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Sedimenting flows occur in a range of society-critical systems, such as circulating fluidised
bed reactors and pyroclastic density currents (PDCs), the most hazardous volcanic process.
In these systems, mass loading is sufficiently high (�O(1)) and momentum coupling
between the phases gives rise to mesoscale behaviour, such as formation of coherent
structures capable of generating and sustaining turbulence in the carrier phase and directly
impacting large-scale quantities of interest, such as settling time. While contemporary
work has explored the physical processes underpinning these multiphase phenomena for
monodispersed particles, polydispersed behaviour has been largely understudied. Since
all real-world flows are polydisperse, understanding the role of polydispersity in gas–
solid systems is critical for informing closures that are accurate and robust. This work
characterises the sedimentation behaviour of two polydispersed gas–solid flows, with
properties of the particles sampled from historical PDC ejecta. Highly resolved data at
two volume fractions (1 % and 10 %) are collected using an EulerLagrange framework
and is compared with monodisperse configurations of particles with diameters equivalent
to the arithmetic mean of the polydisperse configurations. From these data, we find that
polydispersity has an important impact on cluster formation and structure and that this is
most pronounced for dilute flows. At higher volume fraction, the effect of polydispersity is
reduced. We also propose a new metric for predicting the degree of clustering, termed
‘surface loading’, and a model for the coefficient of drag that accurately captures the
settling velocity observed in the high-fidelity data.
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1. Introduction
Sedimenting multiphase flows occur in a wide range of society-critical applications, such
as the upgrading of biomass into biofuels in circulating fluidised bed reactors (Cui & Grace
2007; Mettler, Vlachos & Dauenhauer 2012), transport of contaminants within ground
water (Miller et al. 1998) or the atmosphere (Ravishankara 1997; Arganat & Perminov
2020) and several other environmentally relevant systems, such as volcanic processes
(Lube et al. 2020) and avalanches (Sovilla, McElwaine & Köhler 2018; Cicoira et al.
2022; Gardezi et al. 2022; Zhuang et al. 2023). All of these inherently multiphase systems
represent problems of great societal interest that are also historically challenging to study,
both computationally and experimentally. It is these challenges that, to date, have hindered
our ability to fully understand and accurately predict their behaviour, thus impeding
more optimal engineering designs and systems, as well as more effective procedures and
standards for safety and risk mitigation.

As is often the case in multiphase systems of interest, large-scale heterogeneity arises
in the form of turbulence in the carrier phase and cohesive structures such as clusters
in the dispersed phase. Clustering, in particular, has been extensively examined both
experimentally (Breard & Lube 2017; Breard, Dufek & Lube 2018; Sovilla et al. 2018)
and computationally (Capecelatro, Desjardins & Fox 2014; Lube et al. 2020), and has
been shown to arise through mechanisms that are related to the Stokes number (the
ratio of particle to fluid time scales) and the volume fraction, 〈αp〉, or mass loading,
ϕ = (ρpαp)/(ρ f α f ). Four traditionally recognised regimes emerge depending upon the
values of the volume fraction and the Stokes number. Namely, when volume fraction
is sufficiently low (<O(10−6)) particles are considered to be ‘one-way coupled’ and
particles have a negligible effect on the fluid, but the fluid dictate the motion of particles.
In this regime, clustering can emerge through the mechanism of preferential concentration,
as originally described by Maxey (1987a, b). It is of course worth noting that, in order
to form cohesive structures through the mechanism of preferential concentration, there
must be a background turbulence or the existence of regions with increased shear. As the
volume fraction is increased, there is an increasing interplay between particles and the
carrier fluid. For moderate volume fractions (〈αp〉 ∈ [O(10−6),O(10−3)]), suspensions
are considered to be ‘two-way coupled’. For this regime, there exist two sub-regimes based
upon the Stokes number. For particles with Stokes number less than unity, particles tend
to contribute to turbulent energy dissipation. For particles with Stokes number greater
than unity, particles have an opposite effect and tend to generate turbulent kinetic energy.
Finally, when the volume fraction surpasses O(10−3), the system is considered to be
strongly coupled (Elghobashi & Truesdell 1992; Bosse, Kleiser & Meiburg 2006; Breard
& Lube 2017; Breard et al. 2018). Here, not only do both phases effect on one another’s
behaviour, but collisions between particles also becomes important. In this regime, there
is less of an effect on flow behaviour due to the Stokes number and clustering primarily
arises due to the reduced drag felt by particles (Capecelatro, Desjardins & Fox 2015).

As one may expect, the emergence of heterogeneity has an important effect on nearly
all quantities of interest for a multiphase system, such as settling velocity and degree
of mixing in the flow. Several recent works have highlighted this effect and shown
that heterogeneity can impede chemical conversion (Beetham & Capecelatro 2019), alter
thermal exchange efficiency (Guo & Capecelatro 2019) and entrance lengths (Beetham &
Capecelatro 2023) and enhance the mean particle settling velocity (Wang & Maxey 1993;
Aliseda et al. 2002; Ferrante & Elghobashi 2003; Yang & Shy 2003 Bosse et al. 2006).

In addition to the complexity generated by heterogeneity in sedimenting flows and the
coupling between the phases, another key challenge is the breadth of length and time
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scales at which physical processes occur. At the particle scale, which is often of the
order of micrometres, small wakes and boundary layer-induced instabilities are formed
at the surface of particles and in systems that exhibit heat and mass transfer or are
chemically reactive, these physical processes take place at very small time scales. These
multi-physics processes drive the need for high computational resolution both in space
and time in order to fully resolve relevant physics. Computational studies that aim to
capture this level of detail often require grids fine enough that there are tens of grid
points across the particle diameter (Subramaniam 2020). Juxtaposed with this, nearly
all systems of societal interest span length scales on orders relevant to a reactor or
volcanic topography (metres or kilometres) and time scales of the order of minutes or
hours. In light of this, it is obvious that, even with modern computing capabilities, fully
resolved computations of full-scale systems of interest are intractable. Because of this,
several computational strategies exist for simulating multiphase flows at a range of scales.
Particle resolved direct numerical simulation (PR-DNS), while model free, is useful for
studying behaviour at the microscale (i.e. systems of the order of hundreds of particles)
and for developing the models required by coarser-grained methodologies, such as highly
resolved Euler–Lagrange simulations, where the fluid is treated in the Eulerian sense,
particles are individually tracked as Lagrangian bodies and the phases are coupled through
interphase exchange terms (Capecelatro et al. 2015). In these coarser-grained simulations,
the grid is of the order of 2–3 times larger than the particles, and models (informed by
PR-DNS) are required to capture sub-grid behaviour. Importantly, these methodologies
allow simulations at the mesoscale with hundreds of millions of particles (Capecelatro
et al. 2014; Beetham, Fox & Capecelatro 2021). Systems at this size are sufficiently large to
observe the mesoscale heterogeneity that microscale PR-DNS simulations cannot. While
this is a dramatic improvement in the scale of systems that can be considered, mesoscale
systems are also computationally limited, making them incapable of tractably considering
systems at scales of interest (i.e. full reactor scale or the several kilometres required to
capture volcano or avalanche runout). Thus, in the same way that PR-DNS data are useful
for informing model closures for mesoscale (EulerEuler or Euler–Lagrange) simulations,
the resulting data can then in turn be used to formulate closures for even coarser-grained
strategies, such as the multiphase Reynolds-averaged Navier–Stokes (multiphase RANS)
equations (Beetham et al. 2021).

It is worth emphasising that this incremental and careful approach – moving strategically
from PR-DNS to highly resolved Euler–Lagrange to even coarser-grained multiphase
RANS simulations – is a necessity for retaining relevant mesoscale physics. While early
work in multiphase flow modelling attempted to augment existing single-phase turbulence
models (Sinclair & Jackson 1989; Sundaram & Collins 1994; Cao & Ahmadi 1995;
Dasgupta, Jackson & Sundaresan 1998; Zeng & Zhou 2006; Rao et al. 2012), this approach
fails beyond very dilute suspensions of particles. This primarily owes to the fact that in
multiphase systems, turbulent energy is generated at the scale of the particles and cascades
up to generate large-scale turbulence. This phenomenon is in direct opposition to classical
turbulence theory (Kolmogorov 1941) and underscores the shortcomings of extending
single-phase turbulence models to multiphase flows. To this end, work by Fox (2014)
pointed out that deriving the multiphase RANS equations directly from the microscale
equations (Navier–Stokes) is incapable of capturing the momentum exchange between the
phases. Instead, it is necessary to formulate the multiphase RANS equations by averaging
the mesoscale equations. This strategy, while exact, leads to several unclosed terms that
require modelling. While recent work (Beetham et al. 2021) has proposed closures for
these terms, these closures are limited to unbounded flows of spherical, monodisperse
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particles of a single density ratio and the development of accurate, widely applicable
closures is still very much in its infancy.

While a large body of work in the last decades (Balachandar & Eaton 2010;
Subramaniam 2020) has shed light on the physics underlying multiphase processes
as well as formulations for guiding reduced-order modelling of their behaviour, most
contemporary studies consider particles that are monodisperse. In contrast to this, all real-
world flows of interest are comprised of polydispersed particles, where particle parameters
often span a wide range of diameters, shapes, densities, etc. We note that some recent
studies have considered particulate phases that were not monodisperse (see, e.g., Fox
2024), however, several of these studies often were limited to bi-disperse assemblies of
particles (Municchi & Radl 2017), quantities of particles that were too few to capture
mesoscale behaviour or were limited to particles too small to be considered strongly
coupled (Islam et al. 2019).

In addition to computational work, recent experimental studies have also studied
the settling behaviour of gas–solid flows that exhibit mesoscale behaviour, such as
clustering. Penlou et al. (2023) considered how the Stokes number impacted settling. In
the cases of similarly sized small particles (78 µm), particles were observed to experience
enhanced settling behaviour due to cluster formation, whereas larger particles (467 µm)
demonstrated hindered settling (Penlou et al. 2023). Other work, which also considered
similarly sized suspensions of particles over a range of particle diameters observed that the
maximum particle volume fraction due to clustering behaviour scaled with the Reynolds
number as Re1/5 or Re1/2 depending on the region of the flow considered (Weit et al.
2018).

In recent years, several one-dimensional (1-D) (Degruyter & Bonadonna 2012; Dufek,
Esposti Ongaro & Roche 2015; Folch, Costa & Macedonio 2016; Pouget et al. 2016),
2-D (Pfeiffer, Costa & Macedonio 2005; Barsotti, Neri & Scire 2008; Williams, Stinton &
Sheridan 2008) and 3-D multiphase flow models (Neri et al. 2007; Dufek & Bergantz
2007b; Costa 2016; Lube et al. 2020; Cao et al. 2021) have been used to quantify
key physical processes in polydispersed, multiphase flows (such as pyroclastic density
currents, or PDCs) that are often inaccessible by large-scale experimentation. In addition
to quantifying the physics of such flows, large-scale simulations such as these have also
been used to develop reduced-order forecasting models. That said, while the current
state-of-the-art models mentioned previously can reveal some aspects of the internal
structure of PDCs, to date they have fallen short of capturing the heterogeneous effects
of clustering. This represents a critical missing element for accurate models because in
order for a reduced-order model of such flow configurations to be successful, they must be
representative of polydisperse heterogeneity and settling.

Due to the lack of more comprehensive models, the Stokes settling velocity, V0 = τpg,
with τp, the particle response time defined as ρpd2

p/(18µ f ), has been traditionally
used in many works to predict settling behaviour in multiphase flows (Dietrich 1982;
Basson, Berres & Bürger 2009; Shankar, Pandey & Shukla 2021). Here, g represents the
magnitude of gravity, dp and ρp are the particle diameter and density, respectively and μ f
is the fluid dynamic viscosity. As an improvement to a Stokes prediction, which makes
gross oversimplifications, contemporary work has focused on extending depth-averaged
equations that were originally used in the context of shallow-water systems to gas–solid
flows (Esposti Ongaro et al. 2020; Breard et al. 2023; de’Michieli Vitturi et al. 2023).
To this end, de’Michieli Vitturi et al. (2023) generalised the depth-averaged equations
to include a dispersed phase and employed an Eulerian–Eulerian approach to simulate
a wide range of volcanic phenomena. As a result of this work, a depth-averaged settling
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velocity, denoted as Vs , with a model for the drag coefficient originally developed using
kinetic theory arguments (Gidaspow 1994) was proposed.

