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Abstract

The driving mechanisms of glacier fast flow and the cyclical instability inherent in ice streams and
surging glaciers are not fully understood. Current theories suggest fast flow is driven by glacier
sliding and basal deformation facilitated by water at the ice-bed interface and/or the presence
of weak till. However, the wettability of sediments and the physics driving these sediment-water
interactions have yet to be fully explored. Here, we review recent work on superhydrophobicity,
hydrophobic soils and lubricated surfaces, and bring together aspects of materials science, bio-
physics and geoscience, to propose three modes by which a subglacial environment could become
super slippery. Those modes are via (i) hydrophobic chemistry, (ii) microbial biofilms or (iii) the
incorporation of oil. We then hypothesise how ice flow on super slippery sediments would result in
enhanced sliding and deformation by introducing or increasing a lubricated interface and/or cre-
ating zones of sediment weakness and instability. We propose that future research should further
explore this potential paradigm to soft bed deformation and sliding.

1. Introduction

Instability in glacial systems describes the unpredictable behaviour and sometimes erratic
changes in ice sheets and glaciers during ice streaming and surging. Interest in fast flow and
instability has increased in recent years due to their importance for predicting and estimating
glacier and ice sheet response to a changing climate (Bennett, 2003; Kjeer and others, 2006; Nuth
and others, 2019). The mechanisms behind fast flow and instability are driven by subglacial
processes, sliding and basal deformation, making understanding and characterising condi-
tions at the ice-bed interface key to constraining this erratic behaviour (Fig. 1) (Boulton and
Hindmarsh, 1987; Fischer and Clarke, 2001; Kjeer and others, 2006).

However, some of these instabilities and fast flow conditions have been difficult to predict
with current theory. For example, the instability observed in surging glaciers around the world
cannot be explained in a unified way by (i) the hydrological switch model (e.g. Kamb and others,
1985, Kamb, 1987), (ii) the thermal switch model (e.g. Robin, 1955; Murray and others, 2000;
Sevestre and others, 2015) nor (iii) the enthalpy balance model (e.g. Benn and others, 2019a,
2019b, 2023), suggesting there are a number of factors at play that are still to be fully considered.
A single surge theory becomes increasingly difficult when we are also made to consider friction
laws and hydrology of most glacial systems (Benn and others, 2023). This is particularly the case
where soft-bed dynamics could be driving parts of the surge mechanism. In larger ice sheets,
ice stream flow is also heterogeneous, showing degrees of instability with flow speeds varying
over spatial and temporal scales (Stokes and others, 2007). Ice stream instability takes the form
of ‘switch on’ and ‘switch off” events, as well as changes to ice stream positioning (Conway and
others, 2002; Joughin and others, 2004; Dowdeswell and others, 2006; O Cofaigh and others,
2010; Winsborrow and others, 2010). There are a number of possible mechanisms for this, from
topographic controls (e.g. McIntyre, 1985) the presence of sticky spots caused by bedrock bumps
(e.g. Schoof, 2002; McKenzie and others, 2023), an absence of till (e.g. Alley, 1993; Ashmore and
others, 2014), well-drained till (e.g. Anandakrishnan and Bentley, 1993; Anandakrishnan and
Alley, 1994; Boulton and others, 2001; Ashmore and others, 2014) and localised freeze-on (e.g.
Anandakrishnan and Alley, 1997; Vogel and others, 2005; Stokes and others, 2007).

However, one factor that has remained difficult to observe and parametrise in our exist-
ing theories is the micro- and macro-scale sedimentological properties of the till (Kyrke-Smith
and others, 2018; Narloch and others, 2020). The complex nature of sediment and sediment
interactions at a micro-scale means that even in a ‘simple’ homogeneous till model basal defor-
mation and sediment failure could occur through grain boundary sliding, rolling and larger
granular flows (Fowler, 2003; Minchew and Meyer, 2020). Furthermore, the interface physics of
wettability, a recently rapidly developing field of surface physics (e.g. Lafuma and Quéré, 2003;
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Figure 1. Transitions between slow and fast ice flow driven
by basal deformation and basal sliding due to changes in
subglacial hydrology and roughness. (a) Transition between inef-
ficient sheet flow promoting fast ice flow, to (b) a system of
more efficient connected channels, to (c) a fully channelised
system resulting in slow ice flow. (d) Transition between highly
deformable oversaturated till with high pore water pressure
promoting fast flow, to (e) a reduction in water pressure and
stiffening of till, to (f) an unsaturated stiff till resulting in slow
ice flow. (i-h) n ice sheets and ice streams, large macro-scale
roughness with large and/or transverse perturbations dominates
in interior slow flow regions. (j) Further downstream areas of
low macro-scale roughness promote fast flow resulting in the
formation of more linear streamlined bedforms.

