the regular
semigroups whose <x-classes contain greatest elements with respect to the natural partial
order. Since these semigroups are orthodox monoids, she called them F-orthodox
semigroups. Moreover, she also verified that an F-orthodox semigroup is necessarily
E-unitary.

Given an F-orthodox semigroup S, we will denote by tg the greatest element in the
ff-class g for every geG. In particular, t, is the identity in S.

If S is an E-unitary regular semigroup and e is an idempotent pure congruence on S
then e£<x and a/e is the least group congruence on S/e. Clearly, a/e is idempotent pure
and hence S/e is also E-unitary. Furthermore, the mapping Gs-*Gslc, sot-*(s£)(a/e) is an
isomorphism. If geGs and g = sa for some seS then we write g* for (se)(ff/e).

Now we deal with the idempotent pure homomorphic images of an F-orthodox
semigroup.

Lemma 3.1. Let S be an F-orthodox semigroup and e an idempotent pure congruence
on S. Then we have tgt = tge in S/e for every geGs. Consequently S/e is F-orthodox.
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Proof. By Result 1.4, we see that tge is, indeed, the greatest element in g* for
every g e G.

In particular, since y is idempotent pure, we obtain from Lemma 3.1 that the greatest
inverse semigroup homomorphic image of an F-orthodox semigroup is an F-inverse
semigroup. By means of this property, we introduce a notion generalizing that of an F-
orthodox semigroup.

An orthodox semigroup S will be termed quasi-F-orthodox if the greatest inverse
semigroup homomorphic image of Sl is F-inverse. We obviously have the following
corollary.

Corollary 3.2. Each F-orthodox semigroup is quasi-F-orthodox.

It is well known that the free inverse monoids are F-inverse semigroups. Since the
greatest inverse semigroup homomorphic image of a bifree orthodox semigroup is a free
inverse semigroup, hence it follows that each bifree orthodox semigroup is quasi-F-
orthodox. However, we will see at the end of this section that the bifree orthodox
monoids are not F-orthodox. In fact, quasi-F-orthodox semigroups were found to be
worth investigating because they possess the following property (R) which, in the special
case of the bifree orthodox semigroups, plays a crucial role in the proof of the
embedding theorem in [14]:

(R) each non-identity <r-class geG contains an element rg such that srgs = s for every
K

Proposition 3.3. For an orthodox semigroup S, the following two conditions are
equivalent:

(i) S is quasi-F-orthodox.
(ii) S is E-unitary and possesses property (R).

Proof. Assume first that S is quasi-F-orthodox. Then S is F-unitary. For, Sl/y is
F-inverse and hence £-unitary. This implies Sl to be £-unitary, and so S is also
E-unitary. Now we show that S has property (R). Again utilizing that Sl/y is F-inverse,
for every geG, g # l , there exists reS, such that ry is the greatest element in the (o/y)-
class gy. Then, by Result 1.3, we clearly have srsys for every seg~l. However, since
srsesS n Ss, we obtain that srs = s is valid. Thus S has property (R).

Conversely, suppose that S is £-unitary and possesses property (R). This implies by
Result 1.3 that (rg-,y)~l is the greatest element in the (<r/y)-class of sy, that is, in gy.
Taking into account that S is £-unitary, the identity in S1/? is the greatest element in
the identity {o/y)-c\ass. Thus S1/? is shown to be F-inverse, and so S is
quasi-F-orthodox.

Notice that, in this proof, we have verified the following lemma:

Lemma 3.4. Let S be a quasi-F-orthodox semigroup. For every geG with g^l, the set

https://doi.org/10.1017/S0013091500019192 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019192


ON QUASI-F-ORTHODOX SEMIGROUPS 373

g={reg:srs = s for every seg~1}

constitutes a y-class. In fact, g is the greatest element in the (a/y)-class gy.

Let S be a quasi-F-orthodox semigroup. By an F-cross-section in S, we mean a
mapping fl:G\{l}-»S such that gReg for every geG, g^l. An extended F-cross-section
in S is defined to be a mapping R.G-+S1 such that K|G\{1} is an F-cross-section in S
and 1/? = 1. Clearly, each F-cross-section R in S can be uniquely extended to an
extended F-cross-section which we will denote by R1. We will find it convenient to
denote the F-cross-section R and the extended F-cross-section R also by (gR:geG,g^ 1)
and {gR.geG), respectively.

In particular, if S is F-orthodox, then Ts = (tg:geG) is the unique extended F-cross-
section in S. The analogue of Lemma 3.1 holds for quasi-F-orthodox semigroups and
for F-cross-section in them.

