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Abstract Let (W,S) be a Coxeter system of rank n, and let p(W,S)(t) be its growth function. It is
known that p(W,S)(q

−1) < ∞ holds for all n ≤ q ∈ N. In this paper, we will show that this still
holds for q = n − 1, if (W,S) is 2-spherical. Moreover, we will prove that p(W,S)(q

−1) = ∞ holds for
q = n− 2, if the Coxeter diagram of (W,S) is the complete graph. These two results provide a complete
characterization of the finiteness of the growth function in the case of 2-spherical Coxeter systems with
a complete Coxeter diagram.
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1. Introduction

One of the most central results in the theory of lattices is Margulis’ Normal Subgroup
Theorem for irreducible lattices in connected semi-simple Lie groups of real rank ≥ 2
with a finite centre and no non-trivial compact factor [16]. Among all the recent gen-
eralizations, let us mention that Bader and Shalom proved a version of the Normal
Subgroup Theorem for irreducible cocompact lattices in a product of two locally compact,
non-discrete, compactly generated groups [3]. Based on earlier results in [18], Caprace
and Rémy applied the Normal Subgroup Theorem to show simplicity for Kac–Moody
groups over finite fields of irreducible, non-spherical and non-affine types that are twin
building lattices (cf. [10, Theorems 18, 19, 20]). Moreover, it can be used to prove
virtual simplicity of certain twin tree lattices with non-trivial commutation relations
(cf. [11]).
In [17] and [12], Rémy, and independently Carbone and Garland, proved that certain

groups acting on (twin) buildings are lattices. To be more precise: Let (W,S ) be a Coxeter
system with |S| < ∞, and let Φ := Φ(W,S) be its associated set of roots (viewed as half-
spaces). Let D = (G, (Uα)α∈Φ) be an RGD system of type (W,S ), i.e. a group G together
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2 S. Bischof

with a family (Uα)α∈Φ of subgroups (which we call root groups) indexed by the set of
roots Φ satisfying some combinatorial axioms (for the precise definition, we refer to [1,
Ch. 7,8]). Then, there exists a twin building ∆ = (∆+,∆−, δ∗) such that G acts on ∆.
It turns out that under some conditions, G† := 〈Uα | α ∈ Φ〉 ≤ Aut(∆+) × Aut(∆−)
and U+ := 〈Uα | α ∈ Φ+〉 ≤ Aut(∆−) are lattices (cf. [17], [12]) – and in this case G†

is an example of a twin building lattice. Sufficient conditions are that every root group

is finite, W is infinite and for qmin := min{|Uα| | α ∈ Φ}, one has p(W,S)

(
1

qmin

)
< ∞,

where p(W,S)(t) denotes the growth function of (W,S ). Some authors call p(W,S)(t) the
(spherical) growth series (cf. [13, Chapter 17] or [14, Chapter VI]) or the Poincaré series

of (W,S ) (cf. [6, Chapter 7.1]). It is clear that p(W,S)

(
1

qmin

)
< ∞ holds if |S| ≤ qmin. It is

particularly unsatisfying that the criterion |S| ≤ qmin does not apply to Coxeter systems
of rank n ≥ 3 and qmin = 2. However, there are examples of Coxeter systems (W,S ) of
rank n ≥ 3 with p(W,S)

(
1
2

)
< ∞. Note that the growth function p(W,S)(t) applied to q−1

with q ∈ N and q ≥ 2 is finite for spherical and affine Coxeter systems (cf. [7, Ch. VI,
Exercises § 4, 10]).
Suppose (W,S ) is of type (4, 4, 4), that is, |S| = 3 and the order of st in W equals 4 for

all s 6= t ∈ S. In [5] we constructed uncountably many new examples of RGD systems of
type (4, 4, 4) in which every root group has cardinality 2. As the criterion |S| ≤ qmin does
not apply to such RGD systems, we first asked the question whether p(W,S)

(
1
2

)
< ∞

holds. It turns out that this is indeed the case (cf. Theorem A).

Main results

Let (W,S ) be a Coxeter system and denote by mst the order of st in W. The Coxeter
system is called 2-spherical if mst < ∞ for all s 6= t ∈ S. The rank of (W,S ) is given by
the cardinality of S. Throughout this paper we assume that all Coxeter systems under
consideration are of finite rank. We prove the following (cf. Theorem 5.3):

Theorem A. Let (W, S) be a 2-spherical Coxeter system of rank n. Then

p(W,S)

(
1

n−1

)
< ∞.

Remark 1. After completion of this project, I was informed by Corentin Bodart that
a more general version of Theorem A can be deduced from [2, Theorem 1] and we refer
to Remark 3 at the end of the introduction for more details. Our methods of the proof
are very different, and most of the results proved in the present paper are also used to
prove Theorem C below. Our proofs are Coxeter group theoretic, while the proofs in [2]
are for non-elementary word hyperbolic groups.