Quéré, 2008; Gao and Yan, 2009; Nosonovsky, 2011; McHale and
others, 2020) has rarely been considered in glacial environments.
We propose that expanding our considerations of potential mech-
anisms driving fast glacier flow may help to explain some fast flow,
surging and ice streaming observations.

In both materials science and sedimentology; it is widely under-
stood that the interaction of water with a surface or substrate
is dependent on two distinct properties, (i) the physical proper-
ties (roughness, texture or porosity) and (ii) the wetting proper-
ties (the extent of hydrophobicity or hydrophilicity) (Cassie and
Baxter, 1944; de Gennes, 1985; Adamson and Gast, 1997; Quéré,
2008; Shirtcliffe and others, 2010). In extreme cases, hydropho-
bicity in combination with surface roughness or porosity can cre-
ate super slippery surfaces, such as superhydrophobicity where
air acts as a lubricant (Barthlott and Neinhuis, 1997; Neinhuis
and Barthlott, 1997). Alternatively, surface roughness or poros-
ity may be impregnated by a lubricant liquid to create a slippery
liquid-infused porous surfaces (SLIPS) (Lafuma and Quéré, 2011;
Wong and others, 2011). In these cases, extreme water-repellent
and water-shedding surfaces can be created (Fig. 2) (McHale and
others, 2020).

Superhydrophobicity in sediments has been proposed by
McHale and others (2005, 2007) and Shirtcliffe and others (2010). It
has also been physically modelled by McCerery and others (2021),
which demonstrated the formation of air plastrons between indi-
vidual sediment particles supporting water droplets and enhancing
water-shedding abilities. It has also been observed that a finer par-
ticle size sediment will exhibit more extreme hydrophobicity with
the potential for superhydrophobicity and SLIPS on fine-silt size
particles (Hamlett and others, 2011; McCerery and others, 2021).
Previous works on fluvial and marine sediments containing micro-
bial biofilms have also shown improved abilities to buffer shear
stresses compared to biofilm-free sediments as they behave as an
elastic membrane (Vignaga and others, 2013; Chen and others,
2017).

Fast flow _
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Slow flow

Here, we review the current literature on sediment wettability
and super slippery surfaces and we use this knowledge to suggest a
series of possible models by which glacial sediment could become
super slippery in the context of grain size, geochemistry, oil mobil-
isation and microbial action. By investigating each of these in
turn, and collectively, we propose a novel way to explain observ-
able instability in some glaciers and ice sheets. It is important to
note that we do not set out to apply this to all fast-flowing ice,
or all glaciers that experience flow instability. We do propose new
ways by which till could inherit slipperiness properties and provide
theoretical models for the consequences on flow behaviour and
suggest this warrants further consideration and field investigation.

2. Mechanisms for super slipperiness in glacial systems

Here we focus on two types of super slippery surfaces that could
exist in sediments and glacial tills: superhydrophobicity and SLIPS.
Each mechanism uniquely alters the proportion of the solid-liquid
interface using air or liquid lubrication to enhance water shedding.

2.1. Sediment grain sizes

A necessary condition for super slipperiness in sediments is an
appropriate grain size and shape. Physical modelling by McCerery
and others (2021) showed that the ideal grain size to meet the
material physics definitions of super slipperiness was clay-silt sized
particles, although extreme water repellence was also observed on
sand grain sizes (Fig. 2a—c). The smaller particle sizes are able to
support super slipperiness through the enhanced roughness struc-
ture and the optimally sized gaps between individual particles
which reduce the solid-liquid contact. In direct soil systems stud-
ies, it has been demonstrated that sand-sized grains are optimal for
inducing hydrophobic properties, however this is mainly associ-
ated with the supply of the hydrophobic geochemistry and reduced
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Figure 2. Hydrophobic slippery liquid-infused porous surfaces
(SLIPS) strategies to create slippery surfaces in sediments: (a,
b) Hydrophobic strategy initiated by high aspect ratio rough-
ness/texture with hydrophobic solids to reduce liquid-solid
contact. (c) Corresponding photograph of a droplet on clay-silt
sized particles with a hydrophobic geochemistry. (a-d) SLIPS
strategy initiated by the introduction of a lubricant such as oil or
biofilm into the surface roughness/texture to convert to liquid-
lubricant/solid or liquid-lubricant contact. (e) Corresponding
photograph of a droplet on a clay-silt sized particle with a
hydrophobic geochemistry and oil impregnation.

surface area of sand-sized particles as opposed to finer particle sizes
being less hydrophobic (e.g. Doerr and others, 1996, 2007; de Jonge
and others, 1999; McHale and others, 2007).

