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Subspaces spanned by eigenforms with
nonvanishing twisted central L-values

June Kayath, Connor Lane, Ben Neifeld, Tianyu Ni®, and Hui Xue

Abstract. In this article, we construct explicit spanning sets for two spaces of modular forms.
One is the subspace generated by integral-weight Hecke eigenforms with nonvanishing quadratic
twisted central L-values. The other is a subspace generated by half-integral weight Hecke eigenforms
with certain nonvanishing Fourier coefficients. Along the way, we show that these subspaces are
isomorphic via the Shimura lift.

1 Introduction

Let £ > 2 be an integer. For N > 1and a Dirichlet character y modulo N, let M,(N, y)
and S¢(N, y) be the space of modular forms and cusp forms of weight ¢, level N, and
nebentypus y, respectively. When y is trivial, we simply write My(N) and S¢(N). Let
My41/2(4N) and Sp,1/,(4N) be the space of modular forms and the space of cusp
forms of weight £ + 1/2 for Iy (4N), respectively. For N = 1, we recall the Kohnen [10]
plus space as the subspace

M],o(4) = {f = Y cp(n)g" € Meaya(4) | ¢(n) = 0if (-1)°n =2,3(mod 4)},

n>0

andput Sy, ,(4) := My, ,(4) N Sg.172(4). Let D be a fundamental discriminant (i.e.,

D =1 or is the discriminant of a quadratic field) such that (-1)“D > 0. Following
Kohnen [10, p. 251], for f(z) = ¥ ,50 ¢f(n)q" € M2'+1/2(4), we define its D-th Shimura
lift as

(11) SD(Zcf(n)q“):= Cf§°)LD<1-e>+z Z(Ij)d“Cf(IDIZZ) 9"

n>0 nz1 \d|n

where (2) is the Kronecker symbol. It is known that S p maps M;,, /2(4) to Ma(1) and
1 /2 (4) to Sp¢(1), and commutes with the action of Hecke operators (see Kohnen [10,
Theorem 1] and Shimura [19]).
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2 J. Kayath et al.

Now, we recall the Selberg identity on the Shimura lift. Let 6(z) = Y,z q”z €
M;/,(4) be the Jacobi theta function. Selberg observed that for a normalized Hecke
eigenform f(z) € My(1) with as(1) = 1, the first Shimura lift provides the identity

(12) 81(f(42)0(2)) = f(2)* € My (1).
For a fundamental discriminant D with (-1)¥D > 0 with k > 4 an integer, if one
defines

Fp(z) = Trf)(Gk,D(z)z) € My (1)

si0-3(-2

-1
2 ) z_k) pr’ Tl‘ip(Gk,4D(4Z)6(|D|Z)) € Mlt+1/2 (4),

then Kohnen-Zagier [9, Proposition 3] proved the following generalization of (1.2):

(1.3) 8p(9p(2)) = Fp(2).

We must make several definitions for the above to make sense. The Eisenstein series
Gy,p and Gy 4p are given by [9, p. 185]

19 o) <20 (2 (Bt ean (01 (),

n=1\dln
15)  Gran(®) =Gro(42) - 27 (3] Gro(22) e Mi (401, (2)).

where Lp(s) = X,5; (%) n~*. The operator pr* is the projection from Me+1/2(4) to
Mj,,,(4) given by [9, p. 195]

1-(

+ _l)gi 16 1
16) (b 8)(2) = —— = (T V) () + 3(2),

where V(g)(2) = g(z+ 1) = g(2)[x+12[ ¢ 1 ], using the notation of (1.7) and (1.8).
Additionally, for N | M, Tr’ is the trace map

(17) Ty : Mu(M) > Mu(N), g 3 glwys
yelo (M)\Io(N)

where for any real number mand y = [ § ] € GL; (R), we define the slash operator [2,
Theorem 7.1]

az+b)

(1) (8lm) (2) = det(y)™*(cz + ) g (2

On the other hand, the Selberg identity (1.2) for the first Shimura lift has been
generalized to the setting of Rankin-Cohen brackets. Let us first introduce the
definition of Rankin-Cohen brackets for modular forms.

Definition 1.1 Let f(z) € M,(T) and g(z) € My(T) be modular forms for some
congruence subgroup I' of weights a and b, respectively. For a nonnegative integer e,
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we define the e-th Rankin-Cohen bracket as

19 Y@@l S () (e,

r
where f(z)(") is the r-th normalized derivative f(z)(") := (2;), dr&fz(,z) of f. Here, a, b
can be in 17 and the binomial coefficients are defined through gamma functions.
Moreover, [f,gle € Marpi2.(T) and [f, gle € Sarpi2.(T) for e >1 (see [2, Theo-
rem 7.1]. We remark that the Rankin-Cohen bracket defined in Zagier [25, (73)] is

related to (1.9) through Fe(a’b)(f(z),g(z)) = (=2mi)®e![f(2), g(2)]. (see [12, (L1)].

Choie-Kohnen-Zhang [1] and Xue [24] independently showed that if k > 4 is an
even integer, f(z) € My (1) is a normalized Hecke eigenform, and e is a nonnegative
integer, then

k+e-1

()
k+2e-1
(*57)
Note that (1.10) was also proved in [17, Proposition B1] when f is an Eisenstein
series. Recently, Wang [21] generalized (1.10) to higher-level forms. Let k > 4 and

e > 0 be integers with ¢ = k + 2e and let D be a fundamental discriminant such that
(-1)D > 0. We introduce functions

(1.11) Fpoke(2) =Trl ([Gr,p(2), Gr,p(2) ]2) € Sae(1),

(1.10) 81([f(42),6(2)].) =

[f(2), £(2) ]ze-

D

-1
D) Sore(@) =5 (1-(3)2) br T [Gran(2). O(IDI), € Sfaya(4).

Note that both Fp k. (z) and Gp .. (z) are cusp forms, since e > 0. Now, we state our
first main result, which can be viewed as a combination of (1.3) and (1.10).

Theorem 1.1  Let D be an odd fundamental discriminant such that (-1)“D > 0 and let
k > 4 and e > 0 be integers such that k + 2e = {. Then, we have the identity

(k+e—1)
(113) 8 (Sp,k.e) = [DI° (k+§e_1)3"p,k,e.

2e

We have required that e > 0 because the case e = 0 is exactly (1.3). Our next main
result concerns the nonvanishing of twisted central values of L-functions associated
with Hecke eigenforms. Before stating the precise result, let us first introduce some
notation.

Definition 1.2 Let D be a fundamental discriminant such that (-1)*D > 0.

(1) Let S%;”(1) denote the subspace of S5/(1) generated by normalized Hecke eigen-
forms f with nonzero central twisted L-values L(f, D, ), where L(f,D,s) =
Yusi (%) ag(n)n™ is the L-function of f twisted by (2). We write S;;” (1) for
the orthogonal complement of SgéD (1), which is spanned by Hecke eigenforms
with vanishing central twisted L-values.
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(2) Let S22 (4) be the subspace of S7.1/2(4) generated by Hecke eigenforms g =

£+1/2
Y us1 €g(n)q" with ¢z (|D]) # 0. We write 82;11)/2(4) for the orthogonal comple-
ment of ng/z (4), which is spanned by Hecke eigenforms g = 3,5, ¢,(1)q" with

cg(|D]) = 0.

The twisted L-function L( f, D, s), originally defined for Re(s) > 0, can be analyt-
ically continued to the whole complex plane, and for a Hecke eigenform f € S,(1)
satisfies [16, Lemma 9.2]:

A(f,D,s) = (-1)* (_21) A(f,D,20 - s),

where A(f,D,s) = (2n)~°T(s)L(f,D,s) is the completed twisted L-function of f.
Since (_21) is the sign of D, the assumption (~1)*D > 0 implies that the functional
equation for L(f, D, s) has a positive sign. Therefore, the subspace S3;” (1) in Defini-
tion 1.2 (1) is not trivially zero. It is speculated that the central L-value L(f, D, ) is
nonvanishing for every Hecke eigenform f € Sy¢(1). Thus, it is believed that S,,(1) =
S 213 (1) for every fundamental discriminant D. For further discussion, see Section 7.

Our second main result gives an explicit construction of a set of generators for
the subspaces S3;”(1) and ngrll) /2(4). We hope this result would help investigate
the aforementioned speculation on the nonvanishing of twisted central L-values.
Furthermore, we prove that the D-th Shimura lift Sp gives an isomorphism between
ngf 1 (4) and S3;°(1), which generalizes Kohnen's results [10, Theorem 2] and
[24, Proposition 3.3].

Theorem 1.2 Let D be an odd fundamental discriminant with (-1)°D > 0. Then,
82;11)/2(4) =Span{Sp ke krze=r and S5’ (1) = Span{Fp k. }rk+ae-20>
where k > 4 and e > 0. Additionally, the restricted D-th Shimura lift
Sp : Spipp(4) = 85,2 (1)

£+1/2

is an isomorphism.