In this work, we present an analysis of the clustering and settling behaviour observed
in high-fidelity Euler–Lagrange simulations for two polydisperse assemblies of particles,
each at two volume fractions. In addition, comparisons are drawn against the behaviour ob-
served in analogous monodisperse configurations in an effort to isolate the effect of poly-
dispersity on heterogeneous multiphase behaviour. This work represents, to the authors’
knowledge, the most highly resolved study of polydisperse clustering and settling be-
haviour to date. Further, we propose a new model for the mean settling velocity of strongly
coupled gas–solid flows based on particle size, volume fraction and degree of polydisper-
sity. This model represents an initial step toward improved reduced-order models.

2. System description
While polydisperse settling has broad applications, as previously discussed, this work is
motivated by (PDCs – the gravity current resulting from the collapse of a volcanic column.
The interested reader is referred to Appendix A for a brief summary of this particular class
of flows. Given this motivation, we leverage historical ejecta information to inform the
parameters for the highly resolved simulations under study.

In particular, we aim to quantify the effect of polydispersity on clustering and settling
behaviour. To this end, we consider four configurations containing a polydisperse assembly
of particles with parameters sampled from historical PDC ejecta data. In each of these
configurations, the particles are assumed to be rigid spheres with diameter, dp, and density,
ρp. The gas has a constant density, ρ f , and dynamic viscosity, ν f , which are specified
based on the properties of air at 400 ◦C, the average temperature in the intermediate region
(Breard et al. 2016; Breard & Lube 2017; Lube et al. 2020).

Particle density is constant across all configurations and is consistent with the density
typically found in the intermediate layer of PDCs (Lube et al. 2015; Breard et al.
2016). Particle diameter distributions are chosen following the data presented in (Lube
et al. 2014). In this study, we consider two log-normal distributions corresponding
to (φ, φsorting) = (0, 1) and (1.5, 1) (for a description of φ and φsorting , refer to
Appendix B), denoted as A and B throughout the manuscript. While the details of both
distributions are summarised in table 1, it is important to note that the particles for each
configuration are selected from the described distribution between the values of dmin
and dmax . This results in the mean and standard deviation of the particle assemblies
in the simulations that deviate from the mean and standard deviation for a log-normal
distribution described by µ and σ with infinite support. Here, μ and σ are the distribution
parameters associated with log-normal data having the probability distribution function

1
xσ

√
2π

exp
(
− (ln x−μ)2

2σ 2

)
, for some random variable, x , which in this case is the particle

diameter.
For each configuration A and B, we draw comparisons with a monodisperse analogue,

denoted as A0 and B0, where the diameter of the particles in each of these is equivalent
to the mean diameter of distributions A and B, respectively. Here, these diameters are
specified by the expected diameter of the distributions A and B with full support.

In addition to studying the effect of two different degrees of polydispersity and two
analogous monodisperse configurations, we also consider each configuration at two
volume fractions. For consistency with the conditions typical of the intermediate region
of PDCs (Dufek & Bergantz 2007a; Lube et al. 2015, 2020; Breard et al. 2016; Breard &
Lube 2017; Breard et al. 2018), we consider two global particle-phase volume fractions:
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0.5 1.0 1.5 2.0

dp
(i) (mm) dp

(i) (mm)

2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0

Polydisperse particle-phase properties

Distribution A Distribution B
Log-normal µ 0.00 −0.69
Parameters σ 1.04 0.69
Skewness Skew(dp) 0.8 1.8
Kurtosis Kurt(dp) 2.8 7.1
Cut off dmin [mm] 0.23 0.23
Diameters dmax [mm] 3.00 3.00
Mean diameter dp,10 = 〈dp〉 [mm] 1.11 0.69
Sauter mean diameter dp,32 [mm] 1.91 1.31

Standard deviation
√

〈d ′2
p 〉 [mm] 0.70 0.43

Particle relaxation time τp,32 [s] 27.3 12.8
Stokes settling velocity V0,32 [m s−1] −0.45 −0.21
Particle Reynolds number Rep,32 23.3 7.53
Froude number Fr32 6.5 × 103 2.1×103

Archimedes number Ar32 419.8 1.3×102

Volume fraction 〈αp〉 (0.01, 0.1) (0.01, 0.1)
Number of particles Np (19 627, 198 369) (75 695, 747 431)

Monodisperse particle-phase properties
Distribution A0 Distribution B0

Particle diameter dp [mm] 1.72 0.64
Particle relaxation time τp [s] 22.74 3.12
Stokes settling velocity V0 [m s−1] −0.38 −0.05
Particle Reynolds number Rep 18.00 0.91
Froude number Fr 4.9×103 2.5×102

Archimedes number Ar 3.07×102 15.3
Volume fraction 〈αp〉 (0.01, 0.1) (0.01, 0.1)
Number of particles Np (12 790, 127 898) (251 876, 2 518 757)

Distribution independent properties
Fluid density ρ f [kg m−3] 0.5
Fluid dynamic viscosity µ f [kg (m s−1)] 1.85 ×10−5

Particle density ρp [kg m−3] 2500
Gravity g [m s−2] (−0.016, 0, 0)
a priori mass loading ϕ0 (50.27, 552.7)

Domain size Lx × L y × Lz [mm] (603.7 × 75.10 × 75.10)

Table 1. Summary of simulation parameters under consideration. The PDFs shown above the table represent
the distribution from which particles were sampled and are specified according to log-normal parameters μ and
σ . The dashed vertical lines represent the diameter for the corresponding monodisperse simulations.
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〈αp〉 = 0.01 and 0.1. Here, angled brackets denote a domain average and the particle
volume fraction, αp, is defined as the ratio of the volume occupied by particles to the
volume of the total domain.

To isolate the effect of polydispersity on clustering and settling behaviour, we consider
the eight assemblies of particles described above in an unbounded domain and subjected
to gravity. Due to the relative simplicity of such a configuration, these flows can be
characterised by a small set relevant non-dimensional quantities: the particle Reynolds
number, Rep, the Froude number, Fr, the Stokes number, St, and the Archimedes number.
The particle Reynolds number, Rep, is defined as V0dp/ν f , where V0 is the Stokes settling
velocity for a given particle diameter, defined as V0 = τpg, where τp = ρpd2

p/(18µ f )

is the Stokes settling time. The Froude number, which quantifies the balance between
gravitational and inertial forces, is defined as Fr= τ 2

pg/dp. Finally, the Archimedes
number is defined as Ar= gd3

pρ f (ρp − ρ f )/(µ
2
f ).

The particulates commonly observed in PDCs have sizes in the range ±5φ units
(corresponding to a range from 0.032 to 32 mm) in diameter and densities spanning
900 to 3300 kg m−3 (Taddeucci & Palladino 2002). Temperature of the fluidising gas
is considered to be dry air at approximately 400oC. These ranges of parameters result in
typical settling velocities of the order of O(10−2) to O(104) and Archimedes numbers of
the order of O(10−1) to O(108). To this end, we have adjusted the value of gravity and the
upper and lower end cutoffs for diameter such that our simulations fall within this range
while also reducing L and maintaining a grid spacing such that a less extensive domain
size is both statistically relevant and computationally tractable.

It is important to make note here of the computational challenge of highly resolved
simulations of polydisperse gas–solid particles on a uniform grid – a necessity considering
that an adaptive mesh refinement strategy based on particles in a two-phase flows does not
yet exist. Thus, for a uniform grid, the grid spacing must be sufficiently fine such that the
smallest particles are resolved (δx ≈ 1.75 − 3.0dp,min) and the extent of the domain must
be large enough that large-scale heterogeneity is also resolved. Prior work (Capecelatro,
Desjardins & Fox 2016) has shown that for smaller, monodisperse particles, an overall
domain size should scale with the characteristic cluster length, L= τ 2

pg. However, it is not
clear that this scaling extends to larger or polydisperse particle suspensions and this study
is reserved for future work.

A list of these non-dimensional numbers and other simulation parameters are
summarised in table 1. Note that quantities appended with a subscript of ‘10’ corresponds
to that quantity evaluated with a particle diameter equal to D32, the Sauter mean particle
diameter. A complete description of the definitions of statistical diameters can be found
in Appendix C.

In this work, we utilise an Euler–Lagrange framework to capture high fidelity behaviour
of each of the particle configurations under study. The mathematical formulation for this
framework is summarised in the subsequent sections.

2.1. Eulerian fluid-phase description
To account for the presence of particles in the fluid phase without resolving the boundary
layers around individual particles, we consider the volume-filtered, incompressible
Navier–Stokes equations (Anderson & Jackson 1967). This procedure replaces the point
microscale variables (fluid velocity, pressure, etc.) with smooth, locally filtered fields and
requires models to be used for sub-grid-scale behaviour, such as particle drag (see, e.g.,
Xian et al. 2024) and particle–particle collision forces. Vectors and tensors in equations
are represented in bold text. The volume-filtered conservation of mass and momentum
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equations are given by

∂
(
α f ρ f

)
∂t

+ ∇ · (α f ρ f u f ) = 0, (2.1)

and

∂
(
α f ρ f u f

)
∂t

+ ∇ · (α f ρ f u f ⊗ u f ) = ∇ · τ f + α f ρ f g +F + Fm f r , (2.2)

where F accounts for the two-way coupling between the fluid and particle phases and is
defined in § 2.3. Here, Fm f r is a source term imposed to ensure the system maintains a net
constant mass flow rate in order to achieve a statistically stationary state. The fluid-phase
viscous stress tensor is defined as

τ f = −p f I+ µ f [∇u f + (∇u f )
T − 2

3
∇ · u f I], (2.3)

where I is the identity matrix.

2.2. Lagrangian particle-phase equations
The dispersed phase is solved using Lagrangian mechanics. The position and velocity of
the particles are advanced according to Newton’s second law

dx(i)
p

dt
= u(i)

p (2.4)

and

m(i)
p

du(i)
p

dt
= F(i)

inter + F(i)
col + m(i)

p g, (2.5)

where the superscript (i) denotes the i th particle. Throughout the rest of this section,
square brackets indicate a fluid quantity evaluated at the centre of the i th particle’s
location.

As shown in (2.5), particles are subject to three forces: the force due to interphase
momentum exchange, Finter , the force due to inter-particle collisions, Fcol , and the body
force. Here, the interphase exchange term is given by,

F(i)
inter = V (i)

p ∇ · τ f [x(i)
p ] +

m(i)
p α f [x(i)

p ]Fd

(
α f , Re(i)

p

)
τ

(i)
p

(u f [x(i)
p ] − u(i)

p ), (2.6)

where the rightmost term is the drag force felt by the i th particle. Here, Fd is the non-
dimensional drag correction of Tenneti, Garg & Subramaniam (2011) that takes into
account local volume fraction and Reynolds number effects and is given by

Fd(α f , Rep) = 1 + 0.15Re0.687
p

α2
f

+ α f F1(α f ) + α f F2(α f , Rep). (2.7)

Here, the local particle Reynolds number is defined as

Re(i)
p =

α f [x(i)
p ]
∣∣∣u f [x(i)] − v

(i)
p

∣∣∣ dp

ν f
, (2.8)
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and the remaining two terms in (2.7) are given by

F1(α f ) = 5.81αp

α3
f

+ 0.48α
1/3
p

α4
f

, (2.9)

and

F2(α f , Rep) = α3
pRep

(
0.95 + 0.61α3

p

α2
f

)
. (2.10)

The force of collisions is accounted for using a soft-sphere collision model (Cundall &
Strack 1979) and particles are treated as inelastic and frictional with a coefficient of
restitution of 0.85 and coefficient of friction of 0.1.

2.3. Two-way coupling
The fluid-phase equations introduced in § 2.1 contains two interphase exchange terms: the
particle volume fraction, αp, and the momentum exchange term, F . Each of these terms
requires projection of the Lagrangian particle information to the Eulerian mesh. We make
use of the two-step filtering approach proposed by Capecelatro & Desjardins (2013). In
this approach, the particle-localised data are extrapolated to the nearest grid points and is
implicitly smoothed using a Gaussian filter kernel (denoted G in (2.11) and (2.12)) with a
width equal to 7 times the mean particle diameter.

