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Cilia perform various functions, including sensing, locomotion, generation of fluid flows
and mass transport, serving to underpin a vast range of biological and ecological processes.
However, analysis of the mass transport typically fails to resolve the near-field dynamics
around individual cilia, and therefore overlooks the intricate role of power/recovery strokes
of ciliary motion. Selvan et al. (2023, Phys. Rev. Fluids 8, 123103) observed that the
flow field due to a point torque (i.e. a rotlet) accurately resolves both the near- and far-
field characteristics of a single cilium’s flow in a semi-infinite domain. In this paper,
we calculate the mass transport between a no-slip boundary and an adjacent fluid, as
a model system for nutrient exchange with ciliated tissues. We develop a Langevin
model in the presence of a point torque (i.e. a single cilium) to examine the nutrient
flux from a localised surface source. This microscopic transport model is validated
using a macroscopic continuum model, which directly solves the advection–diffusion
equation. Our findings reveal that the flow induced by a point torque can enhance the
particles’ transport, depending on their diffusivity and the magnitude of the point torque.
Additionally, the average mass transport affected by a single cilium can be enhanced or
diminished by the presence of an externally imposed linear shear flow, with a strong
dependence on the alignment of the cilium. Taken together, this framework serves as a
useful minimal model for examining the average nutrient exchange between ciliated tissues
and fluid environments.
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1. Introduction
Eukaryotic cilia are found in large numbers across various environments, including
microorganisms, coral reefs, mucociliary layers and fallopian tubes (Smith, Gaffney &
Blake 2008; Shapiro et al. 2014; Pedley, Brumley & Goldstein 2016; Mathijssen
et al. 2016), where they perform a suite of functions such as swimming, feeding and
transportation of dissolved and particulate matter. A great many models have been
employed to capture both the transient and steady-state behaviour of cilia in different
geometric configurations, which vary from detailed descriptions of beating filaments
(Gueron et al. 1997; Elgeti & Gompper 2013; Goldstein et al. 2016) and minimal models
for the associated flows (Vilfan & Jülicher 2006; Niedermayer, Eckhardt & Lenz 2008;
Brumley et al. 2012, 2014), through to the celebrated envelope, or ‘squirmer’, description
of collective ciliary motion (Lighthill 1952; Blake 1971; Pedley 2016). The latter abstracts
a ciliated surface as a no-slip boundary undergoing small-amplitude deformations, so it
fails to resolve the flow field of individual cilia. On the other hand, by representing the
ciliary tip as a sphere traversing a circular orbit above a no-slip wall, minimal models
can capture the transient flow field generated by the cilium, but this calculation becomes
relatively time-consuming for a large ciliary array. A computationally efficient means of
calculating both near- and far-field ciliary flows was provided recently by Selvan et al.
(2023) who demonstrated that the action of a point torque accurately resolves the total
steady-state flow field of a single cilium.

Ciliary flows routinely transport both particulate and dissolved matter, as well as
microswimmers in a range of model systems, including corals (Shapiro et al. 2014;
Pacherres et al. 2020; Murthy, Picioreanu & Kühl 2023), volvocine green algae (Short
et al. 2006), starfish larvae (Gilpin, Prakash & Prakash 2017) and airways (Grotberg 1994;
Ramirez-San Juan et al. 2020). In conjunction with ciliary flows, externally imposed
fluid flows also help to transport dissolved and particulate matter, thereby influencing
photosynthesis (Mass et al. 2010), respiration (Patterson, Sebens & Olson 1991; Smith
2006) and reproduction (Kölle et al. 2009; Poon et al. 2023) in different species. Given
the scale of collective transport by ciliary arrays, it is common to consider coarse-grained
flow for the purposes of mass transport, for example using squirmer models, rather than
resolving the flow around individual cilia (Magar, Goto & Pedley 2003; Shapiro et al.
2014; Pacherres et al. 2022; Ahmerkamp et al. 2022). However, the latter is necessary for
understanding the nutrient transport within the ciliary layer, and therefore essential for
overall flux calculations.

In the present study, we utilise the point torque model by Selvan et al. (2023) to swiftly,
but accurately, calculate the fluid flow around an individual cilium and use this to quantify
mass transport around it. This is done by comparing two different models. The first model,
based on Langevin dynamics, assumes that matter is an ensemble of Brownian particles
subject to both deterministic and fluctuating forces, and has been employed widely to
understand, for example, the transport of bacteria, eggs in an oviduct and particles in
porous media (Verdugo et al. 1980; Tartakovsky, Tartakovsky & Meakin 2008; Rusconi,
Guasto & Stocker 2014; Farago & Pontrelli 2020). We also develop a continuum model for
examining the nutrient flux between a no-slip substrate and a surrounding fluid, which
models transport using an advection–diffusion equation. This approach has been used
for investigating mass transport by ciliary flows around corals (Shapiro et al. 2014), the
capture rates of diffusive molecules on a cilium (Hickey, Vilfan & Golestanian 2021) and
convection in the suspension of non-motile bacteria (Dunstan et al. 2018). We validate
the Langevin model of mass transport in the absence of a background flow using the
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Figure 1. (a) Schematic diagram of the Langevin model for the mass transport from a shallow disk-shaped
source of concentration C0 in the presence of a ciliary flow (i.e. the flow generated by a point torque Ω)
and linear shear flow above the rigid wall. (b) The corresponding sketch of the continuum model showing
the regularised torque (i.e. Ω = |Ω|êy) of radius κ (≈ 0.001d) positioned above the rigid wall inside the box
(lb × wb × hb). A circular source of concentration C0 (situated at z = 0) and a planar sink at z = hb are applied
in this case.

continuum model, and proceed to investigate the mass transport due to a single cilium
in the presence of a linear shear flow using the Langevin model.

