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Abstract
Polar ice develops anisotropic crystal orientation fabrics under deformation, yet ice ismostlymod-
elled as an isotropic fluid. We present three-dimensional simulations of the crystal orientation
fabric of Derwael Ice Rise including the surrounding ice shelf using a crystal orientation tensor
evolution equation corresponding to a fixed velocity field. We use a semi-Lagrangian numeri-
cal method that constrains the degree of crystal orientation evolution to solve the equations in
complex flow areas. We perform four simulations based on previous studies, altering the rate of
evolution of the crystal fabric anisotropy and its dependence on a combination of the strain rate
and deviatoric stress tensors. We provide a framework for comparison with radar observations of
the fabric anisotropy, outlining areas where the assumption of one vertical eigenvector may not
hold and provide resulting errors in measured eigenvalues. We recognise the areas of high hor-
izontal divergence at the ends of the flow divide as important areas to make comparisons with
observations. Here, poorly constrained model parameters result in the largest difference in fab-
ric type. These results are important in the planning of future campaigns for gathering data to
constrain model parameters and as a link between observations and computationally efficient,
simplified models of anisotropy.

1. Introduction

Ice varies from isotropic to anisotropic, with crystals developing a preferred orientation fabric
due to ice flow dynamics. Ice crystals tend to align with the direction of an applied force, and
shearing of ice is enhanced along basal planes perpendicular to the applied force (Alley, 1988).
The orientation of the basal planes is described by a vector referred to as the c-axis. The snow
grain orientation is initially isotropic, and anisotropic ice fabric develops at a rate dependent
on a variety of physical factors including the temperature, pressure and strain rate of the ice.
These dependencies allow the investigation of both the steady-state and transient behaviour of
ice through the analysis of observational fabric anisotropy data and ice flow models.

Ice cores have long been used to quantify the direction of ice crystals and the degree of fab-
ric anisotropy with depth (Durand and others, 2009; Montagnat and others, 2014; Weikusat
and others, 2017). However, the lack of horizontal spatial information hinders the study of the
relationship between ice flow and fabric anisotropy. Apart from ice cores sites, anisotropic infor-
mation is sparse and relies on geophysical methods such as seismics, both active (Diez and
others, 2014; Brisbourne and others, 2019) and passive (Smith and others, 2017; Kufner and
others, 2023) or radar (Fujita and others, 2006; Drews and others, 2012; Matsuoka and others,
2012).Themain limitation is that, generally, seismic methods only provide depth-averaged fab-
ric anisotropy and radar only provides fabric anisotropy information in the horizontal plane,
perpendicular to the direction of wave propagation. Recent advances in phase coherent radar
systems and data processing for use in inferring ice fabric anisotropy have resulted in an increase
in the acquisition of observational fabric data (Dall, 2010; Young and others, 2021a; 2021b;
Ershadi and others, 2022; Jordan and others, 2022). These surveys provide the spatial variabil-
ity of fabric anisotropy in more extensive areas and aid understanding of the relation between
fabric anisotropy and ice flow. Prior to this, the lack of observational data to compare with and
constrain models has long hindered the progression of ice fabric modelling.

Although we concentrate only on the coupling of the fabric anisotropy field to the velocity
and stress fields in the present study, we note that advances in a full coupling of crystal orienta-
tion tensor evolution with viscosity are ongoing with challenges remaining regarding numerical
instability (Gerber and others, 2023). Several modelling studies investigating the effects of an
anisotropic rheology on ice flow dynamics at ice divides in two dimensions (Martin and oth-
ers, 2009; Martin and Gudmundsson, 2012; Lilien and others, 2023) and in ice streams (Gerber
and others, 2023; Richards and others, 2023) have shown the importance of including fabric
anisotropy or viscous anisotropy in ice flow models. In idealised, two-dimensional simulations,
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Richards and others (2022) investigate the influence of the strain
rate and spin on the fabric type. Building on the work of
Thorsteinsson and others (2003); Gillet-Chaulet and others (2006)
and Pettit and others (2007); Rathmann and others (2021) investi-
gated the coupling between fabric anisotropy and viscosity through
enhancement factors which result in greater shearing perpen-
dicular to the predominant c-axis direction in two-dimensional
numerical ice-flow simulations. Using a computationally efficient
anisotropic flow model with a simplified representation of fab-
ric anisotropy coupled to the viscosity via enhancement fac-
tors, McCormack and others (2022) studied the effect of fabric
anisotropy in larger-scale three-dimensional models.

The coupling of fabric anisotropy evolution in ice flow mod-
els is not without complication due to challenges with numerical
stability, the parameter choice within the fabric anisotropy evo-
lution equation and the coupling with viscosity in the flow law.
Furthermore, because an isotropic assumption has traditionally
been employed in ice sheet models, model parameters have been
optimised to fit isotropic rather than anisotropic ice flow dynam-
ics. For these reasons, a thorough investigation of each step in the
process of modelling ice fabric anisotropy is needed.

In this paper, we present the first model of the three-
dimensional, diagnostic, fabric anisotropy field of an ice rise using
the finite element model Elmer/Ice (Gagliardini and others, 2013)
across 100 partitions and applied to Derwael Ice Rise (DIR). We
investigate the dependence of the fabric anisotropy field on the
strain rate and deviatoric stress fields without coupling with the
viscosity and without re-crystallisation terms, which allows anal-
ysis in the absence of the additional feedback complexity. Our
simulations provide novel ice fabric predictions for a number of
three-dimensional ice-flow settings including areas of vertical-
shear-dominated flank flow, grounding zones and shear zones. We
highlight areaswhere geophysicalmeasurements of ice-fabric types
would be most informative to constrain relevant model parame-
ters. Furthermore, the direction of the c-axis across the ice rise is
investigated to identify regions where a vertical c-axis assumption
is valid in radar measurements of fabric anisotropy, providing a
novel method for determining the error in eigenvalues with such
an assumption.

1.1. Motivation

Our study is motivated by a lack of progress in large-scale ice-sheet
models considering crystal orientation fabric.This is despite obser-
vations of strong crystal orientation fabric in polar ice (Alley, 1988),
knowledge of how anisotropic polar ice is (Duval and others, 1983)
and field evidence of the effect crystal orientation fabric has on ice
flow (Gerber andothers, 2023). After the introduction of the crystal
orientation tensor (G ̈odert, 2003), the flow-induced crystal orien-
tation fabric evolution can be considered by large-scale ice-sheet
models (Gagliardini and others, 2013).

We believe that the main reasons for the lack of progress are (a)
the numerical implementation of crystal orientation fabric evolu-
tion is challenging (Seddik and others, 2011), (b) the interpretation
of model output and comparison with non-comprehensive obser-
vations is complex (Jordan and others, 2022) and (c) essential
model parameters within the theory are not yet constrained by
observations (Ma and others, 2010).

Numerically, the main issue is that numerical dispersion tends
to break down the orientation tensor properties. Here, we present
a numerically robust, three-dimensiontal model, discuss a frame-
work to interpret model output for comparison with observations

and highlight areas where observations could better constrain
model parameters.

