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Subspaces spanned by eigenforms with
nonvanishing twisted central L-values
June Kayath, Connor Lane, Ben Neifeld, Tianyu Ni , and Hui Xue
Abstract. In this article, we construct explicit spanning sets for two spaces of modular forms.
One is the subspace generated by integral-weight Hecke eigenforms with nonvanishing quadratic
twisted central L-values. The other is a subspace generated by half-integral weight Hecke eigenforms
with certain nonvanishing Fourier coefficients. Along the way, we show that these subspaces are
isomorphic via the Shimura lift.

1 Introduction

Let � ≥ 2 be an integer. For N ≥ 1 and a Dirichlet character χ modulo N, let M�(N , χ)
and S�(N , χ) be the space of modular forms and cusp forms of weight �, level N , and
nebentypus χ, respectively. When χ is trivial, we simply write M�(N) and S�(N). Let
M�+1/2(4N) and S�+1/2(4N) be the space of modular forms and the space of cusp
forms of weight � + 1/2 for Γ0(4N), respectively. For N = 1, we recall the Kohnen [10]
plus space as the subspace

M+�+1/2(4) ∶= { f = ∑
n≥0

c f (n)qn ∈ M�+1/2(4) ∣ c f (n) = 0 if (−1)�n ≡ 2, 3(mod 4)} ,

and put S+�+1/2(4) ∶= M+�+1/2(4) ∩ S�+1/2(4). Let D be a fundamental discriminant (i.e.,
D = 1 or is the discriminant of a quadratic field) such that (−1)�D > 0. Following
Kohnen [10, p. 251], for f (z) = ∑n≥0 c f (n)qn ∈ M+�+1/2(4), we define its D-th Shimura
lift as

SD (∑
n≥0

c f (n)qn) ∶=
c f (0)

2
LD(1 − �) + ∑

n≥1

⎛
⎝∑

d ∣n
(D

d
) d�−1c f (∣D∣n

2

d2 )
⎞
⎠

qn ,(1.1)

where (D
⋅
) is the Kronecker symbol. It is known thatSD maps M+�+1/2(4) to M2�(1) and

S+�+1/2(4) to S2�(1), and commutes with the action of Hecke operators (see Kohnen [10,
Theorem 1] and Shimura [19]).

Received by the editors February 27, 2025; revised September 25, 2025; accepted September 29, 2025.
Published online on Cambridge Core October 3, 2025.
This research was supported by NSA MSP grant H98230-24-1-0033.
AMS subject classification: 11F37, 11F67.
Keywords: Rankin–Cohen brackets, Shimura lift, nonvanishing of twisted central L-values.

Downloaded from https://www.cambridge.org/core. 22 Nov 2025 at 17:02:38, subject to the Cambridge Core terms of use.

http://dx.doi.org/10.4153/S0008414X25101697
https://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0003-3006-7129
https://orcid.org/0000-0001-9437-254X
https://crossmark.crossref.org/dialog?doi=10.4153/S0008414X25101697&domain=pdf
https://www.cambridge.org/core


2 J. Kayath et al.

Now, we recall the Selberg identity on the Shimura lift. Let θ(z) = ∑n∈Z qn2 ∈
M1/2(4) be the Jacobi theta function. Selberg observed that for a normalized Hecke
eigenform f (z) ∈ M�(1) with a f (1) = 1, the first Shimura lift provides the identity

S1( f (4z)θ(z)) = f (z)2 ∈ M2�(1).(1.2)

For a fundamental discriminant D with (−1)k D > 0 with k ≥ 4 an integer, if one
defines

FD(z) ∶= TrD
1 (Gk ,D(z)2) ∈ M2k(1)

GD(z) ∶= 3
2
(1 − (D

2
) 2−k)

−1
pr+ Tr4D

4 (Gk ,4D(4z)θ(∣D∣z)) ∈ M+k+1/2(4),

then Kohnen–Zagier [9, Proposition 3] proved the following generalization of (1.2):

SD(GD(z)) = FD(z).(1.3)

We must make several definitions for the above to make sense. The Eisenstein series
Gk ,D and Gk ,4D are given by [9, p. 185]

Gk ,D(z) ∶=LD(1 − k)
2

+
∞

∑
n=1

⎛
⎝∑

d ∣n
(D

d
) dk−1⎞

⎠
qn ∈ Mk (∣D∣, (D

⋅ )) ,(1.4)

Gk ,4D(z) ∶=Gk ,D(4z) − 2−k (D
2
)Gk ,D(2z) ∈ Mk (4∣D∣, (D

⋅ )) ,(1.5)

where LD(s) = ∑n≥1 (D
n) n−s . The operator pr+ is the projection from M�+1/2(4) to

M+�+1/2(4) given by [9, p. 195]

(pr+ g)(z) = 1 − (−1)� i
6

(Tr16
4 Vg)(z) + 1

3
g(z),(1.6)

where V(g)(z) = g(z + 1
4 ) = g(z)∣k+1/2[ 4 1

0 4 ], using the notation of (1.7) and (1.8).
Additionally, for N ∣ M, TrM

N is the trace map

TrM
N ∶ Mm(M) → Mm(N), g ↦ ∑

γ∈Γ0(M)/Γ0(N)
g∣mγ,(1.7)

where for any real number m and γ = [ a b
c d ] ∈ GL+2 (R), we define the slash operator [2,

Theorem 7.1]

(g∣mγ) (z) = det(γ)m/2(cz + d)−m g ( az + b
cz + d

) .(1.8)

On the other hand, the Selberg identity (1.2) for the first Shimura lift has been
generalized to the setting of Rankin–Cohen brackets. Let us first introduce the
definition of Rankin–Cohen brackets for modular forms.

Definition 1.1 Let f (z) ∈ Ma(Γ) and g(z) ∈ Mb(Γ) be modular forms for some
congruence subgroup Γ of weights a and b, respectively. For a nonnegative integer e,
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Subspaces spanned by eigenforms with nonvanishing twisted central L-values 3

we define the e-th Rankin–Cohen bracket as

[ f (z), g(z)]e ∶=
e
∑
r=0

(−1)r(e + a − 1
e − r

)(e + b − 1
r

) f (z)(r)g(z)(e−r) ,(1.9)

where f (z)(r) is the r-th normalized derivative f (z)(r) ∶= 1
(2πi)r

d r f (z)
dzr of f. Here, a, b

can be in 1
2Z and the binomial coefficients are defined through gamma functions.

Moreover, [ f , g]e ∈ Ma+b+2e(Γ) and [ f , g]e ∈ Sa+b+2e(Γ) for e > 1 (see [2, Theo-
rem 7.1]. We remark that the Rankin–Cohen bracket defined in Zagier [25, (73)] is
related to (1.9) through F(a ,b)

e ( f (z), g(z)) = (−2πi)e e![ f (z), g(z)]e (see [12, (1.1)].

Choie–Kohnen–Zhang [1] and Xue [24] independently showed that if k ≥ 4 is an
even integer, f (z) ∈ Mk(1) is a normalized Hecke eigenform, and e is a nonnegative
integer, then

S1([ f (4z), θ(z)]e) =
(k+e−1

e )
(k+2e−1

2e )
[ f (z), f (z)]2e .(1.10)

Note that (1.10) was also proved in [17, Proposition B1] when f is an Eisenstein
series. Recently, Wang [21] generalized (1.10) to higher-level forms. Let k ≥ 4 and
e > 0 be integers with � = k + 2e and let D be a fundamental discriminant such that
(−1)�D > 0. We introduce functions

FD ,k ,e(z) ∶=TrD
1 ([Gk ,D(z), Gk ,D(z)]2e) ∈ S2�(1),(1.11)

GD ,k ,e(z) ∶=3
2
(1 − (D

2
) 2−k)

−1
pr+ Tr4D

4 [Gk ,4D(z), θ(∣D∣z)]e ∈ S+�+1/2(4).(1.12)

Note that both FD ,k ,e(z) and GD ,k ,e(z) are cusp forms, since e > 0. Now, we state our
first main result, which can be viewed as a combination of (1.3) and (1.10).

Theorem 1.1 Let D be an odd fundamental discriminant such that (−1)�D > 0 and let
k ≥ 4 and e > 0 be integers such that k + 2e = �. Then, we have the identity

SD (GD ,k ,e) = ∣D∣e
(k+e−1

e )
(k+2e−1

2e )
FD ,k ,e .(1.13)

We have required that e > 0 because the case e = 0 is exactly (1.3). Our next main
result concerns the nonvanishing of twisted central values of L-functions associated
with Hecke eigenforms. Before stating the precise result, let us first introduce some
notation.

Definition 1.2 Let D be a fundamental discriminant such that (−1)�D > 0.

(1) Let S0,D
2� (1) denote the subspace of S2�(1) generated by normalized Hecke eigen-

forms f with nonzero central twisted L-values L( f , D, �), where L( f , D, s) =
∑n≥1 (D

n) a f (n)n−s is the L-function of f twisted by (D
⋅
). We write S−,D

2� (1) for
the orthogonal complement of S0,D

2� (1), which is spanned by Hecke eigenforms
with vanishing central twisted L-values.
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4 J. Kayath et al.

(2) Let S0,D
�+1/2(4) be the subspace of S+�+1/2(4) generated by Hecke eigenforms g =

∑n≥1 cg(n)qn with cg(∣D∣) ≠ 0. We write S−,D
�+1/2(4) for the orthogonal comple-

ment of S0,D
�+1/2(4), which is spanned by Hecke eigenforms g = ∑n≥1 cg(n)qn with

cg(∣D∣) = 0.

The twisted L-function L( f , D, s), originally defined for Re(s) ≫ 0, can be analyt-
ically continued to the whole complex plane, and for a Hecke eigenform f ∈ S2�(1)
satisfies [16, Lemma 9.2]:

Λ( f , D, s) = (−1)� (D
−1

) Λ( f , D, 2� − s),

where Λ( f , D, s) = (2π)−s Γ(s)L( f , D, s) is the completed twisted L-function of f.
Since (D

−1) is the sign of D, the assumption (−1)�D > 0 implies that the functional
equation for L( f , D, s) has a positive sign. Therefore, the subspace S0,D

2� (1) in Defini-
tion 1.2 (1) is not trivially zero. It is speculated that the central L-value L( f , D, �) is
nonvanishing for every Hecke eigenform f ∈ S2�(1). Thus, it is believed that S2�(1) =
S0,D

2� (1) for every fundamental discriminant D. For further discussion, see Section 7.
Our second main result gives an explicit construction of a set of generators for

the subspaces S0,D
2� (1) and S0,D

�+1/2(4). We hope this result would help investigate
the aforementioned speculation on the nonvanishing of twisted central L-values.
Furthermore, we prove that the D-th Shimura lift SD gives an isomorphism between
S0,D

�+1/2(4) and S0,D
2� (1), which generalizes Kohnen’s results [10, Theorem 2] and

[24, Proposition 3.3].

Theorem 1.2 Let D be an odd fundamental discriminant with (−1)�D > 0. Then,

S0,D
�+1/2(4) = Span{GD ,k ,e}k+2e=� , and S0,D

2� (1) = Span{FD ,k ,e}2k+4e=2� ,

where k ≥ 4 and e > 0. Additionally, the restricted D-th Shimura lift

SD ∶ S0,D
�+1/2(4) → S0,D

2� (1)

is an isomorphism.

We assume D to be odd throughout the article in order to avoid the technical
complications caused by even D, although we believe our results continue to hold in
this case.

This article is organized as follows. Section 2 discusses the main results of this
article. The proof of Theorem 1.1 is based on the same idea as the proof of (1.10)
(see [1, 24]), but requires explicit computations of the Fourier coefficients of both
sides of (1.13). Most of the technical details required for the proof of Theorem 1.1
are presented in Section 6. Based on the Petersson inner product formulas for FD ,k ,e
and GD ,k ,e derived in Section 5, we explicitly construct a spanning set for S0,D

2� (1)
(Proposition 2.4). We then show that the D-th Shimura lift is an isomorphism
from S0,D

�+1/2(4) to S0,D
2� (1) (Proposition 2.2). Finally, using these results, we prove

Proposition 2.6, explicitly constructing a spanning set for S0,D
�+1/2(4) and finishing the

proof of Theorem 1.2.
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Subspaces spanned by eigenforms with nonvanishing twisted central L-values 5

The remaining sections are dedicated to proofs of the results needed in Section 2.
Section 3 proves an alternate formula for GD ,k ,e , which we use to compute its Fourier
coefficients in Section 6. Section 4 recalls the theory of Eisenstein series, which will be
useful to the Fourier development of FD ,k ,e and GD ,k ,e in Section 6. Assuming those
two sections, Section 5 derives Petersson inner product formulas forFD ,k ,e andGD ,k ,e
via the Rankin–Selberg convolution. In Section 6, we carry out the computations of
Fourier coefficients for Theorem 1.1. Section 7 discusses the relationship between these
results and their potential applications to the nonvanishing of twisted central L-values
of Hecke eigenforms in S2�(1).

