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Vector analysis of ice-fabric data 
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ABSTRACT. The mechanical properties of ice are strongly affected by crystal 
texture and c-axis alignment. In this paper, we develop a general quantitative 
method for analysis of uniaxial crystal-orientation data. These data are represented 
as unit vectors from the origin with end points on the surface of a unit sphere. An 
orthogonal least-squares error measure is used to develop equations that define the 
closest plane and line through the data. The resulting eigenvalue problem is identical 
to that obtained by other investigators using different methods. However, here we 
identify an implicit assumption in the method, and observe that the error measure 
represents physical distance and quantifies the goodness offit to the data of idealized 
structures. Also, a method is developed to transform the data and the results for 
viewing on Schmidt nets drawn in the best plane and the predominant basal plane of 
a sample, in addition to the standard xy-plane. Applications of the analysis to sea-ice 
samples include both numerical and Schmidt-net presentations of results. 

INTRODUCTION 

Environmental conditions at the time of ice formation 
largely determine its structure. Ice crystals are uniaxial 
and the optic axis corresponds to the c-axis. Random c­
axis orientation is commonly observed near the top 
surface of newly formed sea ice in the Arctic. Once a cover 
has formed, the ice structure is characterized by long 
vertical columns that extend downward in the growth 
direction of the ice sheet, a result of quiescent, 
unidirectional growth. Under these conditions, a selec­
tive growth process occurs and the c-axes of the crystals 
become primarily oriented in the horizontal plane of the 
ice sheet (Weeks and Ackley, 1982). In the presence ofa 
predominant current direction, strong c-axis alignment 
develops in the direction of the current, with generally 
decreasing scatter as ice thickness increases (Weeks and 
Cow, 1978), and this ice structure causes anisotropic 
material behavior in all directions. Uniaxial compression 
data on first-year sea ice (Wang, 1979; Richter-Menge 
and others, 1987) have indicated a strong dependence of 
peak compressive strength on c-axis alignment and on the 
angle between an applied load and the dominant c-axis 
direction. Therefore, to interpret data from mechanical 
property tests, we must define the relative orientation and 
alignment of the ice fabric. 

The techniques used in the analysis of ice fabrics were 
originally developed in structural petrology (see, for 
example, Knopf and Ingerson, 1938; Fairbairn, 1949; 
Turner and Weiss, 1963). Crystal-orientation measure­
ments usually involve optical measurements of the c-axis 
orientations. Langway (1958) described techniques for 
obtaining ice-crystal c-axis orientation data using a 
Rigsby universal stage. One orientation m(}asurement is 
made for each ice crystal in a sample, and these data are 
plotted on a Schmidt equal-area net that represents the 
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surface of a hemisphere of unit radius. The points on the 
net comprise an orientation diagram that depicts the 
relative spatial concentration of the data. An orientation 
diagram may indicate a random or a patterned structure, 
depending on the dominant features of the diagram. A 
random fabric refers to a homogeneous distribution of the 
data and represents an isotropic material. In this 
configuration, there is an equal probability of finding 
points in equal-area elements anywhere on the net. In 
contrast, the most significant feature of an anisotropic 
material is the preferred orientation indicated by the 
grouping of points on the net. A "girdle" corresponds to 
data that are distributed along a great circle of the net, 
indicating a preferred planar orientation of the c-axes. 
The pole of this great circle is termed the girdle axis. An 
area of highly concentrated data points (point maximum) 
indicates a linear-preferred orientation of the crystals in 
the fabric. The statistical significance of the orientation 
diagram increases if the main features are reproducible in 
different comparable samples from the same homogen­
eous body. 

Pearson (190 I ) used statistical arguments to develop 
the equation of a line or plane that provided the closest fit 
to points in space when all variables contain error. The 
solution depends on knowledge of the means, standard 
deviation and correlations of the variables. A significant 
result was that the plane of best fit contains the line of best 
fit. Watson (1966) presented a matrix of sums of direction 
cosines of vectors representing crystal orientation in a 
Cartesian coordinate system. The reasoning presented 
was that the greatest moment of inertia of the points 
would be about the eigenvector corresponding to the 
minimum eigenvalue of the matrix. Mardia (1972) used 
the same reasoning to obtain this matrix and interpret the 
results. Both Watson and Mardia proposed distributions 
for the data on the sphere, and developed statistical 
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analyses based on these assumptions. Diggle and Fisher 
(1985) described a program that computed these 
eigenvalues and eigenvectors and quantitatively con­
toured spherical data. The analysis of ice-fabric diagrams 
has been largely visual, frequently based on approximate 
data-concentration contours drawn on the net. However, 
Herron and Langway (1982) applied the eigenvalue/ 
eigenvector method of Mardia (1972) to study various 
fabric types, including small-circle girdles and multi­
maxima patterns. The results were interpreted qualit­
atively and it was not clear whether any fabrics could be 
quantitatively assessed by this method. 