The framework of this paper is as follows: in § 2 we derive the integral equation
describing the trajectory of a Brownian particle in the presence of both ciliary and
background flows, using the Langevin approach; in § 3, we examine the particle
distribution and nutrient transport in the absence of a background flow; in § 4, we extend
this to study the effect of a background linear shear flow on the particle trajectories and
nutrient transport; finally, this is followed by a discussion in § 5.

2. Langevin model
Consider Brownian particles of radius ab, emitted from a disk-shaped source of constant
concentration C0, radius rs and height hs , which approximates a ciliary patch, in the
presence of a single cilium and a background linear shear flow ub (figure 1a). The finite
height, 0 < hs � 2rs , is chosen so that a constant concentration boundary condition
can be maintained numerically, but is sufficiently small so as to represent a surface
concentration condition. Following the work of Selvan et al. (2023), we capture the
time-averaged flow u generated by a single cilium using a stationary point torque Ω
positioned at xr = (0, 0, d), so that

ui = 1
8πμ

[
εi jkrk

r3 − εi jk Rk

R3 + 2 dεkj3

(
δik

R3 − 3RiRk

R5

)
+ 6εkj3RiRkR3

R5

]
Ω j , (2.1)

where i, j, k ∈ {1, 2, 3}, r = |r|, r = (r1, r2, r3) = (x, y, z − d), R = (R1, R2, R3) =
(x, y, z + d), R = |R|, δi j and εi jk are the Kronecker delta and the Levi-Civita symbol,
respectively, and μ is the dynamic viscosity of the fluid. Then the dynamics of a Brownian
particle at a point x = (x, y, z) emitted from the source in the presence of u and ub are
given by

dx
dt

= u + ub +
√

2kB T

f
· η(t). (2.2)

Here, ub = γ̇ z êx with γ̇ being the shear rate of the background flow and êx denoting the
unit normal vector along the x-axis. The white noise η(t) satisfies the conditions 〈η(t)〉 = 0
and 〈η(t)η(t ′)〉 = δ(t − t ′)I, where I is the identity matrix (Ramirez-San Juan et al. 2020).
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The parameters kB and T are the Boltzmann constant and absolute temperature, respec-
tively. Given that the particles could experience additional drag due to the presence of the
wall, the friction tensor f is defined as f = 6πμab[I + (9ab)/(16z(t))(I + êz êz)], where
êz and z(t) denote the unit normal vector along the z-axis, and the height of a Brownian
particle above the rigid wall at a given time t , respectively. The particle’s radius, ab, and
diffusivity, D0, are related through the Stokes–Einstein equation, which can be approx-
imated as D0 = kB T/(6πμab) (Miller 1924). For a particle that can move by Brownian
motion, and through ciliary and linear shear flows, we impose the reflecting boundary con-
dition on the plane rigid wall (z = 0) and maintain open boundaries in all other directions.

Let us assume that the trajectory of a single particle traverses the following positions
{x0 = x(t0), x1 = x(t1), x2 = x(t2), . . . } in the time steps {t0, t1 = t0 + δt, t2 = t0 +
2δt, . . . } with x(t0) = x0 being the initial position. The particle trajectory can then be
obtained on each subinterval [tn−1, tn] for n ∈N using the following equation derived
from (2.2):

xn =
∫ tn

tn−1

[u(xr , x(t)) + ub(x(t))] dt +
(

2kBT
f

)1/2

·N (
0, δt

)
, (2.3)

where N (0, δt) is a three-dimensional vector whose components are normally distributed
with mean 0 and variance δt . The numerical integration was performed using the
MATLAB solver ode15s (with the relative tolerance of 10−12); on each subinterval of
length δt we superimpose the particle movement due to the white noise expressed in (2.3)
with its flow-induced movement which is solved for by the numerical integration of (2.2)
without the noise term. We use the same procedure to simulate a system of Ns particles
in the source of concentration C0 = Ns/V , where V = πr2

s hs is the disk’s volume. If any
particles depart the source during a given time step, they are replaced at random positions
within the disk to maintain the constant concentration boundary condition. Particles that
return to the disk due to either Brownian motion or ciliary advection are also accounted
for in the source; however, the ratio of particles entering to exiting the source is very small
(i.e. � 1).