We assume D to be odd throughout the article in order to avoid the technical
complications caused by even D, although we believe our results continue to hold in
this case.

This article is organized as follows. Section 2 discusses the main results of this
article. The proof of Theorem 1.1 is based on the same idea as the proof of (1.10)
(see [1, 24]), but requires explicit computations of the Fourier coefficients of both
sides of (1.13). Most of the technical details required for the proof of Theorem 1.1
are presented in Section 6. Based on the Petersson inner product formulas for Fp .
and Gp x,. derived in Section 5, we explicitly construct a spanning set for S;” (1)
(Proposition 2.4). We then show that the D-th Shimura lift is an isomorphism

from S9°” 1, (4) to $2,P(1) (Proposition 2.2). Finally, using these results, we prove

Proposition 2.6, explicitly constructing a spanning set for ngr]l) 12 (4) and finishing the
proof of Theorem 1.2.
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The remaining sections are dedicated to proofs of the results needed in Section 2.
Section 3 proves an alternate formula for Gp x ., which we use to compute its Fourier
coeflicients in Section 6. Section 4 recalls the theory of Eisenstein series, which will be
useful to the Fourier development of Jp i . and Gp k. in Section 6. Assuming those
two sections, Section 5 derives Petersson inner product formulas for Fp & . and Gp ..
via the Rankin-Selberg convolution. In Section 6, we carry out the computations of
Fourier coeflicients for Theorem L.1. Section 7 discusses the relationship between these
results and their potential applications to the nonvanishing of twisted central L-values
of Hecke eigenforms in Sy4(1).

2 Selberg identity and spanning sets of subspaces

This section proves our main results, assuming the necessary results to be proved later.
We begin by proving Theorem 1.1, a generalization of the Selberg identity.

Proof of Theorem 1.1 Recall that Gp i . (1.12) and Fp ,, (1.11) are cusp forms. Write

8p(Spke(2)) =D gpke(n)g" and TFpie(z) =D, foke(n)q"

nx1 nx1

Comparing the Fourier coefficients fp x,.(n) and gp x.(n) that are, respectively,
given by Lemmas 6.5 and 6.6, it suffices to show for each nonnegative integer pair
(a1, a2) with a; + a, = n|D;| that

(k+e—1)z( a2 ,(2e2:1_<;1)(2e+rk-1)
1) ) (k +2e— )rﬂze(_l)r(k +: —1)(e —rl/.2)4,(a2 @) (aras)".

2e

Without loss of generality we may assume that R < S and compare the coeflicients
of the monomial aR a3 of the two sides of (2.1). The aR a5 -coefficient on the left-hand

side of (2.1) is
(-1) (k+e )(262:_16;1)(26-;](—1)’

and the right-hand side of (2.1) has af a3 -coefficient

e R e o
()

Using Lemma 2.1, we finish the proof of Theorem L.1. [ ]
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Lemma 2.1 Let R < e be nonnegative and k > 4. Then, we have the following identity:
(k+e—1)(k+2e—1)(k+2e—1)
e 2e-R R
(k+2e—1) Z (k+ e—l)(e —1/2)(26 —2r)
=0 e—r r R-r)
where fractional binomial coefficients are defined by the I function.

Proof We reproduce the proof of [24, Proposition 2.1]. By definition, we have

(e—l/z) B T(e+1/2)

r CI(r+D)I(e+1/2-7)

By Legendre’s duplication formulas, we have

T(e+1/2) = feee)!!ﬁ> Me—rs1j2)= He=n)t (2(e-n)

4e-r(e—r)!

These together yield
e-1/2\ (2e)4*"(e-r)\/m (2e)!147"(e—1)!
( r )_ riacel(2(e - )/ rle!(2(e—1))!’
which yields the following formula for each term on the right-hand side:
4r(k+26—1)(k+e—l)(e—l/Z)(Ze—Zr)
2e e—r r R-r
_ (k+2e-1)!(k+e-1)!
(k=D k+7r-1DR-7r)(2e —R—r)lelr!’
The left-hand side expands into
k+e-1\(k+2e-1\(k+2e-1
(00
B (k+e-1!(k+2e-1)!(k+2e-1)!
~el(k-1)!(2e - R)!(k+R-1)IR!(k +2e —1-R)!’

If we cancel (k + e — 1)!(k + 2e — 1)! from both sides, and multiply by R!(k + 2¢ — R —
1), we see that it suffices to show

i( R )(k+2e—R—1)_(k+ze—1)
Z\R-r k+r-1 )] \k+R-1)

After applying the involution r = R — r, this is then Vandermonde’s identity [18, p. 11]

fio(’;)(t’f]) :(’Htm)

forthecaseof n=R,m=k+2e—-R-l,andt=k+R-1. [ ]

We now build toward the proof of Theorem 1.2. We begin by showing that the D-th
Shimura lift gives rise to an isomorphism between Sg 113 /2(4) and S3;° (1), which is a
generalization of [10, Theorem 2] for D = 1.
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Proposition 2.2 Let D be an odd fundamental discriminant with (-1)°D > 0. Then,

the D-th Shimura lift Sp restricts to an isomorphism ng/z (4) > SYP(1) forall € > 6.

Proof Recall that by [10, Theorem 1] or [9, p. 182], if g = 3,5 cg(n)q" € S/, /5 (4) is
a Hecke eigenform and f € Sy¢(1) is the normalized Hecke eigenform corresponding
to g then 8p(g) = c,(|D|) f. This means that 8 p is a monomorphism when restricted

to ngf 1 (4). Thus, in order to show 8p restricts to an isomorphism from ngf 1 (4)

to S2,” (1) it suffices to show that dim Sg;’f/z (4) = dim 8,° (1) since co(|D|) = 0 ifand
onlyif Lp(f,¢) = 0 by [9, Theorem 1].
Note that dim S2;” (1) is the number of Hecke eigenforms in S,,(1) with nonzero

central twisted L-value, and dim 82;11) /2(4) is the number of Hecke eigenforms in

St /2 (4) with nonzero | D|-th Fourier coeflicient. According to [9, Theorem 1], these
two nonvanishing conditions are the same under the Shimura correspondence, thus

we conclude that dim Sg;ll) /2(4) = dim 83;°(1). ]

Remark 2.3 1Inthe £ = 5,7 case, the space of cusp forms Sy, (1) is zero, and so is the
space S, 12 (4). So this proposition is trivially true.

We now construct an explicit spanning set for ng (1). Before doing so, we need
to introduce the period of a modular form. For f € S,,(1) and 0 < ¢ < 2¢ - 2, the t-th
period of f is given by

t!

(2.2) ri(f) = (Comiy it

L(f,t+1).

Here, the L-series of f(2) =Y ,51 429" is L(f,s) = 3,51 ann~*, which converges for
Re(s) > 0 and can be extended analytically to the whole complex plane; for details,
see [14].

Proposition 2.4 The set {Fp k. 2k+ae-20 for 1 < e < | 552 | spans $%;P (1), for all £ > 6.
Proof By Proposition 5.6, we know that if g€ S;;”(1) then g is orthogonal to
the subspace of S5,(1) spanned by {Fp . }2k+4e=20- S0 it suffices to show that the
orthogonal complement of the span of {Fp . }2k+4¢=2¢ is contained in S;éD(l).

We will show that any modular form G = }; c;g;, which is a linear combination of

normalized Hecke eigenforms in g; € S3;” (1) such that (G, Fpx,.) = 0 for all Fp 4.,
must be zero.
Note that Proposition 5.6 and (2.2) imply that

1T(2k +4e - 1)T(k +2e)
2 (2e)!(4m)2k+4e-1T (k)
Lp(1-k) (—2mi)?k+2e-1

Lp(k) (2k+2e-2)!

(ED,k,Ea g]> =

L(gj, D, k+ 2€)r2k+2372(gj)‘

Thus, the orthogonality condition (G, Fp .} = 0 is equivalent to

(2.3) ZCjL(gj,D,k+23)r2k+2272(gj) =0.
j
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Following an idea from the proof of [6, Theorem 1], we define another form
in Sz[(l) bY

F=Y c¢jL(gj, D,k +2e)g;.
j

Hence, (2.3) implies that

rakr2e-2(F) = Y ¢jL(gj» D, k +2e)raki20-2(gj) = 0.
j

Asl<e< [%J and k +2e = ¢, we have { -2 > k > 4. Then, t = 2k + 2e — 2 ranges
through all even values £ +2 <t <2{—-4,s0 r;(F)=0foralleven £ +2 <t <2/ -4.
As a result of the following lemma, we have F = 0. Since L(g;, D,k +2e) # 0 as gj €

SgéD(l), we must have ¢; = 0 for all j, and thus G = 0. ]

Lemma 2.5 LetF € Sy (1) and { > 6, and let r,(F) be the t-th period of F. If r{(F) = 0
for all even t such that { +2 <t <20 -4, then F = 0.