In this paper, we will seek a plane passing through the 
origin that minimizes the sum of the squared normal 
distances from the data, and obtain the dominant c-axis 
orientation in this plane. A detailed derivation from 
simple geometric arguments is developed, yielding least­
squares equations that minimize the orthogonal distance 
between the data and the best line and plane. The 
eigenvalue problem that results is the same as that 
obtained by Pearson, Watson and Mardia. We identify 
an implicit assumption in this method of equal-measure­
ment uncertainty in each coordinate at all points on the 
sphere. Normalized eigenvalues provide quantitative 
measures of physical distance of the data from the plane 
and line, specifying the directional characteristics of the c­
axes of crystals in a sample. Mean angular measures of 
variability are also developed. This analysis clearly 
indicates the fabrics that are well-described by the 
eigenvalue/eigenvector method, and provides a frame­
work for developing related quantitative methods for 
other fabric types . We demonstrate the capabilities of the 
analysis on data sets representing samples of first-year sea 
ice. The results are viewed on special Schmidt nets that 
represent data hemispheres defined by the best plane and 
the predominant basal plane, in addition to the xy-plane. 

MEASUREMENT ERRORS AND DATA FITTING 

Measurement of the c-axis orientation of an ice crystal 
with a Rigsby universal stage provides an azimuth angle, 
the direction of inclination as right or left and the type of 
measurement as polar or equatorial. From these data, we 
obtain a pair of angles ((), ifJ) that define the orientation 
(Ferrick and Claffey, 1992). The line representing each 
crystal in the sample is plotted through the origin of a unit 
sphere. Each of these lines intersects the surface of the 
sphere at one point in each hemisphere and the lower 
hemisphere is traditionally studied. Our analysis repres­
ents the c-axis of each ice crystal as a three-dimensional 
unit vector from the origin in the half-space below the xy­
plane, yielding an array of points on the surface of a 
hemisphere of unit radius p. The three-dimensional 
Cartesian coordinates of each point on this hemisphere 
(Fig. 1) are obtained directly from the spherical 
cordinates (p, (), ifJ) as 

x = p sin ifJ cos () 

y = psinifJsin(} 

z = pcosifJ. 

(1) 

Ferrick and Claffey: Vector anafysis of ice-fabric data 
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Fig. 1. Sketch of unit vectors 1, 2 ... , m, ... N representing 
the c-axis orientations of ice crystals in a sample. The 
hemisphere, z::; 0, is shown by convention. 

The relative uncertainties in x, y and z caused by 
measurement error must be understood to identify an 
appropriate method for fitting the ice-fabric data. 
Langway (1958) listed several sources of error in the 
measurement of c-axis orientation, and indicated that the 
errors in azimuth and inclination should each be less than 
5°. We observe that the same statement holds for errors in 
() and 4>. Taking these errors as random and each of 
magnitude [3, we have from Equations (1) that 

x = sin(4) ± [3) cos((} ± [3) 

Y = sine 4> ± [3) sin(() ± [3) 

z = cos(4) ± [3) . 

(2) 

Expanding Equations (2) and grouping terms according 
to the error, we obtain 

x = sin ifJ cos () cos2 {3 + sin [3 (A cos (3 + E sin [3) 

y = sin ifJ sin () cos2 {3 + sin [3 (C cos (3 + D sin [3) (3) 

z = cos ifJ cos [3 + sin (3 (E) , 

where A, E, C, D and E are composed of sines and 
cosines of ifJ and (). The relationships given in Equations 
(I) are contained in Equations (3), but modified by errors 
of (3. An error in () only affects x and y. The resulting 
uncertainty in each coordinate is periodic, depending on 
(), and out of phase with the other. The amplitude of these 
errors approaches zero near the pole and a maximum at 
the equator. Errors in 4> affect all three Cartesian 
coordinates. The uncertainty in z is larger near the 
equator and smaller near the pole than the larger of x and 
y. Uncertainties in x andy resulting from errors in ifJ again 
vary individually with (), displaying maximum ampli­
tudes near the pole and approaching zero near the 
equator. 

Classical least-squares methods require a dependent 
variable but the coordinates of each c-axis are all 
independent. Reed (1989) presented a method for fitting 
a line to points in the plane when both coordinates of 
these points are independent and uncertain due to 
measurement error. The method allows the errors in the 
fit to be weighted according to the relative uncertainties 
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in the measurement of x and y. The measurement errors 
discussed above could be considered by extending this 
method to three dimensions. However, we note for small 
f3 that cos f3 ~ cos2 f3 :::::: 1 and sin f3 :::::: 0, indicating that 
errors in x,y and z resulting from measurement errors are 
relatively small. As a first approximation, we will choose 
equal weighting in each direction at every point and the 
best-fit line and plane will minimize the perpendicular 
distances from the data. 