3. Absence of background flow (γ̇ = 0)
We start by investigating the effect of ciliary flows on particle transport in the absence
of a linear shear flow (γ̇ = 0), specifically examining the dependence on both the
particles’ diffusivity and the torque magnitude. We study the transport of large dissolved
molecules in the vicinity of the cilium through to micron-sized particulate matter, which
corresponds to D0 ≈ 0.1 − 2400 µm2 s−1 (Shapiro et al. 2014; Ramirez-San Juan et al.
2020). Our reference case is that of |Ω| = Ωs = 0.01 fNm for d = 8 µm corresponding
to the eukaryotic cilium (length lc = 12.75 µm; frequency fc = 16.9 s−1) of P. damicornis
obtained using Selvan et al. (2023), where the total steady-state flow field of a cilium was
fitted with the point torque positioned above the rigid wall. Furthermore, the following
parameters remain unchanged throughout our analysis: μ = 10−3 Pa s, T = 298 K, rs/d =
1/

√
π , hs/d = 0.25 and kB = 1.38 × 10−23 J K−1. For the assumed parameters, the

contribution to the drag f due to the wall has a negligible effect on the reported results.

3.1. Validation with a continuum model
In order to provide macroscopic validation of the microscopic Langevin model described
in § 2, we introduce a continuum model which solves an advection–diffusion equation in
the presence of ciliary flows. The steady concentration of particles, C∗, is obtained from

D0∇2C∗ − (u · ∇)C∗ = 0, (3.1)
1007 A14-4
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in a box of dimension (lb × wb × hb), with the circular concentration source of radius rs
located at the centre of the bottom face (figure 1b), and an absorbing boundary condition
(sink) located at z = hb.

In contrast to the Langevin model, which requires only one boundary condition on the
plane rigid wall and open boundaries in all other directions, here we require the following
boundary conditions to be imposed along the box surfaces in order to solve (3.1):

∂C∗

∂x
= 0 at x = − lb

2
,

lb
2

,
∂C∗

∂y
= 0 at y = −wb

2
,
wb

2
, (3.2a)

∂C∗

∂z
= 0 at z = 0 (except at source), (3.2b)

C∗ = kC0 at source, and C∗ = 0 at z = hb (sink). (3.2c)

Equations (3.2a) specify zero diffusive flux, but permit advective flux across the side
boundaries. In general, the position of the side boundaries is chosen to be sufficiently
large so that the diffusive flux is negligible. We use lb = 10d, wb = 10d and hb =
12d throughout our study for particles with diffusivity D0 = 0.65 µm2 s−1, and have
determined that increasing the box dimensions further has no bearing on the reported
result. The factor k in (3.2c) takes into account the different form of the source boundary
condition, which is flat (i.e. imposed at z = 0) for the continuum model, but has a
finite volume in the Langevin model. The fluid in the immediate vicinity of a surface
concentration condition would exhibit a slightly lower mean concentration, and thus
representing the boundary condition through a finite volume requires a proportionally
lower seeding density (with factor k).

Notably, the advective flow generated by the point torque in (2.1) is singular at the
point of application. To overcome numerical issues while solving equation (3.1), we
desingularise the velocity field (2.1) using the method of regularisation employed in the
work of Cortez & Varela (2015). A detailed description of this process is given elsewhere
(Cortez 2001; Cortez & Varela 2015; Park, Kim & Lim 2019). Using the same notation as
before, the modified velocity field uκ due to the regularised torque is

uκ
i = 1

2
Q(r)εi jkΩ j rk − 1

2
Q(R)εi jkΩ j Rk + d

{
Dφ

1 (R)εi j3Ω j + Dφ
2 (R)εα j3Ω j Rα Ri

}
− {εα j3Ω j Rαδi3 + εi j3 R3Ω j }H3(R) − εα j3Ω j Rα R3 Ri Dφ

2 (R) − dεi jkΩ j Rk H3(R)

− dεi jkΩ j R3 Rk H4(R) − εi jk(Ω j − Ω3δ j3)Rk H3(R) + d2εi jkΩ j Rk, (3.3)

where α ∈ {1, 2}; the functions Q, Dφ
1 , Dφ

2 , H3 and H4 are defined as follows (Park
et al. 2019):

Q(r) = 5κ2 + 2r2

8π(r2 + κ2)5/2 , Dφ
1 (R) = R2 − 2κ2

4π(R2 + κ2)5/2 , Dφ
2 (R) = −3

4π(R2 + κ2)5/2 ,

H3(R) = −3κ2

8π(R2 + κ2)5/2 , H4(R) = 15κ2

8π(R2 + κ2)7/2 , (3.4)

and κ is the regularisation parameter (i.e. the radius of the ‘blob’) which is assumed to be
very small compared with the reference length scale (here κ/d = 0.001).

The regularised velocity expression in (3.3) is used within the advection–diffusion
equation (3.1), which is solved with a customised finite element method via MATLAB’s
solvepde solver (element, tetrahedron; maximum element size, 3.5d; minimum size, 0.17d;
geometric order, quadratic) for the boundary conditions given in (3.2a)–(3.2c). Since the
velocity decays like 1/r2 from the regularised torque, the advective flux along the side
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Figure 2. Scaled average concentration of particles with diffusivity D0 = 0.65 µm2 s−1 in the presence of
ciliary flows of magnitude |Ω| = 0.01 fNm calculated using (a) the Langevin model simulated for nδt = 350 s
to attain the steady-state distribution (C/C0) and (b) the continuum model (C∗/C0) with factor k = 1.3 (see
appendix A) for the source concentration of C0 = 0.2 µm−3. Lines with arrows indicate the streamlines of the
flow field.

boundaries of the domain is extremely small. However, in the absence of explicit boundary
conditions for the advective term, the solvepde solver does not restrict the advective flux
at these boundaries, instead handling them as open boundaries for advection (Padilla,
Secretan & Leclerc 1997).

