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ABSTRACT. Temperate glacier ice is neither dry nor impermeable, as the 
standard theory of glacier sliding assumes. This fact leads to the already published 
concept of locally stress-controlled temperatures. Why the temperature is determined 
by the highest principal pressure, why the microscopic stress equals more or less the 
macroscopic one, and why water may flow in the capillary network even when water 
lenses at grain boundaries are freezing is explained. The new concept is applied to ice 
sliding on a hard bed having a sine profile, without cavitation. First, the stress field 
for a Newtonian viscous material and a vanishing roughness are used; next, an 
improved one, that takes into account the non-linear viscosity of ice and the finite 
amplitude of the micro-relief. It appears that water migrates from the stoss sides of 
the bumps to the lee sides within a bottom layer of thickness hw. Moreover, there is 
less ice melting at the sole on the former ones than ice accretion on the latter, a fact 
that yields a trend of ice accretion at the glacier sole. I t is balanced by internal 
melting near the bed and water oozing at the interface from the soaked ice. 
Conseql.!.:ntiy, a thin layer of accreted regelation ice with a constant mean thickness 
hi should exist at the interface. Modelling realistically mountain glaciers, hw rv 20 cm 
and hi rv 3.5 cm are found . 

NOTATIONS AND NUMERICAL VALUES FOR 
BLUE TEMPERATE ICE 

Related to phase changes 

KC 
A = ~L m = 0.0214m2 MPa-1 a-I: melting- refreezing 

parameter 
C = 2000J kg- 1 K- 1

: thermal capacity of ice 

T (1 1) 1 Cm = L - - - + vFa' = 0.098 K MPa - : lowering of 
P Pw melting point with pressure 

Cr = ~l ( 2.. - . vFa' ) = 2.7 X 10-8 K· m: lowering of 
Pw melting point with curvature 

RT2 
Cs = L = 1.85 K mol-1 kg: lowering of melting point 

with salt content 
hi: mean thickness of the regelation ice layer 
kw: thickness of the ice layer allowing for water transfer 

from stoss sides to lee ones 
Kb: thermal conductivity of bedrock 
Ki = 2.12J m- I K- 1 S-I: thermal conductivity of ice 
Lp = 306.4 MPa: melting heat per unit volume 
r: freezing rate at the ice-bed interface 
R = 8.3144 J mol- 1 K- 1

: gas constant 
T ~ 273 K: Kelvin temperature (or, in the second half of 

this paper, Celsius temperature) 
I = 0.034J m- 2

: energy of ice-water interface 
K = Ki/pC = 1.16mm2 s- 1 = 36.5m2a-1

: thermal 
diffusivity 
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v: moles of air in air-saturated water per kg and per Pa 
P = 915kgm-3

: ice density 
Pw = IOOOkgm-3

: water density 
<p: heat flux 
<pg: geothermal flux (f/yg/ pL ,...., 1 cm a-I in young 

mountains) 

Related to stresses 

B = 2€ij = 200 + 368w ± 40 MPa -3 a-I: rheological 
T2TiJ' parameter of creeping temperate ice (w is 

water content in per cent) 
c: adjustable parameter in the expression of the stress 

field (values in Table 3) 
d=l - c2 

s=l+c2 

U: mean velocity at the bottom (sliding velocity) 
y = c2 (besides a Cartesian coordinate) 
Z = zJl == a cos wx = a cos (27l'x/>'): profile ofa bed 

model 
'f}: ice viscosity 
a x , u y , U., Tyz, Tzx , Txy: components of stress 
ao: mean normal stress 
al < U2 < U3 : principal stresses 
T = (~TijTij)!: efTective shear stress 
Tij: deviatoric stresses 
ab, 'Tb: mean normal and shear stress at the ice-bed 

interface 
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Non-dimensional variables 

x = wx, Z = cwz: coordinates 

aw 
Sx(X, Z) = - [ax(x, z) - ab], Sy = So, Sz: normal 

'Tb stresses 

aw 
8(X, Z) = -T(X, z), 8 xx , 8 xz : deviatoric stresses 

'Tb 

INTRODUCTION 

The theories of glacier sliding and glacial erosion have 
been developed considering temperate ice as an imperm­
eable and dry material. The time has come to adopt a 
more realistic model. 

The permeability of bubble-free ("blue") temperate 
glacier ice is a well-documented and accepted fact 
(Lliboutry, 1971 ). Raymond and Harrison (1975) have 
examined the water veins at three-grain intersections just 
after ice cores were retrieved from depths up to 60 m . 
They inferred the following percolation rates, when the 
pressure gradient in a vertical vein is the same as in 
stagnan t glacier ice: 19 cm a- I in fine-grained ice (grain­
size,....., 2 mm ), 0.8 cm a-l in coarse-grained blue ice (grain­
size ,.....,2 cm) and 0.05 cm a-I in coarse-grained white ice. 

Note that the percentage of blue ice increases with 
depth. When coring to the bottom of glacier d'Argentiere, 
down to 107 m, only 10- 20% of blue ice was found in the 
cores, the remnant being white. Below 107 m, the amount 
of blue ice increased and reached 90- 95% between 180 m 
and the bottom at 237 m (Hantz and Lliboutry, 1983) . 

From chemical analyses, Berner and others (1977) 
estimated that 2-4 cm of water percolate per year through 
Griegsgletscher. At depth, it dissolves air under pressure. 
In this way, after several centuries, white ice might 
become bubble-free. 

Hutter (1982) and Blatter and Hutter (1991 ), in their 
study of poly thermal glaciers, considered a Fourier-type 
diffusion of moisture in temperate ice. Since neither the 
corresponding diffusivity coefficient nor the boundary 
conditions for water fluxes could be estimated, they 
decided to neglect in their numerical applications any 
diffusion of moisture through ice. Fowler (1984) suggested 
that recrystallization and flow of ice might strongly 
enhance the flow of water through the capillary network 
but he did not offer a predictive model. Therefore, 
Shoemaker (1990) considered the two extreme cases only: 
impermeability, or a permeability sufficiently large to 

allow perfect drainage of any internally produced 
meltwater. 

As for wetness, temperate ice contains much more of 
the liquid phase than the infilling of the capillary 
network. The water content has been measured, from 
surface to bottom, in the accumulation zone of Mer de 
Glace (Vallon and others, 1976), and in the ablation zone 
of glacier d 'Argentiere (Montmollin and others, unpub­
lished). It varies at random at the decimetric scale, 
between 0 and 2%, without any correlation with the 
grain-size or the fabric. This important result may be 
found in Lliboutry and Duval (1985) or in Lliboutry 
(1987b, p.122-24), where a tentative explanation is 
given. It is grounded on the fact that most of the water is 
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found in water lenses at grain boundaries, of similar shape 
(their convexity being governed by the interfacial 
energies) . The lenses enlarge with time, because of the 
viscous dissipation of heat, until they reach a vein and 
empty. (As we shall see, the water pressure is always less 
in the veins. ) Therefore, the random distribution of the 
water content that resulted from the different salt contents 
of successive snowfalls is perpetuated. 

Contrary to previous statements, in stressed ice the 
very local temperature at an ice-water interface is the 
melting temperature that corresponds to the hydrostatic 
pressure in the water, which is equal to the normal stress 
in the ice that acts on the interface (Lliboutry, 1964). As 
shown later, capillary forces (that cause unequal normal 
pressures against both sides of an interface) and salt 
content (that lowers the temperature) have negligible 
effects. Therefore, melting and refreezing at adjacent 
water inclusions should occur until lenses exist only at the 
grain boundaries where the normal pressure is the highest 
(the local temperature the lowest). Thus, with several 
assumptions that are discussed in the first half of this 
paper, we may consider that the temperature of wet glacier ice 
is determined by the local stress, more precisely by the 
minimum normal stress (when tensile stresses are taken as 
posi tive). They are not determined, as in standard theory, 
by the temperatures or heat fluxes at the distant 
boundaries of the body and by Fourier's law. Of course, 
there are heat fluxes governed by Fourier's law but they 
may be drawn directly from the stress field. 