Given this, the particle-phase volume fraction is defined as

α f = 1 −
Np∑
i=1

G
(
|x − x(i)

p |
)

V (i)
p , (2.11)

where Np is the total number of particles and V (i)
p is the volume of the i th particle.

Similarly, the interphase momentum exchange is defined as

F = −
Np∑
i=1

G
(
|x − x(i)

p |
)

Finter . (2.12)

2.4. Computational methodology
The equations presented in §§ 2.1–2.3 are evolved using an in-house code, NGA
(Desjardins et al. 2008), a fully conservative, low-Mach-number finite volume solver that
has been used extensively for strongly coupled gassolid flows and has been shown to
produce physically relevant results (Capecelatro & Desjardins 2013; Capecelatro et al.
2014, 2015). A pressure Poisson equation is solved to enforce continuity via fast Fourier
transforms in all three periodic directions. The fluid equations are solved on a staggered
grid with second-order spatial accuracy and advanced in time with second-order accuracy
using the semi-implicit Crank–Nicolson scheme of Pierce & Moin (2001). Lagrangian
particles are integrated using a second-order Runge–Kutta method. Fluid quantities
appearing in § 2.2 are evaluated at the position of each particle via trilinear interpolation
and particle data are projected onto the Eulerian mesh using the two-step filtering process
described in Capecelatro & Desjardins (2013).

Gravity is oriented in the negative x direction and is specified such that flow statistics
are properly resolved. The domain size and grid spacing is specified such that clustering
statistics are properly resolved. Namely, the grid spacing is set to be no greater than 1.75
dp,min and the domain length in the gravity-aligned direction is specified to be several

1010 A27-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

26
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.268


E. Foster, E.C.P. Breard and S. Beetham

times larger than the expected length of clusters. These domain parameters are summarised
in table 1.

It is important to note that, while prior work (Capecelatro et al. 2016) has suggested
the domain size for gravity-driven gas–solid flows should be at least 32τ 2

pg long in the
streamwise direction in order to properly resolve flow statistics, this guidance originated
from monodisperse particles of a smaller diameter (90 µm) than the mean particles
considered in this work. Thus, we have considered a domain length large enough to contain
a sufficient number of particles to observe clustering behaviour.

The domain for all the configurations under study are triply periodic. Particles are initial-
ly randomly distributed in the domain and the fluid phase is initially quiescent. After a tran-
sient period, the flow reaches a statistically stationary state, which is assessed by monitor-
ing the mean particle settling velocity and the mean variance in particle volume fraction.

3. Phased-averaged quantities of interest
As described in § 1, coarse-grained models often make use of averaging. Thus, phase-
averaged terms of high-fidelity data are useful for constructing improved models. In this
section, we present several flow equations and quantities to aid in the quantification of
the configurations under study and lay the foundation for improved models. This section
serves as a brief summary, however, more details regarding the quantities presented here
can be found in Capecelatro et al. (2015) and Beetham et al. (2021).

For multiphase flows, it is convenient to introduce a phase average after taking the
Reynolds average of the volume-filtered questions. These phase averages are analogous
to Favré averages for variable-density flows and are denoted by 〈(·)〉p = 〈αp(·)〉/〈αp〉 and
〈(·)〉 f = 〈α f (·)〉/〈α f 〉. Phase averages are denoted with angled brackets and a subscript
f or p to indicate the phase with respect to which the average has been taken. Angled
brackets without a subscript indicate a standard Reynolds average, which consists of
an average overall spatial dimensions in this work. Fluctuations about particle phase-
averaged quantities are denoted with two primes, e.g. u′′

p = up − 〈up〉p, with 〈u′′
p〉p = 0.

Fluctuations from fluid phase-averaged quantities are denoted with three primes, e.g.
u′′′

f = u f − 〈u f 〉 f .
For fully developed gravity-driven flow, phase-averaged variables are statistically

stationary. As a consequence of this, the phase-averaged continuity equation implies α f
is constant. Further, the fluid-phase momentum equation reduces to 〈u f 〉 f = 0. Taking
the phase average of (2.5) projected to the Eulerian mesh results in the particle phase-
averaged momentum equation. The x-direction component of this expression, the only
non-zero component, is given as

∂〈u p〉p

∂t
= 1

τ ∗
p
(〈u f 〉p − 〈u p〉p) + 1

ρp

(〈
∂σ f,xi

∂xi

〉
p
−
〈
∂p f

∂x

〉
p

)
+ g. (3.1)

Here, we note that the transport of the phase-averaged particle velocity results in a
balance between the forces exchanged by the fluid (i.e. drag model and resolved surface
stresses) and gravity. Prior work (Capecelatro et al. 2015; Beetham et al. 2021) has shown
that the fluid stress and fluid pressure gradient terms are small enough for gas–solid flows
to be reasonably neglected. This implies that at steady state, 〈u p〉p ≈ 〈u f 〉p + τ ∗

p g. Here,
〈u f 〉p is often thought of as the fluid velocity seen by the particles. It is also notable
that we incorporate the nonlinearities associated with the drag in τ ∗

p = 〈τp〉/〈Fd〉p, where
〈Fd〉p(〈α f 〉, 〈Rep〉) and 〈τp〉(〈dp〉) are the nonlinear drag correction and particle response
time with averaged flow quantities used as argument to (2.7) and the definition of τp.
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In the following sections, we will make use of this relationship to propose a model for
settling velocity that follows the formulation that the mean settling velocity is equal to the
Stokes settling velocity plus an unclosed term.

Phase averaging also gives rise to two Reynolds stress tensors, one in each of the
particle and fluid phases, 〈u′′

pu′′
p〉p and 〈u′′′

f u′′′
f 〉 f , respectively. Analogous to single-phase

turbulence, the trace of each of these tensors yields the turbulent kinetic energy in the
particle and fluid phases, respectively. These are denoted as kp and k f and defined as

kp = 1
2
〈u′′

p · u′′
p〉p (3.2)

and

k f = 1
2
〈u′′′

f · u′′′
f 〉 f . (3.3)

It is notable that in the case of the particle-phase averages, Lagrangian particle
quantities, such as up, must be evaluated on the Eulerian mesh. This is done by trilinear
interpolation and the application of a Gaussian filter kernel, as described in § 2.3 and
Capecelatro & Desjardins (2013).

In addition to the phase-wise Reynolds stresses, it is also important to note that the
Reynolds average of the inner product of the particle velocity fluctuations gives way to the
total energy fluctuations in the particle phase, or the total granular energy, κp, given by

κp = 1
2
〈u′

p · u′
p〉. (3.4)

Here, angled brackets denote a Reynolds decomposition according to up = 〈up〉 + u′
p,

with a single prime denoting a fluctuation from the Reynolds-averaged quantity.
When comparing the particle turbulent kinetic energy, kp, and the total granular energy,

κp, it is observed that there is an additional term that represents the uncorrelated,
random component to the total particle energy that exists at the particle scale. This is
the information that is lost when filtering Lagrangian particle data to the Eulerian mesh
to evaluate kp and is termed ‘granular temperature’, Θ . This yields an expression for the
total granular energy

κp = kp + 3
2
〈Θ〉p, (3.5)

that is equal to the sum of the correlated and uncorrelated contributions, kp and 3〈Θ〉p/2.
We compute Θp directly, by computing the volume-filtered particle volume fraction

and velocity. Here, the particle volume, the product of velocity and particle volume and
the product of velocity squared and particle volume are extrapolated to the Eulerian grid
via trilinear interpolation. These fields are then divided by the Eulerian cell volume and
filtered using the Gaussian kernel described in § 2.3, thus yielding the smoothed Eulerian
quantities for particle volume fraction, α̃p, particle velocity, ũp, and particle velocity
squared, ũ2

p. Additional details regarding this formulation for granular temperature can
be found in ?. From this, the granular temperature is computed according to

Θp = 1
3

⎡⎣ tr
(

ũ2
p

)
α̃p

−
tr
(

ũ2
p

)
α̃p

⎤⎦ . (3.6)
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(a) (b) (c) (d )〈αp〉  = 0.01 〈αp〉  = 0.1 〈αp〉  = 0.01 〈αp〉  = 0.1

Distribution A Distribution A Distribution B

0 0.75 0 3.50 0 0.75 0 3.50

0.23 mm 3.0 mm

Distribution A0 Distribution A0 Distribution B0 Distribution B Distribution B0

0.23 mm 3.0 mm

uf/V0,10 uf/V0,10 uf/V0,10 uf/V0,10

Figure 1. Representative snapshots from the statistically stationary period of each configuration under study.
Each slice is an x y plane at z = 0. Fluid-phase velocity (grey) is normalised with the polydisperse Stokes
velocity, V0,10 and particles are coloured by diameter (from blue (small) to yellow (large) for distribution A and
from pink (small) to red (large) for distribution B).

These quantities will be leveraged in the following discussion of our findings and
utilised to propose models that capture polydisperse effects for both clustering and settling
behaviour.

4. Results
In this work, simulations are evolved from their initial, uncorrelated condition to a statisti-
cally stationary state, which is determined based on the temporal variation of the volume
mean settling velocity and volume mean variance of volume fraction. After a stationary
state is maintained for several characteristic time scales, τp, representative snapshots are
used for analysis. Representative x−y planes of these snapshots are shown in figure 1.

In our analysis, we examine the effect of both polydispersity and volume
fraction on clustering behaviour and how this in turn implicates overall settling
behaviour. In addressing both clustering and setting phenomena, we draw comparisons
between observations in the polydisperse configurations and analogous monodisperse
configurations as well as between the two volume fractions.
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〈αp〉 Distribution S D skew(αp) kurt(αp)

A0 2.07 0.42 0.66 3.37
0.01 A 1.21 0.87 2.81 15.69

B0 0.28 0.49 0.82 3.90
B 0.46 1.34 6.50 80.68
A0 2.28 0.68 1.62 5.79

0.10 A 1.32 0.69 1.74 7.62
B0 0.31 0.80 1.55 5.95
B 0.51 0.78 1.50 5.62

Table 2. Summary of surface loading and statistics on volume fraction for all configurations under study.

First, we begin this discussion with averaged behaviour on the scale of the full domain.
In doing so, we leverage several mean quantities that are often useful in characterising
heterogeneity. We present these quantities first, to paint a broad picture of the clustering
and settling behaviour of the configurations studied, but note that examining mean flow
quantities in isolation paints an incomplete picture. Then, to present a more complete
analysis of flow phenomena, we present a statistical analysis on a particle-wise basis to
illuminate the physics underlying domain-scale behaviour.

4.1. Characterisation of mean flow quantities
Mean degree of clustering is often characterised using the parameter, D, introduced by
Eaton & Fessler (1994) and defined as

D =
(√

〈α′2
p 〉 −

√
〈α′2

p 〉
∣∣∣
0

)
〈αp〉 ≈

√
〈α′2

p 〉
〈αp〉 , (4.1)

where 〈α′2
p 〉 is the variance of the particle volume fraction of the fully developed configu-

ration, also denoted as var(αp) in this work, and 〈α′2
p 〉
∣∣∣
0

is the variance of an uncorrelated
assembly of particles, assumed here to be null. Given these definitions, the numerator
of D represents the deviation of the standard deviation of particle volume fraction from
a random distribution of particles. As a collection of particles becomes increasingly
correlated and heterogeneity in the flow develops, this quantity similarly increases.

While D has been traditionally used to characterise clustering behaviour in gas–solid
flows, this description is statistically incomplete when the solid phase is polydisperse.
The third and fourth moment means of the filtered particle-phase volume fraction are also
relevant for characterising the extent of clustering. These quantities are tabulated in table 2
for each of the configurations and are defined as

skew(αp) =

Ncells∑
i=1

(
α

(i)
p − 〈αp〉

)3

(Ncells − 1)
(
var(αp)

)3/2 (4.2)

and

kurt(αp) =

Ncells∑
i=1

(
α

(i)
p − 〈αp〉

)4

(Ncells − 1)
(
var(αp)

)2 . (4.3)
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We note that skewness represents the asymmetry of the distribution of volume fraction,

with skew(αp) = 0 denoting perfect symmetry in the data. Values for skewness less than
and greater than null signifying asymmetry skewed toward volume fractions more dilute
and more concentrated than the global mean, respectively. In other words, the value
of skewness quantifies the propensity for a given distribution of particles to produce
correlated regions that are either very dense (positive skewness) or very dilute (negative
skewness). Kurtosis is a measure of the ‘tailedness’ of the distribution and indicates
how the volume fraction is distributed between the mean and tails. Null represents a
normal distribution, while positive (leptokurtic) and negative (platykurtic) values are
representative of distributions that are more tightly and loosely spread about the mean,
respectively.