DETERMINA TION OF THE BEST PLANE BY 
ORTHOGONAL LEAST SQUARES 

The unit vectors representing the c-axis orientation of 
each crystal in a sample have a common point at the 
origin of the unit sphere. The problem we consider here is 
to find the plane of best fit to fabric data that contains the 
origin, and to provide quantitative measures of the 
quality of the fit. The form of the equation of a plane 
through the origin is 

f(x, y, z) = Ax + By + Cz = 0 . (4) 

We choose the function F(x, y, z; Cl, C2, C3) with this same 
form and depending linearly on parameters Cl, C2, C3 as 

3 

F(x, y, z; Cl, C2, C3) = Cl<Pl + C2<P2 + C3<P3 = 'L e;<Pi = 0 
i=l 

(5) 

where <Pl = X, <P2 = y, <P3 = Z are a specified set of 
mutually orthogonal functions and the e; are unknowns 
to be determined. The pole of a plane is the point of 
intersection P with the hemisphere of a line through the 
origin normal to the plane. The unit normal n to the 
plane of best fit has the form 

(6) 

where il , i2 and h are unit vectors in the x, y and z 
directions, respectively, and repeated indices indicate 
summation. 

A unit vector in three-dimensional space represents 
each crystal, and the total number of crystals in a sample 
N used to fit the plane should be much larger than 3. The 
unit vector representing the mth crystal (Fig. 2) is 

Best Fit I Basal Plane 

Fig. 2. Sketch of the unit vector U m representing the mth 
crystal in an ice sample and its projections v m on to the 
best-fit plane or the basal plane, and W m on to n or c the 
unit normal vector to the corresponding plane. The angles 
between Urn and the best (plane, line) are (am, Om), 
respectively. 

294 

Um = xmil + Ym i2 + Zmi 3 

= CP1m il + <P2m h + CP3m i3 = CPjmij . 
(7) 

This vector intersects the unit sphere at (xm, Ym, zm) and 
we can evaluate F(Xm,Ym,Zm;C1,C2,C3) = Fm with 
Equation (5) as 

The vector wm is the projection of Um on to n, 
representing the normal vector from the plane to the 
point (xm, Ym, zm) 

Wm=(um·n)n (9) 

where (um . n) is a scalar product between unit vectors. 
Throughout this development, the notation (I"V) over a 
vector indicates that it does not have unit length. The 
normal distance dm from point m to the plane is 

elm = (um . n) = C1Xm + C2Ym + C3Zm (10) 

and we observe that 

(11) 

The sign of dm distinguishes distances on opposite sides of 
the plane. 

The orthogonal projection ofum in the best-fit plane is 
represented by the vector Vm , and 

vm = Um - wm = Xmh + Ymi 2 + Zm i3 = (f;jmij . 
(12) 

This vector joins the origin and the point Xm, Ym, zm, the 
orthogonal projection of (xm, Ym, zm) in the plane. The 
vector vm is unique and the best approximation of Urn in 
the plane. An equivalent statement is that the closest 
point in the plane to (xm, Ym, zm) is (Xm, Ym, zm). From 
Equation (12), we can determine xm,Ym,zm as 

or 

xm = Xm - dmCl 

Ym = Yrn - dmC2 

Zm = Zm - dmc3 

~im = CPim - elme; 

for m = 1,2, ... , N 

for i = 1,2,3 (13) 

where CPim and (f;im represent elements of N-dimensional 
vectors <Pi and (f;i, respectively. 

We want to choose the e; values that specify the plane 
through the origin with normal distances I dm I between 
the points representing the N crystals in a sample and the 
plane that are as small as possible. The N-vector 
cl = (db d2 , ••• , dN f represents the individual normal 
distances from the data to the plane, where T indicates 
the transpose. Minimum normal distance to the plane is 
equivalent to maximum length of Vm , the projection of 
U m on to the plane. We will seek a least-squares fit and 
define E as a function of the unknown coefficients 

Because we consider data projected on to a plane, the 
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hemisphere in which the data appears is arbitrary. The 
sum of the squares of the lengths of V m will be maximized 
and the sum of the squared distances from the plane dm 
will be minimized where the gradient of E vanishes. 