2 Selberg identity and spanning sets of subspaces

This section proves our main results, assuming the necessary results to be proved later.
We begin by proving Theorem 1.1, a generalization of the Selberg identity.

Proof of Theorem 1.1 Recall that GD ,k ,e (1.12) and FD ,k ,e (1.11) are cusp forms. Write

SD(GD ,k ,e(z)) = ∑
n≥1

gD ,k ,e(n)qn and FD ,k ,e(z) = ∑
n≥1

fD ,k ,e(n)qn .

Comparing the Fourier coefficients fD ,k ,e(n) and gD ,k ,e(n) that are, respectively,
given by Lemmas 6.5 and 6.6, it suffices to show for each nonnegative integer pair
(a1 , a2) with a1 + a2 = n∣D1∣ that

(k + e − 1
e

)
2e
∑
r=0

(−1)r ar
1 a2e−r

2 (2e + k − 1
2e − r

)(2e + k − 1
r

)

= (k + 2e − 1
2e

) ∑
r+s=e

(−1)r(k + e − 1
s

)(e − 1/2
r

)4r(a2 − a1)2s(a1a2)r .(2.1)

Without loss of generality, we may assume that R ≤ S and compare the coefficients
of the monomial aR

1 aS
2 of the two sides of (2.1). The aR

1 aS
2 -coefficient on the left-hand

side of (2.1) is

(−1)R(k + e − 1
e

)(2e + k − 1
2e − R

)(2e + k − 1
R

),

and the right-hand side of (2.1) has aR
1 aS

2 -coefficient

(k + 2e − 1
2e

)
R
∑
r=0

(−1)r(k + e − 1
e − r

)(e − 1/2
r

)4r(2e − 2r
R − r

)(−1)R−r

= (−1)R(k + 2e − 1
2e

)
R
∑
r=0

(k + e − 1
e − r

)(e − 1/2
r

)4r(2e − 2r
R − r

).

Using Lemma 2.1, we finish the proof of Theorem 1.1. ∎
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6 J. Kayath et al.

Lemma 2.1 Let R ≤ e be nonnegative and k ≥ 4. Then, we have the following identity:

(k + e − 1
e

)(k + 2e − 1
2e − R

)(k + 2e − 1
R

)

= (k + 2e − 1
2e

)
R
∑
r=0

4r(k + e − 1
e − r

)(e − 1/2
r

)(2e − 2r
R − r

),

where fractional binomial coefficients are defined by the Γ function.

Proof We reproduce the proof of [24, Proposition 2.1]. By definition, we have

(e − 1/2
r

) = Γ(e + 1/2)
Γ(r + 1)Γ(e + 1/2 − r) .

By Legendre’s duplication formulas, we have

Γ(e + 1/2) = (2e)!
4e e!

√
π, Γ(e − r + 1/2) = (2(e − r))!

4e−r(e − r)!
√

π.

These together yield

(e − 1/2
r

) = (2e)!4e−r(e − r)!
√

π
r!4e e!(2(e − r))!

√
π

= (2e)!4−r(e − r)!
r!e!(2(e − r))!

,

which yields the following formula for each term on the right-hand side:

4r(k + 2e − 1
2e

)(k + e − 1
e − r

)(e − 1/2
r

)(2e − 2r
R − r

)

= (k + 2e − 1)!(k + e − 1)!
(k − 1)!(k + r − 1)!(R − r)!(2e − R − r)!e!r!

.

The left-hand side expands into

(k + e − 1
e

)(k + 2e − 1
2e − R

)(k + 2e − 1
R

)

= (k + e − 1)!(k + 2e − 1)!(k + 2e − 1)!
e!(k − 1)!(2e − R)!(k + R − 1)!R!(k + 2e − 1 − R)!

.

If we cancel (k + e − 1)!(k + 2e − 1)! from both sides, and multiply by R!(k + 2e − R −
1), we see that it suffices to show

R
∑
r=0

( R
R − r

)(k + 2e − R − 1
k + r − 1

) = (k + 2e − 1
k + R − 1

).

After applying the involution r ↦ R − r, this is then Vandermonde’s identity [18, p. 11]
t

∑
j=0

(n
j
)( m

t − j
) = (n + m

t
)

for the case of n = R, m = k + 2e − R − 1, and t = k + R − 1. ∎
We now build toward the proof of Theorem 1.2. We begin by showing that the D-th

Shimura lift gives rise to an isomorphism between S0,D
�+1/2(4) and S0,D

2� (1), which is a
generalization of [10, Theorem 2] for D = 1.
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Subspaces spanned by eigenforms with nonvanishing twisted central L-values 7

Proposition 2.2 Let D be an odd fundamental discriminant with (−1)�D > 0. Then,
the D-th Shimura lift SD restricts to an isomorphism S0,D

�+1/2(4) → S0,D
2� (1) for all � ≥ 6.

Proof Recall that by [10, Theorem 1] or [9, p. 182], if g = ∑n≥1 cg(n)qn ∈ S+�+1/2(4) is
a Hecke eigenform and f ∈ S2�(1) is the normalized Hecke eigenform corresponding
to g, then SD(g) = cg(∣D∣) f . This means that SD is a monomorphism when restricted
to S0,D

�+1/2(4). Thus, in order to show SD restricts to an isomorphism from S0,D
�+1/2(4)

to S0,D
2� (1) it suffices to show that dim S0,D

�+1/2(4) = dim S0,D
2� (1) since cg(∣D∣) = 0 if and

only if LD( f , �) = 0 by [9, Theorem 1].
Note that dim S0,D

2� (1) is the number of Hecke eigenforms in S2�(1) with nonzero
central twisted L-value, and dim S0,D

�+1/2(4) is the number of Hecke eigenforms in
S+�+1/2(4) with nonzero ∣D∣-th Fourier coefficient. According to [9, Theorem 1], these
two nonvanishing conditions are the same under the Shimura correspondence, thus
we conclude that dim S0,D

�+1/2(4) = dim S0,D
2� (1). ∎

Remark 2.3 In the � = 5, 7 case, the space of cusp forms S2�(1) is zero, and so is the
space S+�+1/2(4). So this proposition is trivially true.

We now construct an explicit spanning set for S0,D
2� (1). Before doing so, we need

to introduce the period of a modular form. For f ∈ S2�(1) and 0 ≤ t ≤ 2� − 2, the t-th
period of f is given by

rt( f ) ∶= t!
(−2πi)t+1 L( f , t + 1).(2.2)

Here, the L-series of f (z) = ∑n≥1 an qn is L( f , s) = ∑n≥1 an n−s , which converges for
Re(s) ≫ 0 and can be extended analytically to the whole complex plane; for details,
see [14].

Proposition 2.4 The set {FD ,k ,e}2k+4e=2� for 1 ≤ e ≤ ⌊ �−4
2 ⌋ spans S0,D

2� (1), for all � ≥ 6.

Proof By Proposition 5.6, we know that if g ∈ S−,D
2� (1) then g is orthogonal to

the subspace of SD
2�(1) spanned by {FD ,k ,e}2k+4e=2�. So it suffices to show that the

orthogonal complement of the span of {FD ,k ,e}2k+4e=2� is contained in S−,D
2� (1).

We will show that any modular form G = ∑ j c j g j , which is a linear combination of
normalized Hecke eigenforms in g j ∈ S0,D

2� (1) such that ⟨G ,FD ,k ,e⟩ = 0 for all FD ,k ,e
must be zero.

Note that Proposition 5.6 and (2.2) imply that

⟨FD ,k ,e , g j⟩ = 1
2

Γ(2k + 4e − 1)Γ(k + 2e)
(2e)!(4π)2k+4e−1Γ(k)

LD(1 − k)
LD(k)

(−2πi)2k+2e−1

(2k + 2e − 2)!
L(g j , D, k + 2e)r2k+2e−2(g j).

Thus, the orthogonality condition ⟨G ,FD ,k ,e⟩ = 0 is equivalent to

∑
j

c jL(g j , D, k + 2e)r2k+2e−2(g j) = 0.(2.3)
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8 J. Kayath et al.

Following an idea from the proof of [6, Theorem 1], we define another form
in S2�(1) by

F = ∑
j

c jL(g j , D, k + 2e)g j .

Hence, (2.3) implies that

r2k+2e−2(F) = ∑
j

c jL(g j , D, k + 2e)r2k+2e−2(g j) = 0.

As 1 ≤ e ≤ ⌊ �−4
2 ⌋ and k + 2e = �, we have � − 2 ≥ k ≥ 4. Then, t = 2k + 2e − 2 ranges

through all even values � + 2 ≤ t ≤ 2� − 4, so rt(F) = 0 for all even � + 2 ≤ t ≤ 2� − 4.
As a result of the following lemma, we have F = 0. Since L(g j , D, k + 2e) ≠ 0 as g j ∈
S0,D

2� (1), we must have c j = 0 for all j, and thus G = 0. ∎

Lemma 2.5 Let F ∈ S2�(1) and � ≥ 6, and let rt(F) be the t-th period of F. If rt(F) = 0
for all even t such that � + 2 ≤ t ≤ 2� − 4, then F = 0.

Proof We follow the idea of [23]. By the Eichler–Shimura theory [14, Proposition
2.3(b)] and [23, Remark 2.4], we know that F = 0 if and only if rt(F) = 0 for all even
2 ≤ t ≤ 2� − 4. By the Eichler–Shimura relation

rt(F) + (−1)tr2�−2−t(F) = 0,(2.4)

and the assumption that rt(F) = 0 for all even � + 2 ≤ t ≤ 2� − 4, we know that rt(F) =
0 also for all even 2 ≤ t ≤ � − 4. To show that the periods � − 4 < t < � + 2 are zero, we
split into cases based on the parity of �.

(1) If � is even, it suffices to show that r�(F) = r�−2(F) = 0. Since � is even, by (2.4),

r�(F) + r�−2(F) = 0.(2.5)

Substituting t = � − 2 into the Eichler–Shimura relation

(−1)trt(F) + ∑
0≤m≤t

m≡0(mod 2)

( t
m

)r2�−2−t+m(F) + ∑
0≤m≤2�−2−t
m≡t(mod 2)

(2� − 2 − t
m

)rm(F) = 0

(2.6)

and noting that r0(F) + r2�−2(F) = 0, we obtain

((�

2
) + 1) r�−2(F) + 2r�(F) = 0.

This equation, along with (2.5), implies that r�(F) = r�−2(F) = 0 for � ≥ 6.
(2) If � is odd, it suffices to show that r�−3(F) = r�−1(F) = r�+1(F) = 0. Substituting

t = � − 1 into (2.6), we get

3r�−1(F) + (� − 1
2

)r�+1(F) + (� − 1
� − 3

)r�−3(F) = 0.
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Since (�−1
2 ) = (�−1

�−3), and we know by (2.4) that r�−3(F) + r�+1(F) = 0, we
conclude that r�−1(F) = 0. Substituting t = � + 1 into (2.6) yields

2r�−3(F) + (� + 1
2

)r�−1(F) + (1 + (� + 1
4

)) r�+1(F) = 0,

and noting that r�−1(F) = 0, we conclude by (2.4) that

r�−3(F) = r�+1(F) = 0.

This finishes the proof. ∎
Finally, we construct a spanning set for S0,D

�+1/2(4) and finish the proof of Theo-
rem 1.2.

Proposition 2.6 The set {GD ,k ,e}k+2e=� for 1 ≤ e ≤ ⌊ �−4
2 ⌋ spans the subspace S0,D

�+1/2(4),
for all � ≥ 6.

Proof For a Hecke eigenform g ∈ S−,D
�+1/2(4), we have ⟨g ,GD ,k ,e⟩ = 0 by Proposition

5.7. So g is orthogonal to Span{GD ,k ,e}k+2e=� and thus

Span{GD ,k ,e}k+2e=� ⊆ S0,D
�+1/2(4).(2.7)

Note that Theorem 1.1 implies that

dim Span{GD ,k ,e}k+2e=� ≥ dim Span{FD ,k ,e}k+2e=� .