Proof We follow the idea of [23]. By the Eichler-Shimura theory [14, Proposition
2.3(b)] and [23, Remark 2.4], we know that F = 0 if and only if r,(F) = 0 for all even
2 < t < 2¢ — 4. By the Eichler-Shimura relation

(2.4) r:(F) + (=1)'r2__+(F) = 0,

and the assumption that 7, (F) = 0 for alleven ¢ + 2 < t < 2¢ — 4, we know that r,(F) =
0 also for all even 2 < t < ¢ — 4. To show that the periods £ — 4 < t < { + 2 are zero, we
split into cases based on the parity of ¢.

(1) If £ is even, it suffices to show that r,(F) = ry_,(F) = 0. Since ¢ is even, by (2.4),
(2.5) T[(F) + T’g,z(F) =0.

Substituting ¢ = ¢ — 2 into the Eichler-Shimura relation

(2.6)
t 20-2—t
(D'r(F)+ ( )Tzé—z—t+m(F) + Y ( )rm(F) =0
0<ms<t m 0<m<20-2—t m
m=0(mod 2) m=t(mod 2)

and noting that ro(F) + rp¢-»(F) = 0, we obtain

((ﬁ) ; 1) re-a(F) + 2r0(F) = 0.
This equation, along with (2.5), implies that r¢(F) = ry_,(F) = 0 for £ > 6.

(2) If £ is odd, it suffices to show that ry_3(F) = r¢_1(F) = r¢41(F) = 0. Substituting
t = ¢—1into (2.6), we get

3rea(F) + (5 ) l)rgH(F) ; (ﬁ:;)%(p) - 0.
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Since (6;) = (5:;), and we know by (2.4) that ry_3(F) + rg.1(F) = 0, we

conclude that r,_; (F) = 0. Substituting ¢ = £ + 1 into (2.6) yields

f+1 l+1
2re-5(F) + ( 5 )rg_l(F) + (1 + ( A )) re+1(F) =0,
and noting that r,_; (F) = 0, we conclude by (2.4) that
l’g_g,(F) = rg+1(F) =0.
This finishes the proof. [ ]

Finally, we construct a spanning set for 82;11) 12 (4) and finish the proof of Theo-
rem 1.2.

Proposition 2.6  Theset {Sp ket kr2e=0forl<e < [%‘J spans the subspace 82;[1’/2(4),
forall £ > 6.

Proof For a Hecke eigenform g € 82;113/2(4), we have (g, Gp.x,.) = 0 by Proposition
5.7. So g is orthogonal to Span{Sp ¢ } k+2¢-¢ and thus

(2.7) Span{gD,k,e}k+2e:€ < S?;Ii)/z(zl)
Note that Theorem 1.1 implies that

dim Span{Sp ke } k+2e=¢ > dim Span{Fp i ¢ } k+2e=¢-

By Propositions 2.2 and 2.4, we have

(2.8) Span{Tp ke tkszee = $3;°(1) anddim S3; (1) = dim sg;’f/z(zx).
Now, (2.7)-(2.8) together imply that dim Span{Sp .} k+2¢=¢ > dim 82;11)/2(4). So we
conclude that Span{Gp ¢ }k+2e=¢ = Sg;ll)/z(él). [ ]

Combining Propositions 2.2, 2.4, and 2.6, we complete the proof of Theorem 1.2.

3 Projection

In this section, we prove an alternate formula for Gp ;. (1.12):

Sp,ke(2) = Trs” [Gr,p(42), 0(ID|2) ]

A similar formula is implicit in equations (6) and (7) in [9]. This formula allows us to
compute the Fourier coefficients (Proposition 6.4).

We need to introduce some notation and facts needed for the proof of Lemma 3.2.
Let

PY(Z/NZ) = {(a:b):a,b e Z/NZ, gcd(a,b,N) =1}/ ~

be the projective line over Z/NZ, where (a : b) ~ (a’ : b") if there exists u € (Z/NZ)*
such thata = ua’, b = ub’. It is known that there is a bijection between Iy (N )\ SL,(Z)
and P'(Z/NZ), which sends a coset representative [ %] to the class (c:d) in
P'(Z/NZ) (see [20, Proposition 3.10]. For future reference, we prove a result on coset
representatives of certain quotients of congruence subgroups.
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Lemma 3.1 Let N € Nand let S € N be squarefree with (N, S) = 1. Then,

1 o]f1 u] | S
o 1l ] - s o)

is a set of coset representatives for [y (NS)\Io(N).

Proof The statement follows easily from the description of the cosets given
in [5, p. 276]. [ |
Lemma 3.2 Let{ >1be an integer and D be odd. We have V Tr3" g = Tri2P Vg for all
g€ My (4/D)).

Proof The statement was mentioned in [9, p. 195], we only sketch it. We first remark
that by direct calculation, Vg € M, 1 (16|D|), so Tri¢P Vg is well-defined. Note that
applying the fixed set of cosets for To (4D)\Iy(4) and Iy (16 D)\ T (16) given by Lemma
3.1to N = 4,16 and S = | D|, we have the following explicit formulas (see (1.8) for the
definition of slash operators):

VP g(z)= Y Y g@leypuuly 1)

D1D2=D y mod |D,|

TP Vg(z) = > > g@lel) i 1hw

D1D2=D y mod |D,|

|1 0|11 u . 1 0|1 u
YDI”‘_[4|D1| 1][0 1] and YDI,!‘_[16|D1| 1][0 1]'

And the outer sums are over all factorizations of D into a product of fundamental
discriminants Dy, D,. Therefore, to prove the desired equality; it suffices to show that
the set of cosets

-1
1 1/4| , 1 1/4
{F0(4|D|) [0 /1 :|YD1,,M [0 /1 ] : D]Dz = D, 1% mod |D2|}

where

is a system of representatives of Iy (4|D|)\Iy(4), which can be easily checked. ]
Definition 3.1 For m e Nand f(z) = 3,50 as(n)q" € Sx(N, x), we define Uy, f by
1 z+v
(31) Unf2) = % F(Z0) = ¥ atmm)a”
My mod m m n>0

Equivalently, we may write via (1.8)

(3.2) Unf(z) =m** S f(z)

v mod m

b s

We need the following two simple observations. Note that Lemma 3.3 follows from
(3.1) and it implies Lemma 3.4.

Lemma 3.3 Let U, be the operator defined in (3.1). Then,

UsGro(2) = (1427 () ) Gin(2) - 27 () G (22).
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Subspaces spanned by eigenforms with nonvanishing twisted central L-values 11
Lemma 3.4 The following identity holds:

Gi.p(42) = Gr.p(82z) —27% (g) (Gk,D (Zz + %) + Gk,D(ZZ))

D
=- (5)2"<+lck,D(4z).

Note that y, = [ Ll,h, 1] for v=0,1,2,3 form a system of representatives of
Ty (16|D|)\Lo (4]|D]) [9, p. 195]. The following lemma explicitly computes each term
in Tri5? (VG p(22)).

Lemma 3.5 Fory, = [4|11)|V 9], we have

Gi,p (22 + %) v =0,2(mod 4),
(2)2¥Gy,p(8z) v =1,3(mod 4).

A o[ | P

[8(|D|v +1) 2]
k

16|Dlv 4|

V(Gep(22))] 1y = {

Proof First,

0

V(Grp(22)) [4| Div 1
k

] = 272Gy p(2)

= 2_k/2Gk,D(Z)

Now, we do some casework.

(1) v = 0: We have

V(Gk,p(22))

. |:(1) (1)] = V(Gk,p(22)) = Gi,p (2 (Z+ i)) =Gi.p (22+ %)

(2) v=1,3: Since v and |D| are odd, v|D| +1 must be even, gcd(ng’“, |Dlv) =1,

and there exist some x, y € Z such that |D|Tv+lx +|D|vy = 1. Note also that x = 2

(mod D) and (%) = (%) Thus,

V(Gk,p(22))

4Dy 1 16Dy 4

Dl _yT16  2x +4y
) [Dlv x |0 2

D
_ k2 (7) Grn(2) [16 2% + 4y]
x
k

1 0 _
[ ] =2 k/sz,D(Z)
k

[8(|Dv+ 1) 2]

= 2_k/2Gk,D(Z)

0 2

D
=2k (;) Grp(8z+x +2y)

_ (g) 2% Gy (82).
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(3) v =2: Since gcd(2|D| + 1,4|D|) =1, we can pick x, y € Z such that (2|D| +1)x +
4|Dly = 1. As 4|Dly is even, x must be odd, so Gx,p(2z + %) = G, p(2z + 3), and
further (%) =1 since x = 1(mod D). Hence,

V(Gk,p(22))

10| _ k2
k[8|D| 1]‘2 Gr.p(2)

[8(2|D| +1) z]
k

32|D| 4

= 272Gy p(z)

2ID|+1 -y||8 2x+4y
) 4|D| x |0 4

(D —kJ2 8 2x+4y
_(?)2 Gk,D(z)k[O :

X
= Gk,D (22 + E)

1
=G 2z+ —|.
o (2243)

Thus, the proof is complete. ]
The following lemma explicitly computes each term in Try5y (VO(|D|z)).