An example of a (scaled) concentration profile computed using this model and averaged
over the thickness |y| ≤ rs as

C∗(x, z) = 1
2rs

∫ rs

−rs

C∗(x, y, z) dy, (3.5)

is shown in figure 2(b); here, D0 = 0.65 µm2 s−1 and C0 = 0.2 µm−3.
In figure 2(a), we show the corresponding average concentration of particles evaluated

using the Langevin model from § 2 (in the presence of the ciliary flow only). This
concentration was calculated by dividing the domain of thickness |y| ≤ rs into smaller
boxes of equivalent thickness, i.e. of volume dV = 2rs × dx × dz where dx = dz =
0.1d � d so that the variations in average concentration profile close to the point torque
were resolved. The reported results did not change significantly when taking other values
of dx = dz provided they were much smaller than d. Then in each box, we found the
concentration in the mth time interval [mδt, (m + 1)δt] as C (m)(x, z) = N (m)

s /dV , where
m ∈Z

+ and N (m)
s corresponds to the number of particles in the box during that time

interval. Hence, the average concentration profile in each box over time was found as

C(x, z) = 1
n

n∑
m=1

C (m)(x, z), (3.6)

where nδt is the total simulation time using the Langevin model. The results in figure 2(a)
can be compared directly with results in figure 2(b). The predictions for the average
concentrations found using the two models agree to within 10% when the factor k = 1.3 is
used (see appendix A for detailed description). The continuum model presented above
serves to validate the results of the Langevin model for particles with a diffusivity
D0 = 0.65 µm2 s−1. For other diffusivity values, the lateral size of the box should be
optimised to ensure negligible diffusive flux far from the source. We have displayed one
such result for higher diffusivity (with D0 = 1400 µm2 s−1) with an optimised box size in
appendix A. We emphasise here that although the continuum model would be broadly
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Figure 3. Particles from the steady-state distribution and corresponding two-dimensional projection of the
concentration map (a i,b i,c i), along with example trajectories of 10 particles (a ii,b ii,c ii) emitted from
the source. Results are shown for (a) |Ω| = 0 with D0 = 0.65 µm2 s−1 (no-advection), (b) |Ω| = Ωs with
D0 = 0.65 µm2 s−1 (advection) and (c) |Ω| = Ωs with D0 = 6.5 µm2 s−1 (advection, larger diffusivity), for
source concentration of C0 = 0.2 µm−3.

useful for various ciliary arrangements and flow regimes, the remainder of this paper
utilises exclusively the Langevin model to study ciliary mass transport.

3.2. Particle trajectories and distribution
Next, we investigate how the particles’ trajectories, and their steady-state distributions, are
affected by the ciliary flows and particle diffusivity. The displacement of particles with
diffusivity D0 = 0.65 µm2 s−1 exhibits no bias in the x–y plane when the ciliary flow
is absent (i.e. |Ω| = 0, no advection, see figure 3a). However, when the cilium generates
a flow, particles are advected along the direction of the flow (figure 3b). Examining the
corresponding trajectories for 10 example particles (figure 3 aii, bii, cii) reveals that the
strong near-field vortical flow circulates particles before they escape by diffusion. This
is comparable to the particle transport in the presence of time-dependent ciliary motion
obtained with the colloidal rotor model (Vilfan & Jülicher 2006; Selvan et al. 2023), where
the oscillating particles can be trapped in closed loops (appendix D). Further, we have
also examined the current Langevin formulation (2.3) in the presence of ciliary flow at
the limit of zero diffusivity (appendix C), where the noise along the particle trajectories
is negligible. However, increasing the diffusivity, e.g. by a factor of 10 in figure 3(c),
diminishes the downstream bias of the particle distribution due to the relatively larger role
of diffusion. The motion of Brownian particles is evidently controlled by the interplay
between the particle diffusivity and strength of the point torque, encapsulated in a Péclet
number. This is discussed in more detail in the following subsection.

3.3. Nutrient transport
Here, we further investigate the transport of particles of various diffusivities by evaluating
their integrated flux, or current, between the no-slip surface and the bulk fluid. This
quantity is the net emission rate of particles from the source under the influence of both
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Figure 4. (a,b) Dimensional current I (defined for Te = 5 min{τa, τd } when C0 = 0.1 µm−3) as a function of
particle diffusivity D0 showing the effects of (a) advection due to the point torque and (b) changing the torque
magnitude. (c) Scaled current (I/C0Uc L2) as a function of scaled diffusivity (1/Per ) for different torque
magnitudes.

advection and diffusion and is used to measure the effect of ciliary flows on mass transport
(Saito 1968; Berg 1993). The current is defined as

I = Ne

Te
, (3.7)

where Ne is the number of particles emitted from the source in a given time Te. In the
absence of any flows, the diffusion current emanating from a disk-shaped source with
surface concentration, C = C0, and far-field concentration, C = 0, is directly proportional
to the diffusivity of the particles and the radius of the disk (Berg 1993):

I = 4rsC0 D0. (3.8)

We plot the current I obtained in Langevin simulations as a function of D0 in figure 4(a).
In the absence of advection (i.e. for |Ω| = 0), it is in close agreement with (3.8) and
prediction from the continuum model, i.e.

