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Introduction. In what follows we prove that a finite graph of n nodes in 
which each node has degree > 1 but < d possesses a set of at least n/(l + d) 
pairwise disjoint edges. Our principal theorem states an analogue of this 
result for the case when each node has degree > 2 : we show that in this case 
the graph possesses a set of at least 2n/{2 + max(4, d)) mutually disjoint 
edges. 

Both these results are established in §3, where it is also shown that they are 
"best possible." 

§1 furnishes the needed definitions and §2 constitutes an introductory 
discussion. §4 contains an application of our principal result to the colour 
problem for graphs. Our main conclusion in §4 is that for each integer j > 0 
there are (after isomorphism) only finitely many node critical graphs which are 
not cones (that is, do not contain a node which adjoins all other nodes) and 
for which the difference between order and chromatic number is < j . 

1. Definitions and notation. We adopt the following conventions: 
if X is any set, its cardinal number is \X\; 0 is the null set; "iff" stands for 
"if and only if." 

A graph G (without loops or multiple edges or directed edges) is taken here 
to be an ordered pair (X, F), where F is a set of pair sets {x, y\ of distinct 
members of the set X. The set X constitutes the nodes NG of G; the set F 
constitutes the edges EG of G. Two nodes x, y of G adjoin in G (we write 
llxGy") iff {x, y} is an edge of G. 

The order nG of a graph G is \NG\, the edge number eG is \EG\. Throughout 
this paper we shall assume that all graphs considered have finite order. 

The complement rG of a graph G is the graph which has the same nodes as G 
and such that x 'Gy iff x ^ y and not xGy. A graph H is a subgraph of G 
(H ÇZ G) iff NH ÇZ NG and EH Ç EG. Given any Y ÇZ NG, there is a largest 
subgraph H of G such that Y = NH (viz., for x, y £ Y, xHy iff xGy) : we call 
this H the restriction G/Y of G to Y. It is convenient also to define G — Y 
(for any Y C NG) to be G/(NG - F). 

A graph G is complete iff every pair of distinct nodes adjoin. G is discrete iff 
no pairs of nodes adjoin. G is a cone with apex x iff x is a node of G which 
adjoins every other node of G. G is a cone over a graph H iff there is an apex x 
of G with H = G — {x}. 
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If G is a graph with node x, the degree dxG of x in G is the number of nodes 
which x adjoins in G. The subdegree dG and super-degree dG of a graph G are, 
respectively, min {dxG'.x Ç NG} and max {dxG'.x Ç NG}. 

Suppose Xo, Xi, . . . , xq (q > 0) is a sequence with range NG such that 
x^Gxyiff |i — j \ — 1. If this sequence is one-one, G is a >̂a/Â with e/fcd ^w/es 
Xo and #ff. If the sequence xh . . . , xq is one-one and q > 2 and x0 = x?, G 
is a circuit. 

A graph is connected iff each two nodes are the end nodes of some path C 
the graph. A component of a graph is a maximal connected subgraph. A tree 
is a connected graph which includes no circuit. 

2. Disjoint edges in a graph. In a given graph G there are various 
disjoint sets of edges (that is, sets of pairwise disjoint edges). We define: 

mG = max {|M\ : M is a disjoint set of edges of G}. 

Our problem here is to determine a non-trivial lower bound for mG in terms of 
other data concerning the structure of G. 

Clearly we have always m < \n (for any graph) ; a classic problem has been 
to obtain conditions for the existence of a disjoint set of edges which contain 
all the nodes of the graph—that is, conditions that m > \n. For regular graphs 
this amounts to the problem of finding a factor of degree 1 (cf. 1). 

In general, a non-trivial lower bound for m will depend on d and d: if d is 
small then m is small—indeed if d = 0, then m = 0 no matter how large n 
might be; and, given fixed n and d, m clearly tends to increase as d is increased. 

Our results in the next section establish lower bounds for m in terms of 
n, d, and d for certain important special cases. 

3. Results. 

3.1. THEOREM. For graphs with d > 0, 

0-w < (0 + d)-m. 

3.2. THEOREM. For graphs with d > 1, 

1 -n < (1 + d) -m. 

Proof. We use course-of-values induction on e, the edge number. Suppose 
that dG > 1 and that whenever H is a graph with dH > 1 and eH < eG 
we have nH < (1 + dH)mH: we shall show that nG < (1 + dG)mG. 

We first note that: 
(1) If H Ç G, NH = NG, and H satisfies the conclusion of the theorem, 

then so does G. 
(2) If NG = iVi U i¥2, where TVi and N2 are disjoint sets of nodes, and 

G/Ni and G/N2 both satisfy the conclusion of the theorem, then so does G. 
By (1), (2), and the induction hypothesis, the desired conclusion is immediate 

unless G has just one component (that is, is connected) and removal of any 
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edge of G causes the resulting graph to violate the hypothesis d > 1 (that is, 
each edge of G contains at least one node of degree 1 in Gy and thus no two 
nodes of degree > 1 adjoin in G). 