In computing the variance, skewness and kurtosis of the particle volume fraction
for all the configurations under study, we make several observations. First, we find
that the variance in volume fraction is substantially higher for dilute polydisperse
configurations relative to their monodisperse counterparts. In particular, the ratios of
the standard deviation for distribution A/A0 and B/B0 are 2.07 and 2.73, respectively.
Interestingly, the standard deviation in particle volume fraction is nearly equivalent
between the polydisperse configurations and their monodisperse counterparts at high
volume fraction. The difference between A and A0 is 1.4 % and the difference between
B and B0 is 2.5 %. A similar trend is observed when considering the skewness and
the kurtosis in the particle volume fraction. Again, the dilute configurations demonstrate
much higher deviations in the polydisperse configurations relative to their monodisperse
counterparts, and this difference is diminished at higher volume fraction. As previously
described, reduced drag is a primary mechanism of clustering. The marked difference
in mean clustering behaviour between polydispersed and monodispersed assemblies of
particles at dilute configurations and relatively little difference at higher concentrations
owes to this. Specifically, at higher volume fractions, there are a sufficient number of
particles to consistently disturb the flow and produce regions of reduced drag, thereby
initiating clustering events. This, then, reduces the importance of larger particles in
the flow. In contrast, for more dilute suspensions, when particles are polydispersed,
the presence of larger particles induces larger regions of reduced drag compared with
a monodispersed analogue. This then translates to more regions of heterogeneity and
clustering.

As previously described, D is routinely used as an a posteriori estimator of clustering.
We also note that mass loading, ϕ = ρp〈αp〉/(ρ f 〈α f 〉), has historically been used as an a
priori estimate for predicting clustering. This metric has been shown to be related to D in
the case of monodispersed assemblies of particles (e.g. Capecelatro et al. 2015; Beetham
et al. 2021), however, it is agnostic to polydispersity in the particle phase. To underscore
this, the mass loading of all the configurations A, A0, B and B0 is 50.5 at 〈αp〉 = 0.01 and
555.5 for all configurations at 〈αp〉 = 0.10. This, combined with the wide variation in D
across each of these configurations, highlights the notion that mass loading is incapable of
providing differentiation in the clustering behaviour between assemblies of particles that
have the same mass loading but have the particle-phase mass partitioned differently. Thus,
while mass loading still may serve as an initial indicator of whether or not clustering will
occur, our data motivate the need for an alternative a priori quantity that is capable of
giving a more complete prediction of clustering behaviour. It is also prudent to note that
for a given flow condition, within a statistically stationary period, the clustering behaviour
continuously changes, making any a priori predictor a many-to-one mapping to clustering.
However, in this work, we emphasise the prediction of the mean clustering behaviour from
this stationary regime, thus making it more tractable to reduce this many-to-one mapping.
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1.5

1.0

0.5

0 0.5 1.0 1.5 2.0 2.5

S

α
′ p2

/
〈α

p〉

Figure 2. Deviation of normalised particle-phase volume fraction as a function of surface loading. Circles
represent data for 〈αp〉 = 0.01 and squares represent data for 〈αp〉 = 0.10. The loosely and densely dashed lines
represent the model described in (4.5) for 〈αp〉 = 0.01 and 0.10, respectively.

Further, we note that as with any model, the extent of its applicability is reliant on the data
used to inform it. Thus, the improved models we develop herein are limited to the flow
configurations described in this work. Expanding these notions to different flows, such as
those with background turbulence, is reserved for future work.

To this end, we note that a key difference between configurations that contain differing
particle distributions at equivalent mass loading is the number of particles present, or
alternatively, the amount of particulate surface area present in the flow. We also mention
that total particle surface area is likely to be an important predictor of clustering, due to
this quantity’s role in particle drag. Based on the data collected as a part of this study, we
propose an alternative a priori predictor for the degree of clustering that can be expected
for a given gas–solid flow, based on the degree of surface area contact between the phases.
We term this ‘surface loading’ and define it as

S =
(

1
〈α f 〉Across

)(
ρp

ρ f

)
π

4
1

Np

Np∑
i=1

(
d(i)

p

)2

︸ ︷︷ ︸
(D30)

3/D32

, (4.4)

where Across is the area of the cross-stream plane and the term in brackets is the square of
the surface mean diameter (see Appendix C for more details). It is important to note here,
that when S tends to zero, this is indicative of extremely fine, dilute particles and when
S approaches infinity, this represents very concentrated, very large particles. Due to this,
we expect that D should tend to zero in both limits. In addition, there should exist some
critical surface loading for which the degree of heterogeneity is a maximum.

Shown in figure 2, we observe that for each void fraction there is a critical surface
loading for which the degree of clustering, D, attains a maximum with respect to the
surface loading, S . For the configurations studied here, this maximum occurs at lower
surface loading for higher mean volume fraction, but the degree of clustering overall is
higher for the dilute suspensions. Additionally, at higher volume fraction we find that D
remains nearly constant, further underscoring that clustering behaviour is less sensitive to
changes in S (e.g. polydispersity) at higher volume fraction.
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〈αp〉 Distribution 〈u p〉 V∗
0 〈u f 〉p St Reλ

[m s−1] [m s−1] [m s−1]

A0 −0.20 −0.16 −0.04 0.28 4.09 × 103

0.01 A −0.17 −0.10 −0.07 0.03 2.44 × 104

B0 −0.05 −0.04 −0.01 0.01 2.00 × 104

B −0.08 −0.04 −0.04 0.02 7.74 × 103

A0 −0.16 −0.10 −0.06 0.81 1.20 × 104

0.10 A −0.14 −0.05 −0.09 0.06 1.10 × 105

B0 −0.06 −0.02 −0.04 0.06 1.31 × 104

B −0.08 −0.02 −0.06 0.03 5.48 × 104

Table 3. Summary of the domain mean settling velocities and contributions from 〈u f 〉p and V∗
0 along with

the domain Stokes and fluid-phase integral Reynolds numbers.

In light of our data, we propose a model for D as a function of the surface loading,
shown as dashed lines in figure 2, and defined as√

〈α′2
p 〉

〈αp〉 = 1
E S exp

(
− (ln (S) − F)2

G

)
, (4.5)

where the coefficients E, F and G, depend upon the mean volume fraction as

E
(〈αp〉

)= −8.2〈αp〉 + 0.9, (4.6)

F
(〈αp〉

)= 76.0〈αp〉 − 0.8, (4.7)

G
(〈αp〉

)= 164.0〈αp〉 − 0.9. (4.8)
It is important to note, however, that since this study considered only two volume fractions,
the dependence of the coefficients E, F and G can at most only be described as linear. A
more comprehensive model that considers a wider volume fraction is reserved for future
work. Further, it is important to note here that prior work (Beetham et al. 2021) has
noted that there is also a (likely nonlinear) relationship between D and the Archimedes
(or Froude) number, which has not been captured through S . This dependence is also
reserved for future work.

In addition to the global clustering behaviour, we also consider global settling behaviour
for each configuration studied. As was previously discussed in § 3, the mean settling
velocity can also be described as

〈u p〉 = 〈u f 〉p + V∗
0 , (4.9)

where V∗
0 is defined as τ ∗

p g and τ ∗
p is the τp/F with mean flow quantities, 〈dp〉 and

〈αp〉, used as argument to the previously defined expressions for the settling time and
drag correction factor. The way settling velocity is partitioned into each of these terms is
summarised in table 3 and plotted in figure 3.

In view of the data reported in table 3, we observe that the mean settling velocity
is greater for each of the polydisperse configurations, relative to their analogous
monodisperse configuration for distribution B, but that this behaviour is inverted for
distribution A, in which the monodisperse configurations have a greater settling velocity
compared with their polydisperse counterparts. This effect is more pronounced in the
configurations where 〈αp〉 = 0.01. Additionally, we observe that the dilute configurations
demonstrate a greater correlation between the degree of clustering, D, and the normalised
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Figure 3. Summary of the normalised mean settling velocity with respect to (a) degree of clustering, D and
(b) surface loading S . The normalised contribution of 〈u f 〉p relative to S is shown in (c). Configurations
with 〈αp〉 = 0.01 are denoted with solid circles and configurations with 〈αp〉 = 0.10 are denoted with solid
diamonds. The dashed lines represents a one-to-one correlation in (a) and the model prescribed by (4.10) in
(b) and (4.11) in (c).

mean settling velocity, as shown in figure 3. In contrast, the configurations with
〈αp〉 = 0.10 span a wider range of settling velocities for a much narrow range of D. When
comparing the normalised mean settling velocity against the surface loading parameter, S ,
however, we note that our data collapse onto a single curve, characterised by,

〈u p〉
V0,10

= 2.5(
IS√

2π
) exp

(
−(ln(S) −H)2

2I2

)
, (4.10)

where H= 0.15 and I= 0.8. Notably, we observe that our data collapse for both volume
fractions studied in this work, resulting in parameters H and I that are constant coefficients.

Noting that we may also consider the mean settling velocity as the sum of V∗
0 and 〈u f 〉p,

it is apparent that V∗
0 is closed but a model is required for 〈u f 〉p. Here, we note that the

relative contribution to the unclosed portion of mean settling velocity is 2.4 times larger
for the higher volume fraction configurations. In light of this, we introduce an alternative
formulation for the mean settling velocity, which uses the closed definition for V∗

0 and the
following model for the fluid velocity seen by the particles:

〈u f 〉p

V∗
0

= J(
0.6S√

2π
) exp

(
−(ln(S))2

2I2

)
+ 1, (4.11)

where the coefficient J is 1.65 and 3.9 for 〈αp〉 = 0.01 and 0.10, respectively. As noted
previously, additional studies at a wider range of volume fractions is needed to develop an
accurate model for the dependence of J on 〈αp〉.

In addition the way settling velocity is partitioned into V∗
0 = τ ∗

p g and 〈u f 〉p, we also
report the Stokes number, St, and the Taylor Reynolds number, Reλ, in table 3. Here, the
Stokes number is defined as St= τp/τη, where the Kolmogorov time scale, τη is defined
as
√

ν f /ε f and the fluid-phase viscous dissipation is defined as one half the trace of the
viscous dissipation tensor given as

ε f,i j = 1
ρ f

〈
σ f,ik

∂u′′′
f, j

∂xk

〉
, (4.12)

with the viscous stress tensor defined as

σ f,i j = µ f

[
∂u f, j

∂xi
+ ∂u f,i

∂x j
− 2

3
∂u f,k

∂xk
δi j

]
. (4.13)
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〈αp〉 Distribution
〈u′′′2

f 〉 f

k f

〈v′′′2
f 〉 f

k f

〈u′′2
p 〉p

kp

〈v′′2
p 〉p

kp

k f
κp

kp
κp

3〈Θ〉p
2κp

A0 1.89 0.05 1.76 0.06 4.29 0.34 0.66
0.01 A 1.88 0.06 1.54 0.35 1.04 0.20 0.79

B0 1.66 0.17 1.71 0.22 3.89 0.48 0.52
B 1.77 0.13 1.47 0.11 0.81 0.29 0.71

A0 1.64 0.21 1.60 0.17 12.40 0.67 0.33
0.10 A 1.68 0.17 1.84 0.17 13.18 0.67 0.33

B0 1.53 0.20 2.01 0.23 5.57 0.81 0.19
B 1.54 0.18 1.82 0.20 8.18 0.71 0.29

Table 4. Summary of the mean turbulent kinetic energy in both phases as well as the relative contributions to
total granular energy from particle-phase TKE and granular temperature as well as the relative magnitude of
fluid-phase TKE relative to granular energy.

It is important to note here that, while the Stokes number for the flows considered in this
work are quite small, because of the values of the volume fraction considered, we still
expect and ultimately observe clustering as a result of the flow being four-way coupled
as predicted by Elghobashi (1994). Finally, Reλ = urmsλ/ν f also makes use of the fluid
viscous dissipation to compute the Taylor micro-scale, λ=√15ν f /ε f urms .