I = D0

∫ 2π

0

∫ rs

0

∂C∗

∂r
|z=0rdrdθ. (3.9)

Meanwhile, the interplay between the ciliary flows and Brownian motion results in a
deviation from this linear profile in the presence of advection (i.e. |Ω| �= 0).
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Figure 5. (a) Sherwood number (Sh) as a function of rotlet Péclet number (Per ) for different torque
magnitudes. (b) Data from (a) shown on a log–log scale, which demonstrates that Sh ∼ Pe3/4

r for Per � 1.

For small D0, the current is enhanced by the presence of a ciliary flow (|Ω| > 0),
which serves to transport particles away from the source. However, at larger values
of D0, the relative enhancement due to advection diminishes. A comparison with the
time-dependent ciliary motion (appendix D) revealed that the steady rotlet model tends
to slightly underestimate particle current due to the reliance on a time-averaged flow
approximation. Figure 4(b) shows I as a function of D0 for various magnitudes of the
point torque. These results reveal that the current strongly depends on |Ω|. The extent of
the deviation from the linear profile of (3.8) is determined by the relative sizes of diffusive,
τd , and advective, τa , time scales, discussed in more detail in appendix B. For τd ≤ τa ,
diffusion is the dominant transport mechanism, and the current scales as I ∝ D0.

The family of curves in figure 4(b) can be readily rescaled using the rotlet Péclet
number,

Per = τa

τd
= Uc L

D0
, (3.10)

where Uc and L are the characteristic advection velocity and length scales, respectively
(see appendix B). Plotting these data after rescaling in figure 4(c) shows that the current
remains unchanged as a function of the scaled diffusivity for different point torque
magnitudes. Furthermore, the transition from the nonlinear to the linear profile occurs
around Per = 1, where the ciliary advection balances diffusion. To investigate the relative
influence of advection compared with diffusion in the observed mass transport, we utilised
the Sherwood number (Friedlander 1957; Acrivos & Taylor 1962; Magar et al. 2003),

Sh = I

C0 D0L
, (3.11)

which measures the ratio of the particle current, I , to the diffusion rate, C0 D0L . This is
plotted as a function of Per in figure 5(a), with the corresponding log–log plot shown in
figure 5(b). In the limit of high rotlet Péclet number, we observe a scaling of Sh ∼ Pe3/4

r ,
which suggests that the relative effect of diffusion diminishes with increasing Per . The
rate of this decrease is higher compared with other flows reported in the literature, e.g.
around a no-slip cylinder for which the exponent of Sh versus Per is 1/3 (Friedlander
1957). Taken together, our results imply that nutrient transport by an individual cilium can
be characterised using the rotlet Péclet number.
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Figure 6. Representative trajectories of 10 particles with diffusivity D0 = 0.65 µm2 s−1 (a i,b i) and the
corresponding flow field due to both ciliary and external flows (a ii,b ii). Results are shown for (a) Ω = Ωs êy

and (b) Ω = −Ωs êy and the external shear flow with γ̇ = 0.5 s−1. The black and red arrows in (a i,b i) plots
indicate the direction of linear shear and ciliary flows, respectively. The black lines with arrows in (a ii,b ii) are
the streamlines of the flow field.

4. Presence of background flow (γ̇ �= 0)

4.1. Particle trajectories
In this section, we investigate mass transport in the presence of both a ciliary flow and
an externally imposed linear shear flow. We start by focusing on the effect of ciliary
orientation on the trajectories of particles with low diffusivity (i.e. D0 = 0.65 µm2 s−1).
Figure 6 shows particle trajectories in the presence of ciliary flows with two different
orientations, Ω = ±|Ω|êy . There is a significant qualitative difference in the trajectories
of particles, depending on the orientation of the model cilium. When the external flow
coincides with the far-field flow direction of ciliary beating (Ω = |Ω|êy , figure 6a), the
reverse flow generated by the cilium near the source traps the emitted particles in closed
loops, before they ‘escape’ due to diffusion. Conversely, for the cilium with opposite
orientation to the external flow direction (Ω = −|Ω|êy , figure 6b), source particles are
immediately swept downstream by the external flow due to the constructive nature of both
ciliary and external flows close to the source. In appendix D we show that when time-
dependent ciliary motion is accounted for, particles oscillate in the near-field, but are still
trapped within closed loops characterised by the same length scales as in figure 6, which
results in the same average distribution of particles.