In view of the examples constructed in [5], Theorem A produces many new examples
of lattices in (locally compact) automorphism groups of buildings and in a product of
two automorphism groups of buildings. Combining Theorem A with [17, Théorème 1],
we obtain that almost all RGD systems of 2-spherical type and rank 3 are twin building
lattices:

Corollary B. Let (W, S) be a Coxeter system, and let D = (G, (Uα)α∈Φ) be an RGD
system of type (W, S). Assume that the following are satisfied:

https://doi.org/10.1017/S0013091525000094 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091525000094


On growth functions of coxeter groups 3

• (W, S) is 2-spherical of rank 3 and W is infinite.
• G = 〈Uα | α ∈ Φ〉, |Z(G)| < ∞ and |Uα| < ∞ for all α ∈ Φ.

Then, D is a twin building lattice.

Corollary B. (Kac–Moody version). Let (W, S) be a 2-spherical Coxeter system
of rank 3 such that W is infinite, and let G be the Kac–Moody group (in the sense of
[21]) of type (W, S). Then G(Fq) is a twin building lattice, where Fq denotes the finite
field with q elements.

Now the question is whether the finiteness still holds for some q < n− 1. It turns out
that in the class of Coxeter systems with mst ≥ 3 for all s 6= t ∈ S this will not happen
(cf. Theorem 5.5):

Theorem C. Let (W, S) be a Coxeter system of rank n ≥ 3 such that mst ≥ 3 for all

s 6= t ∈ S. Then, p(W,S)

(
1

n−2

)
= ∞.

Suppose that the Coxeter diagram is 2-spherical, but the Coxeter diagram is not the
complete graph. If the number of non-edges in the Coxeter diagram compared to the

number of edges is large, then it is still possible that p(W,S)

(
1

n−2

)
< ∞ holds (cf. [19]).

We also remark that Theorem C can be used to exclude certain subdiagrams for twin
building lattices, as parabolic subgroups of twin building lattices are again twin building
lattices:

Corollary D. Let (W, S) be a Coxeter system, let D be an RGD system of type (W, S)
with finite root groups and let qmin := min{|Uα| | α ∈ Φ}. If D is a twin building lattice,
then there does not exist a subdiagram of (W, S) with at least qmin + 2 vertices, whose
underlying Coxeter diagram is the complete graph.

Several remarks of our main results are in order.

Remark 2. The proofs of Theorem A and Theorem C make essential use of a result
of Terragni [20, Theorem A]. We recall this result in Subsection 5.1.

Remark 3. A more general version of Theorems A can be deduced from [2,
Theorem 1]: Let (W,S ) and (W ′, S′) be two Coxeter systems of rank n ≥ 3. Suppose
that (W ′, S′) is of universal type, i.e. mst = ∞ for all s 6= t ∈ S. Note that W

′
is

word-hyperbolic (cf. [13, Corollary 12.6.3]) and non-elementary (in the sense of [2]; cf.
[13, Theorem 8.6.1, 8.7.3]). Suppose that (W,S ) is not of universal type. This means that
mst < ∞ for some s 6= t ∈ S. Let π : W ′ → W be a canonical homomorphism which
induces a bijection between S

′
and S. Then N := ker(π) is a normal subgroup which is

infinite. We now use the notation from [2]. One can show λ(W ′, S′) = n− 1, and by [2,
Theorem 1] we have λ(W,S) < λ(W ′, S′) = n − 1. We deduce from [14, Chapter VI.C,

Observation 50] that p(W,S)

(
1

n−1

)
< ∞. This implies that we can replace in Theorem A

2-spherical by non-universal.
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4 S. Bischof

Overview

In § 2, we fix notation and recall some basic results. In § 2.2, we define two subsets
Ci and Di of the Coxeter group W, which play a central role in this paper. In § 3, we
recall the definition of reflection and combinatorial triangles and prove some results about
them. In § 4, we establish some (in-)equalities concerning the cardinalities |Ci| and |Di|.
In § 5, we recall a result due to Terragni and prove our main results.

2. Preliminaries

This section is devoted to fixing notation. In § 2.1 which is based on [20], we recall the
notion of growth functions in finitely generated groups. In § 2.2 and § 2.3, we recall
some basic definitions about Coxeter systems. Moreover, we introduce two sets Ci and
Di which play a central role in this paper. In § 2.4, we recall some basic results about
roots and walls in Coxeter systems. § 2.2, § 2.3 and § 2.4 are based on [1, § 5].

2.1. Growth of finitely generated groups

Let G be a finitely generated group, and let X = X−1 ⊆ G\{1} be a finite, symmetric
set of generators. The length of g ∈ G with respect to X is the minimal n such that
g = x1 · · ·xn with xi ∈ X; the length function will be denoted by `(G,X) : G → N. For
n ∈ N, the sphere in Cay(G,X) centred around 1G with radius n will be denoted by

C(G,X)
n :=

{
g ∈ G | `(G,X)(g) = n

}
.

The cardinalities are defined as c
(G,X)
n := |C(G,X)

n |. The growth function of (G,X ) is
given by

p(G,X)(t) :=
∑
n≥0

c(G,X)
n tn ∈ Z[[t]].