1.2. DIR

Ice rises are an ideal study location for understanding ice-flow pro-
cesses, because transitions between different flow regimes occur
over comparatively short spatial scales. Furthermore, ice rises reg-
ulate flow from the Antarctic Ice Sheet towards the open ocean,
controlling ice shelf velocities and the continental grounding line
position (Favier and Pattyn, 2015; Schannwell and others, 2019;
2020; Henry and others, 2022). Formation, evolution and dis-
integration of ice rises occur over glacial-interglacial timescales,
meaning that remnants of ice properties such as temperature and
fabric anisotropy from previous flow regimes may become stored
in the slow flowing ice of an ice rise.

Ice rises typically have clear ice divides transitioning into
a flank-flow regime on all sides with little to no basal sliding
(Matsuoka and others, 2015). The grounding line is typically
located a few tens of kilometres away from the divide, and the
flow field transitions to the surrounding ice shelves through nar-
row shear zones with large horizontal shear strain rates. We chose
DIR (Fig. 1) in East Antarctica as our study site for two reasons.
First, we can rely on a predicted three-dimensional steady-state
velocity field developed in a previous study (Henry and others,
2023). This velocity field is based on a transient, thermomechan-
ically coupled full Stokes model with an isotropic rheology. The
model was forcedwith an observationally constrained surfacemass
balance field, and predictions of the model output were validated
with extensive radar observations which are available for this Ice
Rise (Koch and others, 2024). Second, previous studies suggest that
DIR is likely close to steady state (Callens and others, 2016) possi-
bly with a minor amount of thinning (Drews and others, 2015).
This justifies the steady-state assumption applied here. DIR is a
marine-based ice rise and has a flow divide in the form of a curved
arc extended south-west to north-east. The maximum ice thick-
ness is roughly 630m, and flow velocities in the flank are typically
slower than 10m a−1.

2. Methods

The simulations use output from Henry and others (2023) as
a starting point in which the finite element model Elmer/Ice
(Gagliardini and others, 2013) was applied to DIR. Most impor-
tantly, we use the predicted three-dimensional, steady-state veloc-
ity field to make predictions of the fabric anisotropy resulting
from a one-way coupling with the crystal orientation evolution
equations detailed below.

2.1. Governing equations

The equations of motion for Stokes flow are written as

∇ ⋅ (𝝉 − PI) + 𝜌ig = 0, (1)

where 𝝉 is the deviatoric stress tensor, P is the pressure, I is the
identity matrix, 𝜌i is the ice density and g = g êz is the gravitational
acceleration. The ice is subject to an incompressibility condition,

∇ ⋅ u = 0, (2)

and Glen’s flow law,
𝝉 = 2𝜂 .𝜀, (3)

https://doi.org/10.1017/jog.2025.14 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.14


Journal of Glaciology 3

Figure 1. In (a), an overview is shown of DIR, with the surrounding ice shelves and the grounding line (Jezek and others, 2013; Rignot and Scheuchl., 2017). The velocity field
is shown in colour. In (b), the simulated upper surface velocity field of DIR is shown, based on simulations in Henry and others (2023). Boxes A and B show the areas referred
to as the areas of high horizontal divergence at the tails of the flow divide.

when assuming that ice viscosity is isotropic. This relation
describes the nonlinear dependence between the strain rate tensor,.𝜀, and the deviatoric stress tensor. The effective viscosity, 𝜂, is

𝜂 = 1
2EA(T′)−1/n .𝜀(1−n)/n

e , (4)

where E is an enhancement factor which is spatially and temporally
constant here and A(T′) is the ice fluidity which is dependent on
the ice temperature relative to the pressuremelting point,T′, which
is solved using a temperature evolution equation as described in
Henry and others (2023). Here, n is Glen’s flow law exponent, and
.𝜀e = √tr .𝜀2/2 is the effective strain rate.

When assuming a direction-dependent viscosity, an alternative
flow law is defined as

𝜏 = 2�̂� .𝜀, (5)

where �̂� is an anisotropic enhancement tensor. In this study, this
equation is calculated using the GOLF model (Castelnau and
others, 1996; Gillet-Chaulet and others, 2005; 2006; Gagliardini
and others, 2013) although other methods exist (e.g. Rathmann
and others (2021)). Such formulations, coupled with an equation
describing the evolution of the crystal orientation, can be unsta-
ble in fast-flowing areas (Gerber and others, 2023) such as in the
ice shelf in the model domain presented here. We therefore use
Eq. (3) rather than Eq. (5) as the constitutive law in our model
setup. However, a direction-dependent viscosity is used for calcu-
lating the crystal orientation evolution, as outlined below.

Keeping the velocity and stress fields constant in time, a semi-
Lagrangian fabric anisotropy evolution equation is coupled and
simulations are performed for 20000 years. To initialise the fab-
ric anisotropy simulation, the simulation named n3E0.5dsdt50 in
Henry and others (2023) is used. The simulation time of 20000
years was deemed appropriate given that in Henry and others
(2023), it was predicted that the ice in DIR is roughly 8000 years
old at a depth of 95 %.

The distribution of crystal orientation in a volume of ice can
be described by crystal orientation tensors of varying complexity
(Advani and Tucker, 1987). Higher-order tensors allow ever-finer
details of the crystal orientation distribution to be captured. Such
complexity is computationally infeasible, and thus, the description
of the crystal orientation tensor is reduced to the second-order
crystal orientation tensor, a(2), and the fourth-order tensor, a(4),
thereby neglecting higher-order tensors (Cintra and Tucker, 1995;
Chung and Kwon, 2002). Here, c is the c-axis unit vector and the
operator ⟨⟩ denotes the average over all the grains that compose
the ice polycrystal. In reality, a(2) is dependent on a(4), which is
dependent on a(6) and so on.

It is useful to compute the eigenvalues and eigenvectors of the
second-order crystal orientation tensor, a(2), in order to under-
stand the fabric anisotropy type. The eigenvalues of a(2), namely,
𝜆1, 𝜆2 and 𝜆3, and the corresponding eigenvectors, v1, v2 and v3, of
the crystal orientation tensor a(2) satisfy

a(2)v = 𝜆v, (6)

defining each eigenvalue by its subscript such that 𝜆1 ⩽ 𝜆2 ⩽ 𝜆3.
In the case of randomly oriented c-axes or isotropic ice, all three
eigenvalues are similar in size such that 𝜆1 ≈ 𝜆2 ≈ 𝜆3 ≈ 1/3.
In areas where 𝜆3 ⩾ 𝜆1 ≈ 𝜆2, ice fabric is said to have a single
maximum fabric with the majority of c-axes pointing in a single
direction. Where 𝜆2 ≈ 𝜆3 ⩾ 𝜆2, ice is said to have a girdle fab-
ric, with c-axes following an arc or circle. See the Appendix for an
explanation of the connection to observational data.