I have put forward this theory of "locally stress­
controlled temperatures" at a symposium held in 1985 at 
Interlaken (Lliboutry, 1986). As a stress field, I used the 
asymptotic solution given by Nye (1969) for the sliding on 
a hard bed of a Newtonian viscous body, without ice­
bedrock separation (cavitation, in the glaciological sense). 
The surprising result was an extremely large freezing 
trend at the glacier sole and internal melting in its 
vicinity. In my book (Lliboutry, 1987b), I presented this 
theory on p . 160- 64, using this time the third-power law 
of viscosity but always the asymptotic solution. Later, I 
improved the stress field by considering a bed profile with 
finite amplitudes. This can significantly change the 
results, as shown in the second half of this paper. More 
importantly, I realized that the water which is produced a 
short distance above the bed more or less equals the 
amount of water that the freezing trend at the glacier sole 
requires. My results have been given in two manuscripts, 
submitted in December 1989 to the Journal of Glaciology, 
fused into a single one in June 1990, and finally rejected 
in March 1991 because it was too long. 

Meanwhile, one of those attending the Interlaken 
symposium picked up the idea of locally stress-controlled 
temperatures and submitted to the same journal a paper 
on this topic in May 1989 (Shoemaker, 1990). He did not 
consider the varying stress field due to sliding on a bumpy 
bed. He made a calculation only in the asymptotic case 
where deviatoric stresses in the ice would derive from 
shrinking due to the loss of internal meltwater. This 
assumption is untenable, because the overlying ice can 
contract and cope with this loss of volume. Moreover, the 
many delicate points of the theory have been overlooked. 
They will be successively addressed in this paper (which is 
not merely a shortened version of the rejected paper): 
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1. When water appears continuously within the ice, 
can it drain ofl? 

2. Which time-scale must be adopted in order to have a 
local thermodynamic equilibrium, although a 
temperate glacier as a whole is not in thermo­
dynamic equilibrium? 

3. Can the local stress, at the space scale ofa crystal, or 
even of a water lens, be equated with the macro­
scopic stress that is considered in continuum 
mechanics? 

4. Can we use as a model for the bed a series of smooth 
bumps, ignoring the minute asperities? 

5. Which is the best analytical expression of the stress 
field over a wavy bed, with non-linear rheology and 
finite amplitudes? 

6. How to cope with the mathematical singularities 
that this analytical expression yields? 

7. How to choose the bed parameters in order to obtain 
realistic freezing trends? 

It will be shown that, with locally stress-controlled 
temperatures, the water film that, in standard sliding 
theory, flows at the interface from the stoss sides of the 
bumps to their lee sides does not exist. Water migrates by 
the capillary network, within a bottom ice layer of 
thickness hw. Nevertheless, this change does not lead to 
dramatic changes in the sliding laws. 

Since, as an average, ice is continuously formed at the 
sole of a temperate glacier, while water appears above 
and drains off, a permanent layer of accreted regelation 
ice, with mean thickness hi, exists at the sole. The values 
of hw and hi will be estimated. They are essential for any 
study of the salt content or isotopic composition of bottom 
ice. The accreted layer may appear as a thin silty layer, 
which is actually observed in many mountain temperate 
glaciers. I t has to be considered in any modelling of 
glacial abrasion, a topic that will be dealt with in another 
paper. 

WATER PRESSURE IN LENSES AND WATER 
VEINS 

The microscopic scale, i.e. the scale of water inclusions 
and ice grains, will be considered first. To ground 
assertions made in the introduction, first recall some of 
the laws of capillarity and thermodynamics. 

At an ice-water interface, the interfacial energy 'Y 
causes the normal pressures in the ice (Po) and in the 
water (Pw) to be different. Denoting rI, r2, the principal 
radii of curvature of the interface (both positive in the 
case of a water lens), we have: 

(1) 

For a given Po, Pw is lower in veins than in lenses 
because of the opposite concavities of their walls. For a 
lens with diameter 8, according to Walford (quoted by 
Nye and Mae (1972); rl = r2 = 81(2 sin 16°)). With 
'Y=0.034jm- 2

, for 8=lmm, it follows Pw= 
Po + 37.4 Pa. For veins, according to Raymond and 
Harrison (1975), rl '" 8.5 x 10-5 m, and 1/r2 = 0, 
whence Pw = Po - 400 Pa. Therefore, in unstressed ice, 
when a lens on a grain facet becomes large enough to 
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reach a vein at the periphery of the facet, it empties into 
the capillary network. 

In stressed ice, the water-pressure difference between 
lenses and veins is still larger, because the lenses are found 
at grain boundaries more or less perpendicular to the 
maximum compressive stress. With rI, r2, r3 denoting 
this time, the radii of curvature of the three cylindrical 
facets of a vein, and PI, P2, P3 the corresponding values of 
Pn: 

1 'Y 1 
Pw = PI + - = P2 + - = P3 + -

rl r2 r3 

= PI + P2 + P3 + '1 (~ + ~ + ~) . 
3 3 rl r2 r3 

(2) 

Since the Pi values are unequal, the curvatures are 
unequal. Nevertheless, the last term remains of the same 
order as before, -400 Pa. The walls of a vein are more or 
less in three directions at 120° from each other. Taking 
the z axis in the direction of the vein, a simple calculation 
shows that in this case: 

PI + P2 + P3 
3 

_ O'x + O'y 

2 
(3) 

Since this value is less than the maximum compressive 
stress, whereas at lens walls it is equal, the water pressure 
in the veins is lower than in a water lens by more than 
437 Pa. In veins perpendicular to the lens, it is lower than 
in veins parallel to it. 

The water discharge in a vein is kv, denoting a 
constant, Sv, the cross-sectional area of the vein, and 9z, 
the component of gravity in the direction of the vein: 

2 [ {) (0' x + 0' y) ] qv = kv8v Pw9z + {)z --2- . (4) 

The first term is smaller than the second one by two 
orders of magnitude and may be neglected, as long as we 
deal with the vicinity of an uneven bed. 

TEMPERATURES AT THE MICROSCOPIC SCALE 

The Kelvin temperature T in the local equilibrium state 
depends on Pn, Pw, and on the entropy difference between 
water and ice per unit mass, that is LIT, with L denoting 
the latent heat of melting. It also depends on the 
concentration of dissolved salts in the inclusions (fJ., in 
equivalents per kg) and of dissolved air (vPw, in moles 
per kg). Substituting the value of Equation (1) of Pw, the 
formula reads: 

with the values of Cm, Cs and er that are indicated at the 
beginning of this paper. 

The total curvature of a vein wall is of order _104 m-1
, 

and the one of a lens wall of order 103 m-1
• Thus, the last 

term in Equation (5) is of order IO-4K. Salt concentrat­
ion in wet glacier ice is of order 10-4 equiv./kg at most 
(Souchez and others, 1973) and, since the water content 
of bottom ice is about 2%, fJ. is less than 10-2

. The 
corresponding lowering of the melting temperature is less 
than 0.01 K. In deforming ice, near the glacier sole, Po 
may differ from one wall to another, according to its 
orientation, by up to I MPa, providing temperature 
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differences up to 0.1 K. In bottom ice, the temperature is 
lowered a little because of the salt content, but its 
variations depend almost exclusively on the variations of 
Pn. For modelling heat transfers in deforming ice, only the 
stress-dependence of temperature has to be considered. 

The assumption that ice is deforming, i.e. that the 
deviatoric stresses are conspicuous, is important. The 
author had the opportunity to examine stagnant temp­
erate ice at the bottom of Mer de Glace, thanks to a 
tunnel dug at the tip of its tongue by the hydro-electric 
agency EDF, in the 1970s. (This tip disappeared in the 
succeeding years, impeding more detailed and quantit­
ative observations.) The cross-section of the bed there had 
a V-shape, with large boulders in the furrow, amongst 
which ran the subglacial stream. All the ice around the 
tunnel was blue, excepting ribbons of white ice with very 
large air bubbles that rose from the ceiling, parallel to the 
almost vertical rockwall on one side. Near the boulders, 
crystals were unusually large (5-IOcm) and some water 
pockets (rv I 0 cm3

) were observed. Clearly, this ice had 
suffered post-kinematic recrystallization over a long time, 
with the interfacial energies as the main driving factor. 