4.2. Nutrient transport
We now explore the nutrient transport due to ciliary flows in the presence of a background
flow by computing the current as defined in (3.7). In figure 7(a–c), we plot I as a function
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Figure 7. Particle current I as a function of D0 showing the effect of (a) advection due to both ciliary (Ω =
Ωs êy) and background flow, and (b,c) shear rate for different torque magnitudes and orientations. (d) Scaled
current (I/C0Uc L2) as a function of scaled diffusivity (1/Pe) for different torque magnitudes and orientations
and for different shear rates. (e) The same data as in (d) but focusing on the limit of 1/Pe → 0 to show the
effect of ciliary orientation in the presence of background flow. The remaining parameters are the same as in
§ 3.1.

of diffusivity D0 for different strengths of advection due to ciliary (Ω = Ωs êy) and exter-
nal flows. As shown in figure 7(a), when the external flow is non-zero (γ̇ �= 0), the current
still varies linearly with D0 for sufficiently large diffusivity (diffusive region), but the
relationship between the two is otherwise nonlinear (advective region). Compared with the
analogous case of no external flow (i.e. γ̇ = 0), the emission of nutrients increases consid-
erably in the latter region. In addition to this observation, we also observed that the current
measured in time-dependent ciliary motion for the external flow with low shear rate tends
to slightly overestimate the current calculated using the steady rotlet model (appendix D).

In figures 7(b) and 7(c), we study the effect of shear rate on the current I as a function of
D0 for different torque magnitudes and orientations. When the shear rate is increased, the
current also increases for both torque magnitudes considered, |Ω| = Ωs and |Ω| = 5Ωs .
By contrast, the change in the ciliary orientation compared with the external flow appears
not to affect the nutrient transport for the range of diffusivities considered here, though a
closer examination of the region of small diffusivity suggests a more interesting picture
(see below). To probe this further, we scale the family of curves in figures 7(b) and 7(c) as
in § 3.3, but using the total (or ‘effective’) Péclet number

Pe = Uc L

D0
= Per + Peγ̇ , (4.1)

where Per = Ur L/D0 and Peγ̇ = Ue L/D0 are the rotlet and shear Péclet numbers,
respectively; Ur and Ue are the average velocity experienced by the particles in the
presence of ciliary and external flows, respectively (see B2). When rescaled, all data align
well irrespective of the shear rate, ciliary orientation and torque magnitudes, as shown in
figure 7(d). This effective Péclet number is not the only control parameter that governs the
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current across all flow conditions, because the structure of, and therefore transport by, the
external shear and rotlet flows are fundamentally different. However, we have examined
the particle current as the relative contributions of Per and Peγ̇ are varied for fixed total
Pe, and found that it does not depend strongly on the composition of Pe. In varying 1/Pe
from 0.1 to 1.5, the scaled particle current varied by a factor of ∼10. However, for each
value of 1/Pe, we found that varying the relative proportion of Per and Peγ̇ resulted
in just ∼1 % difference in the scaled particle current. This suggests that Pe adequately
characterises the total effect of flow relative to diffusion.

We now return to the effect of orientation on the less diffusive particles by examining
the scaled current when 1/Pe → 0 (see figure 7e). When the far-field flow from the point
torque is aligned with the external flow (solid line), the particle emission rate is diminished
due to competition between the ciliary and external flows near the no-slip boundary.
Conversely, for the point torque oriented so that its far-field flow opposes the external
shear (red dash–dot line), the particle emission rate increases linearly with the shear rate
due to the superposition of ciliary and external flows around the source. Increasing 1/Pe
weakens the importance of the orientation.

5. Discussion
We have explored the mass transport of ciliary flows which are modelled using a rotlet.
We employ the Langevin model of mass transport to calculate the movement of particulate
matter, which is emitted from a disk-shaped source positioned below the point torque.
We validate the Langevin model with a continuum description, by solving the advection–
diffusion equation in the absence of an external flow. In this case, we observe that ciliary
beating results in a pronounced enhancement in the nutrient current for sufficiently small
particle diffusivity (i.e. high Péclet number).

In the presence of an externally imposed linear shear flow, the ciliary orientation plays
a crucial role in governing particle transport, whenever the ciliary flow is relatively strong
compared with the external flow and Brownian noise. When the external flow coincides
with the direction of ciliary pumping, the particles tend to become trapped in a closed loop
before being released due to diffusion. In such cases, the particle emission rate decreases
due to the trade-off between the strengths of ciliary and external flows. For ciliary and
external flows that oppose one another, the superposed flow leads to downstream particle
release, which, in turn, increases the particle emission rate.

Importantly, these findings reveal that average transport of dissolved or particle matter
is driven by the flows within the typical ciliary length scale – and therefore associated
with the recovery stroke of a cilium – rather than the far-field characteristics of the
ciliary beating. This result hinges on being able to resolve the near-field ciliary flows.
Our model is therefore expected to find utility in applications involving ciliary carpets,
in which heterogeneity of ciliary alignment can further enhance the three-dimensional
mixing effects. Patches of cilia with the same orientation could be modelled by increasing
torque strengths, which requires further research into the relationship between torque
magnitudes, the ciliary beating strength and the number of cilia within patches. Such work
is on its way.