2.2. Coxeter systems

Let W be a group, and let S ⊆ W be a generating set of elements of order 2. For
s, t ∈ S, we denote the order of st in W by mst. Then, the pair (W,S ) is called Coxeter
system if the group W admits the presentation

W ∼= 〈S | (st)mst = 1〉,

where there is one relation for each pair s, t (possibly s = t) with mst < ∞. Let (W,S ) be
a Coxeter system, and let ` := `(W,S) be the corresponding length function. The Coxeter
diagram corresponding to (W,S ) is the labelled graph (S,E(S)), where E(S) = {{s, t} |
mst > 2} and where each edge {s, t} is labelled by mst for all s, t ∈ S. The rank of the
Coxeter system is the cardinality of the set S. Recall from the introduction that in this
paper all Coxeter systems under consideration are assumed to be of finite rank.
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It is well-known that for each J ⊆ S, the pair (〈J〉, J) is a Coxeter system (cf. [7,
Ch. IV, §1 Theorem 2]). A subset J ⊆ S is called spherical if 〈J〉 is finite. The Coxeter
system is called 2-spherical if 〈J〉 is finite for all J ⊆ S containing at most 2 elements
(i.e. mst < ∞ for all s, t ∈ S). Given a spherical subset J of S, there exists a unique
element of maximal length in 〈J〉, which we denote by rJ (cf. [1, Corollary 2.19]).
For i ∈ N, we define

• Ci := C
(W,S)
i = {w ∈ W | `(w) = i} and ci := |Ci| = c

(W,S)
i ;

• Di := {w ∈ Ci | ∃!s ∈ S : `(ws) < `(w)} and di := |Di|.

The set Ci consists of all elements w ∈ W of length i. The set Di consists of all elements
w ∈ W of length i whose right descent set contains a single element of S.

2.3. The chamber system Σ(W,S)

Let (W,S ) be a Coxeter system. Defining w ∼s w
′ if and only if w−1w′ ∈ 〈s〉, we obtain

a chamber system (for the definition of a chamber system, see [1, Definition 5.21]) with
chamber set W and equivalence relations ∼s for s ∈ S, which we denote by Σ(W,S). We
call two chambers w,w′ s-adjacent if w ∼s w

′ and adjacent if they are s-adjacent for some
s ∈ S. A gallery of length n from w0 to wn is a sequence (w0, . . . , wn) of chambers, where
wi and wi+1 are adjacent for each 0 ≤ i < n. A gallery (w0, . . . , wn) is called minimal
if there exists no gallery from w0 to wn of length k <n, and we denote the length of a
minimal gallery from w0 to wn by `(w0, wn). For J ⊆ S, we define the J-residue of a
chamber c ∈ W to be the set RJ(c) := c〈J〉. A residue R is a J -residue for some J ⊆ S;
we call J the type of R, and the cardinality of J is called the rank of R. A residue is
called spherical if its type is a spherical subset of S. Let R be a spherical J -residue. Two
chambers x, y ∈ R are called opposite in R if x−1y = rJ . Two residues P,Q ⊆ R are
called opposite in R if for each p ∈ P there exists q ∈ Q such that p, q are opposite in
R. A panel is a residue of rank 1. It is a fact that for every chamber x ∈ W and every
residue R, there exists a unique chamber z ∈ R such that `(x, y) = `(x, z) + `(z, y) holds
for each chamber y ∈ R. The chamber z is called the projection or the gate of x onto R
and is denoted by z = projR x.
A subset Σ ⊆ W is called convex if for any two chambers c, d ∈ Σ and any minimal

gallery (c0 = c, . . . , ck = d), we have ci ∈ Σ for all 0 ≤ i ≤ k. Note that residues are
convex by [1, Example 5.44(b)].
For two residues R and T, we define projT R := {projT r | r ∈ R}. By [1, Lemma

5.36(2)], projT R is a residue contained in T. The residues R and T are called parallel if
projT R = T and projR T = R.

2.4. Roots and walls

Let (W,S ) be a Coxeter system. A reflection is an element of W that is conjugate to
an element of S. For s ∈ S we let αs := {w ∈ W | `(sw) > `(w)} be the simple root
corresponding to s. A root is a subset α ⊆ W such that α = vαs for some v ∈ W and
s ∈ S. We denote the set of all roots by Φ := Φ(W,S). The set Φ+ := {α ∈ Φ | 1W ∈ α} is
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the set of all positive roots, and Φ− := {α ∈ Φ | 1W /∈ α} is the set of all negative roots. For
each root α ∈ Φ, we denote the opposite root by −α and we denote the unique reflection
which interchanges these two roots by rα. For α ∈ Φ, we denote by ∂α (respectively,
∂2α) the set of all panels (respectively, spherical residues of rank 2) stabilized by rα.
Furthermore, we define C(∂α) :=

⋃
P∈∂α P and C(∂2α) :=

⋃
R∈∂2α R.