By Propositions 2.2 and 2.4, we have

Span{FD ,k ,e}k+2e=� = S0,D
2� (1) and dim S0,D

2� (1) = dim S0,D
�+1/2(4).(2.8)

Now, (2.7)–(2.8) together imply that dim Span{GD ,k ,e}k+2e=� ≥ dim S0,D
�+1/2(4). So we

conclude that Span{GD ,k ,e}k+2e=� = S0,D
�+1/2(4). ∎

Combining Propositions 2.2, 2.4, and 2.6, we complete the proof of Theorem 1.2.

3 Projection

In this section, we prove an alternate formula for GD ,k ,e (1.12):

GD ,k ,e(z) = Tr4D
4 [Gk ,D(4z), θ(∣D∣z)]e .

A similar formula is implicit in equations (6) and (7) in [9]. This formula allows us to
compute the Fourier coefficients (Proposition 6.4).

We need to introduce some notation and facts needed for the proof of Lemma 3.2.
Let

P
1(Z/NZ) = {(a ∶ b) ∶ a, b ∈ Z/NZ, gcd(a, b, N) = 1}/ ∼

be the projective line overZ/NZ, where (a ∶ b) ∼ (a′ ∶ b′) if there exists u ∈ (Z/NZ)∗
such that a = ua′ , b = ub′. It is known that there is a bijection between Γ0(N)/ SL2(Z)
and P

1(Z/NZ), which sends a coset representative [ a b
c d ] to the class (c ∶ d) in

P
1(Z/NZ) (see [20, Proposition 3.10]. For future reference, we prove a result on coset

representatives of certain quotients of congruence subgroups.
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Lemma 3.1 Let N ∈ N and let S ∈ N be squarefree with (N , S) = 1. Then,

{[ 1 0
NS1 1] [1 μ

0 1] ∶ S1 ∣ S , μ mod S
S1

}

is a set of coset representatives for Γ0(NS)/Γ0(N).
Proof The statement follows easily from the description of the cosets given
in [5, p. 276]. ∎
Lemma 3.2 Let � ≥ 1 be an integer and D be odd. We have V Tr4D

4 g = Tr16D
16 Vg for all

g ∈ M�+1/2(4∣D∣).
Proof The statement was mentioned in [9, p. 195], we only sketch it. We first remark
that by direct calculation, Vg ∈ M�+ 1

2
(16∣D∣), so Tr16D

16 Vg is well-defined. Note that
applying the fixed set of cosets for Γ0(4D)/Γ0(4) and Γ0(16D)/Γ0(16) given by Lemma
3.1 to N = 4, 16 and S = ∣D∣, we have the following explicit formulas (see (1.8) for the
definition of slash operators):

V Tr4D
4 g(z) = ∑

D1 D2=D
∑

μ mod ∣D2 ∣

g(z)∣�γD1 ,μ[ 1 1
4

0 1 ],

Tr16D
16 Vg(z) = ∑

D1 D2=D
∑

μ mod ∣D2 ∣

g(z)∣�[ 1 1
4

0 1 ]γ′D1 ,μ ,

where

γD1 ,μ = [ 1 0
4∣D1∣ 1] [1 μ

0 1] and γ′D1 ,μ = [ 1 0
16∣D1∣ 1] [1 μ

0 1] .

And the outer sums are over all factorizations of D into a product of fundamental
discriminants D1 , D2. Therefore, to prove the desired equality, it suffices to show that
the set of cosets

⎧⎪⎪⎨⎪⎪⎩
Γ0(4∣D∣) [1 1/4

0 1 ] γ′D1 ,μ [1 1/4
0 1 ]

−1

∶ D1D2 = D, μ mod ∣D2∣
⎫⎪⎪⎬⎪⎪⎭

is a system of representatives of Γ0(4∣D∣)/Γ0(4), which can be easily checked. ∎
Definition 3.1 For m ∈ N and f (z) = ∑n≥0 a f (n)qn ∈ Sk(N , χ), we define Um f by

Um f (z) = 1
m ∑

v mod m
f ( z + v

m
) = ∑

n≥0
a f (mn)qn .(3.1)

Equivalently, we may write via (1.8)

Um f (z) = mk/2−1 ∑
v mod m

f (z)∣
k
[1 v

0 m] .(3.2)

We need the following two simple observations. Note that Lemma 3.3 follows from
(3.1) and it implies Lemma 3.4.
Lemma 3.3 Let U2 be the operator defined in (3.1). Then,

U2Gk ,D(z) = (1 + 2k−1 (D
2
))Gk ,D(z) − 2k−1 (D

2
)Gk ,D(2z).
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Lemma 3.4 The following identity holds:

Gk ,D(4z) − Gk ,D(8z) − 2−k (D
2
)(Gk ,D (2z + 1

2
) + Gk ,D(2z))

= −(D
2
) 2−k+1Gk ,D(4z).

Note that γv = [ 1 0
4∣D∣v 1 ] for v = 0, 1, 2, 3 form a system of representatives of

Γ0(16∣D∣)/Γ0(4∣D∣) [9, p. 195]. The following lemma explicitly computes each term
in Tr16D

4D (VGk ,D(2z)).

Lemma 3.5 For γv = [ 1 0
4∣D∣v 1 ], we have

V(Gk ,D(2z))∣
k
γv =

⎧⎪⎪⎨⎪⎪⎩

Gk ,D (2z + 1
2) v ≡ 0, 2(mod 4),

(D
2 ) 2kGk ,D(8z) v ≡ 1, 3(mod 4).

Proof First,

V(Gk ,D(2z))
44444444444k

[ 1 0
4∣D∣v 1] = 2−k/2Gk ,D(z)

44444444444k

[2 0
0 1] [4 1

0 4] [ 1 0
4∣D∣v 1]

= 2−k/2Gk ,D(z)
44444444444k

[8(∣D∣v + 1) 2
16∣D∣v 4] .

Now, we do some casework.

(1) v = 0: We have

V(Gk ,D(2z))
44444444444k

[1 0
0 1] = V(Gk ,D(2z)) = Gk ,D (2(z + 1

4
)) = Gk ,D (2z + 1

2
) .

(2) v = 1, 3: Since v and ∣D∣ are odd, v∣D∣ + 1 must be even, gcd( ∣D∣v+1
2 , ∣D∣v) = 1,

and there exist some x , y ∈ Z such that ∣D∣v+1
2 x + ∣D∣v y = 1. Note also that x ≡ 2

(mod D) and (D
x ) = (D

2 ). Thus,

V(Gk ,D(2z))
44444444444k

[ 1 0
4∣D∣v 1] = 2−k/2Gk ,D(z)

44444444444k

[8(∣D∣v + 1) 2
16∣D∣v 4]

= 2−k/2Gk ,D(z)
44444444444k

[
∣D∣v+1

2 −y
∣D∣v x ][16 2x + 4y

0 2 ]

= 2−k/2 (D
x
)Gk ,D(z)

44444444444k

[16 2x + 4y
0 2 ]

= 2k (D
x
)Gk ,D(8z + x + 2y)

= (D
2
) 2kGk ,D(8z).
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(3) v = 2: Since gcd(2∣D∣ + 1, 4∣D∣) = 1, we can pick x , y ∈ Z such that (2∣D∣ + 1)x +
4∣D∣y = 1. As 4∣D∣y is even, x must be odd, so Gk ,D(2z + x

2 ) = Gk ,D(2z + 1
2), and

further ( D
x ) = 1 since x ≡ 1(mod D). Hence,

V(Gk ,D(2z))
44444444444k

[ 1 0
8∣D∣ 1] = 2−k/2Gk ,D(z)

44444444444k

[8(2∣D∣ + 1) 2
32∣D∣ 4]

= 2−k/2Gk ,D(z)
44444444444k

[2∣D∣ + 1 −y
4∣D∣ x ] [8 2x + 4y

0 4 ]

= (D
x
) 2−k/2Gk ,D(z)

44444444444k

[8 2x + 4y
0 4 ]

= Gk ,D (2z + x
2
)

= Gk ,D (2z + 1
2
) .

Thus, the proof is complete. ∎
The following lemma explicitly computes each term in Tr16D

4D (V θ(∣D∣z)).
Lemma 3.6 Let D be an odd fundamental discriminant. Then,

V(θ(∣D∣z))∣
1
2

γ0 = θ (∣D∣z + ∣D∣
4

) ,

V(θ(∣D∣z))∣
1
2

γ1 =
⎧⎪⎪⎨⎪⎪⎩

(2i)1/2(θ(∣D∣z) − θ(4∣D∣z)) D > 0,
−i(2i)1/2θ(4∣D∣z) D < 0,

V(θ(∣D∣z))∣
1
2

γ2 = sgn(D)iθ (∣D∣z − ∣D∣
4

) ,

V(θ(∣D∣z))∣
1
2

γ3 =
⎧⎪⎪⎨⎪⎪⎩

(2i)1/2θ(4∣D∣z) D > 0,
−i(2i)1/2(θ(∣D∣z) − θ(4∣D∣z)) D < 0,

taking the principal branch of every square root.
Proof Recall that for W4 ∶= [ 0 −1

4 0 ], we have

θ(z)∣ 1
2
W4 = i−1/2θ(z),

see, e.g., [4, Proposition 15.1.1]. Note that

V(θ(∣D∣z))
44444444444 1

2

[ 1 0
4∣D∣v 1] = ∣D∣−1/4θ(z)

44444444444 1
2

[∣D∣ 0
0 1] [4 1

0 4] [ 1 0
4∣D∣v 1]

= ∣D∣−1/4θ(z)
44444444444 1

2

[∣D∣v + 1 ∣D∣
4v 4 ] [4∣D∣ 0

0 1] .

In the following, we only give detailed proofs for v = 0, 1, 2, and leave out details for
v = 3 because it follows a similar argument to v = 1.

Downloaded from https://www.cambridge.org/core. 22 Nov 2025 at 17:02:38, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Subspaces spanned by eigenforms with nonvanishing twisted central L-values 13

(1) v = 0:

V(θ(∣D∣z))
44444444444 1

2

[1 0
0 1] = θ (∣D∣z + ∣D∣

4
) .

(2) v = 1: We have

V(θ(∣D∣z))
44444444444 1

2

[ 1 0
4∣D∣ 1] = ∣D∣−1/4θ(z)

44444444444 1
2

[∣D∣ + 1 ∣D∣
4 4 ] [4∣D∣ 0

0 1]

= ∣D∣−1/4θ(z)
44444444444 1

2

[−∣D∣ ∣D∣ + 1
−4 4 ] W4 [∣D∣ 0

0 1] .

Since ∣D∣ is odd, we can choose x , y ∈ Z such that −∣D∣x − 4y = 1. This gives us

[−∣D∣ ∣D∣ + 1
−4 4 ] = [−∣D∣ −y

−4 x ] [1 x − 1
0 4 ] .

Note that [−∣D∣ −y
−4 x ] ∈ Γ0(4), so we have

V(θ(∣D∣z))
44444444444 1

2

[ 1 0
4∣D∣ 1] = ∣D∣−1/4 (−4

x
) ε−1

x θ(z)
44444444444 1

2

[1 x − 1
0 4 ] W4 [∣D∣ 0

0 1]

= 2−1/2∣D∣−1/4 (−4
x

) ε−1
x θ ( z + x − 1

4
)
44444444444 1

2

W4 [∣D∣ 0
0 1] ,

where

εx =
⎧⎪⎪⎨⎪⎪⎩

1 x ≡ 1(mod 4),
i x ≡ 3(mod 4).

Now, we have two cases since −∣D∣x − 4y = 1 and the sign of D determines εx .
(a) If D > 0, then ∣D∣ ≡ 1(mod 4), so x ≡ 3(mod 4), θ ( z+x−1

4 ) = θ ( z
4 + 1

2) =
2θ(z) − θ( z

4), εx = i, and (−4
x ) = −1. So we have

V(θ(∣D∣z))
44444444444 1

2

[ 1 0
4∣D∣ 1] = 2−1/2∣D∣−1/4 (−4

x
) ε−1

x θ ( z + x − 1
4

)
44444444444 1

2

W4 [∣D∣ 0
0 1]

= i2−1/2∣D∣−1/4 (2θ(z) − θ ( z
4
))

44444444444 1
2

W4 [∣D∣ 0
0 1] .