Lemma 3.6 Let D be an odd fundamental discriminant. Then,

v(@p)] o= 1o+ 1),

i 1/2 _
V(9(|D|z))1y1:{(2) (6(IDlz) - 6(4|Dlz)) D >0,

-i(2i)Y260(4|Dlz) D <0,

(@Dl 2 = sen()i0 1ol - ).

(2i)/20(4|D|z) D >0,

V(G(\DIZ))|%Y3 = {_i(Zi)l/Z(e(D|Z) -6(4/Dlz)) D<o,

taking the principal branch of every square root.
Proof Recall that for Wy := [ 9 (! ], we have

9(z)|% W, = i720(2),
see, e.g., [4, Proposition 15.1.1]. Note that

1 0] s D] ol[4 1][ 1 o
1[4D|v 1]‘|D| 6(Z)ll[o 1{[o 4|[4Dp 1

:|D|1/49(Z)| [|D|V+1 |D|][4|D| 0:|_

V(6(IDlz))

4v 4 0 1

In the following, we only give detailed proofs for v = 0,1, 2, and leave out details for
v = 3 because it follows a similar argument to v = L.
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Subspaces spanned by eigenforms with nonvanishing twisted central L-values 13
1) v=0:

V(0(|Dz))1 [(1) (1):|=9(|D|Z+IZ|).

(2) v =1: We have

V(6(IDl2))

10] s iD|+1 |D[][4|D] o0
1[4|D| 1]‘|D e(z)‘l[ 4 4|l o 1

_Ip-1/4 -[D] D[ +1 ID| 0
=|D| 9(z)‘1[_4 4 Wil |
Since |D| is odd, we can choose x, y € Z such that —|D|x — 4y = 1. This gives us
-|D| |D|+1| [-|ID] -y||1 x-1
-4 4 | -4 x |0 4 |’

Note that |:__|IZ| _xy] € Iy (4), so we have

1 0 _ -4\ _ 1 x-1 Dl 0
veoR)| [y |- ()| [y <3 wl ]
o124 (T4 z+x—l) ID| 0
_ 2 V2|p| (x)exﬁ( o)l )

where

1 x=1(mod 4),
&y =
i x=3(mod 4).

Now, we have two cases since —|D|x — 4y = 1 and the sign of D determines &, .

(a) If D> 0, then |D|=1(mod 4), so x =3(mod 4), 9(%"_1) = 6(%4—%) =
20(z) -~ 60(%), ex = i,and (_74) = —1. So we have

L 0| _ cayzypy-rja [ 4) ap (2t X1 ID| 0
1[4|D| 1]_2 1Dl (x 2 IW“ 0 1

= i27V2|p|7V/* (29(z) - Q(Z)) ‘ W, ['ﬁ' (1)]

Explicitly computing these, we get

V(6(IDlz))

0(z)

D| 0 .
W4['o' 1] = i"D["*6(Dlz),

Downloaded from https://www.cambridge.org/core. 22 Nov 2025 at 17:02:38, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

14 J. Kayath et al.

Dl 0] .2 10 ID| 0
W"[o 1|72 e(z)l o 4|™| 0o 1
_ 1/2 4 0 |D| 0

oo g [

12412 4 0f(|D] 0
e e(z)Ho 1][0 :

=2i72|DY*0(4|D|z).
So our expression simplifies to

i2’1/2|D|71/4 (29(2') iy (Z)) ‘ W, |:|lg| (1):| = (21’)1/2(9(|D|z) - 6(4|D|z)).

(b) If D <0, then |D| = 3(mod 4), x = 1(mod 4), 6 (“Z‘l) =0(%),ex=1,and

(_74) =1. So we have

L O] _ cayzypy-1/a 4 12t x -1 ID| 0
O P e R e P e R [l
_ o-1/21y-1/49 [ # ID| ©
_ 22| 9(4)1w4[0 !
= —i(2i)"20(4|Dlz).
(3) v = 2: Since 2|D| + 1 is coprime to 8, we can find x, y € Z such that (2|D| + 1)x +
8y =1
1 0 _ 2|D|+1 |D|||4/D| 0
V(0(|Dl2)) [3|D| 1]:|D| 1/49(2)1 ['gl |4|][|o| 1]
3 H
I -1/4 2[D[+1 ~y
D ew][ (A
%
1 |D|x+4y|[4/D] 0
0 4 0 1]
Now that [2|DE|S+ ! _xy] isin Tp(4), we get
1 0| a1 (8 1 Ex][4/D] 0
v<e<|D|z>>l[8|D| 1]—|D| sx (x)e<z>l[0 A
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Subspaces spanned by eigenforms with nonvanishing twisted central L-values 15

a1 (8Yaupa(z 1-x\| [4D| 0
_ 1/4 -1 e 1/2 “
= PP (x)2 9(4+ ) [ 0 1]

8
o (8)o(ipie 55).
X 8

As (2|D| +1)x + 8y = 1 and the sign of D determines ¢, we do casework again.

(a) If D>0, then |D|=1(mod 4), which implies that 3x =1(mod 8), x =
3(mod 8), ex=i and (2)=(%)=-1 Note also that 6(|D|z+*) =
6(|D|z - 1).

(b) If D <0, then |D| =3(mod 4), which gives 7x = 1(mod 8), x = 7(mod 8),
(8)=()=1,ec=iand O(|D|z + 'Z¥) = 6(|D|z - 3).

Combining these two cases, we can write

1 of . |D|
1 [4|D|v 1] —sgn(D)19(|D|z— 4).

(4) v = 3: The argument in this case is similar to that of v = 1, and is omitted.

V(6(IDlz))

The above arguments complete the proof. [ ]
We also need the following two lemmas.
Lemma 3.7 We have that

Vo(IDl2)| 11+ VO(IDI2)| ys = 13(21)20(Dlz).

Proof Itis a trivial consequence of Lemma 3.6. [ ]
Lemma 3.8 We have that
VO(IDIz)|, yo + VO(IDI2)|, y2 = (1+ isgn(D))6(|Dlz).
2 2

Proof By Lemma 3.6, we have

D D
V0(|D|z)‘1yo + V0(|D|z)|ly2 ) (|D|z+ '4') +isgn(D)0 (|D|z - u')

Note that
0 (|D|Z + |’w) = Z eZni@ elninz\D\z — Z a(n)eZﬂinz|D|z
4 nez neZ
where a(n) = isgn(D) if nis odd and a(n) = 1if n is even. On the other hand,

0 (lD zZ - e) = Z eZ”iinj‘Dl lerinz\D\z _ Z b(n)EZninz\D\z’

nez nez

where b(n) = —isgn(D) if nis odd and b(n) = 1if n is even. Hence,

0 (|D|Z+ Hz') +sgn(D)if (|D|z - |4D|) = S (a(n) + isgn(D)(b(n))e2™" Pl

nez
= (1+isgn(D))0(|Dlz),

as desired. ]
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Now, we are ready to prove the alternate formula (1.12) for Gp i . promised at the
beginning of this section.

Proposition 3.9 Let k > 4 and e > 0 be integers such that k + 2e = £ and let D be an
odd fundamental discriminant such that (-1)*D > 0. Then,

Sp.ke(2) = Tr3”[Gi,p(42), O(ID2) ..

Proof We closely follow [9, p. 195], where a similar result is implicit in the proof of
formulas [9, (6) and (7)]. Write h =[Gy 4p(2), 0(|D|z) ]e. By Lemma 3.2, we get

-1

Soe =5 (1-(3)2*) prr o)

)
:3(1 (?)2 k) l( L= (D% s gy gy 4 L TrgD(h))
:%(1 (g)z k) gy ( L= (D 16 gy 4 L h)
(3.3) :%(1 (?)2 ")1 Try” g,
with

b - %T 16Dy (1)) + h

Note that k = £ mod 2, so we can substitute in (~1) for (~1)* above. We now compute
gp. The matrices y, = [4\5\1/ 97, where v = 0,1,2, 3, form a set of coset representatives
for Ty (16|D|)\Lo (4|D]) [9, p. 195]. Then, we have

Triy (V(h)) = Trip (V[Gran(2), 0(IDl2) 1)
= Tryp’ [VGran(2), VO(Dl2)],

= Trly [Gk,D(4z) -2k (?) V(Gk,n(22)), V9(|D|Z)]e

_ yzv[ck,D(axz) oy (%) V(Gen(22)), V9(|D|z)] .