Lastly, we note that although this work has focused on the transport of nutrients away
from a no-slip substrate – for example modelling transport of excess oxygen away from a
coral surface – this framework could also be adapted to consider nutrient uptake by the
surface by reversing role of the source and sink (Masoud & Stone 2019) together with the
flow velocities, and noting the symmetry of the configuration.
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Appendix A. Factor ‘k’
The source geometries used in the Langevin and continuum models are slightly different.
To compensate for this, we introduce a factor in the source boundary condition of
the continuum model, see (3.2c). For the reference case shown in figure 2, the largest
concentration of particles was in the region of interest x ∈ [−3d/2, 6d] and z ∈ [0, 2d].
In this region, we compare the average absolute difference in the average concentration
profiles obtained using the two models

〈�C〉 = 1
p

∑
p

|C∗ − C |, (A1)

where p is the number of grid points in the region of interest. When k = 1.3, 〈�C〉 attains
the minimum value as shown in figure 8(a), resulting in less than 10 % difference in the
average particle concentration obtained using the two models that were quoted in § 3.1. The
favourable comparison is also demonstrated in figure 8(b), which plots the corresponding
heat map of the absolute difference, �C = |C∗ − C |, when k = 1.3.

Finally, we also compare the two models for larger values of particle diffusivity,
D0 = 1400 µm2 s−1, under the influence of flow generated by the torque of magnitude
|Ω| = 5Ωs , still using k = 1.3. The box dimensions along lateral directions are fixed as
lb = 30d and wb = 30d to ensure that the diffusive flux becomes negligible, while the
height is maintained as hb = 12d. The corresponding concentration maps are plotted in
figures 9(a) and 9(b), respectively, and result in less than 10 % disagreement as shown in
figure 9(c) where we plot the absolute difference in the average particle concentrations.
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Figure 8. (a) Average absolute difference 〈�C〉 as a function of k for the particles discussed in § 3.1. The red
cross indicates the minimum 〈�C〉 attained. (b) The corresponding absolute difference in the average particle
concentration obtained using the two models when k = 1.3. (c) The near-field average concentration of particles
(scaled by C0) computed using the Langevin model for parameters from § 3.1. Blue lines with arrows denote
the flow streamlines, and the annular region R discussed in appendix B is marked with black solid lines.
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Figure 9. Scaled average concentration of particles with diffusivity D0 = 1400 µm2 s−1 in the presence of
ciliary flows of magnitude |Ω| = 5Ωs calculated for the source concentration of C0 = 0.2 µm−3 using (a)
the Langevin model that was simulated for nδt = 70 s to attain the steady-state particle distribution (C/C0)
and (b) the continuum model (C∗/C0) using k = 1.3. Lines with arrows indicate the streamlines of the flow
field. (c) The corresponding absolute difference in the average particle concentration �C computed using the
models.

This illustrates that the level of agreement between the models is similar for all values of
particle diffusivity and torque used in § 3. While k = 1.3 has proven effective for the highly
diffusive particles (D0 = 1400 µm2 s−1) under large torque magnitude (|Ω| = 5Ωs), the
optimal value of k differs slightly as shown in figure 8(a). The optimal value of k depends
on the dimension of the source in the Langevin model, particle diffusivity and torque
magnitudes. However, we emphasise that there is little difference between the optimal
values of k shown in figure 8(a), and note that the continuum model is only used here
to compare with the Langevin model. The latter approach is used for all subsequent
calculations and conclusions.

Appendix B. Characteristic scales
Here, we define the characteristic scales of the mass transport due to a single
cilium. Consider the near-field average concentration of particles with diffusivity D0 =
0.65 µm2 s−1 in the presence of ciliary flows shown in figure 8(c). These data were
obtained from the Langevin model as discussed in § 3.1. It suggests that on average,
the particles are advected along the vortex within the annular region, R= {(x, 0, z)|r =√

x2 + (z − d)2, 2d/5 < r < d}. Hence, we choose the characteristic length and velocity
scales of advection as the vortex length and the average velocity experienced by the
particles due to the cilium in the annular region R,

L = 2d and Uc = Ur ∼ 0.4352|Ω|
µL2 , (B1)

respectively. In the presence of external linear shear flow, the characteristic velocity scale
is modified by the combined effect of ciliary motion and external shear,

Uc = Ur + Ue ∼ 0.4352|Ω|
µL2 + γ̇ L . (B2)

From this, the advection time scale is given as τa = L/Uc. On the other hand, the time
taken to traverse the same vortex length L = 2d in the absence of advection is given by the
diffusive time scale, τd = L2/D0. In figure 8(c), the flow due to the point torque (d = 8 µm
and |Ω| = Ωs) transports the particles with the characteristic velocity Uc ∼ 16 µm s−1 in
the vortex of length L = 16 µm. The results of the Langevin model were obtained using
δt = min{τa, τd}/100.
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Figure 10. Example trajectories of 10 particles emitted from the source are shown for (a) D0 = 0.25 µm2 s−1,
(b) D0 = 0.025 µm2 s−1 and (c) D0 = 0.0025 µm2 s−1 with |Ω| = Ωs for source concentration of C0 =
0.2 µm−3.

Appendix C. Transition to non-diffusive tracers (D0 → 0)
In this section, we examine the effect of modifying the Brownian particles’ diffusivity from
a finite value (D0 > 0), towards zero. Figure 10 displays example trajectories of particles,
calculated using the Langevin formulation in the presence of ciliary flow, for several values
of decreasing particle diffusivity. Unsurprisingly, for extremely small diffusivity – e.g.
D = 0.0025 µm2 s−1 as shown in figure 10(c) – the trajectories executed by the particles
deviate only very slightly from the streamlines associated with the ciliary flow (Selvan
et al. 2023). This recirculation of particles is carefully considered when calculating the net
emission rate from the source at the surface.