Lemma 3.5. Let S be a quasi-F-orthodox semigroup and R=(rg:geGs,gj=\) an
F-cross-section in S. Let e be an idempotent pure congruence on S. Then R£ =
(rgr:g

ceGs/l.,g
c¥:\) with f^ = rge (gEG,g#l ) is an F-cross-section in S/e. Consequently, S/e

is quasi-F-orthodox.

Proof. It is straightforward to check that, since rgeg for every geGs, g # 1, we have
rgeege for every gceGs/e, g*#l . Thus Re is, indeed, an F-cross-section. Since S/e is
£-unitary, Proposition 3.3 implies that S/e is quasi-F-orthodox.

In connection with the extended F-cross-sections, we can add the following remark to
Lemma 3.5.

Remark 3.6. If S is a quasi-F-orthodox semigroup, R = (rg:geGs,g¥= 1) is an
F-cross-section in S and e is an idempotent pure congruence on S, then (Re)l=(Rlf'
where (R'f =(rgry.gcleGSUcl) with r> =rgE

i(geG).

Now we turn to introducing the notion of a generalized F-orthodox semigroup.
Let S be an ^2-unipotent quasi-F-orthodox semigroup and R = (rg:geG) an extended

F-cross-section in S. We say that R is left normal if srg = trh holds for any s,teS and
g , h e G s u c h t h a t s0Lt a n d s a g = t a h .

The following lemma justifies this terminology.

Lemma 3.7. Let S be an (01-unipotent) quasi-F-orthodox semigroup whose band of
idempotents is left normal. Then each extended F-cross-section in S is left normal.

Proof. Let R = (rg:geG) be an extended F-cross-section in S and let s,teS and
g,heG such that sdlt and sag = tah. Since S is ^-unipotent, the first relation implies
that ss' = tt' for any s'e V(s) and t 'e V(t). By applying to Sl/y the well-known structure
theorem [10, VII.6.9] for F-inverse semigroups, we can easily check that srgrg-is' and
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trhrh-a' are ^-related idempotents in S. Thus, since srg@srgrg-is'=(ss')(srgrg-,s') and,
similarly, trh3i(tt')(trhrh-lt'), we infer by Result 1.5(i) that srg@trh. However, the
assumption sa-g = ta-h implies also srgatrh. Hence we see by Result 1.7 that srg = trh.
The proof is complete.

A similar assertion holds for ^2-unipotent F-orthodox semigroups.

Lemma 3.8. Let S be an M-unipotent F-orthodox semigroup. Then the unique extended
F-cross-section in S is left normal.

Proof. The unique extended F-cross-section in S is (tg:geG). Suppose that a,beS
and g,heG such that aS&b and aa-g = ba-h. In the same way as in the previous lemma,
it suffices to show that atgg$bth. Since aMb by assumption, there exists ueS such that
a = bu. Therefore we have atg = butg where (utg)a = h. Hence utg^th, and so utg^g,th

follows. This implies atg^mbth. Changing the roles of a and b, we see that bth^3latg also
holds, completing the proof.

Now we will show that left normality of an extended F-cross-section is preserved by
forming idempotent pure homomorphic images.

Lemma 3.9. Let S be an 3t-unipotent quasi-F'-orthodox semigroup and e an idempotent
pure congruence on it. If R is an F-cross-section in S such that Rl is left normal then (RB)1

is a left normal extended F-cross-section in S/s.

Proof. Put R=(rg:geGs,g¥=\). Let s.feS'/e1 with sM. By Result 1.1, there exist
ses and t e f such that s0it in Sl. Let g,heGs with sa-g=tah, or, equivalently,
g*',/jc'eGsi/ci with s{o1/el)-gc' = t(oi/ei)-hc'. Then the equality srg = trh, which is valid
since R1 is left normal, implies sfg,.i=se1 rgt

l = Ul rhe
l =Ifhr.'. Hence, by Remark 3.6, we

see that (Re)1 is also left normal which completes the proof.

Dually to the notion of a left normal extended F-cross-section in an ^-unipotent
semigroup, we can introduce that of a right normal extended F-cross-section in an S£-
unipotent semigroup.

Let S be a quasi-F-orthodox semigroup. Recall that <x,/?S(T and hence a and /? are
idempotent pure. We will term S a generalized F-orthodox semigroup if there exists an F-
cross-section R in S such that (R*)1 is left normal and (Rf)1 is right normal.

We can strengthen Corollary 3.2 as follows.

Proposition 3.10. Each F-orthodox semigroup is generalized F-orthodox.