In glacial systems, these grain sizes are provided by glacial ero-
sion of the underlying substrate. The evolution of till through the
subglacial system exposes rocks and sediments to repeated abra-
sion and shearing processes constantly resupplying fines to the
ice-bed interface (Hooke and Iverson, 1995; Altuhafi and Baudet,
2011). This constant resupply means there is often freshly eroded
material within the grain size range of clay-silt and sand sized par-
ticles that can exhibit super slipperiness under the right conditions.

2.2. Inherited hydrophobic geochemistry

One possible mechanism for creating super slipperiness at
the glacier bed is through inherited historic processes creat-
ing hydrophobic chemistry in sediments prior to glaciation.
Hydrophobicity can be induced though chemical coatings on sed-
iments from organic matter (Doerr and others, 2007; Hallett,
2007; Mao and others, 2016) and/or deposition of volatile organic
compounds from wildfires (DeBano and Krammes, 1966; Doerr
and others, 2006). The presence of organic compounds and their
inherent hydrophobic properties also extends into sediments orig-
inating from organic-rich sedimentary rocks such as shales and
coals which are rich in preserved organic material (Hedges and
Keil, 1995; Cai and others, 2023).

The type or style of sediment failure associated with hydropho-
bicity in soils and sediments is also partly controlled by where in
the soil or sediment profile the hydrophobicity occurs. During a
rainfall event, where the hydrophobicity is buried beneath a wet-
table layer, the surface sediment will become oversaturated as water
is not able to percolate past the hydrophobic layer (Gabet, 2003;
Parise and Cannon, 2012). This results in discrete mobilisation
of the oversaturated material forming a discrete shallow landslide
and debris flows (Parise and Cannon, 2012). Where a hydropho-
bic layer is present on the surface of the soil, rainwater erosion
of the material results in increased rilling and sheet-wash (Parise
and Cannon, 2012). This has the potential to initiate large debris
flows from continued sediment entrainment and incorporation
into water (Parise and Cannon, 2012; Wall and others, 2020).

Wildfires frequently occur in Arctic shrub tundra and boreal
forests (Higuera and others, 2008; Rocha and others, 2012; Dietze
and others, 2020). Furthermore, rapid changes in climate (com-
mon in glacial-interglacial transitions), can influence wildfire fre-
quency by affecting (i) the frequency and intensity of precipita-
tion, (ii) changes in spring and summer temperatures and (iii)

Hydrophobic strategy

SLIPS strategy

the amount of biomass available for burning (Marlon and oth-
ers, 2009). Changes in fire frequency are observed in charcoal
records from the most recent interglacial transition (15-10 ka) in
North America and show an increase in wildfires during the most
abrupt shifts in climate (Marlon and others, 2009). This would have
created hydrophobic coatings in sediments at glacial margins dur-
ing interglacial periods. Hydrophobicity within glacial sediments
could therefore occur at the surface during glacier advance or be
buried beneath more wettable sediments and re-exposed during
glacial erosion. This may explain some of the surging glacier lobes
at the margins of former ice sheets such as the Laurentide Ice Sheet
and the Barents-Kara Ice Sheet, where the margins were underlain
by permafrost sediments, which are likely to have wildfire coatings
and some degree of inherited hydrophobicity.