Assuming then that these conditions all hold, let z be a node of G with 
maximum possible degree. The only nodes z adjoins have degree 1, and hence 
adjoin only z. G being connected, NG then consists just of z and those nodes 
which adjoin z (that is, G is a "star" with centre z). Then nG = 1 + dzG 
= 1 + dG, and mG = 1. Hence nG < (1 + dG)mG, q.e.d. 

3.3. Remarks. For each integer j > 1 there is a graph G with dG = j , dG 
= 1, and nG = (1 + dG)mG. Indeed, reminiscent of the proof of 3.2, let 
G be a "star" of order j + 1—that is, a cone over a discrete graph of order j . 
Then nG = 1 + dG and mG = 1. Hence the inequality of 3.2 is a "best 
possible" result. 

Our principal result (3.5) is an analogue of 3.1 and 3.2 for the condition 
d > 2. It is not true, however, that for d > 2 we always have 2n < (2 + d)m, 
as strict analogy requires: the simplest counterexample is a "triangle" (a 
circuit of order 3). However, a relatively minor amendment in the conclusion 
suffices to ensure a theorem, viz., 2-n < (2 + max(4, d))-m. In proving this 
result we shall use the following lemma: 

3.4. LEMMA. (1) Let G be a tree, z a node of G. Then there is a one-one function f 
from NG — {z} onto EG such that always x £ fx. (2) Let G be a connected graph 
not a tree. Then there is a one-one function f from NG into EG such that always 
x G fx. 

Proof. (1) For each node x other than z there is a unique path from x to z 
and a unique edge of this path which contains x: let fx be this edge. 

(2) Let H be a subtree of G with NH = NG, and let F G EG - EH. 
Choose z Ç F. By (1) there is a one-one function/ from NG — {z} onto EH 
such that always x Ç fx. Extend / to all of NG by putting fz = F. 

3.5. THEOREM. For graphs with d > 2, 

2-n < (2 + max (4, d))-m. 

Proof. Suppose that dG > 2: we shall show that 2-nG < (2 + max (4, dG)) 
-mG. As in the proof of 3.2 we use course-of-values induction on eG. Remarks 
(1) and (2) from Theorem 3.2 hold verbatim, and—analogous with the proof 
of 3.2—we may assume that G is connected and that each edge of G contains 
at least one node of degree 2 (and hence no two nodes of degree > 2 adjoin 
in G). 

Let T be the nodes of degree 2, 5 the nodes of degree > 2, = NG — T. 
We know that G/S is discrete: we shall show that we can assume also that 
G/T is discrete. 

Suppose that nK > 1 for some component K of G/T. Then either K is a 
circuit or K is a path whose distinct end nodes x, y adjoin, respectively, 
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unique nodes u, v of S (possibly u = v). If K is a circuit, then K is a component 
of G; since G is connected, G — K and G certainly satisfies the conclusion of 
the theorem. If K is a path with u ^ v or with u = v and dwG > 3, let iVi 
= iVX, iV2 = NG — NK. Then G/Ni satisfies the conclusion of the theorem, 
and since ^(G/7V2) > 2 the induction hypothesis ensures that G/N2 also 
satisfies the conclusion. By (2) of 3.2, G satisfies the conclusion. 

Therefore we may assume that each component of G/T either has just one 
node or is a path whose distinct end nodes x, y adjoin in common a node u 
of 5 of degree 3 (and whose other nodes adjoin no nodes of S). Suppose then 
that K is a component of the second type. Let z be the unique node $ {x, y] 
such that zGu: since u G S and G/S is discrete, z £ T\ let L be the component 
of G/T containing z. If nL > 1 then L has a node t other than z such that 
tGu. Further, t $ {x,y} (else L = K and then s G {x, y}), so x,y,z,t are 
distinct nodes adjoining M: but this is impossible since duG = 3. Hence L 
comprises just z. Let Nx = NK U {u, z}, N2 = NG - NL Then G/Nx 

satisfies the conclusion of the theorem, and since diG/Nz) > 2 the induction 
hypothesis ensures that G/Ni also satisfies the conclusion. By (2) of 3.2, G 
satisfies the conclusion. 

Therefore we may assume that each component K of G/T has just one 
node—that is, G/T is discrete. (Since NG = S^J T and G/S is also discrete, 
G is thus a "Paare graph" in the sense of (1).) Since dG > 2, G is not a tree; 
by 3.4 l e t / be a one-one function from NG into EG such t ha t / x is always an 
edge which contains x. Now / S is a disjoint set of edges of G. For if not then 
there are distinct nodes x, y of 5 and a node 2 of T such that /# = {x, z}, 
jy = {y, z] ; but dzG = 2, so fz must be either fx or /y: this contradicts the 
one-one property of / . 

Since each edge contains exactly one node of S and one node of T, 

YL {dxG:x Ç S} = eG = ]£ {dxG'.x G T}. 