The evolution of the second-order orientation tensor can be
described by

( 𝜕
𝜕t + u ⋅ ∇)a(2) = Wa(2) − a(2)W

− 𝜄(Ca(2) + a(2)C − 2a(4) : C),
(7)

where the tensorC is defined by and implemented in our model as

C = (1 − 𝛼) .𝜺 + 2𝛼 �̂� .𝜺. (8)
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Here, 𝛼 is the so-called interaction parameter, which describes the
relative influence of the strain rate and stress tensors,W is the spin
of the ice and �̂� is the anisotropic enhancement tensor calculated
using GOLF (Castelnau and others, 1996; Gillet-Chaulet and oth-
ers, 2005; 2006; Gagliardini and others, 2013). The parameter 𝜄
determines the rate at which the crystal orientation tensor influ-
enced by the weighted combination of strain rate and deviatoric
stress tensors. The last term, 2𝛼 �̂� .𝜺, in Eq. (8) is equivalent to
𝛼ksA𝜏n−1

e 𝝉 in Gagliardini and others (2013), so that

C = (1 − 𝛼) .𝜺 + 𝛼ksA𝜏n−1
e 𝝉. (9)

We assume that ks = 1, as no given value was published in the
studies which we base our parameter choices on (Martin and oth-
ers, 2009; Seddik and others, 2011; Martin and Gudmundsson,
2012; Gagliardini and others, 2013). Values in other literature have
ranged from ks < 2.5 (Gagliardini and Meyssonnier, 2002) to
ks = 10 (Ma and others, 2010). For each time step, iterations
are performed by repeatedly calculating the fabric anisotropy and
the direction-dependent viscosity which would result in that fabric
anisotropy. This results in a fabric anisotropy which is depen-
dent on a direction-dependent viscosity through the last term
in Eq. (8).

Early work recognised the influence of the cumulative strain
and stress on ice crystal c-axis orientation (Alley, 1988), which
led to the development of a crystal orientation tensor evolution
equation (Eq. (7)) dependent on the velocity gradient through the
spin and strain rate tensors and the deviatoric stress tensor (Gillet-
Chaulet and others, 2006). Although it is known that the velocity
and stress fields have an influence on the fabric anisotropy field
of ice, it remains unclear what the relative influence is. The fab-
ric anisotropy evolution equation (Eq. (7)) is made up of various
terms, with the spin tensor, W , acting to rotate the crystal orien-
tation tensor to follow the spin of the ice. Acting opposite to the
spin tensor is the tensor,C, which is a weighted combination of the
strain rate tensor, .𝜺, and the deviatoric stress tensor, 𝝉. This com-
bination comes from the fact that the behaviour of macroscopic
materials can be limited by two extreme approximations: uniform
stress, where the stress in the crystals is assumed to be identical to
themacroscopic stress, andTaylor or uniform strain rate, where the
strain rate in the crystals is assumed to be identical to the macro-
scopic strain rate (Gagliardini and others, 2009). The choice of 𝛼
and 𝜄 in previous studies has been motivated by assumptions of
the relative influence of stress and strain rate on crystal orientation
evolution. The last term in the equation describes the influence of
the higher-order crystal orientation tensor, a(4) on the 3×3 crystal
orientation tensor, a(2).

To solve Eq. (7) we also require a relation between a(2) and a(4),
a closure approximation, and we use an invariant-based optimal
fitting closure approximation (Gillet-Chaulet and others, 2006).
The distribution of c-axes can be described by tensors of ever-
increasing order, but a compromise is found by using the closure
approximation (Advani and Tucker, 1987; Cintra and Tucker, 1995;
Chung and Kwon, 2002) in order to reduce computation time. The
effect of the choice of 𝛼 and 𝜄 on the fabric anisotropy field is
investigated using combinations of parameters from the previous
literature presented in Table 1.

The value of 𝛼 determines the relative influence of the strain
rate and deviatoric stress tensors on fabric anisotropy evolution.
For example, a value of 𝛼 = 0 means that there is dependence on
the strain rate tensor but no dependence on the deviatoric stress.
Alternatively, a value of 𝛼 = 1 provides dependence on the devi-
atoric stress tensor but no dependence on the strain rate tensor.

Table 1. Parameter combinations

𝛼 𝜄 Source

(a) 0 1 Martin and others (2009)
(b) 0 0.6 Seddik and others (2011)
(c) 1 1 Martin and Gudmundsson (2012)
(d) 0.06 1 Gagliardini and others (2013)

Theparameter 𝜄 adjusts the rate at which the fabric anisotropy field
develops in response to the weighted combination of the strain rate
and deviatoric stress fields and takes a value between 𝜄 = 0 and
𝜄 = 1.

Initially, all ice in the model domain is isotropic, described by
the tensor a(2) = 1

3
I, where I is the 3 × 3 identity matrix. During

transient simulation of the fabric anisotropy field dependent on the
velocity field, the upper surface is assigned an isotropic boundary
conditions on all ice entering the domain due to accumulation.

The fabric anisotropic evolution model described in Eq. (7)
together with its boundary and initial conditions is solved using a
semi-Lagrangianmethod as described inMartin andothers (2009).
The determinant of a(2) gives information about the degree of crys-
tal orientation of the fabric (Advani and Tucker, 1987). We define
here the degree of crystal orientation with the scalar value,

d = 1 − 33 det(a(2)). (10)

The degree of crystal orientation varies from zero for isotropic
ice to one for single-maximum fabric and is independent of the
frame of reference as the determinant is an invariant. We con-
strain Equation (7) with the condition,

( 𝜕
𝜕t + u ⋅ ∇)d ⩾ 0, (11)

meaning that ice is constrained to increase in degree of crystal
orientation over time. This constraint on the degree of crystal ori-
entation stops numerical dispersion breaking the simulation in
areas with high strain rates. Our method is also straightforward to
implement in large-scalemodels that run in parallel environments.

3. Results

3.1. Analysis of simulated fabric anisotropy field

We display predicted eigenvalues for the 𝛼 = 0, 𝜄 = 1 simulation
at an elevation of z = 0 which encompasses an ice-depth range of
close to 0 m in the ice shelf to over 300 m at the ice rise flow divide
where stresses are dominated by vertical compression and lateral
extension (Fig. 2). The main characteristic, which is evident in all
simulations, is that the ice fabric evolves from an isotropic material
at the surface and, under deformation, develops into an anisotropic
fabric varying from a single maximum to a girdle fabric (Fig. 3).
In the ice rise interior, the largest eigenvalue, 𝜆3, is much larger
than 𝜆1 and 𝜆2, particularly at and surrounding the flow divide
(Figs. 1b and 2). This results in greater fabric anisotropy here.
Further south in the ice rise, where ice flow is hindered by the con-
vergence of flow between the ice rise and the ice shelf, differences
are not as substantial. In the ice rise interior away from the ground-
ing line, differences between the smaller two eigenvalues, 𝜆1 and 𝜆2
are mostly small, increasing slightly on the stoss side of the ice rise.
The stoss side is defined as the side of the ice rise with a flow direc-
tion opposing the upstream ice shelf flow direction (Figs. 1b and 2).
At the grounding zone on the stoss side of the ice rise, where hori-
zontal convergence of flow occurs, the three eigenvalues are similar
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Figure 2. The eigenvalues, 𝜆1, 𝜆2 and 𝜆3, of the crystal orientation tensor in the 𝛼 = 0, 𝜄 = 1 simulation at an elevation of z = 0, corresponding to the sea level. The solid
lines, black in the plots showing 𝜆1 and 𝜆2, and white in the plot showing 𝜆3, are contours of depth below the upper ice surface, and the dashed lines show the grounding
line. The dotted line in the 𝜆3 figure shows where the cross-section in Figure 3 is taken.

