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Abstract 

Computational immunology has been the breeding ground of some of the best bioinformatics work of 
the day. By melding diverse data types, these approaches have been successful in associating geno- 
types with phenotypes. However, the representations (or spaces) in which these associations are mapped 
have primarily been constructed from some omics-oriented sequence data typically derived from high- 
throughput experiments. In this perspective, we highlight the importance of biophysical representations 
for performing the genotype-phenotype map. We contend that using biophysical representations reduces 
the dimensionality of a search problem, dramatically expedites the algorithm, and more importantly, of- 
fers physical interpretability to the classes of clustered sequences across different layers of complexity - 
molecular, cellular or macro-level. Such biophysical interpretations offer a firm basis for the future of 
bioengineering and cell-based therapies. 

 

1 Introduction 

The core responsibility of our immune system is to protect the body from pathogens and cancers. The 
need to target and activate the immune system reproducibly has been underscored by the recent pan- 
demic and the rise of anticancer therapies that rely on immunological mechanisms. This has generated 
a focused enthusiasm for gaining a detailed description of the immune system. However, the human 
immune system is incredibly complex, and often regarded as one of the most challenging topics in biol- 
ogy. The sheer size of sequence and population diversity in proteins associated with the immune system 
presents a formidable obstacle to mapping their network of interactions within a tractable space. For 
instance, T-cell recognition of antigens is driven by HLA genes encoding for Major Histocompatibility 
Complexes (or MHCs), are among the most polymorphic germline genes in the human genome that 
contain tens of thousands of variants across populations[1]. Moreover, the somatic hypermutations in- 
volved in the function of T-cell and B-cell receptors make them the most polymorphic human proteins 
in known existence, with theoretical estimates of T-cell Receptor (or TCR) diversity reaching over 1061 
potential sequences. A more conservative estimate places TCR diversity in the range of 107 receptors[2], 
which still offers an incredibly vast range of human variations. The desire to account for this diversity 
and predict its associated non-linear relationships has motivated the genesis of the field of computational 
immunology to develop methods to analyze and predict immune outcomes based on this data (Figure-
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1). Computational immunology has transformed our understanding of the immune system by enabling 
the integration of massive amounts of biochemical and biological data. Simple mathematical models to 
study disease transmission can be traced to the early 20th century[3, 4]. By leveraging population data, 
it clarified the relationship between the size of mosquito populations and malaria incidence which led to 
improved malaria control. The power of computational immunology expanded significantly in the in- 
formation age with the advent of high-throughput sequencing, proteomics, and the growing availability 
of experimental and clinical data further empowered by advances in computational technology. These 
advancements have enabled computational techniques to tackle more complex immunological questions. 
Consequently, computational immunology has now been applied to a broad spectrum of applications in- 
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cluding vaccine design[5], predicting population-level mortality rates[6], and forecasting the outcomes of 
immune checkpoint blockade therapies[7]. 

Due to the availability and ease of collection of protein and amino acid sequence information, most 
computational immunology approaches primarily rely on sequence data for their predictions[8, 9, 10]. 
However, recent advances in machine learning and protein modeling have caused an explosion in the 
synergistic incorporation of biophysical information and modeling into existing computational immunol- 
ogy approaches[11, 12]. Such integrations have already shown to have a profound improvement on the 
accuracy of models, but also grant the ability to gain novel insights into previous instructable mecha- 
nisms, advancing computational immunology models into the next era. In the following perspective, we 
will explore immune-related models ranging from atomistic environments to the macro-level systems, 
demonstrating how biophysics can be used to enhance predictive accuracy and improve our overall un- 
derstanding of immune responses. 

 
 

 