For the general case, the mean crystal area on thin 
slices of bottom (blue) ice is 0.4-1 .3 cm2 (Montmollin and 
others, unpublished). To assume local thermo-dynamic 
equilibrium, at the centimetric scale of a grain, means 
that temperature and stress are uniform within a grain. 
Then, 0'1 < 0'2 < 0'3, denoting the three principal stresses 
(compressive, and thus negative) : 

(a) Water lenses are more or less perpendicular to 0'1; 

(b) The local Celsius temperature is: 

(6) 

When flow over an uneven bed causes the stress to 
change, the temperature must follow the change in 0'1 . It 
may happen that the stress change causes lenses to 
disappear and others with a different orientation to 
appear. On the other hand, the heat flux caused by VT 
(at the macroscopic scale) may supply heat or cold to the 
crystal. There is also some viscous dissipation of heat (it 
will be found to be negligible in front of the former heat 
transfer). All these causes induce melting or refreezing at 
the lens walls, hence very local volume changes and the 
corresponding stresses. 

Ice diffusivity is large enough (1.l6mm2 s-1
) to ensure 

that a steady temperature field within the crystal is 
reached in a few minutes. Then, the temperature 
gradients between melting lenses and freezing ones is 
several hundredths of a degree over several millimetres. 
The corresponding heat fluxes are of order IOjm-2 s-1

. 

They correspond to melting or freezing at the lens walls at 
rates of order 0.1 mm h- 1

• I t should take some hours for a 
new set of lenses to be formed. Since the temperate ice 
viscosity, in transient creep, is less than 107 Pa s, and the 
elastic shear modulus of ice is 3.45 x 109 Pa, the time 
constant of stress relaxation is of order 10-2 s at most and 
very local stresses due to volume changes remain 
negligible. 

The slowest governing factor for local temperatures is 
the slow change of the macroscopic stress field. Large 
stress changes may demand several hours before the local 
thermodynamic equilibrium is restored. Note that, in 
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laboratory experiments with non-recrystallizing stressed 
ice, Nye and Mae ( 1972) found about 1 h. 

Such large stress changes occur when bottom ice slides 
and flows from the stoss side to the lee side of a bump. 
Even with fast sliding, e.g. 2 cm h- 1

, local thermal 
equilibrium is always reached, unless the wavelength is 
centimetric or smaller. For this reason, and because of the 
grain-size, Equa tion (6) is not valid when dealing with 
minute bumps. For minute asperities, the classical sliding 
theory must be used instead. 

MICROSCOPIC STRESSES AND MACROSCOPIC 
STRESS 

At the grain scale, strain rates and stresses in deforming 
glacier ice are not uniform, because individual crystals are 
strongly anisotropic. The standard homogenization 
procedure, which has been developed to deal with the 
plastic deformation of cubic metallic crystals, assumes 
that the microscopic strain rate is uniform and equals the 
macroscopic one, whereas microscopic and macroscopic 
stresses differ. (With this assumption, equilibrium condit­
ions for stress are not obeyed. ) For creeping ice, the 
opposite assumption, the same stress but different strains 
in adjacent grains, should be much closer to the truth, for 
the following reasons (Lliboutry, 1987b, p.455- 5 7): 

1. In deforming temperate glacier ice, a multi-maxima 
fabric is always found. With this fabric, grains are 
never in an unfavourable orientation for shear by 
gliding on basal planes. Also, they are not in the 
most favourable one. 

2. Given the third-power viscous law, a small local 
perturbation of stress can ensure a large perturb­
ation of the strain rate. 

3. Compatibility of strains in two adjacent crystals is 
readily obtained in two ways: (a) thanks to grain­
boundary migration, as shown by Means and jessel 
(1986), and more intuitively explained in my quoted 
book. Coincidence-site lattices (Higashi, 1978), that 
stabilize the multi-maxima fabric, also make 
boundary migration easy. (b) Thanks to micro-slip 
on the grain boundaries, or something similar, 
linked with the modification of bundles of disloc­
ations that are gathered at these boundaries. This 
process should account for most of the recoverable 
transient creep on unloading (Lliboutry, 1987b, 
p.428- 31 ). 

The reason why polycrystalline ice is much more 
viscous than single isolated crystals is because of piling up 
of dislocations at grain boundaries . In single crystals they 
escape freely at the surface. It is not, as often asserted, due 
to the existence of misoriented hard grains with very high 
local stresses that would govern the macroscopic strain 
rate . 

Therefore, in Equation (4) giving the water flux 
within the ice , and in Equation (6) relating th e 
temperature to the principal stress 0'1, macroscopic 
stresses may be used. The only requirement is that the 
macroscopic stress field is almost uniform at the space 
scale of a grain . Again, we cannot use these formulas to 
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deal with sliding on very small obstacles. In the following, 
sliding on a sine curve will be tackled. Its wavelength A 
must be large in front of the centimetric size of the grains. 
(As an application, A = 0.24 m will be used. ) 

ICE ACCRETION AND INTERNAL MELTING 
ASSUMING NYE'S STRESS FIELD 

Consider a hard bed whose micro-relief is independent of 
the transverse coordinate y, and whose longitudinal 
profile is the sine curve: 

z = zl'(x) == a coswx. (7) 

The stress field is assumed to be periodic in x . At the scale 
of the micro-relief, the bed is assumed to be perfectly 
smooth (no shear stress against it) . Which values of a and 
w allow the best modelling of a real bed will be considered 
later. At a large scale (not large enough to require gravity 
to be considered in the stress equations), the average 
value of O'z is O"b, and the average value of Txz is 'Tb . For 
given ice properties, when there is no ice-bed separation, 
the average forward velocity (the sliding velocity), say U, 
is then determined. 

Further simplifications are to assume ice to be 
Newtonian viscous and to consider the asymptotic case 
aw «1. This approximation is so crude that no 
adjustment to field data will be attempted, but it will 
allow the introduction of the main new concepts. 
Ignoring phase changes, the asymptotic solution for this 
plane problem in continuum mechanics, given indepen­
dently by Nye ( 1969) and Kamb (1970), is : 

O'x = O"b + 27b (1 - wz)e-WZ sinwx 
aw 
O'x + O'z 27b - wz . 

O'y = 0"0 =--2-= O"b + awe smwx 

O'z = O"b + 27b (1 + wz)e-WZ sinwz 
aw 

27b -wz 
Txz = --wze coswx 

aw 
Tyz = Txy = O. (8) 

The effective shear stress is : 

I 

_ [(O'x -O'z)2+ 2]"2_27b -wz T- --- T --wze . 2 xz aw (9) 

The principal stresses are 0"1 = 0'0 - T , 0'2 = 0"0, 0'3 = 
0"0 + T. Thus, with the new theory, the temperature field 
is (in Celsius): 

T = Cm(O'o - T) = Cm [O"b + ~ (sinwx - wz)e-wz
]. 

(10) 

The vertical heat flux follows: 

cpz = -Ki OI'a = KiCm 2'Tb (1 - wz + sinwx)e-wz
. (ll) 

z a 

In particular, the heat flux entering the ice at the ice­
bed interface (z = 0), say CPi , is never negative, as is 
(1 + sinwx) . 

Geothermal heat reaches the interface. There is also a 
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heat flux through the bedrock due to the oscillations of T 
at the interface, and governed by V 2T = 0 in the 
bedrock; its average is zero. The mean ice-accretion rate 
at the interface IS thus (() denoting an average for all 
values of x): 

(12) 

A is the "melting- refreezing parameter" that is defined at 
the beginning of the paper. Since A = 21.4 cm2 a-I bar-I, 
'Tb rv 1 bar and cPg/ (pL) rv 1 cm a- I, there is a trend in ice 
accretion when a < 40 cm. Of course, enough water must 
be available for that; otherwise ice would become cold 
and the theory would not hold. 