Figure 3. Cross-sections through the flow divide as shown in Figure 2 showing 𝜆3, the largest eigenvalue for (a) the 𝛼 = 0, 𝜄 = 1 simulation, (b) the 𝛼 = 0, 𝜄 = 0.6 simulation,
(c) the 𝛼 = 1, 𝜄 = 1 simulation and (d) the 𝛼 = 0.06, 𝜄 = 1 simulation. The solid lines show isochrones.

in magnitude, whereas at the transition from grounded to floating
ice on the lee side of the ice rise, where flow is dominated be exten-
sion, a slightly larger difference is seen between the smaller two
eigenvalues, 𝜆1 and 𝜆2. In the ice shelves away from the grounding
zone, there are differing patterns in the relative magnitude of the
three eigenvalues. In the ice shelf west of the ice rise where veloc-
ities are higher than east of the ice rise and extension dominates,
the largest eigenvalue is significantly larger inmagnitude compared
with the two smaller eigenvalues. In the ice shelf to the east of the
ice rise, where extension of flow is an active process, differences in
magnitude are generally much lower. The ice shelf south of the ice

rise, on the stoss side, shows one eigenvalue much larger than the
other two, similar to the magnitudes in the ice shelf on the western
side of the ice rise.

3.2. Comparison of simulations with differing parameter
choice

In order to compare simulation results across the four combina-
tions of the parameters 𝛼 and 𝜄 in Eq. (7) used in the previous
studies stated in Table 1, we use a number of metrics to understand
the fabric types evolving in the various flow regimes at DIR. First,
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Figure 4. The ratio of the two larger eigenvalues of the
3×3 crystal orientation tensor at z = 0 for (a) the 𝛼 = 0,
𝜄 = 1 simulation, (b) the 𝛼 = 0, 𝜄 = 0.6 simulation, (c) the
𝛼 = 1, 𝜄 = 1 simulation and (d) the 𝛼 = 0.06, 𝜄 = 1 simu-
lation. The dashes show the maximum horizontal fabric
anisotropy direction. The dashed line shows the ground-
ing line, and the solid line shows contours of the depth
below the upper ice surface.

we describe the differences in relativemagnitude of the eigenvalues
of the crystal orientation tensor across the four simulations. If the
logarithmic ratio (Woodcock, 1977), ln(𝜆3/𝜆2), is large, then the
c-axes are more concentrated in a single direction. The direction of
the largest horizontal crystal orientation eigenvector, v2,H , shows
the predominant horizontal c-axis direction.

The simulations with parameter choices of 𝛼 = 0, 𝜄 = 1
(Fig. 4a) and 𝛼 = 0.06, 𝜄 = 1 (Fig. 4d) have comparable results, with
a much greater ln(𝜆3/𝜆2) than predicted by the other two simula-
tions.The simulation results differ, however, in the spatial variation
of ln(𝜆3/𝜆2). The 𝛼 = 0, 𝜄 = 1 simulation shows larger values of
ln(𝜆3/𝜆2) at the tails of the ice rise flow divide (Boxes A and B in
Figure 1b), whereas the 𝛼 = 0.06, 𝜄 = 1 simulation shows slightly
greater relative values along the flow divide. Although not neg-
ligible, the simulations with parameter choices of 𝛼 = 0, 𝜄 = 0.6
(Fig. 4b) and 𝛼 = 1, 𝜄 = 1 (Fig. 4c) showmuch lower ratios between
the largest and second largest eigenvalues, with the 𝛼 = 0, 𝜄 = 0.6
simulation showing a slightly higher value at the centre of the flow
divide. In the 𝛼 = 1, 𝜄 = 1 simulation, a differing pattern of hori-
zontal eigenvectors originating at a point source at the flow divide,
whereas the other simulations show alignment of the eigenvec-
tor direction along the flow divide. Of note is also the differing
eigenvector directions at the tails of the flow divide, with differing
patterns of vector divergence and convergence.

The two smaller eigenvalues, 𝜆1 and 𝜆2, are investigated using
the metric ln(𝜆2/𝜆1) (Fig. 5). Large ratios between the two smaller
eigenvalues indicate that c-axis directions for a given volume of ice

are concentrated along an arc. In all simulations, there are high val-
ues of ln(𝜆2/𝜆1) at the flow divide and generally low values in the
vicinity of the grounding zone on the stoss side of the ice rise, with
values differing between simulations elsewhere. The 𝛼 = 0, 𝜄 = 0.6
(Fig. 5b) simulation shows the lowest values overall. The simula-
tions with parameter choices of 𝛼 = 0, 𝜄 = 1 and 𝛼 = 0.06, 𝜄 = 1
show relatively similar results, with the highest eigenvalue ratio at
the flow divide and in the areas of the ice rise perpendicular to the
flow divide.The 𝛼 = 1, 𝜄 = 1 simulation (Fig. 5c) has areas of a large
ratio between 𝜆2 and 𝜆1, much larger than any other simulation,
and highlights the effect of a strong dependence on the strain-rate
tensor on the crystal orientation tensor evolution. Rather than hav-
ing high values perpendicular to the flow divide, the highest values
are along a small band following the flow divide and in the areas of
high horizontal divergence at the tails of the flow divide, extending
in some areas as far as the grounding line.There are no large differ-
ences between 𝜆2 and 𝜆1 in the ice shelves, with the largest values
being concentrated north-west of the ice rise in all simulations.

The Woodcock k value (Woodcock, 1977), defined as

k =
ln(𝜆3/𝜆2)
ln(𝜆2/𝜆1)

, (12)

provides a metric by which to investigate which areas are charac-
terised by a single maximum fabric and which are characterised by
girdle fabric. Note that k can have values between k= 0 and k = ∞.
In order to better investigate small values of k, we plot ln(k) for
each simulation in Table 1. If ln(k) > 0, then the ice is defined
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Figure 5. The ratio of the two smaller eigenvalues of the
3 × 3 crystal orientation tensor at z = 0 for (a) the 𝛼 = 0,
𝜄 = 1 simulation, (b) the 𝛼 = 0, 𝜄 = 0.6 simulation, (c) the
𝛼 = 1, 𝜄 = 1 simulation and (d) the 𝛼 = 0.06, 𝜄 = 1 simu-
lation. The dashes show the maximum horizontal fabric
anisotropy direction. The dashed line shows the grounding
line, and the solid line shows contours of the depth below
the upper ice surface.

as having a single maximum fabric, and if ln(k) < 0, the ice is
defined as having a girdle fabric. Furthermore, if ln(k) >> 0 and
ln(𝜆3/𝜆2) >> 0, then the ice has a strong single maximum. If, on
the other hand, ln(k) << 0 and ln(𝜆2/𝜆1) >> 0, then ice has a
strong girdle fabric.