2 A perspective on biophysical models 

Computational immunology has been dominated by bioinformatics, primarily due to a push from recent 
findings in genomic and proteomic technologies that compose around 31 different databases today[13]. 
Historically, it allows the study of complex protein-protein interactions across a diversity of sequences[14]. 
Recently, deep learning approaches offer rapid access to molecular structures from sequences[15], which 
has extended the realm of bioinformatics to structure-guided models of immune interactions[16]. How- 
ever, the physical formulation of intermolecular interactions is statistical, which entails an ensemble de- 
scription of conformations that remains obscure in the bioinformatics approaches. These ensembles cap- 
ture transition in the order-disorder transition of the molecules, flexibility, and thermal effects, as well 
as solvation and microenvironmental impacts on structure. Attempts to overcome such limitations of 
traditional computational immunology open the doors for employing biophysical tools to take MHC, 
TCRs, and antibody predictions beyond the sequence-only or sequence-structure paradigm[17, 18, 19]. 
Notwithstanding the computationally expensive biophysical simulations, it generates unique represen- 
tations and metrics that connect collective molecular properties with phenotypic and even population 
outcomes. We break down the biophysical advances in the realm of atomistic, molecular, whole-cell, and 
macro-level modeling, and highlight how biophysical entities of Table 1 are acting or can be leveraged 
as novel representations for learning in computational immunology, as complements to the traditional 
sequence or structural methods. 

 
2.1 Atomistic description 

We start with biophysical descriptors in computational biology arising from detailed interactions of anti- 
bodies, MHCs, and TCRs. 

 
2.1.1 Free energy description of antibodies 

Since the first antibody structure was deposited in 1976, the number of antibody structures in the PDB has 
grown, and it now represents approximately 2.1% of the total entries[20]. Many computational tools now 
use only the antibody data, as opposed to general protein data, due to the increased performance[21, 22]. 
To this end, the Structural Antibody Database or SAbDab collects, curates, and presents an ensem- 
ble of antibody structures from the PDB[23]. Such databases allow for the prediction of the affinity of 
antibody-antigen interfaces by combining the biophysics of protein-protein interactions with deep learn- 
ing approaches[24]. In fact, a significant improvement in the ranking and prediction of affinity predic- 
tions is observed by combining all-atom free energy methods like Free energy perturbation or FEP+ with 
focused machine learning approaches like QuanSA[25]. Using such a combination of biophysics and 
informatics, the affinity of CR3022 antibody is optimized to the spike protein of the SARS-CoV-2 Omi- 
cron strain, achieving a high success rate with up to a 17-fold affinity increase[26]. Going beyond simple 
geometric 3D coordinate representations of ligands [25], a novel metric of multiple-ligand alignment is 
employed using so-called pocket fields to learn affinities. Unlike the learning of real geometries that are 
quite high dimensional, the learning of smoother functions like the 3D fields (with known map to the 
SMILE or peptide sequences) offers learning across a broad diversity of molecular identity and confor- 
mation, without overfitting the loss function. In conclusion, the application of free energy augmented 
antibody design underscore the growing power of biophysical modeling to not only understand but also 
engineer biological systems for specific therapeutic outcomes. 
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2.1.2 Structural modeling of MHC (Major Histocompatibility Complex) 

In 1968, Snell examined the concept of transplantation and came across the term histocompatibility 
polymorphism[27, 28]. MHC proteins play a crucial role in immune mechanisms due to their involve- 
ment in activating T cells and B cells[29, 30]. Structural modeling of these complexes offers insights into 
the mechanism of the several pathways relevant to immunogenicity[31]. The MHC protein is one of 
the most polymorphic proteins in humans[1], but despite the high polymorphism, the structure of the 
MHC binding groove is highly conserved[11]. Researchers found that the second and last residues are 
key anchors for peptide binding to the MHC class-I binding groove[29], a discovery made through X-ray 
diffraction studies[32]. Since countless peptides can bind to MHC, many generated by frameshift events, 
and lack evolutionary context for multi-sequence alignments, crystallizing all polymorphic complexes is 
unfeasible. A biophysical approach is thus needed to model MHC-peptide complexes for further study. 