2.3. 0Oil contamination and mobilisation

The second possible mechanism of slipperiness at the glacier bed
is through oil contamination and mobilisation. The hydrocarbons
present in oil and gas deposits can create a hydrophobic chem-
istry and in the fluid form they also create a lubricating layer
immiscible to water acting as a SLIPS. Hydrocarbons can enter the
environment as one-off events, or through the action of repeated
glaciations. Hydrocarbon presence is common in large sedimen-
tary basins, such as the North Sea and Barents Sea with isostatic
changes caused by the Eurasian Ice Sheet Complex, resulting in
the re-routing of hydrocarbon pathways and natural hydrocar-
bon spillages (Zieba and Grever, 2016; Fjeldskaar and Amantov,
2018; Latveit and others, 2019; Cathles and Fjeldskaar, 2020).
Oil may also enter the ice-bed interface through glacial erosion,
exposing oils within sedimentary basins. It is thought that one
of the most important events leading to the development of sur-
face oil deposits in the Athabasca region of Alberta, Canada,
was glacial erosion, and glacial lake drainage which eroded and
mobilised oil sands deposits (Paragon Soils and Environmental
Consulting, 2006). Previous work has indicated that glacial ero-
sion by the Laurentide Ice Sheet not only exposed oil deposits at
the original source but that glacial erosion also mobilised oil sands
materials—as they are present in glacial tills south of their original
source in northern Alberta (e.g. Andriashek and Pawlowicz, 2002;
Paragon Soils and Environmental Consulting, 2006; Andriashek,
2018; McCerery and others, 2023, 2024). This suggests that glacially
mobilised oil may be widespread, at the ice-bed interface, partic-
ularly in areas that have oil deposits close to the surface and/or in
regions which have experienced substantial isostatic change and
resultant re-working and remobilisation of sediments.
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2.4. Microbial action

A third possible mechanism of hydrophobicity at the glacier bed
is through the action of certain microbes and their biofilms.
Whilst some components of biofilms are hydrophilic, others
can also exhibit hydrophobic properties (Rosenberg and others,
1980), and communities can respond to environmental stress by
creating hydrophobic compounds such as extracellular polymeric
substances (Seaton and others, 2019). In large enough quantities,
biofilms can also give rise to bio-clogging in porous surfaces (Lee
and others, 2019). In these cases, the cohesive nature and accumu-
lation of biofilm in pores results in the lowering of the permeability
of a surface or sediment (Lee and others, 2019; Gerbersdorf and
others, 2020). This is particularly true in finer grained sediments
where biofilms generate a less erodible, smoother sediment with
lower hydraulic roughness (Gerbersdorf and others, 2020).

The subglacial zone is alow biomass environment (i.e. Skidmore
and others, 2005; Kastovska and others, 2007; Boetius and oth-
ers, 2015), and thus such a hydrophobic mechanism may be rare.
However, any developed hydrophobicity would impact the slip-
periness of the surface, as well as the wettability and roughness
properties of the glacier bed, changing the proportion of slid-
ing at the ice-bed interface and the amount of basal deformation
occurring in the system.

3. Potential implications of super slipperiness in glacial
systems

3.1. Hydrophobic sediment

Previous research on soil-water interactions demonstrates that a
reduction in the wettability of a sediment results in a reduction
in the total water storage and runoff acceleration (Chau and oth-
ers, 2014; Zheng and others, 2017; Miiller and others, 2018). In the
glacial environment, this physical process could result in lower till
permeability and infiltration, leading to water pooling at the ice-
bed interface. Where particle sizes are sufficiently small there is
also potential for the formation of superhydrophobicity whereby
pockets of air between the sediment particles acts as a lubricating
interface. In cases where the till is fully saturated with all solid sur-
faces completely wetted and air-water-solid three-phase contact
lines, superhydrophobicity could not occur. A layer of low wet-
tability sediment will have different implications on glacier flow
depending on where in the till profile the hydrophobicity occurs.

Where low wettability till occurs at the ice-bed inter-
face (Fig. 3a—c), water infiltration into the sediment below would
be impeded. With consistent delivery of water to the bed and little
opportunity for infiltration, an increase in basal water pressure
will occur as the water cannot be drained efficiently and ice-bed
decoupling, and enhanced glacier sliding will ensue. This model
also builds upon the scientific understanding of fast ice flow driven
by a thin film of water at the ice-bed interface (e.g. Weertman,
1957, 1964, 1979; Bindschadler, 1983; Alley, 1989; Piotrowski and
Tulaczyk, 1999), which, as shown here, can occur on soft beds with
an appropriate hydrophobic chemistry without the need for a fully
saturated or hard glacier bed.

A hydrophobic sediment could also occur within the till pro-
file, buried beneath a more wettable material (as shown in Fig.
3d-f). By preventing infiltration further into the till profile over-
saturation of the wettable till at the ice-bed interface would occur.
If the till is strongly coupled to the ice, the till will weaken and
begin to deform. The hydrophobic sediment would then also create
a physical barrier preventing more pervasive deformation, thus
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concentrating weak till at the ice-bed interface. A not dissimilar
mechanism has been suggested as the driving process for surging
activity at Bakaninbreen, Svalbard by Murray and others (2000)
and Smith and others (2002), where the impermeable layer at the
ice-bed interface is permafrost. It is also possible that multiple lay-
ers of hydrophobic chemistry exist in a till profile as the result of
changes within and between glacial and interglacial cycles. During
these cycles multiple layers of buried hydrophobic chemistry could
occur, producing zones of weakness and slip between till layers,
rather than slip only occurring directly at the ice-bed interface.