Explicitly computing these, we get

θ(z)
44444444444 1

2

W4 [∣D∣ 0
0 1] = i−1/2∣D∣1/4θ(∣D∣z),

Downloaded from https://www.cambridge.org/core. 22 Nov 2025 at 17:02:38, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


14 J. Kayath et al.

θ ( z
4
)
44444444444 1

2

W4 [∣D∣ 0
0 1] = 21/2θ(z)

44444444444 1
2

[1 0
0 4] W4 [∣D∣ 0

0 1]

= 21/2θ(z)
44444444444 1

2

W4 [4 0
0 1] [∣D∣ 0

0 1]

= 21/2 i−1/2θ(z)
44444444444 1

2

[4 0
0 1] [∣D∣ 0

0 1]

= 2i−1/2∣D∣1/4θ(4∣D∣z).

So our expression simplifies to

i2−1/2∣D∣−1/4 (2θ(z) − θ ( z
4
))

44444444444 1
2

W4 [∣D∣ 0
0 1] = (2i)1/2(θ(∣D∣z) − θ(4∣D∣z)).

(b) If D < 0, then ∣D∣ ≡ 3(mod 4), x ≡ 1(mod 4), θ ( z+x−1
4 ) = θ( z

4), εx = 1, and
(−4

x ) = 1. So we have

V(θ(∣D∣z))
44444444444 1

2

[ 1 0
4∣D∣ 1] = 2−1/2∣D∣−1/4 (−4

x
) ε−1

x θ ( z + x − 1
4

)
44444444444 1

2

W4 [∣D∣ 0
0 1]

= 2−1/2∣D∣−1/4θ ( z
4
)
44444444444 1

2

W4 [∣D∣ 0
0 1]

= −i(2i)1/2θ(4∣D∣z).

(3) v = 2: Since 2∣D∣ + 1 is coprime to 8, we can find x , y ∈ Z such that (2∣D∣ + 1)x +
8y = 1.

V(θ(∣D∣z))
44444444444 1

2

[ 1 0
8∣D∣ 1] = ∣D∣−1/4θ(z)

44444444444 1
2

[2∣D∣ + 1 ∣D∣
8 4 ] [4∣D∣ 0

0 1]

= ∣D∣−1/4θ(z)
44444444444 1

2

[2∣D∣ + 1 −y
8 x ]

[1 ∣D∣x + 4y
0 4 ] [4∣D∣ 0

0 1] .

Now that [2∣D∣ + 1 −y
8 x ] is in Γ0(4), we get

V(θ(∣D∣z))
44444444444 1

2

[ 1 0
8∣D∣ 1] = ∣D∣−1/4ε−1

x ( 8
x
) θ(z)

44444444444 1
2

[1 1−x
2

0 4 ] [4∣D∣ 0
0 1]
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= ∣D∣−1/4ε−1
x ( 8

x
) 2−1/2θ ( z

4
+ 1 − x

8
)
44444444444 1

2

[4∣D∣ 0
0 1]

= ε−1
x ( 8

x
) θ (∣D∣z + 1 − x

8
) .

As (2∣D∣ + 1)x + 8y = 1 and the sign of D determines εx , we do casework again.
(a) If D > 0, then ∣D∣ ≡ 1(mod 4), which implies that 3x ≡ 1(mod 8), x ≡

3(mod 8), εx = i and (8
x) = (8

3) = −1. Note also that θ(∣D∣z + 1−x
8 ) =

θ(∣D∣z − 1
4).

(b) If D < 0, then ∣D∣ ≡ 3(mod 4), which gives 7x ≡ 1(mod 8), x ≡ 7(mod 8),
(8

x) = (8
7) = 1, εx = i and θ(∣D∣z + 1−x

8 ) = θ(∣D∣z − 3
4).

Combining these two cases, we can write

V(θ(∣D∣z))
44444444444 1

2

[ 1 0
4∣D∣v 1] = sgn(D)iθ (∣D∣z − ∣D∣

4
) .

(4) v = 3: The argument in this case is similar to that of v = 1, and is omitted.
The above arguments complete the proof. ∎

We also need the following two lemmas.
Lemma 3.7 We have that

V θ(∣D∣z)∣
1
2

γ1 + V θ(∣D∣z)∣
1
2

γ3 = ε−1
∣D∣(2i)1/2θ(∣D∣z).

Proof It is a trivial consequence of Lemma 3.6. ∎
Lemma 3.8 We have that

V θ(∣D∣z)∣
1
2

γ0 + V θ(∣D∣z)∣
1
2

γ2 = (1 + isgn(D))θ(∣D∣z).

Proof By Lemma 3.6, we have

V θ(∣D∣z)∣
1
2

γ0 + V θ(∣D∣z)∣
1
2

γ2 = θ (∣D∣z + ∣D∣
4

) + isgn(D)θ (∣D∣z − ∣D∣
4

) .

Note that

θ (∣D∣z + ∣D∣
4

) = ∑
n∈Z

e2πi n2 ∣D∣
4 e2πin2 ∣D∣z = ∑

n∈Z
a(n)e2πin2 ∣D∣z ,

where a(n) = isgn(D) if n is odd and a(n) = 1 if n is even. On the other hand,

θ (∣D∣z − ∣D∣
4

) = ∑
n∈Z

e2πi −n2 ∣D∣
4 e2πin2 ∣D∣z = ∑

n∈Z
b(n)e2πin2 ∣D∣z ,

where b(n) = −isgn(D) if n is odd and b(n) = 1 if n is even. Hence,

θ (∣D∣z + ∣D∣
4

) + sgn(D)iθ (∣D∣z − ∣D∣
4

) = ∑
n∈Z

(a(n) + isgn(D)(b(n))e2πin2 ∣D∣z

= (1 + isgn(D))θ(∣D∣z),

as desired. ∎
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Now, we are ready to prove the alternate formula (1.12) for GD ,k ,e promised at the
beginning of this section.

Proposition 3.9 Let k ≥ 4 and e > 0 be integers such that k + 2e = � and let D be an
odd fundamental discriminant such that (−1)�D > 0. Then,

GD ,k ,e(z) = Tr4D
4 [Gk ,D(4z), θ(∣D∣z)]e .

Proof We closely follow [9, p. 195], where a similar result is implicit in the proof of
formulas [9, (6) and (7)]. Write h = [Gk ,4D(z), θ(∣D∣z)]e . By Lemma 3.2, we get

GD ,k ,e = 3
2
(1 − (D

2
) 2−k)

−1
pr+ Tr4D

4 (h)

= 3
2
(1 − (D

2
) 2−k)

−1
( 1 − (−1)� i

6
Tr16

4 V(Tr4D
4 (h)) + 1

3
Tr4D

4 (h))

= 3
2
(1 − (D

2
) 2−k)

−1
Tr4D

4 ( 1 − (−1)� i
6

Tr16D
4D (V(h)) + 1

3
h)

= 3
2
(1 − (D

2
) 2−k)

−1
Tr4D

4 gD ,(3.3)

with

gD = 1 − (−1)k i
6

Tr16D
4D (V(h)) + 1

3
h.

Note that k ≡ � mod 2, so we can substitute in (−1)k for (−1)� above. We now compute
gD . The matrices γv = [ 1 0

4∣D∣v 1 ], where v = 0, 1, 2, 3, form a set of coset representatives
for Γ0(16∣D∣)/Γ0(4∣D∣) [9, p. 195]. Then, we have

Tr16D
4D (V(h)) = Tr16D

4D (V[Gk ,4D(z), θ(∣D∣z)]e)
= Tr16D

4D [VGk ,4D(z), V θ(∣D∣z)]e

= Tr16D
4D [Gk ,D(4z) − 2−k (D

2
) V(Gk ,D(2z)), V θ(∣D∣z)]

e

= ∑
γv

[Gk ,D(4z) − 2−k (D
2
) V(Gk ,D(2z)), V θ(∣D∣z)]

e

44444444444k+ 1
2+2e

γv .

Since γv ∈ Γ0(4∣D∣), Gk ,D(4z)∣
k
γv = Gk ,D(4z). By Lemma 3.5, we get

Tr16D
4D (V(h)) = ∑

γv

[Gk ,D(4z)∣
k
γv − 2−k (D

2
)V(Gk ,D(2z))∣

k
γv , V θ(∣D∣z)∣

1
2

γv]
e

= [Gk ,D(4z) − 2−k (D
2
)Gk ,D (2z + 1

2
) , V θ(∣D∣z)∣

1
2

γ0 + V θ(∣D∣z)∣
1
2

γ2]
e

+ [Gk ,D(4z) −Gk ,D(8z), V θ(∣D∣z)∣
1
2

γ1 + V θ(∣D∣z)∣
1
2

γ3]
e

.
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Subspaces spanned by eigenforms with nonvanishing twisted central L-values 17

Using Lemmas 3.7 and 3.8 and noting that sgn(D) = (−1)k by our assumption, we can
simplify this to

Tr16D
4D (V(h)) = [Gk ,D(4z) − 2−k (D

2
)Gk ,D (2z + 1

2
) , (1 + i(−1)k)θ(∣D∣z)]

e

+ [Gk ,D(4z) − Gk ,D(8z), ε−1
∣D∣(2i)1/2θ(∣D∣z)]

e
.

Now, we can finally compute the projection

gD(z) = 1 − i(−1)k

6
Tr16D

4D (V(h(z))) + 1
3

h(z)

= 1 − i(−1)k

6
[Gk ,D(4z) − 2−k (D

2
)Gk ,D (2z + 1

2
) , (1 + i(−1)k)θ(∣D∣z)]

e

+ 1 − i(−1)k

6
[Gk ,D(4z) − Gk ,D(8z), ε−1

∣D∣(2i)1/2θ(∣D∣z)]
e

+ 1
3
[Gk ,D(4z) − 2−k (D

2
)Gk ,D(2z), θ(∣D∣z)]

e

= 1
3
[Gk ,D(4z) − 2−k (D

2
)Gk ,D (2z + 1

2
) , θ(∣D∣z)]

e

+ 1
3
[Gk ,D(4z) − Gk ,D(8z), θ(∣D∣z)]e

+ 1
3
[Gk ,D(4z) − 2−k (D

2
)Gk ,D(2z), θ(∣D∣z)]

e

= 1
3
[Gk ,D(4z) − Gk ,D(8z) − 2−k (D

2
)(Gk ,D (2z + 1

2
) + Gk ,D(2z)) , θ(∣D∣z)]

e

+ 2
3
[Gk ,D(4z), θ(∣D∣z)]e .

Using Lemma 3.4, we can simplify the first term to get

gD(z) = 1
3
[−(D

2
) 2−k+1Gk ,D(4z), θ(∣D∣z)]

e
+ 2

3
[Gk ,D(4z), θ(∣D∣z)]e

= 2
3
(1 − (D

2
) 2−k) [Gk ,D(4z), θ(∣D∣z)]e .(3.4)

Plugging (3.4) into (3.3) gives the desired result. ∎

4 Eisenstein Series

In this section, we define various Eisenstein series and show that Gk ,4D(z) (1.5) is an
Eisenstein series for the cusp at infinity of level 4∣D∣. We recall the theory of Eisenstein
series as developed in Miyake [15, Section 7]. Let χ and ψ be Dirichlet characters mod
L and mod M, respectively. For k ≥ 3, we put

Ek(z; χ, ψ) = ∑′

m ,n∈Z
χ(m)ψ(n)(mz + n)−k .
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18 J. Kayath et al.

Here, ∑ is the summation over all pairs of integers (m, n) except (0, 0). In particular,
Ek(Mz; χ, ψ) is a modular form in Mk(LM , χψ) (see [15, pp. 269–271] for details).

Lemma 4.1 [15, Theorem 7.1.3] Assume k ≥ 3. Let χ and ψ be Dirichlet characters
mod L and mod M, respectively, satisfying χ(−1)ψ(−1) = (−1)k . Let mψ be the conductor
of ψ, and ψ0 be the primitive character associated with ψ. Then,

Ek(z; χ, ψ) = C + A
∞

∑
n=1

a(n)e2πinz/M ,

where

A = 2(−2πi)kG(ψ0)/Mk(k − 1)!,

C =
⎧⎪⎪⎨⎪⎪⎩

2LM(k, ψ) χ ∶ the principal character,
0 otherwise,

a(n) = ∑
0<c∣n

χ(n/c)ck−1 ∑
0<d ∣(l ,c)

dμ(l/d)ψ0(l/d)ψ0(c/d).