(15) 

with ct indicating coefficients of the plane of best fit. 
We now perform the differentiation indicated in 

Equation (15) with respect to Cj, where each choice ofj 
yields a scalar equation of the form 

8E = 2~im 8~im = 0 . 
8cj 8cj 

(16) 

From Equation (13) we obtain 

8~im ( 8dm ) -- = - dmOij + Ci--
8cj 8cj 

(17) 

where Oij is the Kronecker delta. We observe from 
Equation (10) that dm = Ck<Pkm, and 

8dm 
~ = <PkmOjk = <Pjm . (18) 
vCj 

Inserting Equations (13), (17) and (18) into Equation 
(16), we obtain the normal equations as 

(<Pim - dmCi) (dmOij + Ci<Pjm) = 0 

or expanding and re-arranging as 

<pjmdm(1 - cl) + <Pim<PjmCi = dm
2cj . (19) 

Finally, because n is a unit vector and i is a summation 
index, (1 - cn = 0 and Equation (19) becomes 

(20) 

In Equation (20) we observe that d,; = A, a constant, 
yielding an eigenvalue problem, 

Ac= AC (21) 

where each term aij of the 3 x 3 symmetric matrix A is 

(22) 

The eigenvalue A is the sum of the squared normal 
distances of the data from the corresponding plane. 
Equation (21 ) in homogeneous form indicates that non­
trivial solutions exist if and only if 

det(A - AI) = 0 . (23) 

The determinant given in Equation (23) yields a cubic 
equation called the characteristic polynomial 

Following Beyer (1987), we obtain the solution as 

where 

{

mcos(3 - p/3 
A = mcos({3 - 2-rr/3) - pl3 

mcos({3 - 4-rr/3) - pl3 

(3 = !cos-1(3b/am) 

m = 2yf-a/3 

a = !(3q _ p2) 

b = ir(2p3 - 9pq + 27r) . 

(24) 

(25) 

Ferrick and Claffey: Vector analysis of ice-fabric data 

As p, q and r are real, the eigenvalues will also be real. 
Because A is a real symmetric matrix, it is similar to a 
diagonal matrix B composed of the eigenvalues of A, and 
therefore the eigenvalues of A are real. Similar matrices 
have the same trace and the same determinant. The trace 
of a matrix is the sum of the elements on the principal 
diagonal. The elements all, a22 and a33 of matrix A 
represent the sum of the squares of the distances between 
the data and the three planes defined by the coordinate 
axes. As each crystal is represented by a unit vector, 

333 
tr(A) = E aii = N = tr(B) = E bii = E Ai 

i-I i - I i-I 

(26) 

indicating that the sum of the eigenvalues is N, the total 
number of crystals in the sample. The determinants of A 
and B are the product of the eigenvalues. The eigenvalues 
of A are non-negative if A is positive semi-definite; that is, 
xT Ax ~ 0 for any x. Since the eigenvalues represent sums 
of squared distances, Ai ~ 0 and matrix A is positive semi­
definite. We will designate the eigenvalues in increasing 
order according to magnitude as AI:::; A2 :::; A3, and 
define normalized eigenvalues as 

A" = Ai 
, N · (27) 

The normalized eigenvalues give the mean squared 
normal distance between the points on the unit sphere 
defined by the unit vectors and the plane normal to the 
corresponding eigenvector. These eigenvalues provide a 
measure of the fit that is equivalent to the variance in 
classical dependent variable least-squares methods. 

Eigenvectors of a real symmetric matrix correspond­
ing to different eigenvalues are orthogonal and, because 
the eigenvalues are real, the eigenvectors can be taken to 
be real. The vector v is an eigenvector for A belonging to 
the eigenvalue A if 

Av = AV and v =I- 0 . (28) 

The lengths of these eigenvectors are arbitrary, and we 
normalize them to unit length to obtain an orthonormal 
basis in three-dimensional space. Each eigenvector 
represents the unit normal to a plane, and the 
corresponding eigenvalue gives the sum of the squared 
normal deviations of the data from that plane. The 
minimum eigenvalue defines the plane of best least­
squares fit to the data, and the higher eigenvalues are 
associated with the remaining mutually orthogonal planes 
through the origin. With the origin fixed, the eigenvector 
basis represents a coordinate system that is rotated 
relative to the coordinate axes. 

The eigenvectors written in columns form the matrix 
P. The elements of P are the direction cosines between 
each eigenvector and the coordinate axes . The angle aij 
between the eigenvector Vj and the axis ii is 

-I( 0) -I() aij = cos v j . li = cos Pij . (29) 

Because the columns of Pare orthonormal, P is an 
orthogonal matrix, p-1 = pT is also orthogonal, and 
det P = ±l. Matrices A and B are related through P as 

A=PBpT (30) 

representing a singular value decomposition of A. The 
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diagonal elements of B are the singular values a i as well as 
the eigenvalues of A. With singular values ordered by 
their magnitude in the same way as the eigenvalues, the 
condition number of matrix A of full rank is 

a3 >'3 
cond(A) = - = - . 

a1 >'1 
(31) 

Condition numbers »1 indicate that A is nearly 
singular. 