The set ∂α is called the wall associated with α. Let G = (c0, . . . , ck) be a gallery with
ci−1 6= ci for each 1 ≤ i ≤ k. We say that G crosses the wall ∂α if there exists 1 ≤ i ≤ k
such that {ci−1, ci} ∈ ∂α. It is a basic fact that a minimal gallery crosses a wall at most
once (cf. [1, Lemma 3.69]). Moreover, a gallery which crosses each wall at most once is
already minimal.
A pair {α, β} ⊆ Φ of roots is called prenilpotent, if α ∩ β 6= ∅ 6= (−α) ∩ (−β). For a

prenilpotent pair {α, β} of roots, we will write [α, β] := {γ ∈ Φ | α ∩ β ⊆ γ and (−α) ∩
(−β) ⊆ (−γ)} and (α, β) := [α, β] \{α, β}. We note that roots are convex (cf. [1, Lemma
3.44]).
Let (c0, . . . , ck) and (d0 = c0, . . . , dk = ck) be two minimal galleries from c0 to ck, and

let α ∈ Φ. Then, ∂α is crossed by the minimal gallery (c0, . . . , ck) if and only if it is
crossed by the minimal gallery (d0, . . . , dk).

Lemma 2.1. Let R be a spherical residue of Σ(W,S) of rank 2, and let α ∈ Φ. Then,
exactly one of the following holds:

(a) R ⊆ α;
(b) R ⊆ (−α);
(c) R ∈ ∂2α.

Proof. It is clear that the three cases are exclusive. Suppose thatR 6⊆ α andR 6⊆ (−α).
Then, there exist c ∈ R ∩ (−α) and d ∈ R ∩ α. Let (c0 = c, . . . , ck = d) be a minimal
gallery. As residues are convex, we have ci ∈ R for each 0 ≤ i ≤ k. As c ∈ (−α), d ∈ α,
there exists 1 ≤ i ≤ k, with ci−1 ∈ (−α), ci ∈ α. In particular, {ci−1, ci} ∈ ∂α and hence
R ∈ ∂2α. �

Lemma 2.2. Let R, T be two spherical residues of Σ(W,S). Then, the following are
equivalent:

(i) R, T are parallel;
(ii) a reflection of Σ(W,S) stabilizes R if and only if it stabilizes T;
(iii) there exist two sequences R0 = R, . . . , Rn = T and T1, . . . , Tn of residues of spher-

ical type such that for each 1 ≤ i ≤ n, the rank of Ti is equal to 1 + rank(R),
the residues Ri−1, Ri are contained and opposite in Ti and moreover, we have
projTi R = Ri−1 and projTi T = Ri.

Proof. This is [9, Proposition 2.7]. �

Lemma 2.3. Let α ∈ Φ be a root, and let x, y ∈ α ∩ C(∂α). Then, there exists a
minimal gallery (c0 = x, . . . , ck = y) such that ci ∈ C(∂2α) for each 0 ≤ i ≤ k. Moreover,
for each 1 ≤ i ≤ k, there exists Li ∈ ∂2α with {ci−1, ci} ⊆ Li.
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Proof. This is a consequence of [8, Lemma 2.3] and its proof. �

Lemma 2.4. Let α, β ∈ Φ, α 6= ±β be two roots, and let R, T ∈ ∂2α ∩ ∂2β.

(a) The residues R and T are parallel.
(b) If |〈J〉| = ∞ holds for all J ⊆ S containing three elements, then R=T.

Proof. As R, T ∈ ∂2α∩∂2β, there exist panels P1, Q1 ∈ ∂α and P2, Q2 ∈ ∂β such that
P1, P2 ⊆ R and Q1, Q2 ⊆ T (as in the proof of Lemma 2.1). By Lemma 2.2, the panels
Pi, Qi are parallel for both i ∈ {1, 2}. Now [15, Lemma 17] yields that Pi, projT Pi are
parallel, and hence projT P1 ∈ ∂α, projT P2 ∈ ∂β by Lemma 2.2. As α 6= ±β, we deduce
projT P1 6= projT P2, and hence projT R contains the two different panels projT P1 and
projT P2. In particular, projT R is not a panel. Since projT R is a residue contained in
T, we deduce projT R = T . Using similar arguments, we found that projR T = R and
R, T are parallel. This proves (a). Moreover, Lemma 2.2 yields R=T, as there are no
spherical residues of rank 3 by assumption. This finishes the proof. �

3. Reflection and combinatorial triangles in Σ(W,S)

Reflection triangles and combinatorial triangles were introduced in [8]. A reflection tri-
angle is a set R of three reflections such that the order of tt

′
is finite for all t, t′ ∈ R, and⋂

t∈R ∂2βt = ∅, where βt is one of the two roots associated with the reflection t. Note
that ∂2βt = ∂2(−βt). A set of three roots T is called a combinatorial triangle (or simply
triangle) if the following holds:

(CT1) The set {rα | α ∈ T } is a reflection triangle.
(CT2) For each α ∈ T , there exists σ ∈ ∂2β ∩ ∂2γ such that σ ⊆ α, where {β, γ} =

T \{α}.

Lemma 3.1. Suppose that (W, S) is 2-spherical and the Coxeter diagram is the
complete graph. If T is a triangle, then (−α, β) = ∅ holds for all α 6= β ∈ T .

Proof. This is [4, Proposition 2.3]. �

Proposition 3.2. Assume that (W, S) is 2-spherical and the Coxeter diagram is the
complete graph. Let R 6=T be two residues of rank 2 such that P := R ∩ T is a panel. If
`(1W ,projR 1W ) < `(1W , projT 1W ), then projT 1W = projP 1W .