3.2. Sediment-SLIPS

Previous work by McCerery and others (2023) first outlined the
implications of an oil at the ice-bed interface on glacial flow, from
geochemical evidence of glacially mobilised oil sands deposits in
Alberta, Canada, using two models of a sediment-SLIPS. In the
macro-scale model, an immiscible working fluid and lubricating
fluid create a slippery interface, and in the micro-scale model, the
liquid-liquid interface occurs between individual sediment grains,
which under pressure, would create a hypermobile slurry of sed-
iments, oil, and water. We note that this could also apply to the
formation of biofilms creating a quasi-liquid lubricated substrate.

In the macro-scale model, enhanced slip at the ice-bed inter-
face is most analogous to the classic Nepenthes pitcher plant style
of SLIPS described by Bauer and Federle (2009), Wang and oth-
ers (2015) and Yong and others (2017). As the bed is infused with
a lubricant, sliding may be initiated at lower basal water pressure
than is required for ice-bed decoupling. Furthermore, sliding over
the lubricated substrate will limit laterally extensive basal deforma-
tion. Where the lubricant (be it oil or biofilm) is less viscous (and
potentially hardened), it could act as an impermeable seal, imped-
ing drainage. As water is not able to efficiently drain into the till in
this instance, it will pool at the ice-bed interface and increase basal
water pressure. This would result in more rapid ice-bed decoupling
than would be expected for a soft bed.

In the micro-scale SLIPS model (Fig. 3g-i), the hypermobile
slurry could induce a style of basal deformation similar to the
ideas of icequake-induced till liquefaction. In icequake-induced till
liquefaction first proposed by Phillips and others (2018), the sud-
den delivery of energy to the saturated till causes an increase in
intergranular pore water pressure. This results in reduced sediment
cohesion; allowing grains to move over one another easily and thus
deforming in a transient liquefied state (Phillips and others, 2018).

3.3. Spatial and temporal sediment instability

For any of the slipperiness mechanisms we outline above to estab-
lish in sediments, a number of conditions must be met in the
system (i) the particle sizes of the till must be small enough (fine
sand to clay dominated) to support a micro-scale roughness; (ii)
he subglacial hydrology must achieve a balance between a steady
stream of water (to lubricate the bed) but not too dynamic a water
flow as to destroy or remove the lubricating agent, i.e. the biofilm
or hydrophobic chemistry; and (iii) the lubricating interface or
hydrophobic chemistry/biology must be immiscible to water (for
SLIPS) and the subglacial sediment must be preferentially wetted
by one of the liquids. Furthermore, as the subglacial zone has been
shown to be a low biomass environment (i.e. Skidmore and others,
2005; Kastovska and others, 2007; Boetius and others, 2015), it may
be unable to grow or sustain a thick biofilm. With these constraints,
the slipperiness mechanisms we describe may be both spatially
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1. HYDROPHOBIC SYSTEMS
1.1 Hydrophobicity at the IBI

Figure 3. Schematic diagram of the hypothesised hydropho-
bic and slippery liquid-infused porous surfaces (SLIPS) scenarios
at the glacier bed. In the first model of hydrophobicity, (a-c) a
hydrophobic sediment layer at the ice-bed interface impedes
water infiltration and enhances basal sliding through ice-bed
decoupling. The gradual degradation of the hydrophobic layer
results in resumed infiltration and a recoupling of the ice and
bed. Alternatively, if the hydrophobic sediment layer occurs
within the till profile, (d-f) an oversaturated sediment would
form at the ice-bed interface. This would result in a thin layer
of enhanced basal deformation, before complete degradation g
of the hydrophobic layer results in resumed infiltration further
down the till profile and a reduction in the degree of basal defor-
mation. In a SLIPS system facilitated by oil or biofilms, (g-i)
sediment particles can create a water-oil interface or a slip-
pery biofilm interface between the individual sediment particles.
Under the pressure of overlying ice the sediment bed would be
able to deform, generating a hypermobile slurry through the cre-
ation of a SLIPS between the individual grains (figure adapted
from McCerery and others, 2023).