In addition to mean settling velocity, the contributions to turbulent energy in both phases
is also helpful in characterising the flow. In addition to the relative streamwise and cross-
stream components of the fluid- and particle-phase Reynolds stress tensors, we also present
the contributions to total granular energy, κ , from both the particle-phase turbulent kinetic
energy (TKE) (kp) as well as from the granular temperature. As shown in table 4, we
observe that the dilute suspensions exhibit greater contributions from granular temperature
to the overall granular energy as compared with the denser suspensions. This is indicative
of denser suspensions containing a larger proportion of their particles in clusters, in
which their granular energy is strongly correlated with bulk settling. In contrast, dilute
suspensions have more particles that are not correlated with clusters. This phenomenon
is also evident in the higher ratio of fluid to particle-phase turbulent kinetic energy in the
denser suspensions. This is attributable to the fact that larger clusters are able to generate
and sustain greater degrees of fluid-phase turbulence.

4.2. A brief portrait of clustering
In the following section, we present a brief overview of the implications of polydispersity
and volume fraction on cluster formation and composition. The following is based upon a
more thorough discussion, which can be found in Appendix E, which draws upon statistical
analysis of the Eulerian filtered particle volume fraction and the use of isosurfaces.
Because what constitutes a cluster is not strictly defined, we make use of the following
regions of clustering and consider a particle volume fraction � 50 % larger than the global
mean to be ‘clustered’:

Region A: most dilute regime, αp � 1.5〈αp〉.
Region B: loosely clustered regime, 1.5〈αp〉 < αp � 2.25〈αp〉.
Region C: moderately clustered regime, 2.25〈αp〉 < αp � 3.0〈αp〉.
Region D: densely clustered regime, αp > 3.0〈αp〉.

We employ these partitions in the remainder of the manuscript and each are designated
with colours increasing from white (most dilute) to dark grey (most dense). In addition, it
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is important to identify an appropriate reference volume fraction with respect to which we
can normalise particle-phase concentrations. Here, we utilise the random close-packing
efficiency corresponding to distribution B as it represents the maximum of the particle
distributions considered in this work. A justification for this choice is discussed in detail in
Appendix D. As previously mentioned, we leave a more extensive discussion of clustering
for the interested reader in Appendix E and note here the following key findings relevant
to polydisperse clustering.

(i) Polydisperse collections of particles form clusters that attain higher packing
efficiencies in their cores, as smaller particles can fill voids that would remain empty
in a monodisperse assembly of particles with diameters equal to the statistical mean
of the polydispersed case.

(ii) Large particles are statistically more likely to be found in the densest regions of
clusters for all polydisperse configurations considered, however, this effect was more
pronounced in the dilute suspensions as compared with the denser suspensions.

(iii) We believe that because lower volume fraction flows have fewer particles, the
disturbance to the flow caused by large particles is more substantial, as compared
with higher volume fraction flows. In the latter case, the clustering patterns are
more similar between polydisperse and monodisperse particles due to the amount
of disturbance in the fluid phase due to the existence of a greater number of particles.

These findings are substantiated by the profiles for both particle size (figure 4) and
granular temperature (figure 5) in each of the regions outlined above. Specifically, as the
amount of clustering increases (i.e. as one traverses from region A to D), we observe
an increase in the likelihood of observing large particles, particularly in the dilute
configurations. Additionally, we observe that has the local volume fraction increases, there
is a marked decline in granular temperature, an expected result and a validation for the
metric in which clustering was assessed.

4.3. A statistical description of particle settling
In this section, we examine the settling behaviour of each of the configurations under
study, with a particular focus on how clustering behaviour implicates settling. To this end,
we consider the distributions of particle velocity in regions A–D, in direct analogy with
the discussion in the previous section. Figure 6 shows these distributions, where the solid
lines denote the distribution for each component of velocity for the full domain and the
shaded distributions denote the distribution for the given region of the flow.

Beginning with a comparison of the streamwise velocity, u p, for the dilute cases
(left two columns of figure 6), we find that particles in the most dilute region of the
flow (region A) tend to have statistically smaller settling velocities. This is due to two
primary factors: (i) the particles are generally lone and would be expected to have
smaller velocities for this reason and (ii) particles may be swept up in jet bypassing,
which causes much smaller velocities, and occasionally velocities that oppose gravity.
As cluster density increases, particles in these regions are increasingly more likely to have
larger velocities, due to their correlation with other particles and entrapment in coherent
structures. Naturally, the particles that are found in the densest region (region D), attain
the largest settling velocities.

In contrast with the dilute cases, the denser cases (left two columns of figure 6) exhibit
distributions similar to the global distribution for regions A and B, and only moderately
depart from this trend for regions C and D. Again, in these denser regions, particles are
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Figure 4. Summary of the particle size distributions based on local volume fraction for the polydisperse
distributions A (teal) and B (mustard) at 〈αp〉 = 0.01 (left two columns) and 〈αp〉 = 0.10 (right two
columns). The probability distribution functions (PDFs) are computed based on local volume fraction cutoffs
corresponding to regions A, B, C and D, as noted. All plots show the normalised PDF (shaded bars) of the
particle diameters in each region of the flow, with the normalised distribution of all the particles shown as a
solid black line.

statistically more likely to attain greater settling velocities, but the extent for this preference
toward larger settling velocities is less prominent than for the dilute cases.

In the cross-stream directions, particles in region A are more likely to attain cross-
stream velocities (vp and wp) further from null, indicating that they are more susceptible
to being entrained in the underlying turbulence of the flow. This observation is consistent
across all four polydispersed configurations. As the particle density increases, particles
increasingly have velocities very near zero. This is indicative of granular temperature
that is higher on the outer regions of clusters, as compared with the interior, consistent
with what was reported in the previous section. This overall behaviour is mirrored across
distributions A and B and at both mean volume fractions, however, distribution A has
a narrower band of cross-stream velocities in region D compared with distribution B,
indicating that distribution A clusters are more ‘rigidly’ packed and particles are less able
to move translationally.

While this discussion illuminates the behaviour of particles in each of the regions of
the flow based on local volume fraction, it is also instructive to connect settling behaviour
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Figure 5. Summary of the granular temperature based on local volume fraction for the polydisperse
distributions A (teal) and B (mustard) at 〈αp〉 = 0.01 (left two columns) and 〈αp〉 = 0.10 (right two columns).
Distributions are computed based on local volume fraction cutoffs corresponding to regions A, B, C and D, as
noted. All plots show the normalised distribution (shaded bars) of the particle diameters in each region of the
flow, with the normalised distribution of all the particles shown as a solid black line.

with particle size. In § 4.2, we have already demonstrated that particle size and clustering
potential are correlated, thus connections between particle size and settling velocity are
related through a particle’s likelihood to be involved in clustering.

When carrying out this analysis, we leverage the fact that at steady state, all the forces
acting on the particles are in equilibrium. In particular, we draw attention to the drag force
felt by the particles. As described in § 2.2, the drag force on a particle is given as

F(i)
drag = m(i)

p α f [x(i)
p ]FD

τp

(
u f [x (i)

p ] − u(i)
p

)
, (4.14)

where FD is the correction based on particle Reynolds number and local volume fraction
(Tenneti et al. 2011). Since settling velocity is related to the balance between drag (which
opposes settling) and mass (see (2.6)), when the drag force increases, settling velocity is
hindered. Conversely, when drag is decreased, settling is enhanced. Since drag depends
upon not only the particle size, but also the slip velocity and local volume fraction, we
note that complex behaviour occurs as particles become correlated.
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Figure 6. Distributions of particle velocities (gravity direction in lighter shading and representative cross-
stream velocity in darker shading) for all 4 polydisperse configurations considered. Distributions are shown
for dilute to dense regions of the flow (top to bottom). The dark lines represent the full domain distribution of
velocities.

To illustrate this behaviour, figures 7 and 8 show the relationship between individual
particle settling velocities and drag forces against local volume fraction for six bins of
particle size ranging from very fine to coarse. By examining particle settling velocity in
this way, we note that the finest particles attain the widest range of settling velocities for
all configurations and that these particles are located primarily in dilute regions of the
flow for lower volume fraction configurations, and exist across all regions – from dilute to
dense – in the higher volume fraction configurations. For the denser configurations, these
small particles are also exclusively involved in entertainment in strong jet by-passing, as
they are the only particles that achieve positive velocities.

This effect is more pronounced in the higher mean volume fraction cases, due to the
fact that the clusters formed are larger, thereby producing larger turbulent wakes. The
fine particles that exist at increasingly large volume fraction have an increasingly narrow
range of attained velocities, indicating that they have become increasingly correlated with
surrounding particles in a cluster.

At higher volume fraction, the largest particles exist over a substantially broader range
of volume fractions in distribution A as compared with distribution B. This suggests
that particles are more ‘mixed’ in distribution A than B, where large particles exist only
in higher volume fraction areas. This indicates that the clusters formed in distribution
B tend to contain large particles only in the cluster ‘cores’, whereas in distribution A,
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Figure 7. Settling velocity of individual particles plotted against normalised local particle volume fraction
for all four polydisperse cases under consideration. Colours correspond to six increasing diameters
dp = (0.3, 0.8, 1.3, 0.9, 2.4, 2.9) (mm) and the colour maps for distributions A and B used throughout. The
data plotted represent the particles within the diameters listed ±0.03 mm.

large particles are located throughout clusters. For the dilute configurations, we note that
there exists a similar, but more pronounced effect of what we observe in their denser
counterparts. In particular, particles of increasing size have substantially more overlap
as volume fraction increases for distribution A, however, the larger particle sizes are
extremely stratified in distribution B. This is suggestive of the existence of clusters formed
by particles of like size in the case of larger particles, and clusters formed by the smaller
to moderately sized particles.

Figure 8 shows a similar analysis for the drag felt by each particle. Here, we find that
the force of drag increases with both volume fraction and particle diameter for the dilute
cases. This is due to the fact that clusters are smaller and composed of fewer particles,
making these particles more susceptible to experiencing increased drag due to a higher
slip velocity. In contrast, at higher mean volume fraction, when the clusters are larger,
only the outer particles in the cluster – those particles that compose the outer ‘shell’
of the cluster – will observe this effect, while the inner core will experience reduced
drag due to the number of particles surrounding them and the resulting reduced slip
velocity.

Finally, we consider the settling velocity as a function of particle size, directly. To
this end, figure 9 plots the settling velocity against diameter for each particle in the
system. A solid dark line represents the moving average of settling velocity as a function
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Figure 8. Drag force on individual particles plotted against normalised local particle volume fraction
for all four polydisperse cases under consideration. Colours correspond to six increasing diameters
dp = (0.3, 0.8, 1.3, 0.9, 2.4, 2.9) and the colour maps for distributions A and B are used throughout. The
data plotted represent the particles within the diameters listed ±0.03 mm.

of diameter. Here, we note that, on average, the settling velocity of particles increases
with increasing particle size before eventually approaching an asymptotic limit. This
is observed for all the configurations considered in this work. While this is the trend
on average, we also note that the smallest particles experience the widest range of
velocities, with some particles having positive velocities (indicative of being swept up
in ‘jet bypassing’ events – the upward-moving gas that results from a large cluster moving
downward) and others having high downward velocities, due to entrainment in clusters.
This phenomenon is observed across all four polydisperse configurations, however, we
note that the settling velocities are more widespread for distribution A compared with B.
We also note that the spread of particle velocities for very fine particles is more widespread
at 〈αp〉 = 0.10.