Proof. We let α ∈ Φ+ be the root with P ∈ ∂α. Let (c0 = 1W , . . . , ck′ = projP c0) be
a minimal gallery with ck = projR c0 for some 0 ≤ k ≤ k′ and ck, . . . , ck′ ∈ R.
We assume that projT c0 6= projP c0 holds. Then, we have k′ > `(1W ,projT 1W ) >

`(1W ,projR 1W ) = k. Let (d0 = 1W , . . . , dm′ = projP d0) be a minimal gallery with
dm = projT c0 for some 0 ≤ m ≤ m′ and dm, . . . , dm′ ∈ T . We let β ∈ Φ+ be the root
with {dm, dm+1} ∈ ∂β, and we let γ ∈ Φ+ be the root with {ck, ck+1} ∈ ∂γ. We will
show that {α,−β,−γ} is a triangle. Thus, we first show that {rα, rβ , rγ} is a reflection
triangle. We have T ∈ ∂2α ∩ ∂2β, and, as a minimal gallery crosses a wall at most once,
we deduce α 6= β. Note that the wall ∂β is crossed by the minimal gallery (c0, . . . , ck′).
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Since ∂2α 3 R 6= T ∈ ∂2α∩ ∂2β and α 6= ±β, Lemma 2.4(b) implies R /∈ ∂2β, and hence
∂β is crossed by (c0, . . . , ck). As k < k′, we have projR 1W 6= projP 1W and hence α 6= γ.
As α, γ ∈ Φ+, we have α 6= ±γ.
Assume that o(rβrγ) = ∞. We deduce β ⊆ γ. But ∂γ has to be crossed by the gallery

(d0, . . . , dm′). Since ∂2α 3 T 6= R ∈ ∂2α ∩ ∂2γ and α 6= ±γ, we have T /∈ ∂γ2 by
Lemma 2.4(b) as before. This implies that (d0, . . . , dm) crosses the wall ∂β and hence
γ ⊆ β. This yields a contradiction, and we have o(rβrγ) < ∞.
As R ∈ ∂2α ∩ ∂2γ, Lemma 2.4(b) implies ∂2α ∩ ∂2γ = {R}. As R /∈ ∂2β, we deduce

∂2α ∩ ∂2β ∩ ∂2γ = ∅, and hence {rα, rβ , rγ} is a reflection triangle.
Now we have to verify (CT2). As ∂2γ 63 T ∈ ∂2α ∩ ∂2β and P ⊆ T ∩ (−γ), we

have T ⊆ (−γ) by Lemma 2.1. As ∂2β 63 R ∈ ∂2α ∩ ∂2γ and P ⊆ R ∩ (−β), we
have R ⊆ (−β). Let 1 ≤ i ≤ k be such that {ci−1, ci} ∈ ∂β. Note that {dm, dm+1} ∈
∂β, dm+1 ∈ (−β) ∩ T ⊆ (−γ) and ci ∈ (−β) ∩ γ. By Lemma 2.3 there exists a minimal
gallery (e0 = dm+1, . . . , ez = ci) such that ej ∈ C(∂2β). As dm+1 ∈ (−γ) and ci ∈ γ,
there exists 1 ≤ p ≤ z such that ep−1 ∈ (−γ) and ep ∈ γ. Again, by Lemma 2.3, there
exists L ∈ ∂2β such that {ep−1, ep} ⊆ L, and hence L ∈ ∂2β ∩ ∂2γ. As roots are convex
and e0 = dm+1, ez = ci ∈ α, we have ep ∈ L ∩ α. As {rα, rβ , rγ} is a reflection triangle
(and hence L /∈ ∂2α), we obtain L ⊆ α by Lemma 2.1. This implies that {α,−β,−γ}
is a triangle, and hence (α, γ) = ∅ holds by Lemma 3.1. In particular, k + 1 = k′ and
`(1W , projR 1W ) = `(1W ,projP 1W ) − 1 ≥ `(1W ,projT 1W ). This is a contradiction to
the assumption, and we conclude projT 1W = projP 1W . �

Corollary 3.3. Assume that (W, S) is 2-spherical and that the underlying Coxeter
diagram is the complete graph. Suppose w ∈ W and s 6= t ∈ S with `(ws) = `(w) + 1 =
`(wt) and suppose w′ ∈ 〈s, t〉 with `(w′) ≥ 2. Then we have `(ww′r) = `(w) + `(w′) + 1
for each r ∈ S\{s, t}.