The sum of the squared normal distances between the 
data and the best plane, given by >'1, provides a measure 
of the planar structure of an ice sample. Values of >'1 or >.~ 
approaching zero indicate an increasingly planar ice 
structure. If >'1 = 0, then cond (A ) = 00 and the data are 
perfectly planar. A visual representation of the error is 
obtained from the angle Om between the c-axis of an 
individual crystal and its projection in the best plane (Fig. 
2), 

The absolute value in Equation (32) is needed if the angle 
between U m and n is greater than 7r/2. The average 
angular deviation a between the data and the best plane 
is a parameter we term the planar spread that can be 
readily determined and understood: 

1 N 
a= NE Om· 

m=l 

(33) 

A small planar spread indicates a small mean angle 
between the c-axes of crystals in a sample and the plane. 

A development that parallels the above to find the 
best plane by classical dependent variable least squares 
has been given by Ferrick and Claffey (1992) . This 
standard method seeks a minimum error in the dependent 
variable and is more commonly available than the 
orthogonal method, but the results are sensitive to the 
choice of dependent variable. The normal distances 
between the data and the plane taking z as the 
dependent variable can be determined as 

I wm I = (C1Xm + C2Ym - zm) for m = 1,2, .. . , N . 
(cr + Cl + I)! 

(34) 

The sum of the squared normal distances given in 
Equation (34) is the same measure as the minimum 
eigenvalue. Similar expressions result when x or y is taken 
as the dependent variable. 

ALIGNMENT OF THE c-AXES 

An area of highly concentrated c-axis data on the Schmidt 
net indicates a linear preferred orientation of the ice 
crystals of a sample, and suggests the need to determine 
the predominant optic-axis orientation of the fabric . We 
will locate this linear orientation by following a 
development parallel to that used to determine the best 
plane. The unit vector c represents the unknown 
preferred c-axis orientation of the crystals in a sample, 
and is expressed as 

(35) 
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where the primes distinguish these coefficients from those 
of the unit vector n given in Equation (6). The plane 
through the origin that is normal to c represents the 
predominant basal plane orientation of the crystals in the 
sample and is described by 

F(x , y , Zj c;,c;, c;) = c;x + c;Y + c; Z = 0 . (36) 

As before, the unit vector U m represents the mth crystal c­
axis orientation and intersects the unit hemisphere at 
(xm ' Ym, zm) . In order to take advantage of the detail 
given in the previous development, the vector projections 
ofum on to the plane and its normal vector are again vm 
and VIm, respectively. Then, with c replacing n and a 
different plane, Figure 2 represents our present condition. 

When searching for the plane of best fit, we sought to 
minimize the squared normal distance. However, the 
closest representation of U m by the unit vector c requires 
that we maximize the sum of the squares of the lengths of 
Wm. The predominant basal plane orientation is then the 
plane of maximum squared normal error with the data. 
Each step in the previous development applies except that 
Ci is replaced by cl. Note that the matrix A given in 
Equation (22) is unchanged because it depends only on 
the coefficients of the intersections of the individual unit 
vectors U m with the unit hemisphere. Therefore, we are 
solving the same eigenvalue problem as before. The 
eigenvectors obtained in Equation (28) are orthogonal, 
and c is contained in the best plane. Kass (1989) has 
shown for the general case that spaces of closest fit are 
nested. Every p-dimensional sub-space of closest fit lies in 
one of dimension p + I. The third eigenvector s together 
with c form the plane of best fit to the c-axes, and sand n 
form the predominant basal plane (Fig. 3). The direction 
cosines of the angles between the preferred linear 
orientation and the coordinate axes are given in matrix 
P, and the angles can be obtained from Equation (29). 

Fig. 3. Unit vector c representing the linear preferred c­
axis orientations of the ice fabric, and the long axis of the 
columnar crystals of an ice sample are represented by n. 
The unit vectors nand s provide the predominant 
orientation of the basal plane of the sample. A unit vector 
u represents the direction of load application on the 
sample, ;;- is the projection of this vector on to the basal 
plane, ac is the angle between the applied load and c, and 
a z is the angle between the load and n. 
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The mean squared normal distance between the data 
and the vector c is A1' + A; or I - A;. Again, using 
angles to visualize error, the angle Om between an 
individual unit vector and its projection on to c (Fig. 
2), always ~90°, is obtained as 

(37) 

If Sm obtained with Equation (37) is > 90°, Om is replaced 
by its supplement. The average angle 8 between the data 
and c is 

(38) 

The parameter 8 is termed the linear spread, and a small 
8 indicates that the angles between the preferred 
orientation and the data are also small. 