In the 𝛼 = 0, 𝜄 = 1 simulation, there are relatively high ln(k)
values at the tails of the flow divide (Fig. 6a), extending in some
areas almost to the grounding line. Elsewhere on the ice rise, values
of ln(k) are generally close to zero. The 𝛼 = 0.06, 𝜄 = 1 simula-
tion (Fig. 6d) shows similar results except at the north-east of
the ice rise, where high values of ln(k) are concentrated closer to
the grounding line. The 𝛼 = 0, 𝜄 = 0.6 simulation (Fig. 6b) shows
higher values of ln(k) even further from the flow divide and a small
area with negative ln(k) values at the north-eastern end of the flow
divide. The 𝛼 = 1, 𝜄 = 1 simulation (Fig. 6c) shows, by far, the most
negative values of ln(k), concentrated at the two tails of the flow
divide and small areas with positive values of ln(k) perpendicular
to the flow divide. All four simulations show an almost-continuous
band of negative values of ln(k) at the grounding line or a small dis-
tance away from the grounding line in the ice shelf. Moving away
from the grounding line, a general increase in values of ln(k) is
seen, with some exceptions.

3.3. Metrics for comparison with radar data

In quad-polarimetric radar processing, it is often assumed that
because of the dominance of vertical compression, one eigenvector
aligns with the vertical direction. In areas where this assumption

holds, signal processing can be simplified (Ershadi and others,
2022; Jordan and others, 2022).Obliquely oriented fabric types can,
in theory, also be detected (Matsuoka and others, 2009; Rathmann
and others, 2022), but thus far this has not been done for observa-
tions which are typically only collected in a nadir-viewing geom-
etry. Here, we present results evaluating the applicability of the
assumption of one vertical eigenvector across all four simulations.

In general, the predicted tilt angle is small in the grounded area
across all simulations (Fig. 7). Note that the grounded area is the
area within the dashed line marking the grounding line. The angle
remains small, with similar spatial patterns in the simulations with
parameter choices of 𝛼 = 0, 𝜄 = 1 and 𝛼 = 0.06, 𝜄 = 1 (Fig. 7a and
d, respectively). In the 𝛼 = 0, 𝜄 = 0.6 simulation (Fig. 7b), differ-
ences between the z-direction and v3 are generally small, with the
exception of slightly higher values on either side of the flow divide.
Spatial patterns on the stoss side of the ice rise are similar to those
in the above-mentioned 𝛼 = 0, 𝜄 = 1 and 𝛼 = 0.06, 𝜄 = 1 simula-
tions. The simulation with the largest tilt angles is the 𝛼 = 1, 𝜄 = 1
simulation (Fig. 7c), with differences of 𝜋/8 to 𝜋/4 radians at and
perpendicular to the flow divide. In all simulations, the tilt angle
in the ice shelf is larger a short distance away from the grounding
line, except for small, isolated areas.

We furthermore calculate the eigenvectors and eigenvalues of
the horizontal crystal orientation tensor, i.e. the upper left 2 × 2
part of the 3 × 3 tensor a(2). The reason for this is that if the 3 × 3
crystal orientation tensor has one strictly vertical eigenvector, the
eigenvalues and eigenvectors of the 2 × 2 tensor correspond to the
horizontal eigenvalues and eigenvectors of the 3 × 3 tensor. We
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Figure 6. The logarithm of the Woodcock k value at an
elevation of z = 0 for (a) the 𝛼 = 0, 𝜄 = 1 simulation, (b)
the 𝛼 = 0, 𝜄 = 0.6 simulation, (c) the 𝛼 = 1, 𝜄 = 1 simula-
tion and (d) the 𝛼 = 0.06, 𝜄 = 1 simulation. The dashes
show the maximum horizontal fabric anisotropy direc-
tion. The dashed line shows the grounding line, and the
solid line shows contours of the depth below the upper
ice surface.

denote the eigenvalues of the 2 × 2 tensor by 𝜆1,H and 𝜆2,H , and
the corresponding eigenvectors by v1,H and v2,H , respectively. By
comparing the eigenvalues of the 2 × 2, horizontal crystal orien-
tation tensor with the eigenvalues of the 3 × 3 crystal orientation
tensor, an error estimate can be found for assuming that the eigen-
vector corresponding to the largest eigenvalue is aligned with the
z-axis.

We present percentage differences between 𝜆1 and 𝜆1,H
(Fig. 8), as well as 𝜆2 and 𝜆2,H (Fig. 9). We find that if a differ-
ence exists between 𝜆1 and 𝜆1,H , or 𝜆2 and 𝜆2,H , then the 2 × 2
tensor eigenvalues always underestimate the smaller two 3 × 3
tensor eigenvalues. Furthermore, percentage differences tend to be
higher for the smaller eigenvalues 𝜆1 and 𝜆1,H than for 𝜆2 and 𝜆2,H ,
but exceptions to this are seen. The 𝛼 = 0, 𝜄 = 1 simulation shows
a negligible percentage difference between 𝜆1 and 𝜆1,H (Fig. 8a)
and small percentage differences for 𝜆2 and 𝜆2,H of up to 10 %
(Fig. 9a). A similar spatial distribution of percentage differences
appears for 𝜆2 and 𝜆2,H in the 𝛼 = 0.06, 𝜄 = 1 simulation (Fig. 9d).
Most notable is the percentage difference between 𝜆1 and 𝜆1,H in
the 𝛼 = 1, 𝜄 = 1 simulation (Fig. 8c), where values are above 20 %
in a large area at and perpendicular to the flow divide. In this sim-
ulation (𝛼 = 1, 𝜄 = 1), percentage differences between 𝜆2 and 𝜆2,H
(Figs. 9c) are high compared to other simulations, but the high val-
ues localised at and in the area perpendicular to the flow divide
occupy a smaller area than the percentage differences between 𝜆1
and 𝜆1,H (Fig. 8c). In the 𝛼 = 0, 𝜄 = 0.6 and the 𝛼 = 0.06, 𝜄 = 1 sim-
ulations, percentage differences between 𝜆1 and 𝜆1,H are negligible

across a large portion of the ice rise, in particular on the stoss side
(Fig. 8b, d).The highest percentage differences are either side of the
flow divide with values up to and over 20 %, reducing further away
from the flow divide. Percentage differences between 𝜆2 and 𝜆2,H
in the 𝛼 = 0, 𝜄 = 0.6 simulation are negligible except for small areas
at the flow divide (Fig. 9b). As the assumption that the eigenvector
corresponding with the largest eigenvalue is made for grounded
ice, we do not analyse the differences between eigenvalues of the
2 × 2 and the 3 × 3 crystal orientation tensors in the ice shelves.