Proof. Let S be an F-orthodox semigroup. Corollary 3.2 shows that S is quasi-F-
orthodox. By Lemma 3.1 and Remark 3.6, S/ct is an ^-unipotent F-orthodox semigroup
and TSja = T% where a —a1. Lemma 3.8 implies that Ts/<z is left normal, and so T% is also
left normal. Similarly, we can show that Tf is right normal which completes the proof.
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Finally, we verify the analogue of Lemmas 3.1 and 3.5 for generalized F-orthodox
semigroups.

Lemma 3.11. Let S be a generalized F-orthodox semigroup and s an idempotent pure
congruence on S. Suppose that R is an F-cross-section in S such that (Rx)1 is left normal
and (Rp)1 is right normal. Then ((/?£)<aV£»/£)1 is a left normal extended F-cross section in
(S/e)/((a v e)/e) and ((RE)W V£)/£)1 is a right normal extended F-cross-section in (S/e)/
((/? v E)/E) where (a v e)/e and (j? v e)/e are the least Sfc-unipotent and the least £C-
unipotent congruences, respectively, on S/s. Consequently, S/E is generalized F-orthodox.

Proof. It is obvious that (a v E)/E is the least ^-unipotent congruence on S/e.
Moreover, a v e is an idempotent pure $2-unipotent congruence on S, and cp:
S/(<x v e)-»(S/«)/((« v £)/«), (s(« v e))<p=(sa){(a v e)/a) and tfr:S/(a v e)-»(S/e)/((« v e)/e),
(s(a v e))\p = (se)((a v e)/e) are isomorphisms. Since (R")1 is left normal by assumption,
Lemma 3.9 ensures that P " ) ' " " " ' ) 1 is also left normal. Applying the isomorphism
<p"V, which maps the members of (R")(ot V£)/* just into those of (/?')<"v e)/t, one can
immediately see that ((K£)(a VE)/E)1 must also be left normal. Similarly, we can verify that
((/?«)«> VE)/«)1 is right normal. Since S/e is quasi-F-orthodox by Lemma 3.5, we infer that
S/e is also generalized F-orthodox. This completes the proof.

We conclude this section by investigating the properties of certain relatively bifree
orthodox semigroups. For completeness, after recalling the main facts concerning e-
varieties of orthodox semigroups, we present the models of these bifree objects obtained
in [5]. We mainly follow the formulation in [14]. For more details, the reader is
referred to [5] and [14].

An e-variety (called also bivariety) of regular semigroups is a class of regular
semigroups closed under forming direct products, regular subsemigroups and homo-
morphic images. For example, for any band variety C, the class O c of all orthodox
semigroups whose band of idempotents belongs to C forms an e-variety. In particular,
OB is the class of all orthodox semigroups which we will denote simply by O.

Let A be a non-empty set. We "double" it in the following manner. Let A* be a set
disjoint from A together with a bijection *:A-*A*, at-*a* (aeA), and put A = AuA*.
Consider the free semigroup on A and denote it by A9.

A biidentity in the alphabet A is a pair of words u = v with u,veAe. An orthodox
semigroup S satisfies a biidentity u(aua^,...,an,a*)^=v{a1,a*,...,an,a*) if, for every
s1,...,sneS and every s'1eV(s1),...,s'neV(sa), we have a(s1,s',,...,sB,s;) =
v(sus\,...,sn,s'n) in S.

It is proved in [5] that the e-varieties of orthodox semigroups are just the classes of
orthodox semigroups defined by biidentities. Moreover, the notion of a biinvariant
congruence is introduced and a one-to-one correspondence is found between the e-
varieties of orthodox semigroups and the biinvariant congruences on an infinite
alphabet. Given an e-variety V of orthodox semigroups and an alphabet A, the
biinvariant congruence on A® corresponding to V is defined by

C(V,y4) = {(«,») 6/4® xA®: the biidentity u = i> is satisfied in V}.
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The factor semigroup BF\(A) = A®/((X,A) turns out to be the so-called bifree object in
V on the set A. Namely, BF\{A) together with the mapping v.A-*BF\{A), a\-^a\{\,A)
have the following property. Given an orthodox semigroup SeV and a matched mapping
9:A-*S, which means that a*9eV(a9) (aeA), there exists a unique homomorphism
(t>:BFY(A)->Ssuch that i<p = 9.

A model of BFOC(A) yields as follows. Consider the Cayley graph ^ of the free group
G = BFG{A). For brevity, denote w((G,A) by vv for every we A®. The vertices of ̂  are
the elements of G and, for any g,heG, the set of edges from g to h is

We denote the set of all edges in ̂  by Arr(^).
For any (g, a) e ̂ (g, h), let us add to <§ a new edge (h, a*) from h to g and consider the

bijection *:(g,a)t-*(h, a*). So we "double" the graph CS. The graph obtained in such a
way is denoted by #. Consider the free semigroupoid (category without identities) on ^
and denote it by <S®.