As a group, the eigenvalues provide measures of the 
structure of the ice sample. An eigenvalue of zero occurs if 
the data are two-dimensional, and a pair of zero 
eigenvalues represent one-dimensional data. More gen­
erally, small A; ~ A; together with large A; occurs with 
aligned data, and small A1' with significantly larger A2' 
and A; indicates planar data. If, in addition to small 
A;, A; ~ A;, the crystal orientations distribute symmet­
rically about a great circle of the sphere. With 
A1' = A; = A; every set of orthonormal vectors will serve 
as the eigenvectors. The data are maximally dispersed 
with respect to lines and planes, and the material is 
isotropic. 

The eigenvalue/eigenvector analysis has been applied 
to fabrics displaying other patterns, including multi­
maxima and small-circle girdles. Fitting these data with a 
best line or plane yields results that can only be 
qualitatively interpreted. However, when a fabric dis­
plays several point maxima, it may be possible to 
objectively subdivide the data. The best line for each 
sub-set would quantify the orientation and alignment of 
the corresponding point maximum. The intersection of 
cones with orientation diagrams was drawn by Kohnen 
and Cow (1979) to bound small-circle girdle fabrics. A 
small-circle girdle fabric could be assessed quantitatively 
by finding a circular cone with its axis defined by the best 
line and its apex at the origin. The surface of the cone 
would be located to minimize the sum of the squared 
distances with the data, and variability measures could 
again be defined in terms of distance and angle . 

If the c-axes in a given sample are sufficiently aligned, 
the mechanical properties of the ice will be affected. If q is 
a unit vector in the direction of an applied force, the angle 
(1e between the load and the dominant c-axis direction is 

(39) 

and the complement of U c is the angle between the load 
and the basal plane (Fig. 3) . For a columnar ice sample, n 
gives the predominant direction of crystal elongation and 
growth. The angle (1z between the load and the vector n is 
obtained as 

(40) 

Ferrick and Claffey: Vector anarysis of ice-fabric data 

SCHMIDT -NET REPRESENTATIONS 

The details necessary for automated plotting of the data, 
the plane of best fit and its pole, and vector of best fit on 
the Schmidt net in the xy-plane have been given by 
Ferrick and Claffey (1992). The intercept of c must fall on 
the great circle of best planar fit. 

During field ice coring and thin-section preparation, a 
sample intended as horizontal may deviate by an angle of 
several degrees . Sea ice with horizontal c-axis alignment 
will then be represented by a best plane at this angle. The 
linear dimensions on the periphery of the Schmidt net are 
distorted, and it is difficult to judge normal distances 
between the data in this region and the trace of the best 
plane. Points that appear near the perimeter and directly 
across the net from each other represent crystals with 
close planar alignment. For these reasons, viewing the 
data on Schmidt nets drawn on alternative planes is 
frequently advantageous. Viewing the data on a Schmidt 
net drawn in the best-fit plane with n vertical eliminates 
sample-preparation error for horizontally aligned sea ice. 
The great circle of the best plane falls on the perimeter of 
the net and the pole of this plane appears at the origin. 
With c vertical, the plane of the Schmidt net is the 
predominant basal plane of the sample, and the data are 
transformed from the perimeter to the middle of the net. 
The great circle of the plane of best fit must then pass 
through the origin. Accurate visual assessments of the 
linear and planar preferred orien tations of the sample are 
possible on this net because of minimal distortion of linear 
distance near the origin. With these planes for mapping, 
the importance of net distortion, sample preparation and 
measurement accuracy are minimized by providing 
optimal views of the crystal fabric. 

Unit vectors in the Cartesian coordinate directions 
were used in Equation (7) to obtain a unit vector 
representing each crystal in a sample. These unit vectors 
are related to an orthogonal coordinate system of 
eigenvectors (i;, i;, i;) by the matrix P as 

( 41) 

This relationship is depicted in Figure 4 with eigenvectors 
n , c and s as the (primed) unit eigenvectors. The 
relationship between a general vector in the Cartesian 
system and its transform in the eigenvector system is 
(Hildebrand, 1965) 

i 
- 3 

Fig. 4. Relationship between the Cartesian and eigenvector 
coordinate systems for visualizing alternate Schmidt-net 
representations of icejabric data. 
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Urn =P Urn=P Urn (42) 

and P is termed the transformation matrix. Because Pis 
orthogonal, transformations using Pare orthogonal. 
Orthogonal transformations maintain length and pre­
serve angle, and can be interpreted as a combination of 
rotations and reflections . The order of the eigenvector 
placement in P determines the transformation, and n or c 
is made vertical. 