Within the ice, the volume rate of ice melting per unit 
volume is: 

K-
m = p~ V2T = AV2(0"0 - T) 

_ A27bw (2 ) -wz - -- -wz e . 
a 

(13) 

It is independent of x because, for a Newtonian viscous 
body, V 20'0 = 0, and in the considered case T is x­
independent. Above z = 2/w, m becomes negative, 
indicating a freezing rate; a small one because of the 
exponential factor . The total melting rate in a vertical 
column of cross-section unity, up to level z, is 

mdz = A- [1- (1 - wz)e-WZ
]. 1

z 27b 
o a 

(14) 

Ice rises above the bed with the vertical velocity given 
by Equation (12) , but it melts continuously. Since the 
water content cannot be larger than about 2%, the 
meltwater is continuously expelled. Therefore, the 
vertical ice velocity is: 

In the general case, this velocity is positive for z = 0 
and it changes sign at some value hi of z that is less than 
l/w. Thus, a permanent layer of re gelation ice is found at 
the bottom of the glacier. Above hi, small rock debris 
embedded in the glacier moves down with the ice, but it 
cannot reach the bed. (Only large debris fragments may 
touch the bed and scratch iL) 

WATER FLUXES ASSUMING NYE'S STRESS 
FIELD 

From Equation ( 14) , the total water produced within the 
ice per unit time and unit area is equivalent to a volume 
of ice 2A7b/ a. It is larger than the one ice accretion 
demands by cPg/ L, if the flow in the water veins is in the 
right direction. This point will now be examined. 

According to Equation (4), the water fluxes in the x­
and z-directions are: 

(16) 
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where k is a positive permeability coefficient that depends 
on the grain-size and on the cross-sectional area of the 
veins. The latter may vary, hence k. Any vertical water 
flux is possible but its direction is determined by the stress 
field . Since q. = 0 at z = 3/w = hw, no water flux crosses 
this level. 

In the layer 0 < z < hw, water flows up over stoss sides 
(sin wx < 0). Part of it allows the freezing that occurs in 
the layer 2/w < z < 3/w. Water flows down over the lee 
sides (sin wx > 0), draining off meltwater that appears 
below z < 2/w. As a balance, the outflow would allow 
(without geothermal flux ) a mean accretion rate: 

1
3/ w 27b 

mdz = A-(l + 2e-3). 
o a 

(17) 

It is larger than required by 4e-3 A7b/a = 0.2A7b/a. 
Over z = hw, slight freezing occurs at the expense of 

the surface water. The global balance of water fluxes is 
the same as if some surface water crossed the barrier at 
z = hw and reached the bed, at a rate 0.2A7b/a. 

BEST ANALYTICAL EXPRESSION OF THE 
STRESS FIELD OVER A SINE PROFILE HAVING 
ANY AMPLITUDE, WITH NON-LINEAR RHE­
OLOGY 

To begin with, phase changes will be ignored. 
With a realistic rheology, namely third-power law 

isotropic viscosity, the velocity and stress fields over a sine 
profile cannot be expressed with known functions, even in 
the asymptotic case aw -> O. Nevertheless, approximate 
analytical expressions of both fields, including adjustable 
parameters, may be written. (They are called "trial 
functions". ) Next, the two complementary variational 
theorems allow calculation of the best value of the 
adjustable parameters . The m ethod leads to an upper 
and a lower bound for T; /U, very close to each other 
when the trial functions have been cleverly chosen. The 
method has been described in Lliboutry ( I 987b, p.356-
59). In the asymptotic case, the result is: 

The accuracy of T; /U does not guarantee that the trial 
fields, with adjusted parameters, are accurate. Therefore, 
Meysonnier ( 1983) computed the solution by the finite­
element method for different non-zero values of aw. He 
found that the analytical fields are accurate provided that 
the overall shear stress 7b is taken into account, as did 
Kamb (1970). Meysonnier parameterized his results as 
the following law: 

Uaw2 = B(~6 )3[1 + 7.5(aw)2j. (19) 
l.4 aw 

Therefore , my trial stress field, with the above­
mentioned correction, is the best analytical expression 
that is available to date, and will be used henceforth. 
Whether Equation (19) has to be modified to take phase 
changes into account will be examined later. This stress 
field is drawn from the Airy stress function : 

X = - 2~ (1 + cwz)e-a.·1Z sin wx - 7bXZ 
aw 

(20) 
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where c is a numerical coefficient that decreases slowly 
from 0.81447 when aw increases from zero. It is calculated 
and given in Appendix I. 

The components of stress are: 

f)2X 
Txz = - f)xf)z . 

(21) 

To simplify their expressions, the following notations and 
reduced variables will be used. 

c2 = y, 1 + y = s, 1 - Y = d, 

caw = a, wx = X, cwz = Z, 

(j=O,x,z), 
7b Tx. = -exz. (22) 
aw 

It is found : 

Sx = 2y(1 - Z)e- z sin X 

Sx + Sz -z . 
Sy = So = 2 = (s + dZ)e sm X 

Sz = 2(1 + Z)e- z sinX 

8xz = aw - 2cZe-z cos X 

Sx - Sz Z . 
8 xx = -ezz = 2 = -(d + sZ)e- smX 

8 2 = 8~x + 8~z 
= 4yZ2e-2Z + d(d + 2sZ + dZ2 )e-2Z sin2 X 

- 4oZe-z cos X + (aw)2. (23) 

Note that the shear stress on the bed, at the scale of the 
micro-relief, is not Tb . Subscripts J.L referring to the exact 
values on the sine profile, it is : 

7bJ.l = Tx.I.= •• cos2{3 - Txx l.= •• sin2{3 (24) 

with tan{3 = -aw sin X . The leading term is found to be: 

(25) 

which is a good approximation, without trend, of the 
boundary condition TbI' = O. 

The trouble with this improved stress field is that 8 
has singularities at the points of the (X - Z - aw) space 
where it vanishes. It happens when 8 xx and exz are 
both zero. These points are sought in Appendix II. In the 
vicinity of these points , 8xx = b(X - Xo), 8 x z = 
e(X - Xo), and thus 8 = Jb2 + e2 1X - Xol. Thus, 
f)8/ ax jumps from a negative to a positive value when 
X crosses the value X = Xo . In the vicinity of a 
singularity 1'V81 becomes extremely large. These spikes 
must be smoothed out, because they have no physical 
meaning. A mathematical derivative is defined by giving 
to the variables x or z infinitesimal increments, and 
increments smaller than the grain-size cannot be 
considered . 

WATER PRODUCTION AND WATER FLUXES 

The Celsius temperature within the ice is : 

7b T = CmO"b + Cm-(So - 8). 
aw 

(26) 
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aw;' 0.5 

Fig . 1. Reduced temperature field in the ice, when it is 
locally stress-controlled, (So - 8). The Celsius temperat­
ure is T = Cmab + (Cm7b/aw) (So - e). The areas 
where there is freezing instead of melting are shaded. The 
barrier for capillary flow, at Z = Zw, is above the drawn 
area. 

Contour lines of the reduced temperature field 
(So - 8) are displayed in Figure I, in the asymptotic 
case (U;) = 0, and when aw = 0.5. Since 8 is always 
positive, the area in the X-Z plane on the lee side of the 
bump where T - Cmab is positive is smaller than the area 
on the stoss side where it is negative, and it has steeper 
gradients. Therefore, more heat comes from the interface 
on the lee side than goes to the stoss side. For finite 
amplitudes, the contour lines become skew, and 
X = ±90° are no longer axes of symmetry. 