The graph $ is a connected tree. Thus, for any two different vertices g,heG, there
exists a unique (g, /i)-path of minimal length in ̂  which we denote by r(g, h). Moreover,
define r{g,g) to be the empty path at g for every geG. Obviously, each (g,/i)-path
contains r(g, h) as a subpath.

Let us interpret (Arr(^))e in such a way that Arr(^) = Arr(^) and the bijection of
Arr(^) onto (Arr(^))* is the mapping defined in the previous paragraph. Then the paths
in ^® can be considered as words in (Arr(^))e, and the concatenation of non-empty
paths in ̂ ® coincides with the concatenation of the respective words in (Arr(^))e.

A left action of G on # can be defined by putting h(g,a) = (hg,a) for any g,heG and
a eA. This action can be extended to a left action of G on the semigroup (Arr(^))e in
the usual way which, in particular, determines a left action of G on (Sm.

Let C be a band variety. Denote by ec the restriction of £(C, Arr(^)) to ^®. More
precisely, two paths in 'S® are defined to be ec-related if they are coterminal and they
are £(C, Arr(^))-related as words. It is easy to see that ec is a congruence on 0® which
is compatible with the action of G. Consider the subset

in the quotient semigroupoid ^®/ec. Define a multiplication in the following way:

(p,qe$®{\,-)).

Then S(0,C) with v.A->S(<S,C), ai-*(l,a)ec is a bifree object in Oc on the set A.
Moreover, pec and qec (p,qe&e(l, —)) are congruent modulo the least group congru-
ence on S(^, C) if and only if u>{p) = co(q).

Proposition 3.12. For any band variety C and for any non-empty set A,
(i) the monoid BF lOc(A) is F-orthodox if and only i /CsS , and
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(ii) the semigroup BFOC(A) is generalized F'-orthodox.

Proof. The "if" part of (i) is well known. Now let C be a band variety and A a
non-empty set. Observe that J?c = ( r ( l , g ) £ c : g e G , g # l ) is an F-cross-section in BFOC(A).
For, one can immediately see that pr(g~l,l)-pecp, that is, pec*r(l,g)ec*pec = pEc ' s

valid for every geG, g^\ and for every pe@@(l,g~l). Since BFOC(A) is £-unitary,
hence it follows by Proposit ion 3.3 that BFOC(A) is quasi-F-orthodox.

In order to prove the "only if" part of (i), assume that B F ' O ^ / l ) is F-orthodox.
Then Rc is the unique F-cross-section in it. Let a eA and consider the pa th
p = (l,a*)(a*,a)(l,a) in (§®. Clearly, ( l , a ) = r ( l , a ) and pec , ( l ,a)f i c are in the same
congruence class modulo the least group congruence on SC&, C). Thus the inequality
p £ c ^ ( l , a ) e c must hold. This implies psc^st(l,a)ec whence (\,a)(l,a)*pecp follows. Here
the edge (I,a) is different from both ( l ,a*) and (a*,a) = ( l , a*)* , so we see that the
biidentity xx*yy*x = yy*x holds in C. Thus we obtain that C s R R B . A dual argument
shows that C s L R B also holds whence we infer that C s S .

(ii) Since BFOC(A) is an idempotent pure homomorphic image of BFO(A), it suffices
to show by Lemma 3.11 that BFO(A) is generalized F-orthodox. For brevity, denote RB

and eB by R and e, respectively. By the observation at the beginning of the proof, all we
have to prove is that (R*)1 is left normal and (RfiY is right normal. We will verify the
former property, the latter one follows dually. First we determine the least ^ -un ipo ten t
congruence a on BFO(A). By Result 1.6, we see that OL R B is just the class of all
^ -un ipo ten t semigroups. Thus, by the definition of a bifree object, the mapping
A->BFO(A)/oi, at->(a((O,A))(x (aeA) can be uniquely extended to a homomorphism of
BFOLR3(A) to BFO(A)/<x. This implies that £L R B/eSa. However, the former relation is an
^-un ipo ten t congruence on BFO(A) whence it follows that it must be equal to a.