€ k+1+2e
Since y, € [y (4|D|), Gk,D(4z)|kyv = Gg,p(42). By Lemma 3.5, we get
(D
W) - T Gun(6)| =27 (3) V(Guo @]y VOGP, 3|
Yv
. [Gk,D(4z) oy ( )Gk b (2z+ 2) V9(|D|z)‘ yo + V(DL2)] yz]

e

+ [Gk,D(4z) - Gi,p(82), VO(IDI2)| 31 + V6(|D|z)‘1y3:| :

e
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Subspaces spanned by eigenforms with nonvanishing twisted central L-values 17

Using Lemmas 3.7 and 3.8 and noting that sgn(D) = (~1)* by our assumption, we can
simplify this to

TP V() =[Guo(a2) - 27 (F) 6en (224 5 ). 1+ -0 0D
+ [Gi,p(42) - Gi,p(82), €1, (20)*0(ID]2)] -

Now, we can finally compute the projection
1-i(-1)k 1
eo(5) = P (v (h(2))) + Sh(e)

L [Gro(42)-2%(3) 6o (224 3) 01+ i-0)01DIo) |

1-i(-1)k
Ly
6

+ % [Gk,D(4Z) —k (g) Gk,D(22)>9(|D‘Z)L
[Geot42) -2 () 6en (224 5) 60101 |
+ % [Gk.p(42) - Gi,p(82), 0(|D|2)],

+ % [Gk,D(4Z) -2k (g) Gk,D(ZZ)’9(|D‘Z)]e

e

[Gk,D(4Z) - Gi,p(82), 85\(2i)1/29(|D|Z)]2

1
3

- % [Gk,D(4Z) - G,p(82) - 2 (g) (Gk’D (22 " %) i Gk’D(zz)) ’ 0(|D|Z)]e
+ %[Gk,D(sz),G(IDIz)]e-

Using Lemma 3.4, we can simplify the first term to get

1 D 2
e0(2) =3 [+(3) 27" 6u(42).01Dlo) | + 2[Gun(42). 01Dk,
2 D\ __
(3.4 -2(1-(3)2*) (Grota2). 00D,
Plugging (3.4) into (3.3) gives the desired result. [ |

4 Eisenstein Series

In this section, we define various Eisenstein series and show that G 4p(z) (1.5) is an
Eisenstein series for the cusp at infinity of level 4| D|. We recall the theory of Eisenstein
series as developed in Miyake [15, Section 7]. Let y and y be Dirichlet characters mod
L and mod M, respectively. For k > 3, we put

Ex(zxy) = Y x(m)y(n)(mz+n)™.

m,nez
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Here, ¥ is the summation over all pairs of integers (m, n) except (0,0). In particular,
Ex(Mz; x,v) is a modular form in My (LM, yy) (see [15, pp. 269-271] for details).

Lemma 4.1 [15, Theorem 7.1.3] Assume k > 3. Let y and y be Dirichlet characters
mod L and mod M, respectively, satisfying x(~1)y(-1) = (-1)*. Let m,, be the conductor
of v, and y° be the primitive character associated with . Then,

Ex(zxy)=C+A). a(n)e?mine/M,
n=1

where

A=2(=2mi)*G(y°)/M* (k -1)!,

Ceo 2Ly (k,y)  x:the principal character,
o otherwise,

a(n)= 3 x(nfe)c™ 5 du(1/d)y’(1/d)y°(c/d).

0<c|n 0<d|(1,c)

Here, | = M[my, y is the Mobius function, Lyr(k, ) = Yoy w(n)n~* is the Dirichlet
series, and G(y°) is the Gauss sum of y°.

For a fundamental discriminant D, we write yp(-)=(2) and Lp(k)=
S xp(m)n~k.

Example 4.2 Let D be a fundamental discriminant and 1 be the principal character.
Then,

Ry kG p) & -1 | 2minz/|D
Ek(z;l,xp>:zLD<k>+W;(;(Z)d" )q ol

Example4.3 If D = DD, isaproduct of relatively prime fundamental discriminants
then

. 2(-27i)* G (xp,) & D1\ (D2\ k1| 2minzyp|

G = ¢+ ol 1| 2 (@) (@) e
didy=n

where C is zero unless D, = 1.

We shall compare our Eisenstein series Gi p(z) (1.4) and Gy, p, p,(2z), defined
below in (4.2) [9, p. 193] with the ones above given in Miyake [15]. Comparing the
Fourier coefficients of Gi, p(z) and E(z;1, yp) gives

(k-DYD[*
2(~271) G (x0)
Recall that [9, p. 193] for Dy, D, relatively prime fundamental discriminants with
(-1)*D,D, > 0:

(42) Gk)DlyDZ (Z) = Z O-k*LDl»Dz(n)qn’

n>0

(4.1) Gr.p(z) = Ex(|D|z,1, xp) € Mk (D], xp)-
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Subspaces spanned by eigenforms with nonvanishing twisted central L-values 19

_LDl(l_k)LDz(O) n=0,
Ok-1,p,,0, (1) = >o(B) (L2 dkl n>0,
=y > (@) (@)
dldzzn
where the constant term is zero unless D, = 1. Hence, by comparing the Fourier
coefficients of G p,,p,(z) and Ex(z; xp,> XD, )> We get
D (k - 1)

(43)  Gi,p,,p,(2) = 2(=27i)kG(xp,)

Ex(|D1lz; X, XD, ) € Mk (|D1Dal, XD, XD, )-

The following expression of G, p,,p, (z) is useful for Lemma 6.1.

Lemma 4.4 Let k >3 and D = D, D, be a product of coprime fundamental discrimi-
nants. Then,

_ Dk -1 r Xp,(m)xp,(n)
4 o) = 5 i P, 2, (e et
Di|m

Proof Note that
! -
Ex(IDilzs xp,» Xpy) = . xpa(m) xp, (1) (m|Dyfz + n)™*

m,nez
= xp,(ID1)) " X0, () xp, (1) (b2 + m) 7.
NI
Dyt
Thus, the result follows from (4.3). [}

Let k > 3 and y be a Dirichlet character mod N. We define the Eisenstein series for
the cusp at infinity [15, p. 272] as

Z x(d)

EZ,N(Z; X) = (cz+ d)k ’

[ blerc\To(N)

where T, = {£[{ #]:neZ}.
Now, we are ready to prove that Gy 4p is an Eisenstein series for the cusp at infinity
oflevel 4|D|.

Lemma 4.5 [15, (71.30)]  Let 1 denote the principal Dirichlet character. Then,
2Ly (k, x)Eg v (25 x) = Ex(Nz31, ).

From (4.1) and Lemma 4.5, we know that Gy p(z) is an Eisenstein series at infinity.
We have
Lp(1-k)

(4.5) Gr,p(2) = 5
Note also that (4.1) and the proof of Lemma 4.5 imply that

(k—l)'|D‘k / XD(d)

2(~2m1)*G(xp) 22y (cz + d)F
D|c

E;,\D\(Z; Xp)-

(4.6) Gk,p(2) =
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In fact, equation (4.6) will be more convenient for us to compute the Fourier
expansion of Gy p(z) at different cusps. We need the following lemma
(see also [5, p. 271].

Lemma 4.6 LetLgl)(k): Y xp(n)nk. Then,
(n,4)=1
nx1

" Lp(k " _x (DY ..
thDKﬁXD):‘%é‘l(Eth4%XD)—2k(E)EthZEXD»'
Ly, (k)

Proof Observe that

) (1 B+ xp(n) | 1 xo(d)
2L k)E z; =2 — 1 3
p (k) k,4|D|( Xp) nZZ:l nk 2 (Fa (cz+d)k

(4,n)=1 4Dlc

_ xp(nd)
5 (e (nez+nd)k
(4:n)=1"4p|c

xp(d")
(@' 4D)=1 (c'z+d")k
4D|c’

where nc = ¢’ and nd = d’. Note that we can replace (d’,4D) =1 by (d’,4) since
xp(d") = 0 otherwise. It follows that

(0 xp(d)
2Ly, " (k)Ey 4p|(2 Xp) = (d’%:lm

4D|c
' _xp(d)
= u(e)
C;Z (e|(d§):,e>0 ) (CZ + d)k
4D|c
+_xo(d)
e b
e|4§2:>0#( ) c,%e:Z (CZ+d)k

4D|c,e|d

whereweused Y u(e) = 0for (d,4) > linthe second equality. Substituting d = ey
e|(d,4)
and ¢ = 4x,

LD R EL (o) = Y (o) T A2

el4,e>0 x,y€Z (4xz + e)’)k
D|x
- r xo(y)
ule)e ™ xple) 3o — 2o
e|4§e:>0 x;Z (X4Z/€ + y)k

D|x

Downloaded from https://www.cambridge.org/core. 22 Nov 2025 at 17:02:38, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

Subspaces spanned by eigenforms with nonvanishing twisted central L-values 21

= > u(e)e ™ yp(e)2Lp(k)E; p(4z/e, xp)

el4,e>0
* -k D *
=2Lp (k) | Eyjpy(42 xp) =277 | 5 | Bk (25 xp) |
where the second to last equality is from the proof of Lemma 4.5. [ ]

From Lemma 4.6 and (4.5), we know that Gy 4p(z) is an Eisenstein series for the
cusp at infinity in M (4|D|, xp). We have

(4.7) Gkap(2) = # (1 —2k (g)) Ef 4p(z xD)-

5 The Rankin-Selberg convolution

The purpose of this section is to prove Propositions 5.6 and 5.7. For two elements f
and g of M (N) such that fg is a cusp form, the Petersson inner product is given by

1) (8 = [ o /@8 () g
where z = x +iy and dyu = dxdy/y*. We use (-,-) to denote (-,-)r,(n) if the level
is clear from the context. For f(z) =X, ar(n)q" € Sk(N, x), we put f,(z):=
Yas1a5(n)g". Note that f,(z) = f(z) if f is a newform and y is trivial.