APPLICATIONS 

We analyzed the ice fabric of many samples of first-year 
sea ice taken from the Beaufort Sea. Both orthogonal and 
dependent-variable least-squares analyses were used and 
compared. These cases are presented in Figure 5 in an 
arbitrary order from highest to lowest mean normal error 
of the best plane obtained from the orthogonal analysis. 
In all cases, this approach provided a lower bound to the 
normal error of the dependent-variable methods. The 
individual samples are designated by the dependent­
variable analysis with mean normal error closest to that of 
the orthogonal analysis. The dashed lines connecting the 
mean normal errors for the dependent-variable solutions 
are erratic. Different dependent-variable choices pro­
duced dramatically different planes with widely varying 
normal errors. The coordinate axis most nearly normal to 
the plane of the data provided the lowest mean error. 
Diminishing mean normal error generally corresponds to 

10 1 

diminishing planar spread . However, the mlOlmlzations 
of these two parameters are not equivalent, explaining the 
lack of perfect agreement between the trends plotted in 
Figure 5. The mean normal errors for most of these cases 
are less than 0.1, corresponding to planar spreads of less 
than 12°. 

The same cases were also analyzed for preferred 
alignment of the c-axes. Mean squared normal distance 
between the data and the best vector c is 1 - >..; . The 
maximum normalized eigenvalue and the linear spread 
are displayed in Figure 6. Values of >..; that exceed 0.9 
correspond to linear spreads of less than 15°. Linear 
spread is larger than planar spread because it represents 
angles with a particular line in the plane, while planar 
spread represents angles with the plane itself. Comparing 
Figures 5 and 6, we observe that increasingly planar sea­
ice fabrics do not necessarily correspond to the degree of 
preferred alignment. 

Schmidt-net plots of the data representing cases 
Zl, ZlOT and Zll are presented in Figure 7 and parameters 
developed from these data are given in Table 1. Included 
on each net are the intersections with the hemisphere of 
the plane of best fit, the pole P of this plane, and the 
vector c of best linear fit. The best line is always contained 
in the best plane. In case Zl , the normalized eigenvalues 
are approximately equal, the planar and linear spreads 
are large, and the matrix A is non-singular. These 
conditions indicate that the data are uniformly distrib­
uted over the surface of the sphere. Cases ZlOT and Zll are 
very different from Z,l, but similar to each other. For this 

Case 

I 

~ Dependent (z) 

11 

-
6 

4 

2 

z ~ 

~ 
0' ., 

"U 

"U 
0 

~ 
Cl. 
(j) 

<; 
c 
0 

CL 
ICl 

Fig. 5. Mean squared normal error for several sea-ice samples from orthogonal and x-,y- and z-dependent variable least­
squares analyses. Planar spread from the best plane is given for these same cases. The cases are arranged arbitrarily 
according to >.; of the orthogonal analysis and named in sequence according to the best dependent-variable solution. 
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Fig. 6. Maximum normali<.ed eigenvalue and linear spread in degrees for several sea-ice samples. The order and labeling 
of the cases is the same as in Figure 5. 

group of samples >'1 is smallest for Zll, indicating that 
these data are the most closely represented by a plane. 
Sample ZlOT has the smallest >.; value together with a 
small >.; and is the most linear case in this group. The 
di~tribution of data indicated by the eigenvalues is 
confirmed by the angles that quantify the planar and 

linear spreads ex and 8, respectively, for each sample. The 
matrix A is nearly singular in the latter two cases as 
>.; ~ 0 and the condition number is large. 

A group of samples taken in close proximity and from 
the same vertical position in the ice sheet should have 
similar structure. Together, the individual and coliective 

Table 1. Normali<.ed eigenvalues and condition number of matrix A, and planar and linear spread of the data for selected 
cases. The type of the distribution is interpreted from these parameters 

Case N >.; >.; >.; a 8 Cond( A) Type of 
distribution 

deg deg 

Zl 90 0.294 0.351 0.355 29.3 56.4 1.21 Uniform 

Zn 77 0.00235 0.0755 0.922 2.3 13.5 392 Planar /Iinear 

ZlOT 44 0.00452 0.0417 0.954 3.2 10.4 211 Linear/planar 

ZlOM 22 0.00073 0.0863 0.913 1.4 14.2 1250 Planar /Iinear 

ZlOB 23 0.00140 0.0813 0.917 1.8 14.9 653 Planar /linear 

ZlO 89 0.00359 0.0638 0.933 2.7 12.5 260 Planar /linear 
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Fig. 7. Schmidt-net plots of cases Zl. ZlOT and zn 
including the intersections with the hemisphere of the best 
plane, the pole P of this plane, and the best vector c. 

analyses of these samples provide quantitative measures of 
comparison that indicate the sample size needed to 
represent the ice fabric at that location. Three samples 
designated ZlOT, ZlOM, ZlOB were taken from an ice core at 
1.3 m from the surface. The Schmidt-net plots of both the 
data and the computed fits are presented in Figure 7 for 
zll and in Figure 8 for the other samples and the 
composite data. Each of these cases has nearly the same 
planar structure, pole and linear structure. This similarity 
is quantified by the eigenvalues, planar spreads and linear 
spreads given in Table 1. 