Now we verify that {R") is left normal. We should prove that if p e ^ e ( l , i ) ,
qey®{l,j) (i ' ,; 'eG), respectively, with

PP*£LRB<2<7* (3-1)

and g,heG with ig = jh = k, say, then we have pEtRB*r{\,g)eLRB = qeLRft*r(l,h)ELRB or,
equivalently,

pr(i,k)eLRBqr(j,k). (3.2)

If ! = _/ then we have peLRBq and this relation clearly holds. Now suppose that i^j. Let s
be the longest common final segment of r(i, k) and r(j, k), s may be also empty. Suppose
that se^®(/,/c). Then we have

r(i,k) = ele2...ems and r(j,k)=f1f2...fas

where eu,fveArr(§) (l^u^mj^v^n) with em#/n. Clearly, ele1...em = r(i,l) and
/ i A • • •/n = r 0 > 0 - Thus the latter inequality ensures that ele2---emf*...f* = r(i,j). By
(3.1), the paths p and q span the same subgraph Sf in eS. Hence i,j are vertices in Sf and
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Sf is connected. So r(i,j) and, consequently ele2...em and f\f2..fn are paths in if. It is
easy to see by Result 2.7 that (3.1) implies peie2...emELMqfif2,,,fn. Since eLRB is a
congruence, multiplying on the right with s, we obtain the relation (3.2) which was to be
proved.

Finally, we summarize the main results of this section in a theorem. Denote by U, F,
QF and GF the classes of all £-unitary regular, F-orthodox, quasi-F-orthodox and
generalized F-orthodox semigroups, respectively.

Theorem 3.13. (i) We have F c G F s Q F c U .
(ii) All classes F, GF, QF and U are closed under forming idempotent pure

homomorphic images.
(iii) The bifree orthodox semigroup on any non-empty set belongs to GF.

Proof, (iii) follows from Proposition 3.12(ii).
(i) The inclusion G F s Q F follows by definition. The inclusions F s G F and Q F s U

are proved in Propositions 3.10 and 3.3, respectively. By (iii) and since BFO(A) has no
identity, we see that BFO(A)eGF\F for every non-empty set A. Thus FcGF. The
strict inclusion Q F c U follows from the fact that there exist E-unitary inverse monoids
that are not F-inverse.

(ii) The statement for U is well known. For F, GF and QF it is implied by Lemmas
3.1, 3.11 and 3.5, respectively. The proof is complete.

4. The embedding theorems

This section is devoted to proving the main results of the paper.

Theorem 4.1. Each quasi-F-orthodox semigroup is embeddable.

Theorem 4.2. Each generalized F-orthodox semigroup is strictly embeddable.

Observe that each orthodox semigroup whose band of idempotents is rectangular is
a rectangular group, that is, a direct product of a rectangular band and a group.
Therefore we can restrict ourselves to proving Theorem 4.1 [4.2] for quasi-F-orthodox
[generalized F-orthodox] semigroups whose bands of idempotents are not rectangular.

Let S be a quasi-F-orthodox semigroup such that E is not rectangular and let V be a
band variety such that EeV. Then, obviously, we have SsV. Recall that E = kercr. Let
us construct the semigroupoid C = CS. Put >l = Arr(C). Define the label of a non-empty
path p = ala2...am (a, eArr(C),i = l,2,...,m) in C+ by \ab(p) = sls2,,,sm provided
ai = (gi,Si) (i=\,2,...,m). Obviously, we have lab(p^) = lab(p)lab(q) for any consecutive
paths p, q in C.

Let us choose and fix an F-cross-section R = (rg:geG,g^l) in S. By means of Rl, we
define arrows in C1 connecting the objects: for every g,heG, we put
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Clearly, z,,fceC'(|,/i). Recall that zg g (geG) is an empty arrow at g.
In order to prove that S is embeddable into a semidirect product of a band in V by a

group, we should prove by Result 1.11 that sat and (1 ,S)T V (1 ,0 imply s = t for every
s,teS. The second relation holds by Result 1.9 if and only if there exists a sequence
(l,s) = wo,w1,.. . ,wn = (l,t) of words in A+ such that wi+1 is obtained from w,
( / = 0 , 1 , . . . , « - 1) by one of the rules (S1), (S2) and (S2').

Proof of Theorem 4.1 If we want to prove that S is embeddable, we can choose V to
be B, and so, by Remark 1.10, we can assume that wi + l is obtained from wt

( i=0 ,1 , . . . , « -1 ) by one of the rules [SI], [SI'], (S2), (S2').
Let us connect any word w in A + by means of the zg h's in the following way: if

w = ala2...am where a,€C(gph}) (j=l,2,...,m) then define

Notice that weC+(gi,hm).

Lemma 4.3. If w, w'eA+ such that w' is obtained from w by one of the rules [SI] and
[SI'] then a(w) = a(w'), tu(w) = co(w') and lab(w) = lab(w').