Here, l = M/mψ , μ is the Möbius function, LM(k, ψ) = ∑∞n=1 ψ(n)n−k is the Dirichlet
series, and G(ψ0) is the Gauss sum of ψ0.

For a fundamental discriminant D, we write χD(⋅) = (D
⋅
) and LD(k) =

∑∞n=1 χD(n)n−k .

Example 4.2 Let D be a fundamental discriminant and 1 be the principal character.
Then,

Ek(z; 1, χD) = 2LD(k) + 2(−2πi)kG(χD)
(k − 1)!∣D∣k

∞

∑
n=1

⎛
⎝∑

d ∣n
(D

d
) dk−1⎞

⎠
q2πinz/∣D∣ .

Example 4.3 If D = D1D2 is a product of relatively prime fundamental discriminants
then

Ek(z; χD2 , χD1) ∶= C + 2(−2πi)kG(χD1)
∣D1∣k(k − 1)!

∞

∑
n=1

⎛
⎜⎜
⎝

∑
d1 ,d2>0
d1 d2=n

(D1

d1
)(D2

d2
) dk−1

1

⎞
⎟⎟
⎠

e2πinz/∣D1 ∣ ,

where C is zero unless D2 = 1.

We shall compare our Eisenstein series Gk ,D(z) (1.4) and Gk ,D1 ,D2(z), defined
below in (4.2) [9, p. 193] with the ones above given in Miyake [15]. Comparing the
Fourier coefficients of Gk ,D(z) and Ek(z; 1, χD) gives

Gk ,D(z) = (k − 1)!∣D∣k
2(−2πi)kG(χD)Ek(∣D∣z, 1, χD) ∈ Mk(∣D∣, χD).(4.1)

Recall that [9, p. 193] for D1 , D2 relatively prime fundamental discriminants with
(−1)k D1D2 > 0:

Gk ,D1 ,D2(z) = ∑
n≥0

σk−1,D1 ,D2(n)qn ,(4.2)
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Subspaces spanned by eigenforms with nonvanishing twisted central L-values 19

σk−1,D1 ,D2(n) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−LD1(1 − k)LD2(0) n = 0,
∑

d1 ,d2>0
d1 d2=n

(D1
d1
)(D2

d2
) dk−1

1 n > 0,

where the constant term is zero unless D2 = 1. Hence, by comparing the Fourier
coefficients of Gk ,D1 ,D2(z) and Ek(z; χD2 , χD1), we get

Gk ,D1 ,D2(z) = ∣D1∣k(k − 1)!
2(−2πi)kG(χD1)

Ek(∣D1∣z; χD2 , χD1) ∈ Mk(∣D1D2∣, χD1 χD2).(4.3)

The following expression of Gk ,D1 ,D2(z) is useful for Lemma 6.1.

Lemma 4.4 Let k ≥ 3 and D = D1D2 be a product of coprime fundamental discrimi-
nants. Then,

Gk ,D1 ,D2(z) = ∣D1∣k(k − 1)!
2(−2πi)kG(χD1)

χD2(∣D1∣) ∑′

m ,n∈Z
D1 ∣m

χD2(m)χD1(n)
(mz + n)k .(4.4)

Proof Note that

Ek(∣D1∣z; χD2 , χD1) = ∑′

m ,n∈Z
χD2(m)χD1(n)(m∣D1∣z + n)−k

= χD2(∣D1∣) ∑′

�,n∈Z
D1 ∣�

χD2(�)χD1(n)(�z + n)−k .

Thus, the result follows from (4.3). ∎
Let k ≥ 3 and χ be a Dirichlet character mod N. We define the Eisenstein series for

the cusp at infinity [15, p. 272] as

E∗k ,N(z; χ) = ∑
[ a b

c d ]∈Γ∞/Γ0(N)

χ(d)
(cz + d)k ,

where Γ∞ = {±[ 1 n
0 1 ] ∶ n ∈ Z}.

Now, we are ready to prove that Gk ,4D is an Eisenstein series for the cusp at infinity
of level 4∣D∣.
Lemma 4.5 [15, (7.1.30)] Let 1 denote the principal Dirichlet character. Then,

2LN(k, χ)E∗k ,N(z; χ) = Ek(Nz; 1, χ).

From (4.1) and Lemma 4.5, we know that Gk ,D(z) is an Eisenstein series at infinity.
We have

Gk ,D(z) = LD(1 − k)
2

E∗k ,∣D∣(z; χD).(4.5)

Note also that (4.1) and the proof of Lemma 4.5 imply that

Gk ,D(z) = (k − 1)!∣D∣k
2(−2πi)kG(χD) ∑′

c ,d∈Z
D∣c

χD(d)
(cz + d)k .(4.6)
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20 J. Kayath et al.

In fact, equation (4.6) will be more convenient for us to compute the Fourier
expansion of Gk ,D(z) at different cusps. We need the following lemma
(see also [5, p. 271].

Lemma 4.6 Let L(4)D (k) = ∑
(n ,4)=1

n≥1

χD(n)n−k . Then,

E∗k ,4∣D∣(z; χD) = LD(k)
L(4)D (k)

(E∗k ,∣D∣(4z; χD) − 2−k (D
2
) E∗k ,∣D∣(2z; χD)) .

Proof Observe that

2L(4)D (k)E∗k ,4∣D∣(z; χD) = 2 ∑
n≥1
(4,n)=1

χD(n)
nk

⎛
⎜⎜⎜
⎝

1
2 ∑
(c ,d)=1

4D∣c

χD(d)
(cz + d)k

⎞
⎟⎟⎟
⎠

= ∑
n≥1
(4,n)=1

∑
(c ,d)=1

4D∣c

χD(nd)
(ncz + nd)k

= ∑
(d′ ,4D)=1

4D∣c′

χD(d′)
(c′z + d′)k ,

where nc = c′ and nd = d′. Note that we can replace (d′ , 4D) = 1 by (d′ , 4) since
χD(d′) = 0 otherwise. It follows that

2L(4)D (k)E∗k ,4∣D∣(z; χD) = ∑
(d ,4)=1

4D∣c

χD(d)
(cz + d)k

= ∑′

c ,d∈Z
4D∣c

⎛
⎝ ∑

e∣(d ,4),e>0
μ(e)

⎞
⎠

χD(d)
(cz + d)k

= ∑
e∣4,e>0

μ(e) ∑′

c ,d∈Z
4D∣c ,e∣d

χD(d)
(cz + d)k ,

where we used ∑
e∣(d ,4)

μ(e) = 0 for (d , 4) > 1 in the second equality. Substituting d = e y

and c = 4x,

2L(4)D (k)E∗k ,4∣D∣(z; χD) = ∑
e∣4,e>0

μ(e) ∑′

x , y∈Z
D∣x

χD(e y)
(4xz + e y)k

= ∑
e∣4,e>0

μ(e)e−k χD(e) ∑′

x , y∈Z
D∣x

χD(y)
(x4z/e + y)k
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= ∑
e∣4,e>0

μ(e)e−k χD(e)2LD(k)E∗k ,D(4z/e , χD)

= 2LD(k) (E∗k ,∣D∣(4z; χD) − 2−k (D
2
) E∗k ,∣D∣(2z; χD)) ,

where the second to last equality is from the proof of Lemma 4.5. ∎

From Lemma 4.6 and (4.5), we know that Gk ,4D(z) is an Eisenstein series for the
cusp at infinity in Mk(4∣D∣, χD). We have

Gk ,4D(z) = LD(1 − k)
2

(1 − 2−k (D
2
)) E∗k ,4D(z; χD).(4.7)

5 The Rankin–Selberg convolution

The purpose of this section is to prove Propositions 5.6 and 5.7. For two elements f
and g of Mk(N) such that f g is a cusp form, the Petersson inner product is given by

⟨ f , g⟩Γ0(N) = ∫
Γ0(N)/H

f (z)g(z) Im(z)k dμ,(5.1)

where z = x + iy and dμ = dxd y/y2. We use ⟨⋅, ⋅⟩ to denote ⟨⋅, ⋅⟩Γ0(N) if the level
is clear from the context. For f (z) = ∑n≥1 a f (n)qn ∈ Sk(N , χ), we put fρ(z) ∶=
∑n≥1 a f (n)qn . Note that fρ(z) = f (z) if f is a newform and χ is trivial.

We now review the classical result on the Rankin–Selberg convolution, which was
reformulated and generalized in Zagier [25], keeping in mind the difference between
our definition of the Rankin–Cohen bracket and the one used therein.

Lemma 5.1 [25, Proposition 6] Let k1 and k2 be real numbers with k2 ≥ k1 + 2 > 2.
Let f (z) = ∑∞n=1 a(n)qn and g(z) = ∑∞n=0 b(n)qn be modular forms in Sk(N , χ) and
Mk1(N , χ1), where k = k1 + k2 + 2e , e ≥ 0, and χ = χ1 χ2. Then,

⟨ f , [g , E∗k2 ,N(⋅; χ2)]e⟩ = (−1)e

e!
Γ(k − 1)Γ(k2 + e)

(4π)k−1Γ(k2)
∞

∑
n=1

a(n)b(n)
nk1+k2+e−1 .

To obtain Proposition 5.6, we need to deal with the case k1 = k2, which can be
done by following Shimura [19] and Lanphier’s work [11]. For f (z) = ∑∞n=1 a(n)qn ∈
Sk(N , χ) and g(z) = ∑∞n=0 b(n)qn ∈ M�(N , ψ), we put

D(s, f , g) =
∞

∑
n=1

a(n)b(n)n−s , Re(s) ≫ 0.

We are particularly interested in the following case.

Lemma 5.2 Let f = ∑∞n=1 a(n)qn ∈ S2�(1) be a normalized eigenform with � = k +
2e , e > 0, and k ≥ 4 integers, and let D be an odd fundamental discriminant. Then,

D(s, f , Gk ,D) = L( f , s)L( f , D, s − k + 1))
LD(2s − 3k − 4e + 2) , Re(s) ≫ 0.
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Proof Note that for Re(s) ≫ 0, we have

D(s, f , Gk ,D) =
∞

∑
n=1

σk−1,1, χD (n)a(n)
ns ,

where σk−1,1, χD(n) = ∑d ∣n χD(d)dk−1. A standard computation (see [22, Proposition
4.1]) gives

∞

∑
n=1

σk−1,1, χD (n)a(n)
ns = L( f , s)L( f , D, s − (k − 1))

LD(2s − (k − 1) + 1 − (2k + 4e)) ,

as desired. ∎

From Shimura [19, pp. 786–789], D(s, f , Gk ,D) has a meromorphic continuation to
the whole complex plane and D(s, f , Gk ,D) is holomorphic at s = 2k + 2e − 1 (see [19,
p. 789].

The Maass–Shimura operators [19, p. 788, (2.8)] are defined by

δλ = 1
2πi

( λ
2iy

+ ∂
∂z

) , 0 < λ ∈ Z,

δ(r)λ = δλ+2r−2 ⋅ ⋅ ⋅ δλ+2δλ , 0 ≤ r ∈ Z,

where we understand that δ(0)λ is the identity operator. A relation between Maass–
Shimura operators and the Rankin–Cohen bracket is given by

(δ(n)k f (z)) g(z) =
n
∑
j=0

(−1) j(n
j)(

k+n−1
n− j )

(k+�+2 j−2
j )(k+�+n+ j−1

n− j )
δ(n− j)

k+�+2 j[ f , g] j(z),(5.2)

where f ∈ Mk(Γ) and g ∈ M�(Γ) for any congruence subgroup Γ (see [11, Theorem 1].
We recall the following two results.

Lemma 5.3 [19, Lemma 6] Suppose f ∈ Sk(N , χ), g ∈ M l(N , χ), and k = l + 2r with
a positive integer r. Then, ⟨δ(r)g , fρ⟩ = 0.

Lemma 5.4 [19, Theorem 2] Suppose f ∈ S2�(∣D∣) with � = k + 2e , e > 0, and k ≥ 4,
and D is a fundamental discriminant. Then,

D(2k + 4e − 1 − 2e , f , Gk ,D) = cπ2k+4e−1⟨Gk ,D δ(2e)
k E∗k ,∣D∣(z; χD), fρ⟩,

where ⟨⋅, ⋅⟩ denotes the non-normalized Petersson inner product defined in (5.1) and

c = Γ(2k + 4e − k − 2(2e))
Γ(2k + 4e − 1 − 2e)Γ(2k + 4e − k − 2e)(−1)2e 42k+4e−1 .