The melting rate of ice per unit volume within the ice 
IS : 

Ki 2 7bW [ (j2 8
2 

] -'V T = A- --(So - 8) +y-(So - 8) . 
pL a 8X2 8Z2 

(27) 

The result is given in Appendix Ill. The area where it 
is negative (i .e. where freezint; occurs) is shaded in Figure 
1. Since 'VT vanishes at infinity upwards, the global 
balance of ice melting within the ice is (n denoting the 
unit normal to the bed, pointing upwards) : 
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Ki 
ri = --'VT·n 

pL 

= _ Ki [aT cos (3 _ aT sin (3] = A 'Tb Ri 
pL 8z 8x a 

Ri = - (1 + a2w2 sin2 Xr! 

[ 
8(So - 8) 1 . X 8(So - e) I] 

c 8Z + (U;)sm 8X . 
~ ~ 

(28) 

The analytical expression of Ri is given in Appendix Ill. 
The components of the water flux within the ice are 

found to be: 

(29) 

(As a check, for Newtonian viscous ice, y = 1, and 
Equations (14) are found .) The water motion in the ice is 
similar to the one described when ice was assumed to be 
Newtonian viscous. Nevertheless, the level z = hw that 
water does not cross is higher. It is : 

6y 
Zw = cwhw =---. 

3y -1 
(30) 

For a = 0, hw = 4.936/w, and for (U;) = 0.5, hw = 
9.000/w, when for Newtonian viscosity and aw = 0 it 
was hw = 3/w. 

ICE.ACCRETION RATE 

The ice-accretion rate (melting rate when negative) 
reads: 

(31) 

The term in Rb corresponds to the heat fluxes in the 
bedrock, caused by the non-uniform temperature at the 
ice-bed interface. The ratio of the thermal conductivities 
in the bedrock and in the ice, Kb/ K i , is introduced 
because A has been defined with K;, whereas the heat 
fluxes in the bed are proportional to Kb . 

R;, as given by Equation (28), has been computed for 
24 values of X, 15° apart from each other, and for several 
values of aw. Some spikes appear near the zeros of 8 . As 
stated in Appendix Il, when Z = Z," the zeros of Bare: 

( I ) For aw = 0, at X = 0 and 180°, Z = Z~ = O. 
(2) For aw = 0.2525, at X = 0 and Z = Z~ = 0.197. 
(3) For aw = 0.968, at X = ±ISS.2° and Z = ZjJ = 

-0.437. 

As previously explained, these spikes without physical 
meaning must be smoothed out. The smoothing may be 
done in several ways. This arbitrary choice introduces a 
significant inaccuracy in the mean value of Ri only when 
this mean is very small. The figures given in Table I 
correspond to the following rule: "when 8jJ < 
(max:8~)/8, and Ri(X - 15°), Ri(X) , Ri(X + 15°) are 
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not ordered, then Ri(X) is replaced by the arithmetic 
mean of the three values". 

The temperature at the interface reads: 

'Tb 
TIl = Cmab + Cm - (SOil - ell)' (32) 

aw 

Temperatures in the bedrock have been approximated by 
a truncated series that obeys \12T = 0 and tends towards 
-~gz/ Kb when z -+ -00: 

T ~gZ C C 'Tb [b b wz . = - K b + m ab + m aw 0 + I e Sin wx 

0 
0.1 
0.3 
0.5 
0.7 

+ b2ewz 
COS wx + b3e2wz sin 2wx + b4 e2wz cos 2wx] . 

(33) 

The biS have been calculated by fitting this expression 

Table 1. Dimensionless accretion rate at the interface, 
ignoring geothermal heat and assuming Kb = K i . It may 
be written Ri + Rb = Ra + RI sinX + ... 

(Rb) Ra = (Ri + Rb) RI = 
2((Ri + Rb) sin X) 

0.6879 0 0.6879 2.744 
0.5954 -0.0075 0.5879 2.707 
0.2643 0.0045 0.2688 2.463 
0.0835 0.0135 0.0970 2.093 
0.0197 0.0227 0.0424 1.783 

I 
-135' 

I 
I 

-45' 

I 
-180' -90' 0' 
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to 24 values ofTIl , corresponding to steps in X of 15°, by a 
least-squares procedure. The method and the results are 
given in Appendix IV. Next, the reduced value Rb of the 
heat flux entering the bedrock from the interface is easy to 
calculate. With the notations: 

t = awsinX, 

h = eWz
" sin X, 

h = e2wz
" sin 2X, 

it is found: 

~ - ~g 
- K bCm 7bw' 

h = eWz
" cos X , 

14 = e2wz
" cos 2X, (34) 

aw 
SOil - ell + 4>- ZIl = bo + blh + bd2 + b3h + b414 

c 

Rb = ~ [bl(fl + t12) + b2(12 - tid 

+ 2b3(h + ti4) + 2b4(f4 - th)] . 

(35) 

In the asymptotic case aw = 0, Ri and Rb can be 
rigorously calculated. Then: 

SOIl=ssinX, e/l=dlsinXI 

SOil - ell = 2sinX when sinX < 0 

= 2ysinX when sinX > 0 

Ri = ~ [2y2 sin X + 2dy2 sin2 X] 
c ell 

=2c3 (sinX+lsinXI) . (36) 

The mean value of Ri is (Ri) = 4c3/ 7r. Since 

2 00 4 
IsinX I = -- L-2-cos2nX, (37) 

7r n=14n - 1 

1 0' 

~--~~~---+------~----~-1 

~--------~~~~------~-2 

Fig. 2. Components of the reducedJreezing rate at the interface (melting when negative). Ri is due to the cold coming from 
the ice (ignoring the viscous dissipation of heat, which is negligible). Rb is due to the cold coming from the bed, ignoring 
the geothermal flux. 
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the temperature field in the bedrock is exactly given by an 
infinite Fourier series. It yields: 

. 8d 00 n 
Rb = ssmX + - L 2 cos2nX. (38) 

7r n=14n - 1 

This series does not converge when sin X = 0, but this 
singularity must be smoothed out, as explained before. 

Values of Ri and Rb at different abscissae are 
displayed in Figure 2. In the asymptotic case aw = 
0, Ri is never negative. When finite amplitudes are 
considered, negative values appear in the hollows of the 
micro-relief, with a minimum at about X = -167°, 
almost opposite to the maximum at about X = 138°. 
This unexpected large oscillation is not a mathematical 
artifact due to the vicnity of a singularity, because in this 
case a similar oscillation would be found near 0°. 

As for Rb, in the asymptotic case it is negative over a 
smaller extent than in the standard theory. With finite 
micro-relief amplitudes, an oscillation appears at the 
crests of the bumps, with a maximum at about X = 0°, 
and a minimum at 30°. 

Mean values of Ri , Rb and of their sum are given in 
Table I. (Rb) is always very small but (Ri) , hence 
(Ri + Rb) = Ra, diminishes strongly for increasing values 
of aw. A rough parameterization is: 

(39) 

The fact that (rb) is not zero modifies Equation (12). Let 
us state it again. The mean thickness of the regelation 
layer is given by the following balance between accretion 
rates and internal melting, averaged for all X : 

(r) = (l~hi ~ V2TdZ) 

(ri) + (rb) - 4Jg = Ki (OTI ) _ Ki (VT . n I _ ). 
pL pL oz z=hJ pL z-z" 

(40) 

The second term on the righthand side equals (ri) and 
both disappear. (The equation says then that the heat 
flux entering the ice at the bed is found again at Z = hi. ) 
With reduced variables (in particular Zi = cwhi ): 

Kb A7b(Rb)_4Jg =A7b c (a(Sa- e)1 ). (41) 
Ki a pL a az Z=Zi 

Since (oSa/oZ) = 0, Zi is a positive root of 

cl ae) = ~ (4Jg) _ Kb (Rb) . \az A7b pL Ki (42) 

It is sufficiently accurate for our needs to use the following 
approximation: 

loe) ~ (o(e2)/oz) 
\oz 2(e2)~ 

_ {4y(Z - Z2) + (d/2)[2y - (1 + 3y)Z - dZ2J}e- 2Z 
- I' 

2{ [4yZ2 + (d/2)(d + 2sZ + dZ2)]e-2Z + (aw)2f 

(43) 
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SLIDING VELOCITY, TAKING THE MELTING­
REFREEZING PROCESS INTO ACCOUNT 

The fact that on the stass sides most of the melting occurs 
within the ice and not against the bed does not impede 
this melting process ta allow in part the surmounting of 
bumps by sliding ice. Instead of ice disappearing against 
the stoss face, it disappears mainly within the ice, which 
contrasts vertically because meltwater cannot accumul­
ate. The only difference with standard sliding theory is 
that the water migration from stoss sides to lee ones is not 
by the mythical, never-observed, water film of micro­
metric thickness between ice and rock, but thanks to well­
known ice permeability. 