Next, we present results for the difference between the eigen-
values, 𝜆2,H − 𝜆1,H , of the 2 × 2 horizontal part of the 3 × 3
crystal orientation tensor. This metric corresponds directly with
results from radar data where a vertical eigenvector assumption is
made (Fig. 10). The 𝛼 = 0, 𝜄 = 1 (Fig. 10a) and the 𝛼 = 0.06, 𝜄 = 1
(Fig. 10d) simulations show similar results both spatially and in
terms of the magnitude of differences, with differences staying
below 0.1 at and in the vicinity of the flow divide. The largest dif-
ferences in the eigenvalues occur on the eastern side of the ice
rise, close to the grounding line as well as in small isolated areas
elsewhere on the stoss side of the ice rise in the vicinity of the
grounding line. Although eigenvalue differences differ substan-
tially in magnitude between the two simulations, the 𝛼 = 0, 𝜄 = 0.6
(Fig. 10b) and the 𝛼 = 1, 𝜄 = 1 (Fig. 10c) simulations show simi-
lar spatial patterns. In the 𝛼 = 0, 𝜄 = 0.6 simulation (Fig. 10b), the
highest differences between 𝜆2,H and 𝜆1,H area seen at the tails
of the flow divide, extending towards the grounding line north-
east of the ice rise and in isolated areas on the east of the ice
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Figure 7. The angle between the eigenvector corresponding to the largest eigenvalue and the vertical direction at an elevation of z = 0 corresponding to the sea level for (a)
the 𝛼 = 0, 𝜄 = 1 simulation, (b) the 𝛼 = 0, 𝜄 = 0.6 simulation, (c) the 𝛼 = 1, 𝜄 = 1 simulation and (d) the 𝛼 = 0.06, 𝜄 = 1 simulation. The dashed line shows the grounding line,
and the solid lines show contours for the depth below the surface in metres.

rise. Elsewhere, differences between 𝜆2,H and 𝜆1,H remain below
0.1. The 𝛼 = 1, 𝜄 = 1 simulation (Fig. 10c) shows large differences
between 𝜆2,H and 𝜆1,H of over 0.3 at the flow divide and extending
to the grounding line, particularly on the lee side of the ice rise.
As in all other simulations, differences of over 0.3 are seen on the
eastern side of the ice rise close to the grounding line.

Finally, we investigate the dependence of the fabric anisotropy
field on the strain rate field and, in particular, the relationship
between the largest horizontal fabric anisotropy direction and the
largest horizontal strain rate direction. Given that we expect c-axes
to point perpendicular to the direction of maximum stretching,
we calculate the largest horizontal strain rate direction by calcu-
lating the eigenvalues and eigenvectors of the upper left 2 × 2
tensor of the 3 × 3 strain rate tensor, .𝜺. We denote the eigenvec-
tors of the horizontal strain rate tensor by w1,H and w2,H , where
w1,H ⩽ w2,H . We then calculate the angle between the maximum
horizontal strain rate direction, w2,H , and the maximum horizon-
tal fabric anisotropy direction, v2,H (Fig. 11). In the 𝛼 = 0, 𝜄 = 1
simulation (Fig. 11a) and the 𝛼 = 0.06, 𝜄 = 1 simulation (Fig. 11d),
the angle between w2,H and v2,H remains close to 𝜋/2, meaning
that the two vectors are mostly close to perpendicular. Exceptions

are in small areas of divergence at the two tails of the flow divide.
In the 𝛼 = 0, 𝜄 = 0.6 simulation (Fig. 11b), the angle between w2,H
and v2,H is mainly high everywhere on the ice rise except at the two
tails of the flow divide where values are consistently closer to zero.
Lastly, the 𝛼 = 1, 𝜄 = 1 simulation (Fig. 11c) shows a large area on
the stoss side of the ice rise, away from the flow divide, where w2,H
and v2,H aremostly close to perpendicular. At the flow divide, there
is a thin line where the two vectors are perpendicular and in the
areas perpendicular to the flow divide, the angle between the two
vectors is generally >𝜋/4. This simulation shows the largest areas
where the angle between w2,H and v2,H is close to zero from the
extremes of the flow divide as far or almost as far as the grounding
line.

4. Discussion

We present the results of three-dimensional simulations of the
full-tensor fabric anisotropy field of DIR via a coupling with
the velocity and stress fields. The simulated domain includes the
surrounding ice shelf, allowing analysis of the fabric anisotropy
field across the grounding zone. Based on four previous studies
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Figure 8. The percentage difference between 𝜆1,H and 𝜆1 at an elevation of z = 0 for (a) the 𝛼 = 0, 𝜄 = 1 simulation, (b) the 𝛼 = 0, 𝜄 = 0.6 simulation, (c) the 𝛼 = 1, 𝜄 = 1
simulation and (d) the 𝛼 = 0.06, 𝜄 = 1 simulation. The solid line contours show depth below surface, and the dashed line is the grounding line.

(Martin and others, 2009; Seddik and others, 2011; Martin and
Gudmundsson, 2012; Gagliardini and others, 2013), we simulate
the fabric anisotropy field varying parameter choices controlling
the relative influence of the strain rate and deviatoric stress ten-
sors. By decomposition of the simulated crystal orientation tensor
into eigenvalues and eigenvectors, our results provide a necessary
step towards the comparison of observed ice fabric with three-
dimensional modelled results for a variety of flow regimes.

4.1. Dependence of the fabric anisotropy field on the velocity
and stress fields

The various flow regimes in the ice rise influence the fabric
anisotropy field in different ways, with past flow regimes of a vol-
ume of ice also having an effect on the present fabric anisotropy,
which is captured due to the semi-Lagrangian implementation of
the crystal orientation tensor evolution in the simulations in this
study.

Based on previous choices (Martin and others, 2009; Seddik and
others, 2011; Martin and Gudmundsson, 2012; Gagliardini and
others, 2013), we adjust the parameters 𝛼 and 𝜄 in Eq. (7). The

parameter 𝛼, taking values 𝛼 ∈ [0, 1], controls the relative influ-
ence of the strain rate and deviatoric stress tensors, with a value
of 𝛼 = 0 meaning that the deviatoric stress tensor is ignored and
a value of 𝛼 = 1 meaning that the strain rate tensor is ignored.
The parameter 𝜄, taking values of 𝜄 ∈ [0, 1], controls the rate of
change the crystal orientation tensor, a(2), undergoes in response
to the combination of the strain rate and deviatoric stress ten-
sor. For example, for a value of 𝜄 close to zero, apart from rota-
tional changes due to the spin tensor, the crystal orientation tensor
changes minimally in response to the combination of the strain
rate and deviatoric stress tensors. Because the strain rate and devi-
atoric stress tensor are co-dependent, differentiation between the
effect of the various combinations of 𝛼 and 𝜄 on the crystal ori-
entation tensor is not trivial. Broadly speaking, although this is
not always the case, the behaviour of the fabric anisotropy field
in the 𝛼 = 0, 𝜄 = 0.6 simulation shows similar results to the 𝛼 = 1,
𝜄 = 1 simulation, despite the relatively large differences in param-
eter choice. Conversely, the 𝛼 = 0, 𝜄 = 1 and the 𝛼 = 0.06, 𝜄 = 1
simulations show only slightly differing results, likely explained by
the similarity in values of 𝛼 and 𝜄.