We now review the classical result on the Rankin-Selberg convolution, which was
reformulated and generalized in Zagier [25], keeping in mind the difference between
our definition of the Rankin-Cohen bracket and the one used therein.

Lemma 5.1 [25, Proposition 6] Let ky and ky be real numbers with ky > ky +2 > 2.
Let f(z) = Ypoya(n)q" and g(z) = Y7 b(n)q" be modular forms in Sy (N, x) and
My, (N, x1), where k = ky + k, + 2e,e > 0, and x = y1x2. Then,

(-1)° (k= DI(ks + ¢) & a(n)b(n)

(f-l8 Brn(2)le) = = (47)k1T (k) ;nkﬁkw-l'

To obtain Proposition 5.6, we need to deal with the case k; = k,, which can be
done by following Shimura [19] and Lanphier’s work [11]. For f(z) = Y2, a(n)q" €
Sk(N, x) and g(z) = 332, b(n)q" € My(N, y), we put

D(s, f,g) = i::la(n)b(n)n’s, Re(s) > 0.

We are particularly interested in the following case.

Lemma 5.2 Let f=3,",a(n)q" € Sy(1) be a normalized eigenform with { = k +
2e,e >0, and k > 4 integers, and let D be an odd fundamental discriminant. Then,

L(f,s)L(f,D,s -k +1))

D(s, f.Gy.p) =
(5 f:Gen) = = Sk —4e +2)

, Re(s)>0.
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Proof Note that for Re(s) > 0, we have

Ok-1,1,yp (n)a(n)

D(s, f,Gk,p) = Z—

where 0k_1,1,y, (1) = X ajn yp(d)d*L. A standard computation (see [22, Proposition
4.1]) gives

i Ok, (n)a(n) — L(f,s)L(f,D,s—(k-1))
= ns CLp(2s-(k-1)+1- (2k +4e))’

as desired. ]

From Shimura [19, pp. 786-789], D(s, f, Gk,p ) has a meromorphic continuation to
the whole complex plane and D(s, f, Gg,p) is holomorphic at s = 2k + 2e — 1 (see [19,
p. 789].

The Maass-Shimura operators [19, p. 788, (2.8)] are defined by

= 1 i+i , 0<AeZ,
2mi \2iy Oz
6/({) = 6/1+21’*2"'5A+26)La 0<re Z)

where we understand that 8/(10) is the identity operator. A relation between Maass-
Shimura operators and the Rankin-Cohen bracket is given by

n (- 1)1 k::ffl nei
(5'2) (8(n)f ) ( ) Z (k+Z+2] E)glihr{ﬂ)'l) 8l(<+€-]¢-)2j[f’g]j(z)’

n-j

where f € My (T) and g € M,(T) for any congruence subgroup I (see [11, Theorem 1].
We recall the following two results.

Lemma 5.3 [19, Lemma 6]  Suppose f € S,(N, x),g € M;(N,Y), and k = 1 + 2r with
a positive integer r. Then, (8(") g, fo)=0

Lemma 5.4 [19, Theorem 2]  Suppose f € Syo(|D|) with £ = k +2e,e > 0, and k > 4,
and D is a fundamental discriminant. Then,

D(2k +4e~1-2e, f,Grp) = cnz"*‘*e‘l(Gk,Da,ﬁze)E,j,‘D‘(z; xp)> fo)s

where (-, ) denotes the non-normalized Petersson inner product defined in (5.1) and

~ T'(2k +4e -k -2(2¢))
© T(2k +4e —1-2e)T(2k + 4e — k — 2¢)

_ I'(k) 42kl
[(2k —1+2e)T(k +2e)

(_1)2242k+4e—1 )

We apply these two results in our situation to obtain the following.
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Proposition 5.5 Let f € Sy,(1) be a normalized eigenform with { = k + 2e,e > 0, and

k > 4. Then,
_1T(2k +4e -1)I'(k +2e) Lp(1 - k)
([Gk,0> Gk, 2> f)o(iD)) = 2 (20)1(47) e IT(k)  Lp(K)

L(f,2k +2e —1)L(f, D, k + 2e).

Proof Note that f, = f since f is a normalized eigenform. Lemma 5.4 gives
T(2k +2e - 1)T'(k +2e)

(@I (R) D(2k+2e-1,f,Grp).

(Gk,D5zE2€)EZ,|D\(Z; xp)s fre(p)) =
By Lemma 5.3 and (5.2),
* 1 *
(Gk;D(Sl(cze)Ek,\D\(Z; xp)s fre(p)) = 7(2;”43,2) ([Ek,|D|(Z3 xp)> Gi,pl2e> f)ry(ID))>
2e
which implies that
(P*72) 0 (2k + 2e = 1)T(k + 2¢)
(4n)2k+4e—1r(k)

D(2k +2e -1, f,Gg.p).

([Ex,1p|(z xD)> Gk,pJ2e> )1y (D)) =

Lo (1K)

Since G,p(z) = =5 k"D‘(z; xp) (4.5) and by Lemma 5.2, we have

Lo(1- k) (52T (2k + 2¢ - 1)T(k + 2¢)
2 (4ﬂ)2k+4e—11"(k)
D(2k +2e-1,f,Gk,p)
1T(2k + 4e - )T (k + 2¢) Lp(1- k)
2 (20)!(47)2%+4-1T(k)  Lp(k)

as desired. [ ]

([Gk,D’ Gk,D]ZE’f>r0(|D|) =

L(f,2k+2e—-1)L(f, D, k + 2e),

Now, we prove Propositions 5.6 and 5.7, which generalize [9, Proposition 1] and [9,
Proposition 2], respectively.

Proposition 5.6 Let f =37 ,a(n)q" be a normalized eigenform in S,;(1) with
{=k+2e,e>0, and k>4, and let D be an odd fundamental discriminant with
(-1)’D > 0. Then,

(F 7 1T(2k +4e -1)I'(k +2e) Lp(1-k)
Do JI=5 " (2e)(am) 2k +4e1T (k) Lp(k)
Proof Recall that (1.11)
Fpoke(z) = Tl [Gr,p(2), Gk, p(2) ]ze-

As (f, &)ro(m) :(f,TrAN/Ig)ro(N) for N|M, for feSi(N),geMp(M) (see [5,
p. 271]), we get

L(f,2k +2e =1)L(f, D, k + 2e).

(Fp,k,e> ) = ([Gk,0(2), Gk,0(2) ]2¢> f)ro (D))

Then, the result follows from Proposition 5.5. [
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Proposition 5.7 Let g = 3 cg(n)q" €Sy, /,(4) be a Hecke eigenform and f € S3,(1)
be the normalized Hecke eigenform corresponding to it by the Shimura correspondence,
where { =k +2e,e >0, and k > 4. Let D be an odd fundamental discriminant with
(-1)D > 0. Then,

3I0(k+2e—3)T(k+e) Lp(1-

(g 9p.ke) =5 e!(4ﬂ)km TR Lok ))IDI keH21(F 2k + 2e — 1)cg (D)),

where the Petersson inner product is (g, Spk.):= fr0(4)\H 8(2)9p ke (2)
Im(z)k”e“/zdy.

Proof Recall that Gp i is given in (1.12):

0.00(2) = 2 (1-2%(2)) T Gran(2), 000D1).

Since pr* (1.6) is the projection from My,/,(4) to MZ+1/2(4), we have

(650000 =2 (1-24(2)) " £ (Gran(), 00DI) L)

3
2
3

2 (1-24(2)) (@ TP ((Guan(2). 60Dl

[\

S (123)) (&, ([Gr.a(2), 8(1DI2) e by o)y

3 *
= 4 Lo(1=k){g(2) [Ex,ap(z xp)> O(IDI2) Je )1, (4ip1)
3( 1)
= Lo(1-k)(¢(2), [6(|DI2), Ex,ap (2 xp) e )ty (ai))>
where we used (4.7) in the second to last equality. Now, Lemma 5.1 gives
~1)eT(k+2e-1)T(k+e) & 2c,(n* D)
el (47.[)k+2e 1/2I‘(k) nZ:l (|D|n2)k+e+1/2—1
~ 3T(k+2e—3)I(k+e)
) el (4m)k+2e-12T (k)

(2.90me) = 150!