As previously summarised, we point out that all contemporary models for polydispersed
settling to our knowledge are agnostic to clustering in the particulate phase. One such
example of a commonly used model is that of de’Michieli Vitturi et al. (2023), who
generalised the depth-averaged shallow-water equations to include a dispersed phase and
employed an Eulerian–Eulerian approach to simulate a wide range of volcanic phenomena.
As a result of this work, a depth-averaged settling velocity, denoted as Vs , with a model for
the drag coefficient originally developed using kinetic theory arguments (Gidaspow 1994)
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(a) Distribution A  〈αp〉  = 0.01, dp
crit = 1.64 mm (b) Distribution A  〈αp〉  = 0.10, dp
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(c) Distribution B  〈αp〉  = 0.01, dp
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Figure 9. Settling velocity of particles with respect to particle diameter (dots) for all four polydisperse
configurations (top figures). The PDF of particle diameters are shown in light shading in the background of
each panel. The horizontal dashed lines represent the predicted settling velocity for particles corresponding to
D10, D32 and D43 using (4.15). The heavy solid line is the mean velocity as a function of particle diameter. The
vertical line delineates the diameter at which settling is enhanced for smaller particles and hindered for larger
particles when using (4.15) as a predictor (shown as a densely dotted line). The loosely dashed line represents
the prediction of Stokes velocity as a function of particle size and the red solid is the prediction of settling
velocity according to the proposed model shown in (4.17) and (4.18). The bottom of each figure shows the
distribution of settling velocity corresponding to the coarse particle bins shown beneath.

was proposed. This model is given as

Vs =
√

4
3CD

gdp

(
ρp − ρ f

ρ f

)
, (4.15)

CD =
⎧⎨⎩

24
Re

(1 + 0.15Re0.687) Re � 1000,

0.44 Re > 1000,
(4.16)

where we note that Re= Vsdp/ν f , which requires (4.15) to be solved numerically.
When using this expression to predict mean settling behaviour, it is necessary to

choose a mean diameter as argument. Several statistical mean diameters can be chosen
for polydisperse assemblies of particles (see Appendix C), and the predictions of both of
these models with three different mean diameters as argument (D10, D20 and D32) are
summarised in table 5. In examining these predictions, we note that the Vs prediction
is a more reliable predictor for the monodispersed configurations, however, still not
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〈αp〉 Distribution 〈u p〉 V0,10 V0,20 V0,32 Vs,10 Vs,20 Vs,32

0.01 A0 −0.20 −0.37 — — −0.21 — —
A −0.17 −0.15 −0.21 −0.45 −0.11 −0.15 −0.24
B0 −0.05 −0.05 — — −0.04 — —
B −0.08 −0.06 −0.08 −0.21 −0.05 −0.07 −0.14

0.10 A0 −0.16 −0.37 — — −0.21 — —
A −0.14 −0.15 −0.21 −0.45 −0.11 −0.15 −0.21
B0 −0.06 −0.05 — — −0.04 — —
B −0.08 −0.06 −0.08 −0.21 −0.05 −0.07 −0.15

Table 5. Summary of the mean settling velocity for each configuration compared with Stokes law and the
settling law of de’Michieli Vitturi et al. (2023) with several mean diameters used as input. Note that for
monodisperse assemblies, the single value for each settling law is reported under the columns corresponding
to the result using the d10 diameter as argument. All velocities are shown in metres per second.

consistently accurate. For the polydispersed configurations, using the surface mean
diameter, D20, and the model for Vs provides the best approximation for mean settling
behaviour. The use of the surface mean diameter for more accurate results is perhaps
intuitive, as clustering and drag are intimately connected and drag is related to the degree
of surface area contact between fluid and particles.

While Vs,20 is reasonably predictive for global mean settling behaviour, it is important to
note that both V0 and Vs fall short when predicting the settling behaviour as a function of
particle diameter. To illustrate this, figure 9 shows the predictions of both Stokes (loosely
dashed line) and the model of de’Michieli Vitturi et al. (2023) (densely dashed line) as
continuous functions of particle diameter.

While the model described by (4.15) demonstrates a clear improvement over a Stokes
assumption, neither model captures the appropriate mean settling behaviour of particles
over the range of diameters considered. Additionally, the concavity of these predictions
is in direct opposition to the Euler–Lagrange data. The existing models suggest that the
settling velocity should continue to increase with increasing diameter, whereas our data
suggest that settling velocity approaches an asymptotic limit, due to cluster formation.
Interestingly, we notice that there exists a critical particle diameter such that particles
smaller than dcrit

p exhibit enhanced settling, and particles larger than dcrit
p exhibit hindered

settling. This behaviour is directly connected to clustering behaviour. Smaller particles on
average experience reduced drag due to their proximity to or presence within clusters, thus
resulting in enhanced settling. Conversely, larger particles experience hindered settling
because of their entrainment in coherent structures much larger in size than the particles
themselves. This then results in particles that feel increased drag compared with the drag
they would feel as a lone particle thus yielding hindered settling velocities.

For both distributions A and B, the critical diameter that delineates between enhanced
and hindered settling is larger at 〈αp〉 = 0.01 than for 〈αp〉 = 0.10. Interestingly, these
values correspond approximately to d20 and d30 for distributions A and B at 〈αp〉 = 0.10,
respectively, perhaps indicating that for a distribution that favours fine particles, the surface
area contact between the phases is more important than for distributions that contain more
moderately sized particles, as in distribution A. At 〈αp〉 = 0.01, dcrit

p corresponds to values
between d30 and d32 for both distributions. This suggests that for more dilute suspensions,
higher-order statistical means are more relevant for predicting settling behaviour. We also
note that the maximum settling velocity is slightly higher for the cases at lower volume
fraction for both distributions A and B. We postulate that this is due to the nature of the
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〈αp〉 Distribution 〈u p〉 V0 Vs

0.01 A0 −0.201 −0.367 −0.200
B0 −0.047 −0.050 −0.047

0.10 A0 −0.146 −0.367 −0.144
B0 −0.056 −0.050 −0.056

Table 6. Predictions of the proposed model summarised alongside the mean settling velocity from the Euler–
Lagrange studies and the Stokes prediction for the monodisperse assemblies. All velocities are shown in metres
per second.

〈αp〉 Distribution M N P

0.01 A0 1.25 1.00
A 1.00 1.00 5.00
B0 14.00 1.00
B 3.50 1.00 5.00

0.10 A0 1.25 3.00
A 1.00 2.50 0.10
B0 10.00 3.00
B 2.20 5.00 5.00

Table 7. Summary of the model coefficients for the eight polydisperse configurations studied.

cluster structures. In the denser suspensions, the clusters have a larger cross-sectional area
which in turn results in a larger drag on the cluster itself.

In light of these data, we propose an improved model in which the expression for the
settling velocity, Vs , retains the same functional expression as for Vs

V
(i)
s =

√
4

3CD
gdp

(
ρp − ρ f

ρ f

)
, (4.17)

but the expression for CD is modified as

CD =M

[
24

NRep

(
0.2 + 0.01

(
NRep

)0.9
)

+ 0.35
(
NRep

)]
− 2(

NRep
)2 + 0.09

+ PW
1 + Re2

p

, (4.18)

where M, N and P are constant coefficients specified using the highly resolved data in this
study and summarised in table 7.

To develop this improved model, we begin by computing the coefficient of drag, CD ,
required to result in the settling velocity observed in the highly resolved simulations,
as prescribed by (4.17). These results are shown in figure 10 for all the particles in the
configuration. The dark shaded line represents the mean of the data as a function of particle
size. In this study, we did not observe Reynolds numbers greater than 1000, and as such
have left the upper limit equal to the historical model of CD = 0.44.

Here, we note that the model for CD closely follows the mean behaviour of the highly
resolved data, with the exception of deviations at very small Reynolds numbers for all
configurations studied and at high Reynolds numbers in the denser suspensions. Deviations
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Figure 10. Coefficient of drag required to ensure V
(i)
s = u(i)

p , using the expression in (4.17). Values for
individual particles are shown as shaded dots, the mean of these data as a function of particle diameter is
shown as a dark black line and the models for CD are shown as dashed lines (black dashed is the baseline
model of (de’Michieli Vitturi et al. 2023) and the red dashed is the proposed new model shown in (4.17).

at low Reynolds numbers were required to ensure accurate predictions of the settling
velocity. This stems from the fact that the way in which CD was computed does not take
into account differences in the mean slip between the phases. This effect is particularly
important for the small particles. Additionally, we observe that the behaviour for CD at
higher Reynolds number is not well captured by the proposed model for dense suspensions,
however, the settling velocity for larger particles is not sensitive to these deviations in the
drag coefficient.

In the proposed model for CD (4.18), the first term is a modification of the original
definition of CD from Gidaspow (1994). The second, linear term captures hindered
settling for larger particles and the third term captures enhanced settling for smaller
particles. Finally, the fourth term introduces stochasticity into the model through W , a
Wiener process (Higham 2001) that depends upon the particle Reynolds number and
is implemented numerically as shown in figure 12. Stochasticity has been similarly
introduced into drag models in the literature, for example in the work of Lattanzi et al.
(2022). The relative contribution to the drag coefficient for each of these terms is
demonstrated for the model corresponding to distribution A in figure 11.

The settling velocity predictions resulting from this model are shown in figure 9 as
solid red lines for the polydisperse configurations and summarised in table 5 for the
monodispersed assemblies of particles.
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Figure 11. Exemplary case (distribution A, 〈αp〉 = 0.01) demonstrating the relative contribution of each of
the terms in the proposed coefficient of drag model in (4.17).

T = max(Rep); dt = T/Npart;
dW = zeros(1,Npart);
W = zeros(1,Npart);

dW(1) = sqrt(dt)*randn
W(1) = dW(1);
for j = 2:Npart

dW(j) = sqrt(dt)*randn;
W(j) = W(j-1) + dW(j);

end

Figure 12. Summary of the numerical implementation of the Wiener process (Higham 2001). This code snippet
is written in the style of Matlab, where ‘randn’ represents a normally distributed random number bounded by
[0, 1].

Since this work considered only two volume fractions and two distributions of particle
diameter, we leave the values for the model coefficients summarised in table 7 for each
configuration, rather than proposing closures for each based on flow parameters. A study of
additional points in the parameter space is required before a robust functional dependence
of the coefficients on polydisperse and volume fraction can be developed. In particular, we
postulate that M= f (σ, µ, d10, d20, d30, d32, d43, . . .) and N= f (〈αp〉), however, this is
left for future work.

5. Conclusions
The work discussed here represents, to the authors’ knowledge, the most extensive study of
clustering and settling behaviour of strongly coupled gas–solid flows at the mesoscale. In
particular, we investigate the effects of polydispersity on particle clustering and settling
behaviour using highly resolved Euler–Lagrangian simulations of two polydispersed
distributions of particles and two analogous monodispersed distributions of particles.
These four particle distributions were studied at two volume fractions (〈αp〉 = 0.01 and
〈αp〉 = 0.1) and all simulation parameters were sampled to align with values typical of
PDCs.

1010 A27-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

26
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.268


E. Foster, E.C.P. Breard and S. Beetham

Due to the strong coupling between the phases and the presence of a gravitational body
force, coherent structures in the form of clusters spontaneously emerge, thereby altering
settling behaviour as compared with the uncorrelated initial dispersion of particles.
To date, the extent to which polydispersity is implicated in clustering structure and
consequently on settling behaviour has been largely unquantified. To this end, this
work demonstrated that mass loading – which has historically been used as a a priori
estimate for predicting clustering – is insufficient for predicting the degree of clustering,
particularly for polydispersed particles. This owes to the fact that mass loading is by
definition agnostic to how mass is partitioned throughout a volume. Based on the data
collected in this study, we propose an alternative a priori predictor for the degree of
clustering expected in gas–solid flows, which we refer to as surface loading. This quantity
leverages the mean surface diameter of particles and is shown to predict both the degree
of clustering and mean settling velocity through two new models proposed in this work.

Additionally, this work identified that the surface mean diameter, D20, is the best mean
diameter to choose for use with existing models, such as the settling velocity model of
de’Michieli Vitturi et al. (2023) for the prediction of mean flow behaviour. This is perhaps
intuitive due to the intimate connection between granular surface area and drag, and the
relationship between drag and clustering. While using this diameter produces improved
predictions for global mean settling behaviour, however, we demonstrate that existing
models fail to capture the settling behaviour across a distribution of particle diameters.
Importantly, we observe that fine-grained particles experience enhanced settling and
coarse particles experience hindered compared with existing models. Further, existing
models predict that settling velocity continues to increase with particle size, which is
in contrast with our observation that settling velocity increases initially with increasing
particle diameter, but quickly slows and approaches an asymptotic limit. This is attributed
entirely to the existence of heterogeneity in the flow and how large particles initiate
and become correlated through clustering. To this end, we propose a new model for
the coefficient of drag that produces accurate settling velocity predictions as a function
of particle diameter. Further, our proposed model can be immediately implemented in
existing geophysical flow solvers, such as in de’Michieli Vitturi et al. (2023).