While certain anisotropic fabric types can be expected under
particular flow and stress regimes, the length of time the ice has
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Figure 9. The percentage difference between 𝜆2,H and 𝜆2 at an elevation of z = 0 for (a) the 𝛼 = 0, 𝜄 = 1 simulation, (b) the 𝛼 = 0, 𝜄 = 0.6 simulation, (c) the 𝛼 = 1, 𝜄 = 1
simulation and (d) the 𝛼 = 0.06, 𝜄 = 1 simulation. The solid line contours show depth below surface, and the dashed line is the grounding line.

undergone deformation in this regime also has an influence on
the reflected fabric anisotropy field. In Figure 4, it can be seen
that at the elevation z = 0, the ice has developed into a rela-
tively strong single maximum fabric in the 𝛼 = 0, 𝜄 = 1 simulation
(Fig. 4a) and the 𝛼 = 0.06, 𝜄 = 1 simulation (Fig. 4d) compared
with the other two simulations. On the other hand, the 𝛼 = 1,
𝜄 = 1 simulation (Fig. 4c) does not show a strong single maxi-
mum. This indicates that the strain rate term of Eq. (9) has a
stronger influence on the development of a single maximumunder
vertical compression at a flow divide than the deviatoric stress ten-
sor term of Eq. (9). Interestingly, in the 𝛼 = 0, 𝜄 = 1 simulation
(Fig. 4a) and the 𝛼 = 0.06, 𝜄 = 1 simulation (Fig. 4d), the areas with
a higher single maximum are located at the two tails of the flow
divide. Although not explicitly simulated in this study, we expect
that the fabric type in the area of high horizontal divergence at the
tails of the flow divide would show a similar fabric to that form-
ing at a dome flow divide, defined by a flow divide with horizontal
flowlines originating at a point source. In the vicinity of the flow
divide, the 𝛼 = 1, 𝜄 = 1 simulation shows a vastly different horizon-
tal fabric anisotropy direction than the other simulations (Fig. 5c).

The eigenvector corresponding to the largest horizontal eigenvalue
originates at a point source as opposed to being parallel to the flow
divide in the other simulations. Values of ln(𝜆2/𝜆1) are high along
the flow divide and in relatively large areas where there is high hor-
izontal divergence at the tails of the flow divide, meaning that the
ice has a girdle fabric. Of note is that Figure 11c shows that in the
areas of girdle fabric, themaximumhorizontal strain rate direction
is not perpendicular to the maximum horizontal fabric anisotropy
direction. The reason for the differences between the 𝛼 = 1, 𝜄 = 1
and the other three simulations is due to the largely different 𝛼
value, which in this case results in ignoring the strain rate tensor
completely.

Moving into the flanks of the ice rise, where vertical shear domi-
nates, although the flow of ice in the grounded areas is horizontally
divergent, the fabric types vary substantially. We identify a num-
ber of factors as having an influence on the ice fabric type: (a)
whether flank flow is perpendicular to the flow divide or at the
tails of the flow divide, (b) whether the ice is on the stoss or lee
side of the ice rise and (c) how close ice is to the grounding line
and what type of flow regime is active at the grounding zone. In
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Figure 10. The difference between the two eigenvalues of the 2 × 2 horizontal crystal orientation tensor for (a) the 𝛼 = 0, 𝜄 = 1 simulation, (b) the 𝛼 = 0, 𝜄 = 0.6 simulation,
(c) the 𝛼 = 1, 𝜄 = 1 simulation and (d) the 𝛼 = 0.06, 𝜄 = 1 simulation. The solid lines show contours for the depth below the surface in metres, and the dashed line is the
grounding line.

flow regimes dominated by vertical shear, as is the case in the areas
perpendicular to the flow divide, it is expected that fabric shows
a single maximum with a slight offset to the vertical (Llorens and
others, 2022). However, the 𝛼 = 0, 𝜄 = 1 (Fig. 4a) and the 𝛼 = 0.06,
𝜄 = 1 (Fig. 4d) simulations show the strongest single maxima per-
pendicular to the flow divide, but Figure 7a and d show that these
simulations have the smallest tilt angle compared to the other
simulations.

Across the grounding line, the predicted ln(k) values allow dif-
ferentiation between single maximum fabric (ln(k) > 0) and
girdle fabrics (ln(k) < 0, Fig. 6). It must be noted, however, that a
large positive or negative value of ln(k) does not necessarily imply
that the ice has a strong single maximum or strong girdle fabric,
respectively. Any analysis of the ln(k) field must be done in con-
junction with plots of ln(𝜆2/𝜆1) (Fig. 5) and ln(𝜆3/𝜆2) (Fig. 4)
(Woodcock, 1977). In all simulations, (ln(𝜆3/𝜆2)) is the lowest at
the grounding zone and in the northern and eastern sides of the
ice shelf, meaning that there is no single maximum in these areas.
Contrary to this, the metric for a girdle fabric (ln(𝜆2/𝜆1)) shows a
small band at the grounding zonewith values of ln(𝜆2/𝜆1) = 0.5 to
1.This weak girdle fabric may be due to the transition from a fabric

with a vertical single maximum, to a single maximum aligned with
the horizontal plane, via a transition across the grounding zone.

4.2. Implications for viscosity coupling

One ultimate goal in modelling the fabric anisotropy field of ice is
to be able to fully couple the velocity and stress fields to the fabric
anisotropy field and vice versa (note, we will refer to these simula-
tions as fully coupled hereafter). In this study, we have explored the
influence of the velocity and stress fields on the fabric anisotropy
field using three-dimensional simulations, but have not investi-
gated the coupling of the fabric anisotropy field to the velocity
field via a direction-dependent viscosity. Here, we discuss areas
of DIR where we expect the fabric type to influence viscosity as
well as barriers to fully coupled, three-dimensional anisotropic
simulations.

Generally speaking, ice crystal c-axes rotate in a directionwhich
allows for optimal shearing, with studies showing that if ice is
highly anisotropic, deformation in the plane perpendicular to the
c-axis is significantly enhanced compared with deformation in
other directions (Duval and others, 1983). Areas where ice has a
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Figure 11. The angle between the eigenvectors corresponding to the larger horizontal crystal orientation eigenvalue and the larger horizontal strain rate eigenvalue for (a)
the 𝛼 = 0, 𝜄 = 1 simulation, (b) the 𝛼 = 0, 𝜄 = 0.6 simulation, (c) the 𝛼 = 1, 𝜄 = 1 simulation and (d) the 𝛼 = 0.06, 𝜄 = 1 simulation.

single maximum will experience ease of deformation parallel to
basal planes and stiffening in response to deformation parallel to
the c-axes. In the simulations of DIR, a single maximum fabric is
most apparent in the 𝛼 = 0, 𝜄 = 1 and the 𝛼 = 0.06, 𝜄 = 1 simula-
tions (Fig. 4). If enhancement factors were used (Gillet-Chaulet
and others, 2005; Ma and others, 2010) in a coupling with the
ice viscosity, this would allow more ease of vertical shear in these
areas which is important in the evolution of Raymond arches at
flowdivides, as shown in two-dimensional, anisotropic simulations
(Martin and others, 2009; Martin and Gudmundsson, 2012; Drews
and others, 2015).