Hence dG-\S\ > 2-| J"|. Now \T\ = nG — |5 | , and since / is one-one \fS\ 
= \S\. B u t / 5 is a disjoint set of edges of G, so | / 5 | < mG. Therefore, dG-mG 
> 2(^G — mG), that is, 

2-^G < (2 + dG)-mG, 

and G satisfies the conclusion of the theorem, q.e.d. 

3.6. Remarks. For each integer j > 4 there is a graph G with dG = 7, JG 
= 2, and 2-rcG = (2 + max (4, dG))-mG (= (2 + dG)-mG). Indeed let G 
be a complete graph of order j + 1 modified by splicing each edge by a single 
node. Hence the inequality of 3.5 is a "best possible" result for j > 4. However, 
for all cases when j = 2 or 3, except those in which each component of the 
graph is a triangle, 3.5 appears to be not best possible. 

One might conjecture that for each integer i > 3 there exists an analogue 
to 3.1, 3.2, 3.5 for the condition d > i. However, thus far I have been unable 
either to obtain such an analogue for i = 3 or to show that none such can exist. 
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4. Applications to the colour problem for graphs. 

4.1. DEFINITIONS AND REMARKS. A colouring of a graph G is a function / 
(whose values are the "colours") defined on NG such that if xGy then fx 
5e fy: adjoining nodes receive different colours. The chromaticity (chromatic 
number) of G is the least number of colours needed in a colouring of G: 

kG = min {\range f\ : f is a colouring of G). 

The colour problem for graphs is the problem of relating kG to other struc­
tural information about G : one important quantity which enters in frequently 
is the difference nG — kG between the order and the chromaticity of G. This 
has no standard name, but we shall call it the plexity pG of G. Clearly always 
pG > 0, with equality iff G is complete. 

A graph G is node critical iff for every x £ NG, k(G — {x}) < kG. It is 
easily verified that a node critical graph G has no node of degree nG — 2 
and that dG > kG — 1. In many respects the colour problem for arbitrary 
graphs reduces to the colour problem for non-conical node critical graphs : this 
may be seen from the following facts ((1) and (2) are easily verified and (3) 
and (4) are immediate from (2)): 

(1) Every graph G includes a node critical graph H with kH = kG. 
(2) If H is any graph and G is a cone over H, then kG = kH + 1, pG = pFI, 

and G is node critical iff H is node critical. 
(3) If j is any integer > 0 , then there is a node critical graph of plexity j 

iff there are infinitely many node critical graphs of plexity j . 
(4) If j is any integer > 0 , then every node critical graph of plexity j is a 

repeated cone over some non-conical node critical graph of plexity j . 

4.2. LEMMA. For all graphs G, 

m'G < pG. 

Proof. Let M be a disjoint set of m 'G edges of rG. For x £ NG let fx = F 
if x Ç F G M ; if x belongs to no edge of M \etfx = x. T h e n / is a colouring of 
G: the 2m'G nodes contained in edges of M receive m'G colours and the 
remaining nodes of G receive nG — 2 m'G colours. Then kG < |rangef\ = nG 
— m 'G, and thus m'G < nG — kG = pG, q.e.d. 

4.3. COROLLARY. For non-conical graphs with no nodes of degree n — 2, 

n < hp{2 + max(4, n - 1 - d)). 

Proof. We have d' > 2, so that by 3.5 2n = 2n' < m'(2 + max(4, d')). 
Now d! = n — 1 — d, and by 4.2 m' < p. 

4.4. THEOREM. For non-conical node critical graphs, 

n < | £ m a x ( £ + 2, 6). 

Proof. Node critical graphs have no nodes of degree n — 2, so the conclusion 
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follows from 4.3, noting that d > k — 1 for node critical graphs, and thus 
n — 1 — d < p for node critical graphs. 

4.5. Remark. Thus for each integer j > 0 there are (after isomorphism) 
only finitely many non-conical node critical graphs of plexity < j : indeed their 
order is bounded by \j max(j + 2, 6). In view of (3) of 4.1 this fact is curious 
and noteworthy. Our main result in 3.5 is not needed to establish this fact: 
for such purpose 3.1 suffices. However, the bound we have obtained using 3.5 
definitely improves that (n < p(p + 1)) which may be deduced in like 
manner from 3.1. 

It is easily seen that the only node critical graphs of plexity 0 are the com­
plete graphs and that there are no node critical graphs of plexity 1. The node 
critical graphs of plexity 2 are given by (2, Proposition IV); they may also 
be obtained by the following easy application of 4.4. 

4.6. COROLLARY. / / G is a non-conical node critical graph of plexity 2, then G 
is a circuit of order 5. 

Proof. We have dG > kG — 1 = nG — 3 > dG. Thus, for each node x of 
G, dxG = nG — 3, and hence dx 'G = 2. Therefore the components of 'G are 
circuits. By 4.4 nG < 6. The reader may easily construct the five graphs of 
order < 6 the components of whose complements are circuits and may directly 
verify that a circuit of order 5 is the only node critical graph among them. 

Added in proof. Quite recently I have discovered results confirming the 
conjecture at 3.6. I shall endeavour to discuss these in a future paper. 
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