Appendix D. Predicting particle transport using the colloidal rotor model
Here we use the colloidal rotor (or ‘minimal’) model, which captures the transient flow
field of the single cilium, to predict the particle mass transport. Following Vilfan &
Jülicher (2006); Selvan et al. (2023), we model the ciliary tip as a sphere of radius a
translating with constant angular velocity ω in a circular trajectory of radius r0, whose
centre is positioned at the distance h above the rigid wall (see figure 11a). Hence, the
evolution of Brownian particle position x = (x, y, z) due to time-dependent ciliary us and
background linear flows ub is given by

dx
dt

= us + ub +
√

2kB T

f
· η(t), (D1)

where the fluid velocity generated by the transient sphere located at X(t) =
(xs(t), ys(t), zs(t)) = (r0 cos ωt, 0, h − r0 sin ωt) is

us
i = 1

8πμ
Si j (X(t), x)Fj (t), (D2)

and

Si j (X(t), x) = δi j

r
+ rir j

r3 −
(

δi j

R
+ Ri R j

R3

)

+ 2zs(t)ρ jk3

[
∂

∂ Rk

(
zs(t)Ri

R3 −
[
δi3

R
+ Ri R3

R3

])]
, (D3)
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Figure 11. (a) Diagram of the Langevin model of mass transport when the ciliary flow is modelled using a
colloidal rotor. (a–c) Typical trajectories of 10 particles with diffusivity D0 = 0.65 µm2 s−1 in the presence
of ciliary and external flows. Results are shown for (b) clockwise ciliary orientation and γ̇ = 0, (c) clockwise
ciliary orientation and γ̇ = 0.5 s−1, and (d) anticlockwise ciliary orientation and γ̇ = 0.5 s−1. As before, the
black and red arrows indicate the direction of linear shear and ciliary flows, respectively.

with r = (r1, r2, r3) = (x − xs(t), y − ys(t), z − zs(t)), R = (R1, R2, R3) = (x − xs(t),
y − ys(t), z + zs(t)), ρ jk3 = δ jαδαk − δ j3δ3k and the force exerted on fluid by the sphere
is Fj (t) = 6πμa(δ jk + 9a

16zs(t)
(δ jk + δ j3))X ′

k(t). All other notation is the same as in § 2.
In our simulation, we used the following parameters for the colloidal rotor model: a =

3 µm, r0 = 3 µm, h = 6 µm and ω = 2π fc; they have been optimised for the eukaryotic
cilium of P. damicornis (Shapiro et al. 2014; Selvan et al. 2023). We investigate the effect
of time-dependent ciliary and external linear shear flows on the trajectories of particles
with diffusivity D0 = 0.65 µm2 s−1 by plotting 10 representative particle trajectories in
figure 11(b–d). Particles oscillate along individual trajectories, but their average behaviour
is akin to that predicted using the steady rotlet model. When the external flow is zero
(γ̇ = 0), the particles emitted from the source follow oscillatory trajectories forming closed
loops due to the time-dependent ciliary motion, only escaping due to diffusion (figure 11b).
When the direction of far-field ciliary flow and the external flow of strength γ̇ = 0.5 s−1

coincide (figure 11c), the recovery stroke generated by the cilium traps particles in closed
loops before they are released due to both diffusion and external flow. By contrast, when
the shear flow of strength γ̇ = 0.5 s−1 has the opposite direction to the far-field ciliary
flow (figure 11d), particles are advected downstream due to flow superposition.

While there is a qualitative resemblance between the time-averaged rotlet (figure 6) and
the time-dependent colloidal rotor (figures 11c and 11d) models, we proceed to quantify
the particle currents across a range of input parameters and external flow strengths. We
measure the particle current, I , as a function of diffusivity, D0, for various shear rates as
shown in figure 12. In the absence of external shear (figure 12a), the particles with higher
diffusivity are more likely to escape during one period of a sphere as compared with
particles with lower diffusivity. This slightly overestimates the particle current compared
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Figure 12. Particle current I (defined for Te = 5 min{20/ fc, τd } when C0 = 0.1 µm−3) as a function of D0 for
clockwise ciliary orientation comparing the time-averaged rotlet and time-dependent colloidal rotor models for
different values of shear rate (a) γ̇ = 0, (b) γ̇ = 0.5 s−1, (c) γ̇ = 1 s−1 and (d) γ̇ = 3 s−1.

with the rotlet model due to the time-averaged approximation of ciliary flow. When
external shear is present (figure 12b–d), a larger emission of particles during one period
of the sphere is observed, particularly at lower shear rates. As the shear rate increases,
particles are predominantly advected by the external flow, resulting in closer agreement in
the particle current profiles between the time-averaged and time-dependent flow models.
Taken together, these results demonstrate that the steady (rotlet) model captures the key
features of nutrient transport by unsteady flows across a range of different flow conditions
and particle diffusivities.
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