Conventionally, there are three ways to model structures: molecular dynamics, molecular docking, 
and homology modeling[33]. The unifying protocol to design a model for MHC is as follows: the first 
part is to generate a peptide conformation using a PDB template, the second step involves docking of 
the peptide, and finally optimizing the overall structure. Multiple sources are available to model MHC-I 
complexes such as DockTope, GradDock, APE-Gen, AlphaFold2, and RoseTTAfold[34, 35, 36, 37]. Al- 
though these methods are highly accurate, some of them are highly computationally heavy or applicable 
only to the MHC class-I molecule due to the heterodimeric binding pocket observed in MHC class-II 
molecules. Recently, a state-of-the-art method, PANDORA, shows potential to design even MHC class-II 
molecules, and also offers some tunability while modeling. Its energy-based definition of loop confor- 
mations is shown to outperform most of the methods previously introduced in terms of accuracy and 
computational efficiency[38]. However, there still is a need for a tool that models complex structures by 
capturing the biophysical attributes of the peptide-MHC instead of exploiting sequence similarity and 
templates. Large datasets to benchmark biophysical properties across a range of MHC systems - similar 
to MISATO (for MD simulations of 20,000 protein-ligand systems) or 100-protein NMR spectra (for pro- 
tein dynamics) – do not yet exist in this space. A very promising result is that semi-empirical quantum 
mechanical representations can now be embedded in these data sets to refine the associated protein struc- 
tures. Once similar datasets start existing for the broad class of MHC proteins, such quantum chemistry 
representations can likely be extended to the peptide-MHC predictions, for example, with PANDORA 
or other tools. Ultimately, improvement to MHC modeling and subsequent extraction of generalizable 
biophysical properties will lead to better predictions of immunogencity. Highlighting this point, a thor- 
ough structural study demonstrated that a non-anchor position mutation in a MHC-I peptide, presented 
by an ovarian cancer tumor, modified both the structural and dynamic properties of the bound complex. 
These changes resulted in optimal confirmations for interaction and subsequent activation of cognate T 
cells[39]. Such an observation would be difficult, if not impossible to determine from sequence alone and 
emphasizes the value of structural considerations when studying immunogencity. 

 
2.1.3 Catch bond description of TCRs 

Catch bonds have been referred to as the interaction between various biomolecules and biomolecular sur- 
faces, where the lifetime of the bond increases with the application of tensile force on the bond [40, 41]. 
The atomistic detail of catch bond formation had remained elusive for a long period of time, but the gen- 
eral explanation was given by a two-state model or a two-pathway model. In the two-state model, the 
receptor-ligand complex is theorized to exist in two distinct states, a short-lived and a long-lived state. 
The application of force loosens the interaction between the binding site and a regulatory site which 
drives the whole complex towards the long-lifetime state[40]. In the two-pathway model the receptor- 
ligand complex undergoes unbinding via two distinct pathways with different Koff values, and the ap- 
plication of tensile force triggers the allosteric change, that leads the unbinding to happen via the path- 
way with a high energy barrier, thereby the long-lifetime[42]. Such catch bonding has been observed at 
TCR-peptide-MHC immune synapse, and more importantly, immunogenicity has been attributed to the 
strength of the catch bond formation[43]. Hence, catch bonds offer a biophysical descriptor of MHC alle- 
les for presenting peptides to the TCRs. Interestingly, unlike binding affinity, catch bonds uniquely cap- 
ture the system’s out-of-equilibrium properties. Therefore, it can capture the state of the immune synapse 
under stress, which rectifies the frozen stationary picture of complexes drawn by the affinity measures. 
This descriptor is computable using Steered MD simulations [44] and more recently using metadynamics 
methodologies [45], offering insights into how sequence changes reflect in non-equilibrium interaction 
changes. However, both the experimental and computational biophysical methods for tracking catch 
bonds are resource-intensive, so high-throughput measurements are yet missing, in turn impacting the 
extensive use of this information in immunology models. The advent of reinforcement learning with 
Jarzynski’s equality and so-called ‘stiff-spring approximations’ [46] to formulate a space of molecular ac- 
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tions using steered MD simulations presents a promising step forward in rapidly modeling at least the 
2-state model of the catch bonds as another biophysical descriptor in computational immunology[43]. 
A more rigorous consideration of catch bond formation has practical implications for enhancing T cell 
based cancer immunotherapies. A recent study showed low affinity TCRs can be optimized to acquire 
catch bonding characteristic allowing for potent activation at relative weak 3D binding affinities[47]. This 
has the ability to drive strong antitumor immune response with a lower risk of potentially life threatening 
cross-reactivity. 