All the Schmidt nets presented above depict the lower 
hemisphere on the xy-plane. Alternative Schmidt nets are 
obtained for the hemispheres below the best fit and 
predominant basal planes using Equation (42) and a P 
matrix with different eigenvector placement in each case. 
As a result of these transformations, the position of the 
data on the net shifts, correcting for sample-preparation 
error and allowing a visual assessment of the distances 
from the points to the best line and plane. Figure 9 gives 
the xy and the alternative nets for sample ZlOT. The data 
are near the perimeter of the net in the standard xy-plot. 
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Fig. 8. Schmidt-net plots of cases ZlOM, ZlOB and 
composite case ZlO including the intersections with the 
hemisphere of the best plane, the pole P of this plane, and 
the best vector c. 

The net in the best plane displays a balanced distribution 
of data on opposite sides of the net. The net in the basal 
plane depicts the points as a single group near the center 
of the net where linear distance is accurately represented 
and the linear and planar fits can be readily evaluated 
and compared to other samples. 

CONCLUSIONS 

A quantitative characterization of ice fabrics is critical for 
understanding the mechanical properties of sea ice, but 
was not previously available. An orthogonalleast-squares 
analysis of uniaxial crystal-orientation data was devel­
oped from geometric arguments with unit vectors 
representing individual crystal orientations. Minimiz­
ation of the perpendicular distances with a best line or 
plane provided an eigenvalue problem that was identical 
to that obtained by other investigators using different 
methods. Normalized eigenvalues give the mean squared 
normal distance of the data from the line or plane, and 
corresponding eigenvectors provide the dominant c-axis, 
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Fig. 9. Schmidt-net plots of case ZlOT in the standard xy­
plane with the z-axis vertical, in the best plane with n 
vertical, and in the predominant basal plane with c 
vertical. 

planar and basal plane orientations, and the direction of 
columnar-crystal elongation. The preferred c-axis orient­
ation is always contained in the plane of best fit. The 
method is the basis of a relatively simple algorithm for 
computer analysis of large volumes of orientation data. 

The formulation of a least-squares method greatly 
influences the results. This observation was demonstrated 
for many samples of first-year sea ice by comparing the 
mean squared normal distance of the data with planes 
obtained using the classical dependent-variable least­
squares approaches and the orthogonal method. The 
dependent-variable solutions produced dramatically 
different planes of best fit with erratic and widely 
varying normal errors . The error approached the 
minimum given by the orthogonal method when the 
dependent-variable direction was almost normal to the 
best plane. Orthogonalleast-squares and other analogous 
methods producing the eigenvalue problem all rely on the 
implicit assumption of equal measurement error in all 
coordinate directions at all points on the unit sphere. We 
find that this assumption is a first approximation for 
optical data obtained with the universal stage. 

Normalized eigenvalues give the mean squared 

Ferrick and Claffey: Vector analysis of ice-fabric data 

normal distance between the data on the unit sphere 
and the plane through the origin normal to the 
corresponding eigenvector. This measure of the planar 
fit to data is equivalent to the variance in classical 
dependent-variable least-squares methods . The majority 
of the sea-ice samples studied had planar fabrics and 
several had aligned fabrics, characterized by mean 
squared normal distances of less than 0.1 with the data . 
These relative distances are well represented by the 
angular measures of linear and planar spread; however, 
the distance and angular error measures are not 
equivalent. For these samples, increasingly planar 
orientations of the c-axes do not correspond to increas­
ingly linear fabrics . 

The normalized eigenvalues allow quantitative com­
parisons betwen samples, and of composite data repres­
enting a collection of several samples. Proximate samples 
from the same vertical position in the ice sheet had nearly 
identical structures. This similarity, quantified by the 
computed eigenvalues and eigenvectors, was displayed on 
Schmidt nets for the individual samples and the 
composite. The capability to view the data and the 
analytical results on Schmidt nets in the planes defined by 
the eigenvectors was developed, providing information to 
improve the interpretation of the data and the fits by 
minimizing the importance of sample preparation, net 
distortion and measurement accuracy limitations. 
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