Cg(” |DI)
n2k+2e-1

LD(l k)|D| (k+e-1/2) Z

n=1

By [10, Theorem 1(ii)], we get

Lo(s= (k+26) +) Y S 0D ciohLro),

which implies that

30(k+2e—3)T(k+e) Lp(1-
2 el(4m)k2e-121(k)  Lp(k)

(2 Goe) - B) | ppk-en2 (£ 2k + 26 ~ 1)ey (ID)),

as desired. ]
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6 Fourier expansions

In this section, we compute the Fourier coefficients needed for the proof of Theo-
rem 1.1. It is convenient to have explicit formulas for Gy, p and 0 under the action of
certain matrices in SL,(Z), which we do in Lemmas 6.1 and 6.2. Propositions 6.3 and
6.4 then give formulas for Ip . and Gp ., which we use in the final computation of
the Fourier coefficients carried out in Lemmas 6.5 and 6.8.

Lemma 6.1 Let k > 3. Suppose D is an odd fundamental discriminant and D = D1D,
is a product of two fundamental discriminants. Lety = [ * %] € SL,(Z)with ged(c, D) =

|Dy|. Then,
ENCI e
=[— — D G —_—,
k[c d] c d|D2| |D1| €|D|| 2| kD1, D |D2|

where c* is an integer with cc* = 1(mod |D,|), and ¢, is given by

1 n=1(mod 4),
& =
i n=3(mod 4).

Gk,p(2)

(6.1)

Proof We follow the idea in Gross-Zagier [5, pp. 273-275]. By equation (4.6), we
have

2(-27i)*G(xp)
(k-1)![D*

Gi,p(2)

[a b]: ' xp(r)
e L€ d 150 (l(az+b) +r(cz+d))k
|l
_ Z/ xp(an—bm)

m,nez (mz+ ”)k

md=nc mod |D]|
where (m,n) = (I,r)[ 4 % ]. Since md = nc(mod |D|), we have
(6.2) d(an —bm) = adn — bmd = adn — ben = n(mod |D)),
(6.3) c(an—bm) = anc — bem = adm — bem = m(mod |D)).
Note also that gcd(Ds, D;) = 1. Then, (6.2) and (6.3) imply that
xo(an - bm) = xo, (an — bm) o, (an - bm)
= xp,(d) xp,(n) xp, () XD, (m).

Since Dy, Dy | (md - nc), (d,D;1) =1,(¢c,D3) =1, and (¢, D) = |Dy|, we must have
Dy | m, and n = c*md(mod |D,|). By the Chinese Remainder Theorem, we can
choose ¢* such that D; | ¢*. Now, we write n = ¢*md + I|D,|. It follows that

2(-2mi)*G(xp)
(k-1)|D*

Gk,p(2)

a b _ Z’ XDl(d)XDl(C*md + l|D2|)XD2(C)XD2(m)
cLe 4l g (mz +mc*d +1|Dy|)*
Dy|m

r X, (m)xp, (1)
= D
XDZ(C)XD](d| 2Dm,2122 (mz+mc*d+l|D2\)k

Dy|m
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(64 - ou (), (Do Iy 3 KD,

k
m,I<Z, (mﬂ + l)
Dy|m [D,]

Note that (4.4) implies that

 xp, (M) xp, (1) 2(=27i)*G(xp, z+c*d
(65) Z XD ( )XD ( Z _ ( k)k (XI') )XD2(|D1|)Gk,D1,Dz ()
m,IeZ (mz+c*d +1) Dy (k - 1)! Dy
Dy|m |D,|
Plugging (6.5) into (6.4) gives
(6.6)
a bf|_ G(xp,) z+c*d
Gk,D(Z) . [C d:| - XDz(C)XDl(d|D2|)XD2(|D1|) G(XD) Gk»Dl,Dz |D2| .

From [3, Proposition 2.2.24, p. 49] we know that
G(xp,) = &, IDi? and  G(xp) = epp||DI"?,
which implies that
IR E e (Y
=— —= D Gi,oyo | ——— |
k[c d] c d|D2| |D1| S|D|| 2| k.D1.D |D2|

as desired. ]

Gr,p(2)

Lemma 6.2 Let D be an odd fundamental discriminant and D = D, D, be a product
of two fundamental discriminants. Then,

|D| 0 -1 1/4 _1/2 |D1|Z+4*
= & [D["4Dy[ 20—,
1[4|D1| 1| = #al DI ID2] D, |

2

6(2)

where 4* is an integer such that 44* = 1(mod |D,)|).

Proof Since (4, D,) =1, there exist n, m € Z such that n|D,| + 4m =1 and

[ [D| 0] _[IDa| -m][IDi] m
4Dy 1[4 m ][0 D]
It follows that
[ D] 0] _ [Da|  —m|[|Di]  m
0(2) 4Dy 1T 0(2) A4 allo byl

Recall that the transformation law for 0 (see, e.g., [8, p. 148]) gives

o(z)| ["ff' ‘:‘] - (%)sgle(z),
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where ¢, is as in (6.1). Since n|D,|+4m =1and D, =1(mod 4), we have ¢, = ¢p,).

Hence,
Dy m
6 = &p, 0 ID:
¢ >‘ FAREE 1/2[ i
_ Dz +4*
= &ip,[DI'"*|D2| 1/26(|1||Dz|)’
which gives the desired result. [ ]

Next, we give some computations generalizing the lemma in [9, p. 193].

Proposition 6.3 Let k > 4 and e > 0 with { = k + 2e and let D be an odd fundamental
discriminant with (-1)“D > 0. Then,

Tored)= ¥ ( ) ID2]2 Ui, ([Gr.v.0s (2), G pr.0a (2) ]2 ),

where the summation is over all decompositions of D as a product of two fundamental
discriminants, and U|p,) is the operator defined in (3.1).

Proof We consider the following system of representatives (Lemma 3.1) of
To(|D)\SL2(Z),

{|:|1;1| (1)] |:(1) ‘lf:| where D = D1 D,, ymod|D2|}

Gk,p(2)

and Dy, D, are fundamental discriminants. By (6.6), we have
o Sl - o) o) ) i onone (652
=\l 1= DD\ |
Do 1][0 1] \|Dif) \[D2|) \IDi] ) G(xp) D,
Tr ([Gr,p(2), Gk,p(2) ]2)
1 01
Z Z [Gk,p(2), Gk,p(2)]5, [|D| 1] [0 ‘th]
2k+4e 1
0111 u 0|1 u
: A A KR A | |
IR I T | o0 3o 4]
where we used the well-known fact G( xp, )* = (%) |Dy|and G(yp)* = (_%) |D| in the
last equality (see, e.g., [3, Corollary 2.1.47 on p. 33]). On the other hand, we have by
U‘Dz‘([Gk,Dl,Dz(Z)’Gk,Dl,Dz(Z)]Ze)
= % DG,y (2), Gr,py, by (2) e

where |D|*|D;| =1 mod |D,|. We then compute Fp i .(z), which is
D1D2=D y mod |D,|
= 2 > (%) D, [Gk,Dl,Dz (Z . P{; |D1|*) » Gk,py,D, (Z : P{; |D1|*)] ,
D1 D,=D y mod |D,| 2 2 2e
our equivalent definition (3.2) of the U operator that
v mod | D,

2k+4e 0 |D2|
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_ _ zZ+v _ zZ+V
Z |D2|(2k+4e)/2 1[|D2| k/sz’Dth( - ),|D2| k/sz’Dth( - )]
v mod |D;| | 2| | 2| 2e

_ Z+v zZ+v
Z |D, ! |:Gk,D1,D2 () » Gk,p,,D, ()] .
v mod |D,| |D2| |D2| 2e

It follows that

> (22) 192 Vo (G (2: Gropn(2))

D=D,D, -1

D _ zZ+v zZ+v
= ) > (*2) |D,| 1|:Gk,D1,D2 ()>Gk,D1,D2 ()]
D1D2=Dv mod D5 \ 1 D ID2| /1.

=Tt ([Gk,p(2), Gk,p(2)]2¢),

as desired. [ |

Proposition 6.4 Let k >4 and e > 0 and let D be an odd fundamental discriminant
with (-1)KD > 0. Then,
D, i
Spke(2)= X Dy |Da[ Ui, ([Gk,p,,p, (42), 6(|D12) ] ),

D=D,D,

where the summation is over all decompositions of D as a product of two fundamental
discriminants, and U|p,| is the map defined in (3.1).