Although this work represents the most highly resolved study of polydisperse clustering
and settling behaviour to date and an initial step toward improved reduced-order models,
future efforts are needed to build robustness into the models proposed herein. In particular,
additional volume fractions and polydispersed assemblies of particles are required to
formulate more comprehensive closures for the model coefficients proposed in this work.
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Appendix A. A brief background on pyroclastic density currents
One society-critical example of a polydisperse gravity-driven, sedimenting flow, and the
motivation for this work, is DCs – the fast-moving, gravity-driven flow of particulate
matter resulting from the collapse of an ejected volcanic column, collapse of a
volcanic lava (dome) or proximal material perched on steep slopes (Lube et al. 2020).
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Pyroclastic density currents are the most destructive volcanic process and can cause
extensive damage to human settlements, infrastructure and ecosystems (Breard & Lube
2017; Lube et al. 2020; Breard et al. 2023). Understanding the physics behind PDCs
and accurately predicting their behaviour are essential due to their impact on society and
the environment. However, as discussed previously, their inherent complexity, owing to
their multiphase nature, makes accurate prediction and the formulation of robust models
challenging.

In general, PDCs can be partitioned into three flow regions: An upper dilute buoyant
(and loosely coupled) region, a dilute to intermediate density current region and a
concentrated basal underflow (granular flow dominant) region (see figure 13). These
regions are coupled and, as such, evolve together. In the uppermost dilute region, the
flow is buoyant, forming a turbulent thermal cloud where particles are dispersed at very
low mass loading, resulting in one-way coupled behaviour with the fluid phase (i.e. the
particles tend to act primarily as tracers (Elghobashi 1991) and are unlikely to become
correlated with one another, outside the mechanism of preferential concentrations due
to underlying turbulent structures). In contrast, the bottom-most concentrated region
is comprised of very high concentrations of particles (αp � 0.3) and is dominated by
particle–particle interactions. Recent work (Breard et al. 2016; Lube et al. 2020) showed
that within PDCs, the non-turbulent underflow and fully turbulent ash-cloud areas were
connected by an intermediate zone characterised by cluster-induced turbulence (CIT). In
this region, the dispersed and continuous phases are two-way coupled due to sufficiently
high concentrations of particles and mass loadings higher than unity throughout the layer.
This strong coupling between the fluid and particles leads to the formation of mesoscale
structures in the form of clusters (Ferrante & Elghobashi 2003), thereby resulting in altered
particle settling when compared with a homogeneous particulate phase (Breard et al. 2016;
Lube et al. 2020). The mechanism for this development of heterogeneity is primarily due
to the reduced drag particles are subjected to due to the presence of other nearby particles.
When drag is reduced, these particles can attain higher settling velocities and become
correlated with their neighbours, thereby forming coherent structures, such as clusters.
Because this intermediate region is critical in determining the sedimentation rate into the
concentrated basal underflow (CBU) region, it serves as the motivation and context for
this work.

Historically, the study of PDCs has spanned field measurements, analogue experiments,
and computational methods. Direct observation of PDCs is typically done post-eruption,
providing an average of intrinsically transient behaviour. However, recent large-scale
experiments (Dellino et al. 2007; Lube et al. 2015; Breard & Lube 2017; Breard et al. 2018,
2019; Brosch et al. 2022) have been conducted to understand the behaviour of PDCs and
propose models for how PDC properties relate to quantities of interest. These experiments
are capable of providing real-time measurements but the challenges associated with
experimentally probing gas–solid flows remain and results are still more coarsely grained
than computational methods.

To this end, recent 1-D (Bursik & Woods 1996), 2.5-D (Keim & de’Michieli Vitturi
2025) and 3-D multiphase flow models (Tonoyama et al. 2025) have been used to
quantify the important physical processes of PDCs that are often inaccessible by large-
scale experimentation and develop improved reduced-order forecasting models. To be
successful, these models require accurate predictions of polydisperse settling behaviour.
While current state-of-the-art models can reveal some aspects of the internal structure of
PDCs, they have not captured the heterogeneous effects of clustering to date. This is largely
because highly resolved studies of the settling behaviour and underlying physical processes
present in polydisperse assemblies of particles has been, to date, largely understudied.
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Figure 13. (a) Pyroclastic density current on 13 September 2012 at Fuego volcano (Guatemala, photo courtesy
of V. Bejarano). (b) Sketch of the anatomy of a PDC, with CBU fed by settling of particulates from the dilute
ash cloud (DAC) where abundant mesoscale clusters with CIT occurs. The upper part of the PDC is made
of the co-PDC ash cloud, which forms thermals that rise buoyantly and feeds co-PDC plumes that can reach
heights up to tens of kilometres in the atmosphere.

Appendix B. A brief note on distribution terminology
While the applications of polydisperse gas–solid flows are far reaching, ranging from
natural to industrial flows, the parameters under study in this work are drawn from PDCs.
In the geoscience community, it is common to quantify the distribution of sedimentary
particles using a convention referred to as the ‘φ scale’. Since this convention is less
common in other areas of science and the applications of this study are far-reaching outside
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the geoscience community, we present here a very brief discussion connecting the φ scale
with a standard log-normal distribution defined in terms of millimetres.

As such, the φ scale was developed on the notion that sediment behaviour is a function
of particle diameter squared. Thus, φ ≡ − log2(dp) is used as the basis for this scale
(Krumbein 1936). It is important to note that in the definition of φ the particle diameter, dp,
has units of millimetres. Since the basis of the definition of φ is log2, then the parameter
φsorting describes the normal distribution of the particles in terms of φ. This also implies
that the distribution of particle diameter in units of mm is log-normal.

To traverse these two definitions for particle distribution, one can make use of the
following relationships:

〈dp〉 = 2−φ

µ = ln(〈dp〉) = ln(2−φ)

σ = φ2
sorting ln(2)2, (B1)

where 〈dp〉 represents the mean particle diameter in millimetres and µ and σ represent the
standard log-normal parameters, such that the probability distribution function for particle
diameter is defined as

fdp = 1

dpσ
√

2π
exp

(
−(ln dp − µ)2

2σ 2

)
. (B2)

Appendix C. Statistical diameters
When considering assemblies of particles of varying size, as is done in this work, it is
often informative to quantify how particles are distributed by using the following statistical
diameters:

(i) D10 represents the mean diameter in the usual, arithmetic sense as

D10 =

Np∑
i=1

d(i)
p

Np
. (C1)

This expression can be equivalently expressed in terms of mass fraction, where x j
and n j , are the mass fraction and number of particles of size d j and J represents the
total number of bins the particles are divided into

D10 =

J∑
j=1

d j

J∑
j=1

3x j/(4ρpd3
j )

. (C2)

(ii) D20 represents the surface mean diameter. In other words, this is diameter of a
monodisperse assembly of Np particles with the same total surface area of the
polydisperse assembly. It is defined as

D20 =

√√√√√√
Np∑
i=1

(
d(i)

p

)2

Np
. (C3)
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In terms of mass fraction, this can also be defined as

D20 =

√√√√√√√√√
J∑

j=1
x j/d j

J∑
j=1

x j/(d3
j )

. (C4)

(iii) D30 represents the volume mean diameter. Similar to the surface mean diameter, this
value represents the diameter of a monodisperse assembly of Np particles with the
same total volume as the polydisperse assembly. It is given as

D30 =

⎛⎜⎜⎝
Np∑
i=1

(
d(i)

p

)3

Np

⎞⎟⎟⎠
1/3

. (C5)

Equivalently in terms of mass fraction

D30 =

⎛⎜⎜⎝ 1
J∑

j=1

(
x j/d3

j

)
⎞⎟⎟⎠

1/3

. (C6)

(iv) D32 denotes the surface moment mean diameter, commonly referred to as the Sauter
mean diameter. This is the diameter required for a monodisperse assembly of Np
particles to have the same ratio of volume to surface area as the polydisperse assembly

D32 =

Np∑
i=1

(
d(i)

p

)3

Np∑
i=1

(
d(i)

p

)2
= D3

30

D2
20

. (C7)

In terms of mass fraction, this is defined as

D32 =
⎛⎝ J∑

j=1

(x j/d j )

⎞⎠−1

. (C8)

(v) D43 denotes the volume moment mean diameter. This quantity is an indicator of
which particle sizes contain a majority of the particle volume

D43 =

Np∑
i=1

(
d(i)

p

)4

Np∑
i=1

(
d(i)

p

)3
. (C9)

Similarly, the definition based on mass fraction is given as

D43 =
J∑

j=1

(
x j d j

)
. (C10)
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Distribution A Distribution B

Volume fraction, 〈αp〉
0.01 0.10 0.01 0.10

d1,0 [mm] 1.11 1.11 0.68 0.68
d2,0 [mm] 1.31 1.31 0.81 0.81
d3,0 [mm] 1.49 1.48 0.95 0.95
d3,2 [mm] 1.91 1.91 1.30 1.31
d4,3 [mm] 2.16 2.15 1.65 1.65
σ̃ [–] 0.3483 0.3499 0.4824 0.4810
αrcp [–] 0.6793 0.6796 0.7038 0.7036

Table 8. Summary of the arithmetic mean, surface area, volume, Sauter and volume moment mean diameters,
distribution width, σ̃ , and maximum random close-packing efficiency resulting from (D2) for the particles
studied in each configuration. A complete description of the definitions of the statistical diameters can be
found in Appendix C.

The values corresponding to each of these statistical mean diameters for distributions A
and B are summarised in table 8.

Appendix D. A brief discussion on the close-packing potential of polydispersed
particles
An important comparison we draw when describing clustering is that of the local volume
fraction compared with the theoretical close-packing volume fraction, denoted αrcp. As
one might anticipate, the packing efficiency observed in clusters, along with their shape,
is intimately connected with settling behaviour.

It has been previously established that the random close-packed (RCP) volume fraction
of monodisperse spheres is αrcp = 0.64 (Kansal, Torquato & Stillinger 2002; Farr & Groot
2009; Farr 2013; Desmond & Weeks 2014). This value represents the maximum achievable
volume fraction for a randomly packed arrangement of spheres. While close-packing
efficiencies for polydispersed assemblies of spheres are less established in comparison,
several theoretical and computational studies have quantified the RCP efficiency for
log-normal distributions of spheres (Kansal et al. 2002; Farr & Groot 2009; Farr
2013; Desmond & Weeks 2014). In Farr & Groot (2009), an algorithm that maps 3-D
configurations of spheres onto a 1-D system of rods has shown success in accurately and
efficiently estimating the RCP packing efficiency of log-normally distributed spheres.
This approach, known as the rod packing (RP) algorithm (Farr & Groot 2009), was
subsequently validated (Farr 2013) and also resulted in a closed form expression (D2).
In this work, Farr (2013) observed that the RCP packing efficiency depended only upon a
measure of the distribution ‘width’, denoted σ̃ . This parameter is computed using the ratio
of the volume moment diameter to the surface moment diameter, as

σ̃ =
√

ln
(

d4,3

d3,2

)
. (D1)

Here, we make note that d4,3 is sensitive to large particles and d3,2 is sensitive to
small particles (for more details, see Appendix C). When the ratio to these quantities is
increasingly larger than 1 this implies a higher proportion of very small particles to larger
particles. Naturally, the RCP efficiency for distributions containing a greater number of
very small particles (i.e. distributions with increasingly large σ̃ ), will be higher. The model
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(a) αA
rcp = 0.6796 αB

rcp = 0.7036(b) (c) (d )αA
0 = 0.6400rcp αB

0 = 0.6400rcp

Figure 14. Random close-packed configurations for the configurations under study. Here, αrcp , denotes the
RCP volume fraction from the RP algorithm. Visualisations generated by the Kansal Torquatoa Stillinger
algorithm (Kansal et al. 2002) and RP software (Farr 2013).

relating αrcp to σ̃ based on results of the RP algorithm and developed by Farr (2013) is
given as

αrcp(σ̃ ) = 1 − 0.57e−σ̃ + 0.2135e
−0.57σ̃
0.2135

+ 0.0019
(

cos
(
2π
(
1 − e−0.75σ̃ 0.7−0.025σ̃ 4))− 1

)
. (D2)

We use this expression to infer the theoretical maximum RCP packing efficiency based
on σ̃ of the log-normal distributions under study. The statistical values relating to each
of the polydisperse configurations studied are listed in table 8. For completeness, we note
that while both volume fractions each for distributions A and B were sampled from the
same log-normal distribution, since the number of discrete particles in the systems differ
(fewer for 〈αp〉 = 0.01 compared with 〈αp〉 = 0.10), there are minimal differences in the
statistical descriptions between the two volume fractions.