Proof. Without loss of generality we can suppose that w' is obtained from w by rule
[SI]. The equalities concerning the starting and ending points of the paths are clear.
Moreover, we obviously have

w = uzghxzihxzjjv and w' =uzg-hxziJv

where co(u)=g, oc(x) = h, co(x) = i and a(v) = j . In order to check that lab(w) = lab(w'), it
suffices to show that

Iab(x) = lab(x2,hx). (4.1)

Put s = lab(x). Since x is an (h, i)-path, we have so = h~li. If h = i then s is necessarily an
idempotent, and zih is an empty arrow whence (4.1) follows. In the opposite case,
lab(z, fc) = r,-iA. Taking into consideration the definition of r,-n, we see that sr,-ihs = s
which implies (4.1). This completes the proof.

Lemma 4.4. If w,w'eA+ such that w' is obtained from w by one of the rules (S2) and
(S2') then <x(w) = a(w'), a>(w) = a>(w') and lab(w) = lab(w').

Proof. In the same way as above, we can assume that w' is obtained from w by rule
(S2), and we can restrict ourselves to proving the last equality, the others being obvious.
Clearly, we have
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w = uzgjazjjbzk hv and W = uzgJczkhv

where a>(w)=g, aeC(i,j), beC{j,k), ceC(i,k) and a(v) = h. By definition, z}J is an empty
arrow. Moreover, since aob = c, we obtain that lab(ab) = lab(c). Hence it follows that
lab(w) = lab(w') which completes the proof.

Returning to the proof of Theorem 4.1, Lemmas 4.3 and 4.4 imply that (l,s) =
w'0,w'l,...,wn = (\,t) are (l,g)-paths with g = sa = ta and s = lab((l,s)) = lab(vvj,) =
lab(vvi) = ••• =lab(w'n) = lab((l,t)) = f. Thus the proof of Theorem 4.1 is complete.

The main idea in the proof of Theorem 4.2 is similar. However, we should handle all
band varieties. Therefore we will make an induction by applying the recursive solution
of the word problem for band varieties formulated in Result 2.6. Since, in the case of
certain band varieties, the first or the last letter in a word is not preserved when
applying rule (SI), we should modify the definition of the path assigned to a word.

Let wsA+. Suppose that w = a1a2---am where a,eC(g,,/z,) (i= 1,2,...,m). We assign a
subgraph [w] in C to w as follows.

\(C(j,k)nA(W))u{zhk} if,#/c,

Notice that if A(u) = A(v) for some u,veA+ then [«] = ["]• Furthermore, we define the
notion of a V-starting point and a V-ending point of a word w. We say that geObj(C)
is a \-starting point of w if geObj([w]) and, in case g(V)s/j, also g = <x(h(w)). Dually,
we define a V-ending point of w. Put

Tv(w) = {(g, h):g is a V-starting point of w and

h is a V-ending point of w}.

Clearly, if UQ(\,A)V then Tv(u) = Tv(u). For any (g,/j)eObj([w]), we assign a path in C
to w in the following way:

Notice that wg-h is a (g,/j)-path in [w].
Now we find connection between C,A,\ab,~g'h corresponding to S and

O, A\ lab1, ~'9*-* corresponding to an idempotent pure homomorphic image S/e of S.
Consider an idempotent pure congruence e on S. Construct C£, Ac and lab£ by means

of S/e and a/e. Notice that the morphism <p:C+->(C£)+ extending the graph function
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C(g, h)-+C(gT, h'Ug, s)h-(g«, se) ((g, s) e C(g, h))

is a quotient morphism. Moreover, it is clear by definition that labc(p<p)=(lab(p))e for
every peC+.

Furthermore, defining z^,w. by means of (R0)1 and ft*9*'* by means of the 4 ' V S (as

before for S) for every we(Ae)+, we see that wq> ' = wg-hq> for every weA+ and
g,ZieObj(C). Here by q> we mean the homomorphism A +->(AC)+ extending the
mapping /4->/T, ai->a<p. These observations allow us to apply a statement concerning
C,i4,lab, w9>* for an idempotent pure homomorphic image of S.

In particular, the local semigroups in the semigroupoid Cy are semilattices. Thus
Simon's Theorem ([2]) implies that laby(p) = laby(q) for any coterminal paths, p,q in C
with A(p) = A(q). By the previous argument, this ensures the following property in C.

Lemma 4.5. For any coterminal paths p,q in C+ with A(p) = A(q), we have
lab(p)ylabte).

This property helps us to prove the following statement which will play a crucial role
in the sequel.

Lemma 4.6. / / ueA+, g,fteObj([u]) and p and q are (g,h)-paths in [u] such that
A(u)^A{p),A(q) then lab(p)ylab(q). In particular, if u,veA+ with A(u) = A(v) and
g,/ieObj([u]) then lab(u9-'")ylab(O.