Proof The proof follows a similar outline to Proposition 6.3. From Proposition 3.9,
we know that Gp ¢ . (2) = Try” [Gx,p(42), 0(|D|2)],. We use the coset representatives
(Lemma 3.1) for To(4|D|)\Io(4),

1 0|1
{VDl)M:[4|D1| 1] [0 Pll:| where D = D1D,;, u(mod |D2|)},

where D = D, D, is a product of fundamental discriminants. By a simple casework, we
have

€ D D
(6.7) B L7 (1) = (2) )
ép| - €| \[D2|)  \~IDi|
Now, Lemmas 6.1 and 6.2 together with (6.7) imply that

Z [Gk,p(42), 6(|D|Z)]2|k+2€+%VD1,M

D1D2=D yu mod |D,|
€D D _
Z Z | Dy (1) |D2| 1
D;D,=D y mod |D,| €ID| * €|Ds| |D2|

<lc 4z + |Dy|* +4p 0 |D1|z + 4 + | Dy|p
o) D] :

D -
> 3 ()i
D1D>=D y mod |D,| _|D1|
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4 4*|Dy|* D 4*|Dy|*
Jovono, (AL ) (D1 01D 210

|D,| |D,|

= > ( D2 )|D2| “Up,[Gk,p,.p,(42), 8(|D1|2) ],

D,D,=p \~ID1]
as desired. ]
We are now ready to compute the Fourier expansions of Fp x . and Sp(Gp.k.e )-

Lemma 6.5 Let k>4, e>0 and let D be an odd fundamental discriminant with
(-1)¥D > 0. Then, we have the Fourier expansion

9jDke Zkae(”)Q7

n>1
where

D

D _ apa
Ioike(n) = Z ( f) |D,|” e Z Z (g) d* lak—l,Dl,Dz (%) Ce,a1,a2>
D=D,D, 41,8220 d|(ay,az)
aj+az=n|Dy|

.y f2e+k-1\(2e+k-1
T T o i

r

Proof By Proposition 6.3, we have

fowe(n) = 3 ()12l Foyp,. (),

D=D,D,

where Fp, p,,.(n) is the n|D,|-th Fourier coeflicient of [ Gy p,,p,(2), Gk,p,,p,(2) ]2e
Note that

Gk,Dsz(z)(r) = Z nro-k—l,Dsz(n)qn’

n>0

which implies that the n|D,|-th Fourier coefficient of G,((gb D, (z)G,(f]g;'D)2 (z) is

> a{0k-1,p,,0,(a1)a5° " 0k1,p,,0, (a2).
ap,a>0
ar+az=n|Dy|

It follows that Fp, p,,.(n) =

k-1\[2e+k-1
Z( )’ ( . . )( °r ) > a{0k-1,p,.0,(41)a5° " 0k-1,p,,0, (a2)

r a1,a220
aj+az=n|D,|

2 2e+k—-1\(2e+k-1
Z 0k-1,0,,0, (1) 0k-1,D,, Dz(ﬂz)zﬂlr 3 "(-1)" ( _ )( )

a1,a;20 r=0 r
ar+az=n|Dy|

Z 0k-1,0,,0, (1) 0k-1,0,,0,(42) Ce,a1,a,
ap,a;>0
ar+az=n|Dy|
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a1 az

D _
= Z Z (E) dk 1Gk—l,Dl,Dz (7) Ce,a1,a,>
a1,8220  d|(ay,az)

aj+ax=n|D;|

where the last equality is given by the Hecke multiplicative relation [9, p. 194]

D _ a a
Uk—l,Dl,Dz(al)Gk—l,Dl,Dz(aZ) = Z (g) d* 1kal,Dl,Dz (%)
d|(a,az)

This finishes the proof. ]

Lemma 6.6 Let k>4, e >0 and let D be an odd fundamental discriminant with
(-1)¥D > 0. Then, we have the Fourier expansion

8p (9p,ke(2))) = ng,k,e(n)q",

n>1

where

D _ D _
R Y 6 LR N G L
D=D,D, -1 ai,az>0 d‘(al,uz)
ar+az=n|Dy|

aa
Ok-1,D,D, (%) E(ay, a2),
e—1/2

r

E(ar,az) = Z( or(*TE(

Proof By Proposition 6.4 and (1.9), we have Sp(Sp x,.(2)) =

)4r (alaz)r (az - al)z(e_r).

> ( |D|)|D2|—ez( D ()50 (U (Grin, (120 8(DI )],

D\D,=D

where we abuse notation to move the Shimura operator Sp, into the sums. Note that

Gr,py,p, (42)(") = > (4n)" 0x_1,p,,p, (1) q"",

n>0

0(ID1f2) ") = 3 (n?Di)< " 171,

nez

This allows us to rewrite the product

G0y, (42) V8(ID1) ™) = 3 ¢ (n)q",

n>0

2
n—m*\D _
cr(n) = > (n - m2|D1|)r Ok-1,D,,D, (4 1Dyl ) (m*|Dy])¢7,

m=n mod 2

where we take the convention that ox_; p, p,(x) = 0if x ¢ Z or x < 0. It follows that

(6.8)
Uiyl (Gr.py.0, (42) 0 8(ID1[2) ™) = Uppy (Z Cr(n)Q”) = > cr(n|Da])q".

n>1 n>1
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Now, we compute the D-th Shimura lift of (6.9). If we write
S5 (S e 01DA)a") = 3 (e
nx1 nx1
for some a, p,(n), then by the definition of Sp (1.1), we have a, p,(n) =

D _ n2 — D, Dn—z—m2 D,
3 (5) a5 D01 - Do) (1) (' Pl = PA).

d|n meZ 4

Note that we can write

D,||D|% - m?|D Dyl +m Dy —m
Do |d24 | 1|:|D1|a1a2, wherea1:7| 2|dz anda2:7| 2|‘;

It follows that a, p,(n) =

D _ _ _
> (E) d“et S (4Dymar)" (a - 1)> ™| D1|* " 041,y b, (|D1|@raz)
,a2>0
4l ulf;2a=2%|Dz|

_ Z Z (2) gkr2e-1 (4|D1|d1‘212)"(a2_6l1 )2(er)
a1,a2>0  d|(ay,az) d d d

aj+az=n|Dy|

apa
D" 0100 (121452

dZ
D)(Dz) 1
= =] D
al,gz:zo d|(§az>(d | Dy

aj+az=n|D,

_ aa
(4a1a3)" (az - 611)2('Z r)Gk—l,Dl,Dz (g) .

42
(6.9)

Now, we substitute (6.9) back into our equation for Sp(Gp ,.(2)). Let

80(Gp,ke(2)) = D gDk (n)q".

n>1

Then, gp k,.(n) =

L3 () e e () e
—D_%:Dz( |D|)D2 Z( 1)r(e+k )(e_,l/z)

D\ (D ) . s aa
C S S (B)(B) o e a0, (%)
a,,a,>0 ‘d\(uhaz) !

ay+az=n|D,
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D, ) D\ i aaz
= |D|e Z (_71) |D2| e Z Z (E) d Ok-1,D,,D, (7)
D=D,D, a1,a220  d|(ay,az)
ay+az=n|D;|

o Z( 1)r(e +k- )(e —r1/2)4r (ara2)" (s - al)z(e—r)

2

D, - D\ x- aiaz
:|D|e Z (j) |D2| ¢ Z Z (g)d l‘71<—1,D1,D2( 42 )E(al,az)
D=D,D a1,a220  d|(ay,az)

aj+ay=n|D,|

as desired. ]

7 Discussion

It is a folklore conjecture that S3;” (1) = S,,(1). Luo [13] showed that for ¢ sufficiently
large one has dim S3;' (1) > £. Our Theorem 1.2 (the case D = 1 was proved earlier by
Xue [24, Proposition 3.5]) provides a possible different approach to the conjecture. By
studying the linear independence of Gp k. or Ip .., one could obtain lower bounds
on the dimension of $3;”(1).

Conjecture 7.1  For { even, D a positive fundamental discriminant, the set {Sp k. | k +
2e =(,1< e < ||} is linearly independent.

We checked this conjecture computationally in the D =1 case up to £ = 1000 and
for prime D less than 50 up to £ = 100, using code written in Pari/GP [7]. In particular,
we computationally verified that the matrix

gn,0-2,1(4) gn,0-2,1(8) e gD,£—2,1(4[§J)
gD,e—4,2 (4) gD,e—4,2(8) o gD,z—4,2(4[§J)
8p.o- 2§ 11y (4) gpe- zg ey (8) . gD,Z—Z[fJ,[%J(ALléJ)

where Sp ke = X us1 €D,k (n)g" for1<e< [ |, has nonzero determinant. Further
work in this area should try to prove that this determmant is nonzero in general.
The conjecture would have several interesting consequences. Using the isomor-

phism between Sg Jf /2(4) and 83,°(1) given by the D-th Shimura lift, we find that

the dimension of 83,” would be at least [%J. Since the dimension of S,,(1) for even ¢

is [ffj [gJ and S;°(1) < S5¢(1), we would conclude that S3;° (1) = S5¢(1), settling
the conjecture on the nonvanishing of twisted central L-values for Hecke eigenforms.

This would then imply that S€+1/2(4) S£+1/2(4), so the Kohnen plus space for
k even is generated by Hecke eigenforms whose D-th coefficients are nonzero for all

fundamental discriminants D. Further, we would conclude that {Gp ke } k12e-r,1<e<| ¢
is abasis for SZ+1/2 (4), and the set {9D,k,e}k+ze:e,ogeg[§J is a basis for Mz'+1/2(4) (since
the 0-th Rankin-Cohen bracket produces a modular form which is non-cuspidal but
still in the Kohnen plus space). To the best of our knowledge, a similar basis was first
mentioned by Henri Cohen in a MathOverflow post.
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