= Γ(k)
Γ(2k − 1 + 2e)Γ(k + 2e)42k+4e−1

We apply these two results in our situation to obtain the following.

Downloaded from https://www.cambridge.org/core. 22 Nov 2025 at 17:02:38, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Subspaces spanned by eigenforms with nonvanishing twisted central L-values 23

Proposition 5.5 Let f ∈ S2�(1) be a normalized eigenform with � = k + 2e , e > 0, and
k ≥ 4. Then,

⟨[Gk ,D , Gk ,D]2e , f ⟩Γ0(∣D∣) =
1
2

Γ(2k + 4e − 1)Γ(k + 2e)
(2e)!(4π)2k+4e−1Γ(k)

LD(1 − k)
LD(k)

L( f , 2k + 2e − 1)L( f , D, k + 2e).

Proof Note that fρ = f since f is a normalized eigenform. Lemma 5.4 gives

⟨Gk ,D δ(2e)
k E∗k ,∣D∣(z; χD), f ⟩Γ0(∣D∣) =

Γ(2k + 2e − 1)Γ(k + 2e)
(4π)2k+4e−1Γ(k) D(2k + 2e − 1, f , Gk ,D).

By Lemma 5.3 and (5.2),

⟨Gk ,D δ(2e)
k E∗k ,∣D∣(z; χD), f ⟩Γ0(∣D∣) =

1
(2k+4e−2

2e )
⟨[E∗k ,∣D∣(z; χD), Gk ,D]2e , f ⟩Γ0(∣D∣),

which implies that

⟨[E∗k ,∣D∣(z; χD), Gk ,D]2e , f ⟩Γ0(∣D∣) =
(2k+4e−2

2e )Γ(2k + 2e − 1)Γ(k + 2e)
(4π)2k+4e−1Γ(k)

D(2k + 2e − 1, f , Gk ,D).

Since Gk ,D(z) = LD(1−k)
2 E∗k ,∣D∣(z; χD) (4.5) and by Lemma 5.2, we have

⟨[Gk ,D , Gk ,D]2e , f ⟩Γ0(∣D∣) =
LD(1 − k)

2
(2k+4e−2

2e )Γ(2k + 2e − 1)Γ(k + 2e)
(4π)2k+4e−1Γ(k)

D(2k + 2e − 1, f , Gk ,D)

= 1
2

Γ(2k + 4e − 1)Γ(k + 2e)
(2e)!(4π)2k+4e−1Γ(k)

LD(1 − k)
LD(k) L( f , 2k + 2e − 1)L( f , D, k + 2e),

as desired. ∎
Now, we prove Propositions 5.6 and 5.7, which generalize [9, Proposition 1] and [9,

Proposition 2], respectively.

Proposition 5.6 Let f = ∑∞n=1 a(n)qn be a normalized eigenform in S2�(1) with
� = k + 2e , e > 0, and k ≥ 4, and let D be an odd fundamental discriminant with
(−1)�D > 0. Then,

⟨FD ,k ,e , f ⟩=
1
2

Γ(2k + 4e − 1)Γ(k + 2e)
(2e)!(4π)2k+4e−1Γ(k)

LD(1 − k)
LD(k) L( f , 2k + 2e − 1)L( f , D, k + 2e).

Proof Recall that (1.11)

FD ,k ,e(z) = TrD
1 [Gk ,D(z), Gk ,D(z)]2e .

As ⟨ f , g⟩Γ0(M) = ⟨ f , TrM
N g⟩Γ0(N) for N ∣ M, for f ∈ Sk(N), g ∈ Mk(M) (see [5,

p. 271]), we get

⟨FD ,k ,e , f ⟩ = ⟨[Gk ,D(z), Gk ,D(z)]2e , f ⟩Γ0(∣D∣).

Then, the result follows from Proposition 5.5. ∎
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Proposition 5.7 Let g = ∑ cg(n)qn ∈ S+�+1/2(4) be a Hecke eigenform and f ∈ S2�(1)
be the normalized Hecke eigenform corresponding to it by the Shimura correspondence,
where � = k + 2e , e > 0, and k ≥ 4. Let D be an odd fundamental discriminant with
(−1)�D > 0. Then,

⟨g ,GD ,k ,e⟩ = 3
2

Γ(k + 2e − 1
2 )Γ(k + e)

e!(4π)k+2e−1/2Γ(k)
LD(1 − k)

LD(k) ∣D∣−k−e+1/2L( f , 2k + 2e − 1)cg(∣D∣),

where the Petersson inner product is ⟨g ,GD ,k ,e⟩ ∶= ∫Γ0(4)/H g(z)GD ,k ,e(z)
Im(z)k+2e+1/2dμ.

Proof Recall that GD ,k ,e is given in (1.12):

GD ,k ,e(z) = 3
2
(1 − 2−k (D

2
))
−1

pr+ Tr4D
4 [Gk ,4D(z), θ(∣D∣z)]e .

Since pr+ (1.6) is the projection from M�+1/2(4) to M+�+1/2(4), we have

⟨g ,GD ,k ,e⟩ = 3
2
(1 − 2−k (D

2
))
−1

⟨pr+ g , Tr4D
4 ([Gk ,4D(z), θ(∣D∣z)]e⟩

= 3
2
(1 − 2−k (D

2
))
−1

⟨g , Tr4D
4 ([Gk ,4D(z), θ(∣D∣z)]e⟩

= 3
2
(1 − 2−k (D

2
))
−1

⟨g , ([Gk ,4D(z), θ(∣D∣z)]e⟩Γ0(4∣D∣)

= 3
4

LD(1 − k)⟨g(z), [E∗k ,4D(z; χD), θ(∣D∣z)]e⟩Γ0(4∣D∣)

= 3(−1)e

4
LD(1 − k)⟨g(z), [θ(∣D∣z), E∗k ,4D(z; χD)]e⟩Γ0(4∣D∣) ,

where we used (4.7) in the second to last equality. Now, Lemma 5.1 gives

⟨g ,GD ,k ,e⟩ = 3(−1)e

4
LD(1 − k)(−1)e

e!
Γ(k + 2e − 1

2 )Γ(k + e)
(4π)k+2e−1/2Γ(k)

∞

∑
n=1

2cg(n2∣D∣)
(∣D∣n2)k+e+1/2−1

= 3
2

Γ(k + 2e − 1
2 )Γ(k + e)

e!(4π)k+2e−1/2Γ(k) LD(1 − k)∣D∣−(k+e−1/2)
∞

∑
n=1

cg(n2∣D∣)
n2k+2e−1 .

By [10, Theorem 1(ii)], we get

LD(s − (k + 2e) + 1)
∞

∑
n=1

cg(n2∣D∣)
n2k+2e−1 = cg(∣D∣)L( f , s),

which implies that

⟨g ,GD ,k ,e⟩ = 3
2

Γ(k + 2e − 1
2 )Γ(k + e)

e!(4π)k+2e−1/2Γ(k)
LD(1 − k)

LD(k) ∣D∣−k−e+1/2L( f , 2k + 2e − 1)cg(∣D∣),

as desired. ∎
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6 Fourier expansions

In this section, we compute the Fourier coefficients needed for the proof of Theo-
rem 1.1. It is convenient to have explicit formulas for Gk ,D and θ under the action of
certain matrices in SL2(Z), which we do in Lemmas 6.1 and 6.2. Propositions 6.3 and
6.4 then give formulas for FD ,k ,e and GD ,k ,e , which we use in the final computation of
the Fourier coefficients carried out in Lemmas 6.5 and 6.8.

Lemma 6.1 Let k ≥ 3. Suppose D is an odd fundamental discriminant and D = D1D2
is a product of two fundamental discriminants. Let γ = [ a b

c d ] ∈ SL2(Z)with gcd(c, D) =
∣D1∣. Then,

Gk ,D(z)∣
k
[a b

c d] = (D2

c
)( D1

d∣D2∣
) ( D2

∣D1∣
)

ε∣D1 ∣

ε∣D∣
∣D2∣−1/2Gk ,D1 ,D2 (

z + c∗d
∣D2∣

) ,

where c∗ is an integer with cc∗ ≡ 1(mod ∣D2∣), and εn is given by

εn =
⎧⎪⎪⎨⎪⎪⎩

1 n ≡ 1(mod 4),
i n ≡ 3(mod 4).

(6.1)

Proof We follow the idea in Gross–Zagier [5, pp. 273–275]. By equation (4.6), we
have

2(−2πi)kG(χD)
(k − 1)!∣D∣k Gk ,D(z)∣

k
[a b

c d] = ∑′

l ,r∈Z
D∣l

χD(r)
(l(az + b) + r(cz + d))k

= ∑′

m ,n∈Z
md≡nc mod ∣D∣

χD(an − bm)
(mz + n)k ,

where (m, n) = (l , r)[ a b
c d ]. Since md ≡ nc(mod ∣D∣), we have

d(an − bm) = adn − bmd ≡ adn − bcn ≡ n(mod ∣D∣),(6.2)

c(an − bm) = anc − bcm ≡ adm − bcm ≡ m(mod ∣D∣).(6.3)

Note also that gcd(D1 , D2) = 1. Then, (6.2) and (6.3) imply that

χD(an − bm) = χD1(an − bm)χD2(an − bm)
= χD1(d)χD1(n)χD2(c)χD2(m).

Since D1 , D2 ∣ (md − nc), (d , D1) = 1, (c, D2) = 1, and (c, D) = ∣D1∣, we must have
D1 ∣ m, and n ≡ c∗md(mod ∣D2∣). By the Chinese Remainder Theorem, we can
choose c∗ such that D1 ∣ c∗. Now, we write n = c∗md + l ∣D2∣. It follows that

2(−2πi)kG(χD)
(k − 1)!∣D∣k Gk ,D(z)∣

k
[a b

c d] = ∑′

m , l∈Z
D1 ∣m

χD1(d)χD1(c∗md + l ∣D2∣)χD2(c)χD2(m)
(mz + mc∗d + l ∣D2∣)k

= χD2(c)χD1(d∣D2∣) ∑′

m , l∈Z
D1 ∣m

χD2(m)χD1(l)
(mz + mc∗d + l ∣D2∣)k

Downloaded from https://www.cambridge.org/core. 22 Nov 2025 at 17:02:38, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


26 J. Kayath et al.

= χD2(c)χD1(d∣D2∣)∣D2∣−k ∑′

m , l∈Z
D1 ∣m

χD2(m)χD1(l)

(m z+c∗d
∣D2 ∣

+ l)
k .(6.4)

Note that (4.4) implies that

∑′

m , l∈Z
D1 ∣m

χD2(m)χD1(l)

(m z+c∗d
∣D2 ∣

+ l)
k = 2(−2πi)kG(χD1)

∣D1∣k(k − 1)!
χD2(∣D1∣)Gk ,D1 ,D2 (

z + c∗d
∣D2∣

) .(6.5)

Plugging (6.5) into (6.4) gives

Gk ,D(z)∣
k
[a b

c d] = χD2(c)χD1(d∣D2∣)χD2(∣D1∣)
G(χD1)
G(χD) Gk ,D1 ,D2 (

z + c∗d
∣D2∣

) .

(6.6)

From [3, Proposition 2.2.24, p. 49] we know that

G(χD1) = ε∣D1 ∣∣D1∣1/2 and G(χD) = ε∣D∣∣D∣1/2 ,

which implies that

Gk ,D(z)∣
k
[a b

c d] = (D2

c
)( D1

d∣D2∣
) ( D2

∣D1∣
)

ε∣D1 ∣

ε∣D∣
∣D2∣−1/2Gk ,D1 ,D2 (

z + c∗d
∣D2∣

) ,

as desired. ∎

Lemma 6.2 Let D be an odd fundamental discriminant and D = D1D2 be a product
of two fundamental discriminants. Then,

θ(z)∣
1
2

[ ∣D∣ 0
4∣D1∣ 1] = ε−1

∣D2 ∣
∣D∣1/4∣D2∣−1/2θ ( ∣D1∣z + 4∗

∣D2∣
) ,

where 4∗ is an integer such that 44∗ ≡ 1(mod ∣D2∣).

Proof Since (4, D2) = 1, there exist n, m ∈ Z such that n∣D2∣ + 4m = 1 and

[ ∣D∣ 0
4∣D1∣ 1] = [∣D2∣ −m

4 n ] [∣D1∣ m
0 ∣D2∣

] .