Proof. Suppose r ∈ S\{s, t}, and assume that `(ww′r) = `(ww′) − 1 holds for some
w′ ∈ 〈s, t〉 with `(w′) ≥ 2. Suppose w′ starts with s, i.e. w′ = sw′′ for some w′′ ∈
〈s, t〉 with `(w′′) = `(w′) − 1. As `(ww′r) = `(ww′) − 1, one easily sees that `(wstr) =
`(wst)− 1 and `(wsr) = `(ws)− 1 hold, too. We define R := R{r,t}(ws), T := R{s,t}(w)
and P := R ∩ T = Pt(ws). Clearly, projT 1W 6= projP 1W . As mrt ≥ 3, we deduce
`(1W , projR 1W ) < `(1W ,projT 1W ) and Proposition 3.2 yields a contradiction. �

Lemma 3.4. Assume that (W, S) is 2-spherical and that mst ≥ 4 holds for all s 6=
t ∈ S. Suppose w ∈ W and s 6= t ∈ S with `(ws) = `(w) + 1 = `(wt). Then we have
`(w) + 2 ∈ {`(wsr), `(wtr)} for all r ∈ S\{s, t}.

Proof. Assume that `(wsr) = `(w) = `(wtr). Then, `(wr) = `(w) − 1 and `(wrs) =
`(w) − 2 = `(wrt). Let R be the {r, s}-residue containing w. As mrs ≥ 4, we deduce
`(wrsr) = `(wrs) − 1. Let w′ ∈ 〈s, t〉 be such that wr = (projR 1W )w′. Then, `(w′) ≥ 2
and the previous corollary implies `(wrt) = `(wr) + 1, which is a contradiction. This
finishes the proof. �

Remark 3.5. Note that Lemma 3.4 is false without the assumption mst ≥ 4. To see
this, one can consider the Coxeter system of type Ã2.
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4. Some (in-)equalities

To show the two main results (Theorem 5.3 and 5.5), we will apply the ratio test. In order
to do so, we need a few inequalities, which we establish in this and the next section. We
recall that for i ∈ N we have

• Ci := {w ∈ W | `(w) = i} and ci := |Ci|;
• Di := {w ∈ Ci | ∃!s ∈ S : `(ws) < `(w)} and di := |Di|;

Lemma 4.1. Suppose that the Coxeter diagram of (W, S) is the complete graph. Then,
for each w ∈ W\{1W }, there is either a unique element sw ∈ S with `(wsw) = `(w)− 1,
or else there are exactly two elements sw 6= tw ∈ S with `(wsw) = `(w)− 1 = `(wtw).

Proof. Let J ⊆ S with `(wj) < `(w) for each j ∈ J . Then [1, Corollary 2.18] implies
that J is spherical. As the underlying Coxeter diagram is the complete graph, it follows
that each subset of S containing at least three elements is non-spherical. This finishes
the proof. �

Convention 4.2. In this section, we assume that (W, S) is of rank n ≥ 3 and that
there exists m ≥ 3 such that mst = m holds for all s 6= t ∈ S. Moreover, we let i>m.

Lemma 4.3. ci − di =

(
n− 2

2

)
ci−m + (n− 2)di−m.

Proof. Let v ∈ Ci\Di be an element. By Lemma 4.1, there exist exactly two elements
s 6= t ∈ S with `(vs) = `(v) − 1 = `(vt). We define Rv := R{s,t}(v). Then, we consider
the mapping

f : Ci\Di → Ci−m, v 7→ projRv 1W

Note that Ci−m = Di−m ∪ Ci−m\Di−m. If w ∈ Ci−m\Di−m, Lemma 4.1 implies that
there are exactly two elements in S, say sw 6= tw ∈ S, which decreases the length of
w (as i >m). Any other element r ∈ S\{sw, tw} increases the length of w. For n > 3
and r1 6= r2 ∈ S\{sw, tw}, we have f(wr{r1,r2}) = w. For n =3, we have f−1(w) = ∅.

In both cases, w has

(
n− 2

2

)
many preimages. If w ∈ Di−m is, there exists a unique

sw ∈ S which decreases the length of w and (similarly as before) w has

(
n− 1

2

)
many

preimages. Note that

(
n− 1

2

)
−

(
n− 2

2

)
= n− 2. We conclude
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ci − di = |Ci\Di| =
∑

w∈Ci−m

|f−1(w)|

=
∑

w∈Ci−m\Di−m

|f−1(w)|+
∑

w∈Di−m

|f−1(w)|

=

(
n− 2

2

)
(ci−m − di−m) +

(
n− 1

2

)
di−m

=

(
n− 2

2

)
ci−m + (n− 2)di−m.

�

Lemma 4.4. 2ci+1 − di+1 = (n− 2)ci + di.

Proof. We put Mi := {(w, s) ∈ Ci × S | ws ∈ Ci+1}. We prove the claim by showing
that both sides of the equation are equal to |Mi|.

(a) 2ci+1 − di+1 = |Mi|: We consider the mapping

π : Mi → Ci+1, (w, s) 7→ ws.

Clearly, π is surjective. We define

C1
i+1 := {w ∈ Ci+1 | |π−1(w)| = 1} and C>1

i+1 := {w ∈ Ci+1 | |π−1(w)| > 1}.

We show that C>1
i+1 = Ci+1\Di+1. Let w̄ ∈ C>1

i+1 be an element. Then, there exist
(w, s) 6= (w′, s′) ∈ π−1(w̄). It follows that s 6= s′, and hence w̄ ∈ Ci+1\Di+1. Now,
let w ∈ Ci+1\Di+1. By Lemma 4.1, there exist exactly two elements sw 6= tw ∈ S,
which decreases the length of w. This implies (wsw, sw) 6= (wtw, tw) ∈ π−1(w). As
|〈J〉| = ∞ for all J ⊆ S containing three elements, we deduce for every 1 6= w ∈ W
that

|π−1(w)| ∈ {1, 2}.