(i.e. where the location of slipperiness may change in a system)
and temporally (i.e. erosion of slipperiness properties or reestab-
lishment such as the cyclical growth and destruction of biofilm
surfaces) rare. Where all of the necessary conditions are met, these
processes could explain the occurrence and spatial heterogeneity
of past or present unstable and/or fast flow regimes, particularly in
areas where current theories cannot account for observations and
records of enhanced flow.

Due to the micro-scale-level nature of slipperiness in sediments,
it is likely that multiple factors combine, and that in large glacial
systems there will also be other drivers of instability contributing
to fast flow. For example, in surging glaciers any single or combina-
tion of existing mechanisms could be driving a glacier towards fast
or unstable flow and the geochemistry or microbiology of the sed-
iment could then be acting as the either the starting point or final
tipping point to achieve fast and unstable conditions. In the case
of ice streams, the presence of slippery or super slippery sediments
could account for localised slippery spots.

The stability of these super slippery properties is an impor-
tant consideration if we are to apply these theories to a highly
pressurised and dynamic system such as the subglacial environ-
ment. Research in materials, soils science and hydrology has shown
that during prolonged wetting hydrophobicity is degraded and
the material will eventually become wettable, then after drying
the hydrophobic state is reinitiated (Quyum and others, 2002;
Lourenco and others, 2015). This suggests that chemical hydropho-
bicity may be short lived in subglacial systems and could occur
unpredictably, particularly where the overburden pressure of the
ice could force wetting of the hydrophobic grains. Conversely in
the SLIPS model, these surfaces are typically more stable and retain
their super slippery properties for longer and over more harsh

Fast flow h

2. SLIPS SYSTEMS

saturated till at IBI
hydrophobic layer

——

h sand particles
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erosive conditions. This is evident in soil contamination research
where water repellence post-oil spill persists for decades (e.g. Roy
and McGill, 1998; Roy and others, 1999).

3.4. Till microstructure and morphology

A further consideration is the impact super slipperiness would
have on the microstructures of deformed tills. Laboratory experi-
mentation suggests till microstructures are influenced by ice veloc-
ity, water and clay content, deposition of carbonates and clay
minerology (van der Meer and others, 2003). It is likely that the
geochemistry and/or biophysics of the sediments and the result-
ing impact on interface physics between particles may influence
till microstructures. For example, transient episodes of till dila-
tion caused by changes in pore water pressure and effective pres-
sure, results in shearing micromorphology in the till profile (e.g.
Minchew and Meyer, 2020; Warburton and others, 2023). The
processes that we hypothesise here could induce a similar effect
where heterogeneous changes in the geochemical and/or biophysi-
cal properties within the till profile, both vertically and horizontally
may generate and/or contribute to the existence of the stick-slip
phenomena seen in studies by Phillips and others (2018) and
Phillips and Piotrowski (2023).

The detection of super slipperiness inducing compounds in the
Central Alberta Ice Stream in Alberta, Canada, also coincides with
evidence of soft bed subglacial deformation (McCerery and oth-
ers, 2023, 2024). This suggests the geomorphological impact of
such sediment properties may fit our current observations. Thus,
there may also be a micromorphological signature or signatures
associated with the geochemical and/or biophysical properties of

Downloaded from https://www.cambridge.org/core. 15 Jul 2025 at 23:24:38, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

sediments that can be detected in the sediment record. We there-
fore propose that further investigation into the biophysics, geo-
chemistry and micromorphology of till in places where instability
and/or fast flow occurs or has been known to have occurred should
be investigated.

4. Conclusions and future challenges

Models of enhanced flow (generated by micro-scale processes
occurring at the ice-bed interface) proposed in this paper highlight
the importance of considering sediment geochemistry and micro-
biology in glaciated environments. This paper has presented the
potential chemical, biological and physical processes occurring in
subglacial sediment that could drive some fast flow and instability
in contemporary and palaeo ice sheets and glaciers. We hypoth-
esise that the necessary conditions for slipperiness in the context
of interface physics could occur in glacial systems. We do not sug-
gest that these conditions will be extensive, in fact, in most cases
the theory of slippery surfaces is not required to explain observed
fast flow. We do propose that where appropriate conditions occur,
slipperiness will be an important contributor to fast and unstable
flow—which may vary spatially (i.e. where the location of slip-
periness may change in a system) and temporally (i.e. erosion
of slipperiness properties or reestablishment such as the cyclical
growth and destruction of biofilm surfaces). This novel approach
therefore requires future work to fully understand and predict
where slippery surfaces occur in glacial systems.
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