It follows that

θ(z)∣
1
2

[ ∣D∣ 0
4∣D1∣ 1] = θ(z)∣

1
2

[∣D2∣ −m
4 n ] [∣D1∣ m

0 ∣D2∣
] .

Recall that the transformation law for θ (see, e.g., [8, p. 148]) gives

θ(z)∣
1
2

[∣D2∣ −m
4 n ] = ( 4

n
) ε−1

n θ(z),
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where εn is as in (6.1). Since n∣D2∣ + 4m = 1 and D2 ≡ 1(mod 4), we have εn = ε∣D2 ∣.
Hence,

θ(z)∣
1
2

[ ∣D∣ 0
4∣D1∣ 1] = ε∣D2 ∣θ(z)∣

1/2
[∣D1∣ m

0 ∣D2∣
]

= ε∣D2 ∣∣D∣1/4∣D2∣−1/2θ ( ∣D1∣z + 4∗

∣D2∣
) ,

which gives the desired result. ∎

Next, we give some computations generalizing the lemma in [9, p. 193].

Proposition 6.3 Let k ≥ 4 and e > 0 with � = k + 2e and let D be an odd fundamental
discriminant with (−1)�D > 0. Then,

FD ,k ,e(z) = ∑
D=D1 D2

(D2

−1
) ∣D2∣−2e U∣D2 ∣([Gk ,D1 ,D2(z), Gk ,D1 ,D2(z)]2e),

where the summation is over all decompositions of D as a product of two fundamental
discriminants, and U∣D2 ∣ is the operator defined in (3.1).

Proof We consider the following system of representatives (Lemma 3.1) of
Γ0(∣D∣)/SL2(Z),

{[ 1 0
∣D1∣ 1] [1 μ

0 1] where D = D1D2 , μ mod ∣D2∣}

and D1 , D2 are fundamental discriminants. By (6.6), we have

Gk ,D(z)∣
k
[ 1 0
∣D1∣ 1] [1 μ

0 1] = ( D2

∣D1∣
) ( D1

∣D2∣
) ( D2

∣D1∣
) G(χD1)

G(χD) Gk ,D1 ,D2(
z + μ + ∣D1∣∗

∣D2∣
) ,

where ∣D1∣∗∣D1∣ = 1 mod ∣D2∣. We then compute FD ,k ,e(z), which is

TrD
1 ([Gk ,D(z), Gk ,D(z)]2e)

= ∑
D1 D2=D

∑
μ mod ∣D2 ∣

[Gk ,D(z), Gk ,D(z)]2e ∣
2k+4e

[ 1 0
∣D1∣ 1] [1 μ

0 1]

= ∑
D1 D2=D

∑
μ mod ∣D2 ∣

[Gk ,D(z)∣
k
[ 1 0
∣D1∣ 1] [1 μ

0 1] , Gk ,D(z)∣
k
[ 1 0
∣D1∣ 1] [1 μ

0 1]]
2e

= ∑
D1 D2=D

∑
μ mod ∣D2 ∣

(D2

−1
) ∣D2∣−1 [Gk ,D1 ,D2(

z + μ + ∣D1∣∗
∣D2∣

) , Gk ,D1 ,D2(
z + μ + ∣D1∣∗

∣D2∣
)]

2e
,

where we used the well-known fact G(χD1)2 = (D1
−1) ∣D1∣ and G(χD)2 = (D

−1) ∣D∣ in the
last equality (see, e.g., [3, Corollary 2.1.47 on p. 33]). On the other hand, we have by
our equivalent definition (3.2) of the U operator that

U∣D2 ∣([Gk ,D1 ,D2(z), Gk ,D1 ,D2(z)]2e)

= ∑
v mod ∣D2 ∣

∣D2∣(2k+4e)/2−1[Gk ,D1 ,D2(z), Gk ,D1 ,D2(z)]2e ∣
2k+4e

[1 v
0 ∣D2∣

]
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= ∑
v mod ∣D2 ∣

∣D2∣(2k+4e)/2−1 [∣D2∣−k/2Gk ,D1 ,D2 (
z + v
∣D2∣

) , ∣D2∣−k/2Gk ,D1 ,D2 (
z + v
∣D2∣

)]
2e

= ∑
v mod ∣D2 ∣

∣D2∣2e−1 [Gk ,D1 ,D2 (
z + v
∣D2∣

) , Gk ,D1 ,D2 (
z + v
∣D2∣

)]
2e

.

It follows that

∑
D=D1 D2

(D2

−1
) ∣D2∣−2e U∣D2 ∣([Gk ,D1 ,D2(z), Gk ,D1 ,D2(z)]2e)

= ∑
D1 D2=D

∑
v mod ∣D2 ∣

(D2

−1
) ∣D2∣−1 [Gk ,D1 ,D2 (

z + v
∣D2∣

) , Gk ,D1 ,D2 (
z + v
∣D2∣

)]
2e

= TrD
1 ([Gk ,D(z), Gk ,D(z)]2e),

as desired. ∎

Proposition 6.4 Let k ≥ 4 and e > 0 and let D be an odd fundamental discriminant
with (−1)k D > 0. Then,

GD ,k ,e(z) = ∑
D=D1 D2

( D2

−∣D1∣
) ∣D2∣−eU∣D2 ∣([Gk ,D1 ,D2(4z), θ(∣D1∣z)]e),

where the summation is over all decompositions of D as a product of two fundamental
discriminants, and U∣D2 ∣ is the map defined in (3.1).

Proof The proof follows a similar outline to Proposition 6.3. From Proposition 3.9,
we know thatGD ,k ,e(z) = Tr4D

4 [Gk ,D(4z), θ(∣D∣z)]e . We use the coset representatives
(Lemma 3.1) for Γ0(4∣D∣)/Γ0(4),

{γD1 ,μ = [ 1 0
4∣D1∣ 1] [1 μ

0 1] ∶ where D = D1D2 , μ(mod ∣D2∣)} ,

where D = D1D2 is a product of fundamental discriminants. By a simple casework, we
have

ε∣D1 ∣

ε∣D∣ ⋅ ε∣D2 ∣

( D1

∣D2∣
) = ( D2

−∣D1∣
) .(6.7)

Now, Lemmas 6.1 and 6.2 together with (6.7) imply that

∑
D1 D2=D

∑
μ mod ∣D2 ∣

[Gk ,D(4z), θ(∣D∣z)]e ∣k+2e+ 1
2
γD1 ,μ

= ∑
D1 D2=D

∑
μ mod ∣D2 ∣

ε∣D1 ∣

ε∣D∣ ⋅ ε∣D2 ∣

( D1

∣D2∣
) ∣D2∣−1

× [Gk ,D1 ,D2 (
4z + ∣D1∣∗ + 4μ

∣D2∣
) , θ ( ∣D1∣z + 4∗ + ∣D1∣μ

∣D2∣
)]

e

= ∑
D1 D2=D

∑
μ mod ∣D2 ∣

( D2

−∣D1∣
) ∣D2∣−1
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× [Gk ,D1 ,D2 (
4(z + 4∗∣D1∣∗ + μ)

∣D2∣
) , θ ( ∣D1∣(z + 4∗∣D1∣∗ + μ)

∣D2∣
)]

e

= ∑
D1 D2=D

( D2

−∣D1∣
) ∣D2∣−eUD2[Gk ,D1 ,D2(4z), θ(∣D1∣z)]e ,

as desired. ∎

We are now ready to compute the Fourier expansions of FD ,k ,e and SD(GD ,k ,e).

Lemma 6.5 Let k ≥ 4, e > 0 and let D be an odd fundamental discriminant with
(−1)k D > 0. Then, we have the Fourier expansion

FD ,k ,e(z) = ∑
n≥1

fD ,k ,e(n)qn ,

where

fD ,k ,e(n) = ∑
D=D1 D2

(D2

−1
) ∣D2∣−2e ∑

a1 ,a2≥0
a1+a2=n∣D2 ∣

∑
d ∣(a1 ,a2)

(D
d
) dk−1σk−1,D1 ,D2 (

a1a2

d2 ) Ce ,a1 ,a2 ,

Ce ,a1 ,a2 =
2e
∑
r=0

(−1)r ar
1 a2e−r

2 (2e + k − 1
2e − r

)(2e + k − 1
r

).

Proof By Proposition 6.3, we have

fD ,k ,e(n) = ∑
D=D1 D2

(D2

−1
) ∣D2∣−2e FD1 ,D2 ,e(n),

where FD1 ,D2 ,e(n) is the n∣D2∣-th Fourier coefficient of [Gk ,D1 ,D2(z), Gk ,D1 ,D2(z)]2e .
Note that

Gk ,D1 ,D2(z)(r) = ∑
n≥0

nr σk−1,D1 ,D2(n)qn ,

which implies that the n∣D2∣-th Fourier coefficient of G(r)k ,D1 ,D2
(z)G(2e−r)

k ,D1 ,D2
(z) is

∑
a1 ,a2≥0

a1+a2=n∣D2 ∣

ar
1 σk−1,D1 ,D2(a1)a2e−r

2 σk−1,D1 ,D2(a2).

It follows that FD1 ,D2 ,e(n) =
2e
∑
r=0

(−1)r(2e + k − 1
2e − r

)(2e + k − 1
r

) ∑
a1 ,a2≥0

a1+a2=n∣D2 ∣

ar
1 σk−1,D1 ,D2(a1)a2e−r

2 σk−1,D1 ,D2(a2)

= ∑
a1 ,a2≥0

a1+a2=n∣D2 ∣

σk−1,D1 ,D2(a1)σk−1,D1 ,D2(a2)
2e
∑
r=0

ar
1 a2e−r

2 (−1)r(2e + k − 1
2e − r

)(2e + k − 1
r

)

= ∑
a1 ,a2≥0

a1+a2=n∣D2 ∣

σk−1,D1 ,D2(a1)σk−1,D1 ,D2(a2)Ce ,a1 ,a2
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= ∑
a1 ,a2≥0

a1+a2=n∣D2 ∣

∑
d ∣(a1 ,a2)

(D
d

) dk−1σk−1,D1 ,D2 (
a1a2

d2 ) Ce ,a1 ,a2 ,

where the last equality is given by the Hecke multiplicative relation [9, p. 194]

σk−1,D1 ,D2(a1)σk−1,D1 ,D2(a2) = ∑
d ∣(a1 ,a2)

(D
d

) dk−1σk−1,D1 ,D2 (
a1a2

d2 ) .

This finishes the proof. ∎

Lemma 6.6 Let k ≥ 4, e > 0 and let D be an odd fundamental discriminant with
(−1)k D > 0. Then, we have the Fourier expansion

SD (GD ,k ,e(z))) = ∑
n≥1

gD ,k ,e(n)qn ,

where

gD ,k ,e(n) = ∣D∣e ∑
D=D1 D2

(D2

−1
) ∣D2∣−2e ∑

a1 ,a2≥0
a1+a2=n∣D2 ∣

∑
d ∣(a1 ,a2)

(D
d

) dk−1

σk−1,D1 ,D2 (
a1a2

d2 ) E(a1 , a2),

E(a1 , a2) =
e
∑
r=0

(−1)r(e + k − 1
e − r

)(e − 1/2
r

)4r (a1a2)r (a2 − a1)2(e−r) .

Proof By Proposition 6.4 and (1.9), we have SD(GD ,k ,e(z)) =

∑
D1 D2=D

( D2

−∣D1 ∣
) ∣D2 ∣−e

e
∑
r=0
(−1)r(e + k − 1

e − r
)(e − 1/2

r
)SD [U∣D2 ∣(Gk ,D1 ,D2(4z)(r)θ(∣D1 ∣z)(e−r))],

where we abuse notation to move the Shimura operator SD into the sums. Note that

Gk ,D1 ,D2(4z)(r) = ∑
n≥0

(4n)r σk−1,D1 ,D2(n)q4n ,

θ(∣D1∣z)(e−r) = ∑
n∈Z

(n2∣D1∣)e−r qn2 ∣D1 ∣ .

This allows us to rewrite the product

Gk ,D1 ,D2(4z)(r)θ(∣D1∣z)(e−r) = ∑
n≥0

cr(n)qn ,

cr(n) ∶= ∑
m≡n mod 2

(n − m2∣D1∣)
r σk−1,D1 ,D2 (

n − m2∣D1∣
4

)(m2∣D1∣)e−r ,

where we take the convention that σk−1,D1 ,D2(x) = 0 if x ∉ Z or x < 0. It follows that

U∣D2 ∣ (Gk ,D1 ,D2(4z)(r)θ(∣D1∣z)(e−r)) = U∣D2 ∣ (∑
n≥1

cr(n)qn) = ∑
n≥1

cr(n∣D2∣)qn .