In Nye's asymptotic solution for impermeable, dry 
and Newtonian viscous ice sliding on a sine profile, a 
stream line runs across the crests of all the bumps. The 
thickness of the regelation ice below is arn(l - coswx). 
The velocity and stress fields are the same as though there 
were no phase changes, and ice was sliding without 
friction on the sine profile Z = am + ay cos WX, with 
ay = a - am. In this case, we have 17 denoting the 
viscosity, and assuming Kb = Ki (Lliboutry, 1987b, 
p.146--49): 

azl-' = ab + 217U avw2 sin wx (44.1) 
(from the stress- strain-rate field ) 

'Tb = (azl-' sinwx) 
aw (from global equilibrium) 

(44.2) 

r = Uamwsinwx (44.3) 
(from geometry) 

r = 2Aw(azl-' - ab) (44.4) 
(from the standard temperature field). 

By eliminating azl-" ay and am are obtained, and 
ay + am = a yields: 

The sliding velocity may be split into two parts, 
corresponding to viscous flow and to melting-refreezing, 
respectively. 

With the new theory, another reasoning holds. The 
stress field for incompressible ice sliding over Z = a cos wx 
is not modified when internal melting occurs, provided 
that the contact at the bed is kept. And, this can be 
ensured by an extra velocity Urn. Thus, U given by 
Equation (19), without changing a is, in fact, Uy • It 
remains to calculate Urn . 

The accretion rate is no longer proportional to sin wx, 
as resulted from Equations (44.1) and (44.4) . It is given 
by Equation (31 ), and may be written as a Fourier series: 

r = A 'Tb (Ho + RI sinwx + R2 coswx + ... ) - 4Jg. (46) 
a pL 

The trend, A'TbRo/a - <pg/(pL), that tilts all the 
stream lines, may be ignored. Only the leading term in 
sin wx will be kept . This truncation of the series 
corresponds to modifying a little the sine-profile model. 
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Since we do not solve the problem by next writing Fourier 
integrals in w, nothing compels us to model a series of 
bumps by an exact sine curve. 

The stress field, and ice fluidity, provide a vertical 
velocity at the bed Uyawsinwx. Ice contraction due to 
internal melting provides an extra vertical velocity r. The 
oscillation of the sum equals the actual oscillation of the 
vertical velocity at the bed, that is Uawsinwx . Thus, 

Urn = A'TbRl 
a2w 

B ( Tb ) 3 2 1 A7bRl U=- -- [1 +7.5(aw) ]-+--w. 
aw 1.46aw w (aw)2 

Values of RI are given in Table I. 

( 47) 

REALISTIC VALUES OF THE PARAMETERS AND 
NUMERICAL RESULTS 

With non-linear rheology, sliding over any micro-relief 
cannot be solved by summing solutions for each sine 
component of the micro-relief profile. Therefore, to obtain 
a realistic sliding law on any bed from theory is very 
difficult (Lliboutry, 1987a). It is even worse when 
cavitation must be accounted for, because the behaviour 
of a sine profile is a singular one, quite different from the 
behaviour of a series of bumps of unequal heights. 
Nevertheless, the main prediction of this paper is the 
existence of an ice-accretion trend (r), and of a bottom 
layer of regelation ice with thickness hi. To estimate their 
values, the micro-relief model with a sine profile should be 
sufficient, if the values of U and 'Tb, that are related by 
Equation (47 ) , are realistic. Since there are two 
parameters in the micro-relief model, one of them has to 
be arbitrarily fixed. 

Since, for given values of 'Tb and aw, (r) is inversely 
proportional to a, we must consider the smallest bumps 
existing on the bed for which the theory of locally stress­
controlled temperatures applies. When the bumps are too 
small, the stress field as given by continuum mechanics 
varies significantly over distances of the same order as the 
grain-size (rv 1 cm), and this theory is no longer valid. We 
return to the standard temperature field, which is 

Table 2. Results with 7b 

aw 0.1 0.2 

a = (aw)>'/2n 0.382 0.764 
U (from Equation (47)) 147.1 13.6 
ro = (A7b/a)Ro 32.9 11.5 
(Ro from Table I) 
(r) = ro - c/>g/pL) 31.9 10.5 
(r}A/U 0.52 1.85 
hi (from Equations (42) 3.77 3.67 
and (43)) 

0.3 
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con trolled by the temperatures or heat fluxes at the 
boundaries of the glacier. Therefore, a wavelength 
A = 2n / w = 0.24 m has been adopted. 

The realistic values 'Tb = 1 bar and Kb = Ki have 
been assumed. A and B are given at the beginning of this 
paper. Since water forms continuously in bottom ice, the 
water content should reach its maximum value, about 
2%. Therefore, I have adopted B = 1 bar-3 a-I, a larger 
value than the recommended one for the bulk of the 
glacier: B=0.44bar- 3 a-1 (Lliboutry, 1987b, p.451). 
Last, the value c/>g/ (pL) = 1 cm a-I has been used. It 
corresponds to a geothermal flux of 2 HFU, a standard 
value for young mountains such as the Alps. Nevertheless, 
this flux may be locally quite different. It may vanish 
when meltwater cools the bedrock below the glacier. 
(This is not mere speculation. In the car tunnel beneath 
Mont Blanc, cold water pours out, and the ancillary 
tunnel planned for injecting cool air is actually used to 
evacuate this water. ) The geothermal flux may be larger 
in deep glacier valleys, because of orographic effects (cf. 
Forster and Smith, 1989). 

The results obtained using these values are given in 
Table 2. 

For high sliding velocities, as for aw = 0.1, there 
should be cavitation that modifies the stress field in the 
ice. Nevertheless, the expression that holds without 
cavitation should remain roughly valid, if we consider 
z = a cos X as being the lower boundary of the ice, which 
includes the ceilings of the cavities. The temperatures TJ-l 
that govern the heat fluxes in the bedrock are constant 
along the floor of the cavitities, and this floor is no longer 
z = a cos X. Therefore, (Rb) is somewhat changed but it 
is a very small term in fron t of (Ri). 

For very slow sliding velocities, as for aw = 0.7, there 
is no accretion trend, and accordingly Equations (42) and 
(43 ) yield no solution for hi. However, strain rates might 
not be large enough to cause dynamic recrystallization. 
Then, as reported above, crystals enlarge considerably 
and >. = 24 cm is too small a value for the theory to be 
valid. Therefore, in this case (r) = -1 cm a-I rather than 
-D.66 cm a-I. 

It appears that the internal-melting-ice-accretion 
effect is important for any sliding velocity greater than 

1, c/>g/(pL) = 1 cm a-I 

0.5 0.7 

1.146 1.91 2.67 cm 
4.07 1.03 0.443 ma-I 
5.02 1.09 0.34 - I cma 

4.02 0.09 -D.66 -I cma 
2.37 0.21 -3.58 mm wavelength-I 
3.32 2.46 cm 

hw (from Equation (30)) 19.2 20.5 23.0 34.4 62.7 cm 
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I m a-I. Between two crests 24 cm apart, at moderate 
sliding velocities, the layer of accreted ice thickens by 
about 2 mm. Internal melting impedes this bottom­
regelation ice layer to grow infinitely: its thickness hi 
stands at 3-4 cm. 

Of course, these figures are only rough estimations, 
because the adopted wavelength, >. = 0.24 m is somewhat 
arbitrary. The possibility that the best modelling value 
differs by a factor of 2 cannot be dismissed. Field 
observations and sample analysis which allow the 
determination of hi and hw might constrain the model 
better. 