Proof. The second statement immediately follows from the first one because
A(u) = A(v) implies [u] = [>]. As far as the first statement is concerned, by Lemma 4.5, it
suffices to show that if r is a (g,/i)-path in [u] with A(u)cA(r) then there exists a (g,h)-
path s such that s spans [u] and lab(r) = lab(s). Since Arr([u])\/l(u) contains only edges
Zjj (i, jeObj([«]),i¥"i), we can get such an s step by step by applying the following
observation. If r is a (g,/i)-path in [u] such that A(u)zA(r) then, for every i,yeObj(|V|)
with i^j, r is of the form rxr2r3 where r2 is either an (i,;)-path or a (y',i)-path. Without
loss of generality, we can assume that r2 is an (i,;')-path. Then r = rlr2zhiziJzjAr1ri is a
(g,/i)-path such that lab(r) = lab(r) and A{r) u {z;__,-,zi_,} £ A(f). The proof is complete.

By making use of this lemma, we can easily prove the following statement.

Lemma 4.7. IfweA+,g,h,ieOb)(lw']) then lab(w»'")<3?lab(/(w)9'1).

Proof. We clearly have [w] = [/(w)]. Put w = l(w)wt {A{w1)^A(w) = A(l(w})), j =
a)(f(/(w))) and k = a(h(wi)). Then we have
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and, similarly

lab(/(w)9")^lab(/(w)9"zi>(,) = lab(/(w)<'f"'z7-iI-z,-,9)

Here w9-^,. o, l(w) z, . and l(w) z-.. are (g,g)-paths in [w] containing all the edges in
A(w). Therefore Lemma 4.6 ensures that Iab(w9l*zfc>s)ylab(/(w) z1>9))>lab(/(w) zJg).
Moreover, these elements are idempotent, so we infer from the previous relations that
Iab(w9/l)^lab(/(w)9"). The proof is complete.

Now we verify the analogue of Lemma 4.4.

Lemma 4.8. Let w, w' e A+ such that W is obtained from w by one of the rules (S2)
and (S2'). Then lab(w»-*) = lab(w'"'*) for every g,heObj([w]).

Proof. It suffices to consider the case when W is obtained from w by rule (S2). Then
w = uabv, w' = ucw where u,ve(A+y and a,b,ceA with a°b = c. So

wg-h = ug-iazjJbvk-h and w'g'h = u9-icvk-k

provided aeC(i,j), beC(j,k) and ceC(i,k). Since, by definition, zjtJ is an empty arrow,
the assumption a°b = c immediately implies the required equality.

Before turning to the proof of the analogous result with (SI) we treat the special case
V = LNB separately.

Lemma 4.9. / / k e r a e L N B and w,w'eA+ with wg(LNB,A)w' then Iab(w9>/1) =
lab(w' ) for every g, /ieObj([w]).

Proof. Since we(LNB,/4)w' we have A(w) = A(w') and h(w) = h(w') by Result 2.7. For
brevity, denote h(w) by a and assume that aeC(i,j). Then w = au,w' = av and n>9" =
zgAau>-h,w'9'h = z9iiav>-h. We see that

lab (auh") 91 lab(awJ' hzK,) = lab (az,-,,) lab (auj- hzK,)

where e = lab(azJ1) and / = lab(atFf*zfcil-) = lab(wi>*zfcii) are idempotents in S. Thus we
obtain that
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Similarly, we have
\ab(w'''h)@ej.

for the idempotent / = lab(w' zh,). Here / a n d / a r e ^-related by Lemma 4.6. Since
£eLNB, we obtain by Result 1.5(0 that ef = ej. Hence lab(wI*)^lab(w'''1) follows
which implies also Iab(w9>/l)5?lab(w' ). Again utilizing Lemma 4.6, we infer by Result
1.7 the equality to be proved.

Lemma 4.10. Suppose that the F-cross-section R in S has the property that (Rx) is left
normal and {R^)1 is right normal. If keraeV and w, w'eA+ such that WQ(\, A)W' then

91'1) for every g,heObj(Tv(w)).

Proof. Since SsV, the assumptions imply A(w) = A(w'), and so [w] = [w']. Moreover,
recall that Tv(w) = Tv(w'). It suffices to show that \ab(wa-h)^\ab(w'8'h). For, dually, we
can see that they are also if-related, and Lemma 4.6 ensures that they are y-related.
Hence the equality follows by Result 1.2.