A number of hurdles hinder the three-dimensional simulation
of fully coupled ice anisotropy including computational expense,
numerical instabilities, a lack of comparison with observations,
parameter uncertainty and challenges associated with parallelisa-
tion. In a study by Gerber and others (2023) in which flow tube
simulations of the Elmer/Ice model of fully coupled ice anisotropy
were performed, it was noted that numerical instabilities sig-
nificantly hindered the simulation of areas with high velocities.
Furthermore, computational expense and an increased memory
load means that a directional-dependent viscosity creates a fur-
ther hindrance. Despite this, simulations such as those presented in
this paper allow ease of comparison with observations and should

be included in comparisons between a hierarchy of models with
varying complexity.

4.3. Model representation of anisotropy

Ice rises are an ideal location for testing models of ice anisotropy
models as they contain various flow regimes which are relevant for
other locations in the Antarctic Ice Sheet. Ice rises contain many of
the same features as entire ice sheets, and results can inform expec-
tations on studies in larger scales (Matsuoka and others, 2003).The
shear zones on the western and eastern sides of DIR are represen-
tative of behaviour typical at lateral shear zones in ice shelves or
ice streams (Smith and others, 2017). Similarly, flow divides, flank
flow and ice shelf flow are typical inmany areas of Antarctica.More
studies are needed to examine whether an anisotropic flow law
is needed in order to make accurate projections of sea level rise.
This is especially important as sudden speed up of ice, for exam-
ple, in the initiation of an ice stream, is associated with anisotropic
behaviour (Thorsteinsson andothers, 2003; Lilien andothers, 2021;
Gerber and others, 2023).This necessitates further studies for com-
parison between various hierarchies of isotropic and anisotropic
ice flow models with varying model complexity as well as com-
parison with observations. In our approach, fabric anisotropy is
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modelled using a crystal orientation tensor, which can describe
many fabric types, but does not capture cone fabric shapes as mod-
elled by Pettit and others (2007) or multiple single maxima. An
example of a representation of crystal orientation which can cap-
ture complex fabrics has been developed by Rathmann and others
(2021). Furthermore, the introduction of additional, higher-order
crystal orientation tensors in Eq. (7) would allow a more accu-
rate representation of crystal orientation distribution, yet would
introduce additional computational expensive.

In addition to difficulties in choosing a correct mathemati-
cal representation of an fabric anisotropy, Eq. (7) is challenging
to solve numerically as it is an advection equation, with no dif-
fusive term. We find that the use of semi-Lagrangian methods
reduces dispersion, as they introduce diffusion through interpo-
lation (Advani and Tucker, 1987). However, in areas with strong
gradients in the velocity field, we nonetheless find that numeri-
cal dispersion deteriorates the solution with time. The alternative
approach to this numerical problem has been to either explicitly
incorporate numerical diffusion in Eq. (7) as in Seddik and others
(2011) or to include re-crystallisation terms as in Gagliardini and
others (2013).Wefind it to bemore effective to constrain the degree
of orientation, but our approach can easily be adapted to include a
re-crystallisation term in Eq. (7).

4.4. Framework for comparison with observations

Acrucial component of accuratemodelling of the fabric anisotropy
field of ice is the comparison with observations, which, until
recently, have been possible only by comparison with a limited
number of ice cores. From ice core data, it is possible to construct
a crystal orientation tensor which is directly comparable to sim-
ulations such as those presented in this work. Recently, advances
in the measurement of anisotropic fabric using radar have allowed
the acquisition of a significant amount of data with much greater
ease than expensive ice coring projects (Young and others, 2021a;
2021b; Ershadi and others, 2022; 2025). However, assumptions
made in the processing of data mean that the methods currently
used are only valid where the dominant c-axis direction is exactly
vertical (Rathmann and others, 2022).

Thus far, observational fabric anisotropy data have been used
for inferring ice flow history including flow re-organisation
(Durand and others, 2007; Matsuoka and others, 2012; Brisbourne
and others, 2019; 2021) as well as for investigation of the state of the
ice fabric in ice conditions such as ice streams (Smith and others,
2017; Kufner and others, 2023), in layers of enhanced shear (Pettit
and others, 2011) and at ice rises (Drews and others, 2015; Ershadi
and others, 2025). In terms ofmaking comparisons between obser-
vations and anisotropicmodels,matching of isochrones and veloci-
ties has been performed (Drews and others, 2015;McCormack and
others, 2022), but few studies have compared directly the observed
and modelled fabric anisotropy fields (Lilien and others, 2023).

Although we do not explicitly make comparisons between the
observed and modelled fabric anisotropy fields of DIR, we have
described steps necessary for such a comparison. Our results show
very differing three-dimensional fabric anisotropy fields depend-
ing on the chosen influence of the strain rate and deviatoric
stress tensors in Eq. (7) used in previous studies Martin and oth-
ers (2009); Seddik and others (2011); Martin and Gudmundsson
(2012); Gagliardini and others (2013) and draw attention to
the need to constrain equation parameters. We have provided
a method to compare the difference between the two horizon-
tal eigenvalues (Fig. 10), sometimes referred to as the horizontal

anisotropy, which is directly comparable to radar observations.
We recommend radar surveys in the areas of high horizontal
flow divergence at the tails of flow divides, as these are areas
where differing values of 𝛼 and 𝜄 show significantly differing fabric
anisotropy fields.

5. Conclusions

In this study, we have modelled the three-dimensional, diagnos-
tic, fabric anisotropy field of DIR including domain partitioning
using a crystal orientation tensor evolution equation describing
the spatial distribution of ice crystal c-axes in a given ice vol-
ume. Simulations are performed varying the relative influence of
the strain rate and deviatoric stress tensors in the crystal orien-
tation tensor evolution equation as used in four previous studies
(Martin and others, 2009; Seddik and others, 2011; Martin and
Gudmundsson, 2012; Gagliardini and others, 2013), with results
showing significantly differing ice fabrics across the flow divide
and the flanks of DIR. Lastly, we provide a modelling framework
for comparison with radar observations, outlining areas where the
assumption of one vertical eigenvector may not hold and resulting
errors in horizontal eigenvalues.
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Appendix
The representation of the fabric anisotropy field using a crystal orientation
tensor,

a(2) =
⎛⎜⎜⎜
⎝

a(2)
xx a(2)

xy a(2)
xz

a(2)
yx a(2)

yy a(2)
yz

a(2)
zx a(2)

zy a(2)
zz

⎞⎟⎟⎟
⎠

, (A1)

describing the c-axis distribution is ideal for comparison with ice core or radar
observations in that an equivalent crystal orientation tensor can be constructed
from observational data by determining the cross-products of cosines of each
c-axis and summing up such that

a(2) =
⎛⎜⎜⎜
⎝

a(2)
xx a(2)
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yx a(2)
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= 1
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∑ l2i ∑ limi ∑ lini
∑mili ∑m2

i ∑mini
∑ nili ∑ nimi ∑ n2

i

⎞⎟⎟
⎠

, (A2)

where N is the number of c-axes being summed over. The cosines of the c-axis
vectors are defined by taking the cosine of the angle between the c-axis vector,
ci, and each positive coordinate axis, ̂ex, ̂ey and ̂ez , so that

li = ci,x,
mi = ci,y,

ni = ci,z.
(A3)

From the orientation tensor, a number of metrics can be calculated to inves-
tigate the degree of crystal orientation, the predominant c-axes directions and
the fabric type.
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