CONCLUSION 

Although the consideration of n0n-linear viscosity and 
finite amplitudes led to cumbersome hand calculations, it 
was necessary, because there might have been an 
objection in that the results yielded by locally stress­
controlled temperatures are totally different in the 
asymptotic case aw -4 O. It has been stated that this is 
not the case, unless sliding velocities are very small 
(totally negligible when calculating surface velocities) . 

The main consequence of considering ice permeability 
and wetness is the prediction of a bottom layer, some 
decimetres thick, in which water flows from the stoss sides 
of decimetric bumps to the lee sides. The main victim of 
the theory is the popularized concept of a continuous 
water film between ice and bedrock. Lee cavities (that 
remain possible) cannot be considered as "thickenings of 
the water film" . It is within this decimetric bottom layer 
that ions from the bedrock can diffuse into the ice, or 
migrate to lee faces and provide calcite deposits . 

This result is at variance with a previous speculation 
by Robin (1976), the first person to consider the effect of 
ice permeability on sliding, for two reasons: 

I. There is internal melting even over the lee sides of 
the bumps. It is not the mean normal pressure in the 
ice that governs the local ice temperatures but the 
pressure against the water lenses, which is more or 
less equal to the maximum compressive stress, and 
this fact leads to 'V2T > 0 near the bed, even over 
the lee sides. 

2. Anyway, because of capillary effects, lenses may 
freeze without the water in the veins being frozen. 
Therefore, water can always reach the lee sides of 
the bumps. 

On the other hand, there should be a thinner bottom 
layer, some centimetres thick, which consists of regelation 
ice (with possibly small debris picked up from the bed). 
Since this regelation ice recrystallizes continuously, it 
cannot be distinguished by its fabric from old ice derived 
from the firn. The fact that bottom ice is bubble-free is 
irrelevant, as shown by field evidence. Isotopic studies, as 
those done by Jouzel and Souchez (1982) would be the 
only way of checking this prediction. 

To check directly the theory oflocally stress-controlled 
temperatures seems almost impossible in the laboratory, 
because ice creeping steadily during many hours and 
recrystallizing must be observed. Experiments such as 
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those by Nye and Mae (1972) are not pertinent to this 
problem. Steady shear of a large ice volume has been 
obtained by using the huge viscosimeter Pen elope 
(Brepson, 1979; Meysonnier, 1983), but Pen elope only 
worked well at some tenths of a degree below the melting 
point, using dry ice, and it also took far too much time to 
bpen the chamber and retrieve an ice sample. 

In situ observations on the walls ofa tunnel dug along 
the bed seem to be more promising. However, they could 
be obstructed by the fact that temperate-ice properties are 
of little interest either to industry or climatology. 
Therefore, to obtain a research grant for the study of 
such an unusual material becomes quite a problem. 

To my knowledge, the only solid material existing in 
Nature entirely at its melting point, other than ice, is the 
parent rock from which magma flows towards a magma 
chamber, a fashionable topic today. Although in melting 
rocks the melting point is not well defined, this paper 
might interest volcanologists. Unfortunately, they still 
ignore the fact that glacier ice is a metamorphic rock, and 
would be reluctant to call meltwater a magma! 
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APPENDIX I 

V ARIA TIONAL THEOREM WITH THE COR­
RECTED TRIAL STRESS FIELD 

The calculation is done ignoring melting-refreezing 
processes. Thus, the sliding velocity that is considered is 
Uv only, not U. 

A trial stress field is statically admisssible when it 
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obeys the equilibrium conditions (such is the case for any 
stress field that is defined with an Airy stress function), 
and the boundary conditions involving stresses. In our 
case they are: periodicity in x, a hydrostatic stress for 
Z ---+ 00, and a zero shear stress on Z = a cos wx. It has 
been shown that it is approximately the case for: 

X = - ~ (1 + cwz)e-CWZ sinwx -1bXZ. (1.1) 

Another boundary condition is that for a very large 
value of z, say ZM, the forward velocity is: 

(I.2) 

Define the dissipation potential: 

(I.3) 

and a function I[!t such that 8I[!t/fhxz lz=ZM = UIZ=ZM: 

B 4 
I[!t = Uv1b + '47bZM. (1.4) 

Parameters c and 1b must be adjusted III order to 

maximize: 

1>. l zM 1>' 
)"'Hs = - dx tPs dz + !lit dx 

o a cos wx 0 

El>' l zM 

= )..Uv7b - - dx (74 - 7~) dz. 
4 0 acoswx 

(I.5) 

The upper bound ZM may now be made infinite: 
although the integral of 7 4 becomes infinite, the integral 
of (7

4 
- 7~) remains finite. With the notations III 

Equation (22 ), the last Equation (23) reads: 

8 2 = [d(d + 2sZ + dZ2) sin2 wx + 4yZ2]e-2Z 

- 4ZJlZe-z + (aw)2. (I.6) 

It follows : 

8 4 _ (aw)4 

= {[d4 + 4sd3 Z + (2d4 + 4s2d2)Z2 

+ 4sd3 Z3 + ~ Z4] sin4 wx 

+ [8d2YZ2 + 16sdyZ3 + 8d2yZ4] sin2 wx 

+ 16~ Z4 }e-4Z 

- Z,,[(8d2 Z + 16sdZ2 + 8d2 Z3)sin2 wx + 32yZ3]e-3Z 

+ 16Z2 Z2 e-2Z 

" + (aw)2 [(2d2 + 4sdZ + 2d2 Z2) sin2 wx + 8yZ2] e-2Z 

- 8(aw)2 ZJlZe- z . (I.7) 

With ( ) denoting a mean value for all x: 

B-r:4 

Hs = Uv1b - b 4 
4w(aw) 

. ~ [1 00 

(84 
- (aw)4) dZ - (1 Z

' [84 
- (aw)4] dZ)]. 

(I.8) 
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The first integral is calculated taking into account that 
(ZI') = 0, (sin4 wx) = 3/8, (sin2 wx) = 1/2, and: 

(1.9) 

It is found: 

h = 10
00

(84 
- (aw)4) dZ 

1 
= -- (129cf + 132sd3 + 48s2d2 + 224d2y 

1024 

+ 192sdy + 384y2) + (:)2 (3d2 + 2sd + 16y) 

1 
= - (45 y4 - 220y3 + 614 y2 - 364y + 309) 

1024 

+ (aw)2 (y2 + lOy + 5). (UO) 
4 

To calculate the second integral, that is a small 
correction term, the exponentials are developed as a series 
in Z. Several averages are zero and, it is found, to terms 
in (awt 

h = (Io Z

- [84 - (aw)4] dZ) = (2sd3 - 2d4)(ZI' sin4 wx) 

14 + (9sdJ 
- 4s2d2 - 3d4)(Z~ sin4 wx) 

16 . + (4sdy - 8d2y + 8d2 
- 3 sd) (Z~ sm2 wx) 

- 8y(Z~) + (aw)2(2sd - 2~)(Z; sin2 wx) . (1.11) 

The averages are easily calculated as: 

(Z; sin4 wx) = (aw)2 y/16, 

(Z~ sin4 wx) = (aw)4 y2 (3/128), 

(Z; sin2 wx) = (aw)2 y/8, 

(Z~ sin2 wx) = (aw)4 y2/16, 

(Z~) = (aw)4 y2 (3/8), (U2) 

12 = - (aw)2 (y5 _ 3y4 + 3y3 -If) 
4 

(aw)4 524 259 ___ (53 y6 -14y5 _ _ y4 + 606y3 _ _ y2). 
128 3 3 

(1.13) 

With the notation: 

BTA 
Hs = UvTh - b 4 V(y) 

4w(aw) 
1 p 

V(y) = JY (11 - h) = 1024JY' (U4) 

the polynomial P reads: 

P = 45y4 - 220y3 + 614y2 - 364y - 309 

+ 256(aw)2(y5 - 3y4 + 3y3 + 10y + 5) 
524 259 + 8(aw)4(53y6 - 14y5 - 3 y4 + 606y3 - 3 y2 ). 