Consider the congruence relation £ = ̂ | n<r on S. Clearly, ( is idempotent pure.
If (°(y))o£h t n e n ker(fl-/()eS by Theorem 2.5, that is, S/C is an inverse semigroup. On

the other hand, ( is idempotent pure and, since ( £ ^ , we see that ( | £ c ^ £ . Hence ( = y.
Thus Lemma 4.6 implies that lab(ws-'1)(lab(w'9' ) for every g,heObj([w~]). This
completes the proof in this case because (£^2-

If (e(V))oc/, and (e(V))0<£A then ker(<r/C) e LNB by Theorem 2.5. Utilizing the
remark before Lemma 4.5, Lemma 4.9 ensures that lab(w9ll)Clab(vv' ), completing the
proof in this case, too.

Now assume that (e(V))0£A. Then we have 0(w) = 0(w') and, if |/l(w)|>l, then also
0(w)e(Vo,/4)0(w') where |/l(0(w))|<|/l(w)|. We proceed by induction on \A{w)\. If
|/((w)| = l then one can easily check that the statement of the lemma holds. Suppose that
the lemma is valid for any quasi-F-orthodox semigroup which possesses an F-cross-
section R such that (R")1 is left normal and (/?")' is right normal, for any variety V with
SsV and for any w, We A* with |/l(w)|<JV (N>\). Consider S, R, V, w, w',g,h satisfying
the assumptions of the lemma such that |/4(w)| = AT. Since (Q(V))OGA, we have
[0(w)] = [0(w')]. Put i = (o(t(0(w)))J = co(t(0(w'))) and fc = a(0(w)),/ = w(0(w)). Clearly, we
have ;,;eObj([0(w)]) and fc,/eObj([w]). Since (g,h)eTv{w) and (e(V))oc/,, we see that
g = a(h(w)) = ix(h(0(w))). Thus (g,i),(g,j)eTVo(0(w)) = TVo(0(w')). Applying the induction
hypothesis for S = S/C, Vo and 0(w)<p,0(w')q) (see that remark before Lemma 4.5), we
infer that

lab((^)9"'Klab(0W"). (4.2)

If (Q(V0))i^t then we necessarily have i = j . Thus we obtain by multiplying (4.2) with
lab(zu) on the right that
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\ab{^w)''k)C\ab{6(^)g'k). (4.3)

If te(V0))i£t then V o s L R B , and so, by Theorem 2.5 and Result 1.6, S/C is
52-unipotent. The relation (4.2) implies

lab((^)9 - ' )$ lab(6K)9 ' J ) . (4.4)

For ,^we see that labJO(w')'"')dllab(6(wO'"z,i,) = \&b(6^')B'JZjjZig) = \a.b(6{^')g'Jzlg)
lab(0(w')9-'z,_9) where 6iw')9'Jzjg and 6(w')9"zIig are (g,g)-paths in [0(w')] which
contain all the edges in A(0(w')). Hence it follows by Lemma 4.6 that
lab(0(w') Zji>g)ylab(0(w') zig). Since these are idempotents in S, we infer that

6 9 ' 7 9
9 ) 9 ' J Z ; , 9 ) - Hence (4.4), indeed, follows. Since (R")1 is left normal

and £ is an idempotent pure ^2-unipotent congruence on S, Lemma 3.11 ensures that
(R1*)1 is a left normal extended F-cross-section in S/£. This implies by (4.4) that
lab(0(w) Zjtik)(lab(O(w') zjk), that is, (4.3) holds also in this case. However, we infer
from (4.3) that

This relation implies by Lemma 4.7 and by (£^2 that lab(w*'*)^lab(w' ). The proof is
complete.

Proof of Theorem 4.2. Let (l,s) = w0,w,, . . . ,wn = (l,t) be a sequence of words in A +

such that s,teS with sat and, for every i (i=0, l,...,n— 1), wi + 1 is obtained from w( by
one of the rules (SI), (S2) and (S2'). As we have mentioned at the beginning of this
section, we have to prove that s = t. Put g = sa = to. Consider the sequence u_j =
(l,srg-,), uo = (l ,s)z9 i l=woz9 l , u1=wizgA,...,un = wnzgl=(\,t)zgl, un+1=(l,trg-1). This
sequence inherits the property that each word can be obtained from the previous one by
one of the rules (SI), (S2) and (S2#). Moreover, leObj([u,]) for i = - l , 0 , . . . , n + l. In
particular, if (Q(\))0^h then a(/i(u,-))=l for every i. Thus (l,l)eTv(u,) for every i.
Lemmas 4.8 and 4.10 imply that lab(MtT1

1'') = lab(u^1|1) = . . . =\ab(un
1'l) = \ab(i£Xl

i'1).
*—^-r 1 1 r-+~^ I 1

Since lab(M_i ' ) = srg-, and lab(un + 1 ' ) = trg-h thus we infer that sSit. Dually, we
obtain that sSCt also holds. Since S is £-unitary, the equality s = t follows by Result 1.2.
This completes the proof of our theorem.
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