We infer C1
i+1 = Ci+1\C>1

i+1 = Ci+1\ (Ci+1\Di+1) = Di+1 and compute

|Mi| =
∑

w∈Ci+1

|π−1(w)| =
∑

w∈Di+1

|π−1(w)|+
∑

w∈Ci+1\Di+1

|π−1(w)|

= di+1 + 2(ci+1 − di+1)

= 2ci+1 − di+1.
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(b) (n− 2)ci + di = |Mi|: For a subset T ⊆ Ci, we define

Mi,T := {(w, s) ∈ Mi | w ∈ T}.

For w ∈ Di there are exactly n − 1 elements which increase the length of w. Thus, we
have |Mi,Di

| = (n−1)di. For w ∈ Ci\Di, there are exactly n − 2 elements in S, which
increases the length of w (cf. Lemma 4.1). Thus, we have |Mi,Ci\Di

| = (n−2)(ci−di).
We conclude

|Mi| = |Mi,Ci\Di
|+ |Mi,Di

| = (n− 2)(ci − di) + (n− 1)di = (n− 2)ci + di.

�

Lemma 4.5. ci+1 ≤ (n− 1)ci − (n− 2)di−m+1 ≤ (n− 1)ci.

Proof. The last inequality is obvious. Using Lemma 4.3 and 4.4, we deduce the
following:

ci+1 + (n− 2)di−m+1 ≤ 2ci+1 − di+1 = (n− 2)ci + di ≤ (n− 1)ci.

�

Lemma 4.6. Suppose m> 3. Then, the following holds:

(a) (n− 2)ci ≤ ci+1;
(b) (n− 2)di ≤ di+1;

Proof. We define Ni := {(w, s) ∈ Ci×S | ws ∈ Di+1}. Then, Ni → Di+1, (w, s) 7→ ws
is a bijection, and hence |Ni| = di+1. As in the proof of Lemma 4.4, we define for a subset
T ⊆ Ci:

Ni,T := {(w, s) ∈ Ni | w ∈ T}.

We see that ci+1 ≥ di+1 = |Ni| = |Ni,Di
| + |Ni,Ci\Di

|. Let w ∈ Ci. We now count pairs
(w, s) ∈ Ni. We distinguish the following two cases:

(i) w ∈ Di: Let sw ∈ S be the unique element with `(wsw) < `(w). Let t ∈ S\{sw}.
Then, wt ∈ Ci+1. Suppose wt /∈ Di+1. Then, there exists t 6= r ∈ S with `(wtr) <
`(wt). This implies `(wr) < `(w), and the uniqueness of sw yields r = sw. Now, let
r ∈ S\{sw, t}. Then wr ∈ Ci+1. Again, if wr /∈ Di+1, then sw would decrease the
length of wr. But this is a contradiction to Lemma 3.4. This implies (w, r) ∈ Ni,Di
for all r ∈ S\{sw, t}. This shows (b).

(ii) w ∈ Ci\Di: Let sw 6= tw ∈ S be the two elements with `(wsw) = `(wtw) <
`(w). Now let r ∈ S\{sw, tw}. Then, wr ∈ Ci+1. We assume by contradiction that
wr /∈ Di+1. Then, there would exist u ∈ S\{r} with `(wru) = `(w), and hence
`(wu) < `(w). As sw and tw are the only two elements in S with the property
that they decrease the length of w, we obtain u ∈ {sw, tw}. But then, we obtain a
contradiction to Corollary 3.3. We conclude (w, r) ∈ Ni,Ci\Di

.
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We infer ci+1 ≥ |Ni,Di
|+ |Ni,Ci\Di

| ≥ (n− 2)di + (n− 2)(ci − di) = (n− 2)ci. �

5. Main results

In this section, we prove our main results. In § 5.1, we recall a reduction result due to

Terragni. In § 5.2, we use the reduction result to prove convergence of p(W,S)

(
1

n−1

)
,

where (W,S ) is 2-spherical of rank n ≥ 3. In § 5.3, we use the reduction result to prove

divergence of p(W,S)

(
1

n−2

)
, where (W,S ) is of rank n ≥ 4 and the underlying Coxeter

diagram is the complete graph.

5.1. Reduction step

Let (W,S ) and (W ′, S′) be two Coxeter systems. Following [20], we define (W,S) �
(W ′, S′) if there exists an injective map ϕ : S → S′ satisfying mst ≤ m′

ϕ(s)ϕ(t) for all
s, t ∈ S.

Theorem 5.1. Let (W, S) and (W ′, S′) be two Coxeter systems, and let cn := c
(W,S)
n

and c′n := c
(W ′,S′)
n . If (W,S) � (W ′, S′), then cn ≤ c′n.