(U5) 

The condition oHs/aY = 0 yields the best value for y. 
I t IS the root of the algebraic equation 2yP - pI = O. 
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Next oHs/oTh = 0 gives a lower bound for Tb when Uv is 
given : 

H r 3 
U

v 
< __ b_

4 
V. 

- w(aw) 
(1.16) 

Values of y = 2 and of the corresponding V(y) are 
given in Table 3. V increases with aw as [1+ 
10.9(aw)2 + 0.5(aw)3]. Meysonnier's calculations by the 
finite-element method have shown that Uv increases as 
[I + 7.5(aw)2], but we are dealing with an upper bound 
for Uv . Probably, the upper and lower bounds move away 
from each other when aw increases. 

This lower bound might be found with the comple­
mentary variational theorem. Nevertheless, since the 
dissipation potential is a fractional power of the effective 
shear strain rate, its integral over the domain cannot be 
expressed analytically. For this reason, the lower bound 
was computed only in the asymptotic case aw = O. 

Table 3. Best values of y = 2 and corresponding values 
of V, as defined by Equation (1.14) 

aw y v (V - Vo)/(aw)2 

0 0.663361 Vo = 0.33839 
0.1 0.655205 0.37547 10.96 
0.2 0.629512 0.48746 11.01 
0.3 0.587445 0.67595 11.08 
0.4 0.537295 0.94209 11.15 
0.5 0.488672 1.28644 11.21 
0.6 0.446486 1.70948 11.26 
0.7 0.411516 2.21202 11.30 
0.8 0.382821 2.79504 11.34 
0.9 0.359132 3.45961 11.39 
1.0 0.339328 4.20680 11.43 

APPENDIX 11 

ZEROS OF THE EFFECTIVE SHEAR STRESS 

For the effective shear stress to be zero, the following 
conditions must be satisfied: 

(s + dZ) sin X = 0 

2cZe-z cos X = aw 

(-180° < X:::; 180°, Z ~ ZI' = cawcosX). 

The first condition demands either X = 180°, or 
X = 0°, or Z = -s/d. 

1. X = 180°. The other conditions read 

-Z aw Ze =--
2c' 

Z ~ -caw. 

Since Z :::; 0, Ze- z is an increasing function of Z, and 

aw cnw -- > -cawe 
2c -
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I t follows either aw = 0, or 

In(2y) 
aw>---- ..;y' 

a condition that demands aw» 1, an unrealistic 
assumption. 

2. X = 0°. The conditions read : 

Ze-Z = aw 
2c' 

Z ~ caw. 

The function Ze-z is a maximum, e- I , for Z = l. 
Thus, when aw = 2ce- l , a condition that is met for aw = 

0 .51158, there is a single zero at Z = l. When 
aw < 0.51158, the equation has two roots, respectively 
larger and smaller than I. Since for Z < 1, Ze- z 
increases with Z, the latter satisfies the inequality when 

aw - > cawe-caw 

2c -

aw > In(2y) or aw = O. 
- IY ' 

In the former case, the equality is for aw = 0.2525. Then, 
the zero is at Z = ZIJ = 0.197. 

3. Z = -sld. Putting sld = b, the conditions are 

-2cbebcosX=aw, -b~awcosX. 

Comparing both, it is found: 

The equality is obtained for aw = 0.768. Then 

aw e-b/ 2 
cos X = __ e-b = --- . 

2cb v'2 c 

It is found that X = ± 155 .2° and Z = ZIJ = -0.437. 
When aw increases , cos X decreases down to - I, which is 
reached when aw = 2cbeb. This happens when 

Lliboutry: Internal melting and ice accretion 

P2 = d2(1 - Y + 7y2 - 3y3) + d2(4 + 2y + 10y3)Z 

+ d3 (6 + 10y + 12y2)Z2 + ct4(4 + 6y)Z3 + d5 Z4 

PI = _4y2d2 + 8~d2 Z + 8yd(1 + y + 10y2)Z2 

- 8~d( -2 + 5y + 3~)Z3 
Po = -4yd2 Z2 + 8y(5y2 - 1)Z3 - 4y(1 - 2y + 5~)Z4 
Ql = -4y(3 - 2y + ~) - 2(3 + y + 5dy2) 

- 4(3 - 4y - 5y2 + 2y3)Z2 - 2d(1 - 4y + ~)Z3 
Qo = 4d2 Z - 8(7y2 - 1)Z2 + 4(1 - 4y + 7y2)Z3 

RI = (2y-1 - 3 + 4y - 7y2) - (20y - 4y-I)Z 

+ (2y-l - lOd + 6y2)Z2 

Ho = (_y-I + 2 + 23y) - (2y-1 + lOy)Z 

+ (_y-l + 10 _ y)Z2 . 

2. Heat flux entering the ice 

With non-dimensional variables, the ice-bedrock inter­
face is Z = Z IJ = a cos X, and the mean s tress and the 
effective shear stress at this interface read: 

SOIJ = (s + dZIJ)e- Z" sinX 

8IJ = [d(d + 2sZIJ + dZ~)e-2Z" sin2 X 

+ 4Z;(ye-z" - 1) + (aw)2]!. 

The heat nux entering the ice is -Ki'VT · n = pLRi' 
as given by Equation (28). Its reduced value is (with the 
notation awsinX = t ): 

aw = 0.909 and the zero is at Z = -0.474> Z/J" with : 

APPENDIX III 

ANALYTICAL EXPRESSIONS OBTAINED WITH 
STRESS FIELD (EQUATION (20)) 

1. Melting rate within the ice 

Its reduced value, as given by Equation (27), is found to 
be, with notations as in Equation (22) : 

(a~2 + y :;2) (So - 8) = -d[(l + 3y) + dZ]e-
Z 

sinX 

+ -; [e-4Z (P2 sin4 X + PI sin2 X + Po) 
8 

+ ae-3Z cos X(QI sin2 X + Qo) 

+ a2e-2Z (RI sin2 X + Ra) 

+ a3e-Z cosX(-4 - 2dy-1 Z)] 

with: 

M2 = d[2lf + s(l - 3y)ZIJ + (2 + y + y2)Z; + dZ~]e-Z" 
+ 2y(aw)2 ZIJ 

N2 = 2y(ZIJ - Z~)(2ye-Z" - 1). 

APPENDIX IV 

ADJUSTMENT OF THE bl IN EXPRESSION (33) OF 
BED TEMPERATURES 

The first Equation (35) must be satisfied as far as possible 
at the 24 points of the bedrock where the variables have 
been computed. A least-squares criterion has been used. 
Since SOIJ, h, h are odd functions of X and 8 IJ , 12, !4 
are even ones, in the linear set to be solved many terms 
are zero, and the set splits into the two following: 

{ 

24bo + b2 2:. h + b4 2:. /4 = - L: 8IJ 

~L:h+~L:n+~2:.h!4=-L:h~ 
~L:!4+~L:h!4+~2:.n=-L:!4~ 
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{ 

bl L if + b3 L hh = L fI (SOJl. + ,pOJ.V:Jl.) 

b1 L fIh + b3 E J5 = L: h (SOJl. + ,pOJ.VcZJl.). 

With the adopted values Kb = K j , cPg/pL =1 cm a-I, 
'Tb =1 bar and w = 211"/0.24 m-I: 

The second term within the brackets is generally 
negligible. The values so obtained are given in Table 4. 

Table 4. Adjusted coefficients bi , when the temperature 
field in the bedrock is represented by Equation (33) 

OJ.V bo b1 b2 b3 b4 

0 -0.21309 1.66336 0 0 0.14536 
0.1 -0.22258 1.65222 -0.05348 -0.05074 0.14491 
0.3 -0.28733 1.67267 -0.15179 -0 .33046 0.21565 
0.5 - 0.38728 1.64048 -0.25635 -0 .39366 0.25255 
0.7 - 0.49276 1.57962 -0.33467 -0.37520 0.23679 
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