As one might anticipate, the log-normally distributed particles exhibit a higher
maximum RCP volume fraction, as small particles in the distribution occupy voids that
would otherwise remain in a monodisperse packing arrangement of particles with a
diameter equal to the mean particle diameter. Due to this, we use the RCP packing
efficiency of distribution B, αB

rcp = 0.7038 as the normalisation factor for volume fraction
for all the configurations studied. Visualisations for the RCP packing efficiencies for
distributions A, B, A0 and B0 are shown, along with their associated αrcp in figure 14.

It is notable that while the values reported in table 8 are the random close-packing
efficiency limits for the entire collection of particles. However, when these particles
spontaneously cluster, the subsets of particles contained within clusters do not necessarily
mirror the overall distribution of particles. In other words, if larger particles are more
likely to be found in clusters than smaller particles, then the close-packing efficiency of
the subset of particles involved in a cluster will differ from what would be expected for an
assembly representative of the full domain.

Appendix E. An extensive discussion on clustering formation and behaviour
Following the four region convention for delineating regions of increasing correlation
in the flow and normalisation with respect to the maximum random close-packing
efficiency for distribution B as described above, we plot the local volume fraction and
corresponding contours for four representative x−z planes of each configuration studied
(see figures 15–17). Qualitatively, we observe that the contours defining clusters in all
uniform distributions, A0 and B0, are smoother and achieve lower packing efficiency
in their cores. This owes to the increased potential packing efficiency for polydispersed
assemblies of particles.
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Figure 15. Overview of the clustering patterns observed in distributions A (left figures) and A0 (right figures)
at 〈αp〉 = 0.01 (top row) and 0.10 (bottom row).

In comparing these uniform distributions of particles against each other, we observe that
the configurations with larger particle diameter (distribution A0) contain larger regions
of correlated particles (i.e. larger clusters), as compared with a smaller particle diameter
(distribution B0) which results in a greater number of smaller clusters. Further, clusters
tend to be denser in the case of smaller particles, however, this stems from the difference
in the total number of particles present in the domain since monodispersed particles of any
size have the same maximum packing efficiency.
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In comparing the polydisperse configurations with each of their analogous uniform
distributions (i.e. distributions A and A0), we observe that at low particle volume fraction,
the polydisperse distributions tend to have smaller, more numerous clustered regions with
higher packing of particles, compared with their monodisperse counterparts (A0 and B0),
which exhibit less densely packed clusters that are more sparsely arranged throughout
the domain. In the denser suspensions, cluster shape is qualitatively similar between the
polydisperse and monodisperse configurations, however, the polydisperse clusters achieve
a higher density of particles than their monodisperse analogues. These observations are
illustrated in figures 15 and 16, where, x−z planes of the particle volume fraction are
shown with the three contours discussed previously.

In addition to examining streamwise planes of data, we also consider the cross-stream
constitution of clusters. To this end, for each y−z plane along the gravity-aligned direction,
x , we sum the number of Eulerian cells containing a local particle volume fraction greater
than 1.5〈αp〉. Multiplying this value by the y−z area of the cells thus yields a measure of
total cross-stream cluster area. While this does not delineate whether this cross-sectional
area is comprised of one or several clusters, it aids in quantifying the relative structural
differences in clustering. In comparing the cluster cross-sectional area curves for A and
A0 at 〈αp〉 = 0.01, we notice that the maximum cluster cross-sectional area is substantially
greater for configuration A0, substantiated by the observation that clusters are qualitatively
larger in size but fewer in quantity. We also observe that the cross-sectional cluster area
for distribution A is more uniformly distributed throughout the streamwise direction,
indicating that clusters are more evenly spread throughout the domain as compared with
distribution A0. In contrast to these observations at low volume fraction, we observe that
the regions of maximum cross-sectional cluster area are comparable between distributions
A and A0 at 〈αp〉 = 0.10 and that for both configurations, these peaks are observed at
similar intervals.

Some consistency is seen in the distribution B and B0 configurations, with a few
exceptions. First, at 〈αp〉 = 0.01, we note that distribution B0 contains relatively larger
peak values for cluster cross-sectional area, however, these peaks are similarly distributed
as compared with distribution A. At higher volume fraction, 〈αp〉 = 0.10, the polydisperse
assembly, distribution B, achieves slightly higher cross-sectional cluster area values as
compared with distribution B0, which is consistent with the qualitative observation that
a few of the polydisperse clusters are aligned more with the cross-stream, than the
streamwise direction.

Finally, as detailed in figure 17, we note that the structures of the polydisperse clusters
are more fragmented than their monodisperse counterparts. This is partly due to the
existence of particles that range from very small to very large particles in the domain
but also may point to the formation of larger clusters when two moderately sized clusters
merge.

In addition to the qualitative analysis presented above, we also consider an alternative,
quantitative method for parsing particle volume fraction information. Here, we bin
Eulerian cells by their volume fraction and generate a domain-wise distribution based
on this binning. These distributions are shown in figure 18 (for reference, the deviation,
skewness and kurtosis for the full assemblies of particles have been previously summarised
in table 2). In these figures, the shaded regions are consistent with regions A–D as
described previously.

In examining clustering in this way, we note that for 〈αp〉 = 0.01, the monodisperse
configurations have distributions of particle volume fraction that are nearly normally
distributed (recall skew(αp) is 0.66 and 0.82 for distributions A0 and B0), while the
skewness for the polydisperse simulations is much greater in comparison. This implies
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Figure 16. Overview of the clustering patterns observed in distributions B (left figures) and B0 (right figures)
at 〈αp〉 = 0.01 (top row) and 0.10 (bottom row).

that the polydisperse configurations attain higher local volume fractions for more regions
of the flow compared with their monodisperse analogues. In comparing distribution A and
distribution B we note that distribution B contains more nearly void regions compared
with A along with a longer tail in the concentrated regime. This implies that Dist B
achieves a more stratified version of clustering, where clusters tend to be denser and more
regions of the flow are absent of particles.

Interestingly, at 〈αp〉 = 0.10, the polydispersed and monodispersed assemblies deviate
significantly from a normal distribution. Further, the distributions of particle volume
fraction are very similar, with the greatest differences occurring between A and A0.
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Distribution A0 Distribution B0 Distribution BDistribution A

Figure 17. Cross-sections of particle volume fraction in the y−z plane with contours denoting volume fractions
of (1.5, 2.25, 3.0)〈αp〉. The colour map represents particle volume fraction and ranges from 0 (white) to αrcp
(black). Cross-sections are the same as those detailed in figures 15 and 16, but are shown together here to aid
in comparisons across the configurations studied at 〈αp〉 = 0.10.

This underscores the finding that polydispersity has a much greater effect on clustering
behaviour at lower volume fraction. We postulate that when the overall number of
particles is higher, as is the case for higher volume fraction flows, this allows for a more
uniform introduction of flow disturbances, thereby dampening the effect of larger particles
compared with smaller particles.

Another important distinction we note in our qualitative observations of clustering
is the number of clustered regions in the flow. A quantitative way to illustrate this
clustering behaviour is to consider the connectivity of the particle volume fraction field.
To this end, each Eulerian cell is assigned a binary value corresponding to whether the
filtered particle volume fraction is above or below a threshold (corresponding to regions
A–D). Cells that have two or more ‘connected’ cells (i.e. either a face, edge or vertex
is shared) are considered to be connected and therefore part of a cluster. Connectivity
mappings were carried out for all of the configurations at thresholds corresponding to
αp = (1.5, 2.25, 3.0)〈αp〉 (regions B, C and D). These values are summarised in table 9
and illustrated in figure 19.

In keeping with our qualitative assessment of each configuration, we observe that the
monodisperse distributions at 〈αp〉 = 0.01 contain fewer connected regions as the volume
fraction threshold increases, whereas the polydisperse cases have an increasing number
of connected regions. This implies that polydisperse clusters are comprised of a greater
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Figure 18. Distributions of 〈αp〉 for all configurations at the dilute global volume fraction, 〈αp〉 = 0.01. The
shaded regions indicate regions of the flow for specific ranges of volume fraction: 1.5 � αp/〈αp〉 < 2.25
(lightest grey), 2.25 � αp/〈αp〉 < 3 (grey) and αp/〈αp〉� 3 (darkest grey).

number of fragmented dense regions, whereas monodispersed clusters generally have a
minority of regions in clusters that attain a dense packing efficiency. In contrast, at 〈αp〉 =
0.10, no clear trend exists, however, this is likely due to the fact that both A0 and B0 contain
relatively very few connected regions in general.

Finally, we consider the distribution of particle sizes (figure 4) and granular temperature
(figure 5) within each of the regions A–D in the flow. Here, each particle is binned into
regions according to the local Eulerian particle volume fraction interpolated to its centre.
Then, particles belonging to each of the four regions are binned by diameter resulting in
a distribution for each group. In each of the panels of figures 4 and 5, the distribution of
all the particles in the domain are represented with a solid black line, which is consistent
across the plots for each of regions A–D. The normalised distribution of the particles
belonging to each of the four regions is denoted with shaded bars.

Considering first the distribution of particle diameters by region, we make several
observations. First, smaller particles are preferentially found in the most dilute regime
(i.e. region A) and this effect is enhanced for 〈αp〉 = 0.01. Interestingly, for the dilute
cases, all of the particles found in region A are less than D30, though this does not extend
to the higher volume fraction cases. In regions B and C, we note similar behaviour for
both distributions A and B at 〈αp〉 = 0.01. In these regions, there is a dramatic increase
in the probability of mid-sized particles. As the density of the cluster increases, there is
a much higher likelihood of encountering increasingly large particles and less likelihood
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αthresh
p

αp Distribution 1.5〈αp〉 2.25〈αp〉 3.0〈αp〉
0.01 A0 249 79 6

A 1,751 2,703 3,031
B0 18,287 6,545 1,066
B 6,643 8,066 7,898

0.10 A0 7 4 6
A 3,066 1,855 517
B0 69 91 72
B 7,663 9,214 8,334

Table 9. Summary of the number of connected regions containing volume fractions at thresholds of
(1.5, 2.25, 3.0)〈αp〉. Eulerian cells containing volume fractions above the prescribed threshold with two or
connected cells are considered a ‘connected region.’.
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Figure 19. Summary of the trend in number of connected regions as a function of the particle volume fraction
threshold. To aid in the comparison between configurations, the number of connected regions for each case is
normalised by the maximum number of connectivities. Distributions at 〈αp〉 = 0.01 are shown on the left and
〈αp〉 = 0.10 are shown on the right. Distributions are denoted as: A (open circles), B (open diamonds), A0
(filled circles) and B0 (filled diamonds).

of encountering very small particles. This is particularly true for distribution A, where in
region D, almost all the particles are moderately large to very large. In distribution B we
observe that in this region, there is a slight increase in the number of finer particles. This
is likely attributable to the fact that distribution B has a great number of fine particles, and
therefore more particles overall. These small particles can be more efficiently packed into
a cluster and are also more likely to be entrained in clusters due to the greater number of
small particles in the overall distribution.

At higher volume fraction, distribution A exhibits a smoother increase in preference
toward moderate to large-sized particles, particularly in regions B and C. In fact, at high
volume fraction, region C is the most likely region to encounter very large particles. In
region D, there is a higher likelihood of finding very large particles, however, most notable
is the reduction of mid-sized particles. At 〈αp〉 = 0.10, distribution B also smoothly
increases its preference toward larger particles as the local volume fraction increases,
however, this increase persists through region D.

Importantly, we believe this preference for larger particles in region D indicates that
for polydisperse configurations of particles, it is the larger particles in the domain that
give rise to cluster formation, very likely due to the relatively large regions of reduced

1010 A27-42

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

26
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.268


Journal of Fluid Mechanics

drag that these particles provide for smaller particles. As previously mentioned, this
strong preference for large particles at the centre of clusters with smaller particles haloed
around them which is more pronounced for lower volume fraction than at higher volume
fraction, is likely observed because, at higher volume fraction, the regions of reduced drag
stemming from large particles is obscured by the regions of reduced drag from the greater
number of other nearby particles.
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