(6.8)
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Now, we compute the D-th Shimura lift of (6.9). If we write

SD (∑
n≥1

cr(n∣D2∣)qn) = ∑
n≥1

ar ,D2(n)qn

for some ar ,D2(n), then by the definition of SD (1.1), we have ar ,D2(n) =

∑
d ∣n
(D

d
) dk+2e−1∑

m∈Z
(∣D2∣∣D∣

n2

d2 − ∣D1∣m2)
r

(m2∣D1∣)
e−r σk−1,D1 ,D2

⎛
⎝
∣D2∣∣D∣ n

2

d2 −m2∣D1∣
4

⎞
⎠

.

Note that we can write

∣D2∣∣D∣ n2

d2 − m2∣D1∣
4

= ∣D1∣a1a2 , where a1 =
∣D2∣ n

d + m
2

and a2 =
∣D2∣ n

d − m
2

.

It follows that ar ,D2(n) =

∑
d ∣n

(D
d
) dk+2e−1 ∑

a1 ,a2≥0
a1+a2=

n
d ∣D2 ∣

(4∣D1∣a1a2)r (a2 − a1)2(e−r)∣D1∣e−r σk−1,D1 ,D2(∣D1∣a1a2)

= ∑
a1 ,a2≥0

a1+a2=n∣D2 ∣

∑
d ∣(a1 ,a2)

(D
d
) dk+2e−1 (4∣D1∣

a1a2

d2 )
r
( a2 − a1

d
)

2(e−r)

∣D1∣e−r σk−1,D1 ,D2 (∣D1∣
a1a2

d2 )

= ∑
a1 ,a2≥0

a1+a2=n∣D2 ∣

∑
d ∣(a1 ,a2)

(D
d
)( D2

∣D1∣
) dk−1∣D1∣e

(4a1a2)r (a2 − a1)2(e−r)σk−1,D1 ,D2 (
a1a2

d2 ) .

(6.9)

Now, we substitute (6.9) back into our equation for SD(GD ,k ,e(z)). Let

SD(GD ,k ,e(z)) = ∑
n≥1

gD ,k ,e(n)qn .

Then, gD ,k ,e(n) =

∑
D=D1 D2

( D2

−∣D1∣
) ∣D2∣−e

e
∑
r=0
(−1)r(e + k − 1

e − r
)(e − 1/2

r
)ar ,D2(n)

= ∑
D=D1 D2

( D2

−∣D1∣
) ∣D2∣−e

e
∑
r=0
(−1)r(e + k − 1

e − r
)(e − 1/2

r
)

× ∑
a1 ,a2≥0

a1+a2=n∣D2 ∣

∑
d ∣(a1 ,a2)

(D
d
)( D2

∣D1∣
) dk−1∣D1∣e (4a1a2)r (a2 − a1)2(e−r)σk−1,D1 ,D2 (

a1a2

d2 )
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= ∣D∣e ∑
D=D1 D2

(D2

−1
) ∣D2∣−2e ∑

a1 ,a2≥0
a1+a2=n∣D2 ∣

∑
d ∣(a1 ,a2)

(D
d
) dk−1σk−1,D1 ,D2 (

a1a2

d2 )

×
e
∑
r=0
(−1)r(e + k − 1

e − r
)(e − 1/2

r
)4r (a1a2)r (a2 − a1)2(e−r)

= ∣D∣e ∑
D=D1 D2

(D2

−1
) ∣D2∣−2e

⎛
⎜⎜⎜
⎝

∑
a1 ,a2≥0

a1+a2=n∣D2 ∣

∑
d ∣(a1 ,a2)

(D
d
) dk−1σk−1,D1 ,D2 (

a1a2

d2 ) E(a1 , a2)
⎞
⎟⎟⎟
⎠

,

as desired. ∎

7 Discussion

It is a folklore conjecture that S0,D
2� (1) = S2�(1). Luo [13] showed that for � sufficiently

large one has dim S0,1
2� (1) ≫ �. Our Theorem 1.2 (the case D = 1 was proved earlier by

Xue [24, Proposition 3.5]) provides a possible different approach to the conjecture. By
studying the linear independence of GD ,k ,e or FD ,k ,e , one could obtain lower bounds
on the dimension of S0,D

2� (1).

Conjecture 7.1 For � even, D a positive fundamental discriminant, the set {GD ,k ,e ∣ k +
2e = �, 1 ≤ e ≤ ⌊ �

6 ⌋} is linearly independent.

We checked this conjecture computationally in the D = 1 case up to � = 1000 and
for prime D less than 50 up to � = 100, using code written in Pari/GP [7]. In particular,
we computationally verified that the matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎣

gD ,�−2,1(4) gD ,�−2,1(8) . . . gD ,�−2,1(4⌊ �
6 ⌋)

gD ,�−4,2(4) gD ,�−4,2(8) . . . gD ,�−4,2(4⌊ �
6 ⌋)

⋮ ⋮ ⋱ ⋮
gD ,�−2⌊ �

6 ⌋,⌊
�
6 ⌋
(4) gD ,�−2⌊ �

6 ⌋,⌊
�
6 ⌋
(8) . . . gD ,�−2⌊ �

6 ⌋,⌊
�
6 ⌋
(4⌊ �

6 ⌋)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

where GD ,k ,e = ∑n≥1 gD ,k ,e(n)qn for 1 ≤ e ≤ ⌊ �
6 ⌋, has nonzero determinant. Further

work in this area should try to prove that this determinant is nonzero in general.
The conjecture would have several interesting consequences. Using the isomor-

phism between S0,D
�+1/2(4) and S0,D

2� (1) given by the D-th Shimura lift, we find that
the dimension of S0,D

2� would be at least ⌊ �
6 ⌋. Since the dimension of S2�(1) for even �

is ⌊ 2�
12 ⌋ = ⌊ �

6 ⌋ and S0,D
2� (1) ⊆ S2�(1), we would conclude that S0,D

2� (1) = S2�(1), settling
the conjecture on the nonvanishing of twisted central L-values for Hecke eigenforms.

This would then imply that S0,D
�+1/2(4) = S+�+1/2(4), so the Kohnen plus space for

k even is generated by Hecke eigenforms whose D-th coefficients are nonzero for all
fundamental discriminants D. Further, we would conclude that {GD ,k ,e}k+2e=�,1≤e≤⌊ �

6 ⌋

is a basis for S+�+1/2(4), and the set {GD ,k ,e}k+2e=�,0≤e≤⌊ �
6 ⌋

is a basis for M+�+1/2(4) (since
the 0-th Rankin–Cohen bracket produces a modular form which is non-cuspidal but
still in the Kohnen plus space). To the best of our knowledge, a similar basis was first
mentioned by Henri Cohen in a MathOverflow post.

Downloaded from https://www.cambridge.org/core. 22 Nov 2025 at 17:02:38, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Subspaces spanned by eigenforms with nonvanishing twisted central L-values 33

Acknowledgements We thank the anonymous referees for the detailed comments
and insightful advice that have greatly improved the exposition of this article.

References

[1] Y. J. Choie, W. Kohnen, and Y. Zhang, On Rankin-Cohen brackets of Hecke eigenforms and
modular forms of half-integral weight. Proc. Amer. Math. Soc. 152(2024), no. 12, 5025–5037.

[2] H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters.
Math. Ann. 217(1975), no. 3, 271–285.

[3] H. Cohen, Number theory: vol. I. Tools and Diophantine equations, volume 239 of Graduate
Texts In Mathematics, Springer, New York, NY, 2007.

[4] H. Cohen and F. Strömberg, Modular forms: a classical approach, volume 179 of Graduate
Studies In Mathematics, American Mathematical Society, Providence, RL, 2017.

[5] B. H. Gross and D. B. Zagier, Heegner points and derivatives of L-series. Invent. Math. 84(1986),
no. 2, 225–320.

[6] Ö. Imamolu and W. Kohnen, Representations of integers as sums of an even number of squares.
Math. Ann. 333(2005), no. 4, 815–829.

[7] J. Kayath, Pari code for linear independence, 2024. https://github.com/cat-sith/shimura-rankin.
[8] N. Koblitz, Introduction to elliptic curves and modular forms. 2nd ed., volume 97 of Graduate

Texts In Mathematics, Springer-Verlag, New York, NY, 1993.
[9] W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip.

Invent. Math. 64(1981), no. 2, 175–198.
[10] W. Kohnen, Modular forms of half-integral weight on Γ0(4). Math. Ann. 248(1980), no. 3,

249–266.
[11] D. Lanphier, Combinatorics of Maass-Shimura operators. J. Number Theory 128(2008), no. 8,

2467–2487.
[12] A. Lei, T. Ni, and H. Xue, Linear independence of even periods of modular forms. J. Number

Theory 248(2023), 120–139.
[13] W. Luo, Nonvanishing of the central L-values with large weight. Adv. Math. 285(2015), 220–234.
[14] J. I. Manin, Periods of cusp forms, and p-adic Hecke series. Mat. Sb. (N.S.) 92(1973), no. 134,

378–401, 503 pp.
[15] T. Miyake, Modular forms. english ed., Springer Monographs in Mathematics, Springer-Verlag,

Berlin, 2006. Translated from the 1976 Japanese original by Yoshitaka Maeda.
[16] K. Ono, The web of modularity: arithmetic of the coefficients of modular forms and q-series,

volume 102 of CBMS Regional Conference Series in Mathematics, Conference Board of the
Mathematical Sciences, Washington, DC, 2004. by the American Mathematical Society,
Providence, RI.

[17] A. A. Popa, Rational decomposition of modular forms. Ramanujan J. 26(2011), no. 3, 419–435.
[18] J. Riordan, Combinatorial identities. Robert E. Krieger Publishing Co., Huntington, NY, 1979.

Reprint of the 1968 original.
[19] G. Shimura, The special values of the zeta functions associated with cusp forms. Commun. Pure

Appl. Math. 29(1976), no. 6, 783–804.
[20] W. Stein, Modular forms, a computational approach, volume 79 of Graduate Studies in

Mathematics, American Mathematical Society, Providence, RI, 2007. With an appendix by Paul
E. Gunnells.

[21] W. Wang, Shimura lift of Rankin–Cohen brackets of eigenforms and theta series. Acta Arith.
220(2025), no. 2, 161–171.

[22] M. Westerholt-Raum, Products of vector valued Eisenstein series. Forum Math. 29(2017), no. 1,
157–186.

[23] H. Xue, Rankin-Cohen brackets of Eisenstein series. Int. J. Number Theory 19(2023), no. 7,
1563–1570.

[24] H. Xue, A Selberg identity for the Shimura lift. Bull. Lond. Math. Soc. 56(2024), no. 11,
3565–3579.

[25] D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. In:
J.-P. Serre and D. B. Zagier (eds.), Proceedings of the Second International Conference, held at
the University of Bonn, Bonn, July 2–14, 1976, Lecture Notes in Mathematics, 627,
Springer-Verlag, Berlin-New York, 1977, ii+339 pp.

Downloaded from https://www.cambridge.org/core. 22 Nov 2025 at 17:02:38, subject to the Cambridge Core terms of use.

https://github.com/cat-sith/shimura-rankin
https://www.cambridge.org/core


34 J. Kayath et al.

Massachusetts Institute of Technology, United States
e-mail: kayath@mit.edu

Rose-Hulman Institute of Technology, United States
e-mail: lanecf@rose-hulman.edu

William & Mary, United States
e-mail: bmneifeld@wm.edu

Clemson University, United States
e-mail: huixue@clemson.edu tianyuni1994math@gmail.com

Downloaded from https://www.cambridge.org/core. 22 Nov 2025 at 17:02:38, subject to the Cambridge Core terms of use.

mailto:kayath@mit.edu
mailto:lanecf@rose-hulman.edu
mailto:bmneifeld@wm.edu
mailto:huixue@clemson.edu
mailto:tianyuni1994math@gmail.com
https://www.cambridge.org/core

	1 Introduction
	2 Selberg identity and spanning sets of subspaces
	3 Projection
	4 Eisenstein Series
	5 The Rankin–Selberg convolution
	6 Fourier expansions
	7 Discussion