Proof. This is [20, Theorem A]. �

5.2. Convergence

Lemma 5.2. Let (W, S) be of rank n ≥ 3, and assume that there exists m ≥ 4 such

that mst = m holds for all s 6= t ∈ S. Then, there exists k ∈ R such that
di
ci

≥ k > 0

holds for all i>m.

Proof. Using Lemma 4.3 and 4.6, we compute

1 =
ci − di + di

ci
=

1

ci

((
n− 2

2

)
ci−m + (n− 2)di−m + di

)

≤ 1

ci

((
n− 2

2

)
1

(n− 2)m
ci +

(
1

(n− 2)m−1
+ 1

)
di

)

=
1

ci

(
(n− 3)

2(n− 2)m−1
ci +

(
1

(n− 2)m−1
+ 1

)
di

)
≤ 1

2(n− 2)m−2
+

(
1

(n− 2)m−1
+ 1

)
di
ci
.

We put

k :=

(
1− 1

2(n− 2)m−2

)
·
(

1

(n− 2)m−1
+ 1

)−1

.
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As n ≥ 3 and m ≥ 4, we have k > 0. This proves the claim. �

Theorem 5.3. Let (W, S) be 2-spherical and of rank n ≥ 3. Then, p(W,S)

(
1

n−1

)
< ∞.

Proof. Let m := max{4,mst | s, t ∈ S}, and let (W ′, S′) be the Coxeter system of
rank n with m′

st = m for all s 6= t ∈ S′. Using Theorem 5.1, it suffices to show that

p(W ′,S′)

(
1

n− 1

)
< ∞.

By Lemma 5.2, there exists k ∈ R such that
di
ci

≥ k > 0 holds for all i >m. We apply the

ratio test. We use Lemma 4.5 and compute for i > 2m− 1 and t = 1
n−1 :

ci+1t
i+1

citi
≤ (n− 1)ci − (n− 2)di−m+1

(n− 1)ci
≤ 1− (n− 2)di−m+1

(n− 1)mci−m+1
≤ 1− n− 2

(n− 1)m
k < 1.

�

5.3. Divergence

In this subsection, we prove that the new lower bound 1
n−1 for the finiteness of the

growth function is optimal for the class of 2-spherical Coxeter systems with a complete
Coxeter diagram.

Lemma 5.4. Let (W, S) be 2-spherical and of rank n ≥ 4, and assume that the
underlying Coxeter diagram is the complete graph. Then (n− 2)ci ≤ di + di+1.

Proof. For i =0, we have c0 = 1, d0 = 0 and d1 = n, and the claim follows. Thus, we
can assume i > 0. As in Lemma 4.6, we define Ni := {(w, s) ∈ Ci × S | ws ∈ Di+1} as
well as Ni,T := {(w, s) ∈ Ni | w ∈ T} for T ⊆ Ci. We consider the mapping

π : Ni → Di+1, (w, s) 7→ ws.

As before, π is a bijection and we have |Ni| = di+1. Moreover, we have Ni = Ni,Di
∪

Ni,Ci\Di
and this union is disjoint. We now count pairs (w, s) in Ni.

We fix w ∈ Di, and we let sw ∈ S be the unique element with `(wsw) = `(w) − 1.
Assume that there are r, s, t ∈ S\{sw} pairwise distinct with wr,ws,wt ∈ Ci+1\Di+1.
Similarly, as in Lemma 4.6(b), we deduce `(wzsw) = `(w) for each z ∈ {r, s, t}. As
mpq ≥ 3 holds for all p 6= q ∈ S, we infer `(wswz) = `(wsw) − 1. As {r, s, t} is not
spherical, this is a contradiction and we have for a fixed w ∈ Di at least n − 3 tuples
(w, s) in Ni.
We fix w ∈ Ci\Di, and we let sw 6= tw ∈ S be the two elements with `(wsw) =

`(w) − 1 = `(wtw). Assume that there is s ∈ S\{sw, tw} with ws ∈ Ci+1\Di+1. Then,
`(w) ∈ {`(wssw), `(wstw)}. W.l.o.g. we assume `(wssw) = `(w). But then Corollary 3.3
implies `(wtw) = `(w)+1, which is a contradiction. Thus, we have for a fixed w ∈ Ci\Di
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exactly n − 2 tuples (w, s) in Ni (cf. Lemma 4.1). This implies that (n − 2)ci − di =
(n− 3)di + (n− 2)(ci − di) ≤ di+1. �

Theorem 5.5. Let (W, S) be of rank n ≥ 4, and assume that the underlying Coxeter

diagram is the complete graph. Then, p(W,S)

(
1

n−2

)
= ∞.

Proof. Let (W ′, S′) be the Coxeter system of rank n with m′
st = 3 for all s 6= t ∈ S′.

Using Theorem 5.1, it suffices to show that

p(W ′,S′)

(
1

n− 2

)
= ∞.

As before, we apply the ratio test. Using Lemmas 4.4 and 5.4, we deduce the following
for i > m = 3 and t = 1

n−2 :

ci+1t
i+1

citi
=

(n− 2)ci + di + di+1

2(n− 2)ci
=

1

2
+

di + di+1

2(n− 2)ci
≥ 1

2
+

1

2
= 1.

�
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