 
2.2 Molecular description 

The translation from atomistic to molecular biophysical representation has become popular to allow al- 
gorithms to distinguish self vs. non-self interactomes. The biophysical representations of glycans under- 
pinning the pathogen entry path offer some stark examples. By employing tools like variational autoen- 
coders, the so-called ‘glycan shield’ of spike proteins was dissected to detect the role of specific glycan 
size, orientation, and chemistry [48]. A physical interpretation of the latent spaces was determined from 
protein-glycan contacts. Subsequently, we engineered the glycan shield based on their contact representa- 
tion to reduce the infectivity of the NL63 coronavirus by nearly 50%[49]. This idea of monitoring contacts 
was also extrapolated to monitor inter-glycan interactions between the cell surface of the influenza virus 
and those of chicken and human cell surface glycocalyx [50]. Again, by translating fluorescence signals 
into a contact matrix representation, support vector machines were successful in identifying the critical 
density of glycans that make the H1N1 cells in mammalian cells show a greater binding than when grown 
in egg cells. Finally, the protein-protein contact matrices also found application in vector design for As- 
traZeneca and J&J’s COVID vaccines, implication platelet factor proteins in blood clotting side-effects 
of the vaccine candidate[51]. Altogether, contact matrices can offer a robust biophysical representation, 
where in molecular interactions can be classified to be self or non-self. 

 
2.3 Cellular description 

Whole cell models, though scarce, have found applications in computational immunology. A mechanistic, 
multiscale mathematical model of immunogenicity for therapeutic proteins was formulated by recapitu- 
lating key biological mechanisms, including antigen presentation, activation, proliferation, and differen- 
tiation of immune cells, secretion of antidrug antibodies, as well as in vivo disposition of antibodies and 
therapeutic proteins [52]. The multiscale model structure can be represented by the subcellular, cellular, 
and whole-body levels. To represent the physiology of MHC-II, a key parameter used in these models in- 
volves the number of T-epitope-MHC, in silico T cell epitope prediction and experimental measurements 
of their MHC-binding affinities, which is scaffolded within a two-compartment drug pharmacokinetics 
model. Using adalimumab as an example therapeutic protein, the model is able to simulate immune 
responses against adalimumab in individual subjects and in a population and also provides estimations 
of immunogenicity incidence and drug exposure reduction that can be validated experimentally [52, 53]. 
Most of the cell models in immunology are agent-based that use the automaton algorithm with specific 
mechanistic logics or rules. Interestingly these rules show remarkable similarity with classical thermody- 
namic and kinetic principles, such as landscapes and equations of motion [54]. Such models have found 
applications in CD4+ T cell responses to influenza infections, multiscale mechanistic modeling of human 
dendritic cells, and have potential applications in dendritic cell-based targeted cell therapies [55, 56]. 

 
2.4 Macro description 

The integration of molecular immunology concepts into macro-level analyses has already demonstrated 
significant potential in elucidating disease associations. A notable example is the use of patient-specific 
MHC genotypes to predict disease risk. For instance, large-scale analyses involving 9,176 cancer pa- 
tients revealed that MHC-I genotypes were predictive of the tumor mutational landscape[57]. This study 
found that oncogenic mutations were more likely to occur in regions not presented by the patient’s MHC-I 
molecules, suggesting that gaps in antigen presentation contribute to tumor evolution. Similarly, patients 
undergoing immune checkpoint blockade therapies have shown improved responses when their MHC-I 
genotype allows for the presentation of a more diverse array of potential peptides[58]. More recently, bio- 
physical approaches have been applied to link MHC-I genotypes with disease risk and progression[11]. 
Recently, we created a diverse protein ensemble of 5,281 MHC-I protein binding grooves, generating 
211,240 structural models, which were subsequently translated into a simplified representation of elec- 
trostatic properties (5,281 averaged electrostatic maps). A subset of these maps, those with known MHC-I 
binding motifs, were used to train an Inception neural network capable of predicting MHC-I binding mo- 
tifs from electrostatic maps alone. Beyond the ability to perform high throughput proteome-scale binding 
predictions, the predicted binding motifs were utilized to construct interaction networks that accurately 

https://doi.org/10.1017/qrd.2025.7 Published online by Cambridge University Press

https://doi.org/10.1017/qrd.2025.7


6 

Accepted manuscript 

 

classified HIV disease progression and immune checkpoint therapy response. At the population level, 
applications of MHC-I genotype analysis have revealed further insights. A consensus MHC-I predic- 
tion model, ensembleMHC, demonstrated that populations enriched for MHC-I alleles capable of strongly 
binding multiple peptides from SARS-CoV-2 structural proteins exhibited lower mortality rates during 
the pre-vaccination phase of the COVID-19 pandemic[6]. This suggests that MHC-I diversity and peptide- 
binding capacity at the population level may serve as predictors of disease outcomes in emerging viral 
threats. These findings highlight some of the promise of MHC genotype based analysis in both disease 
risk assessment and therapeutic strategy development. MHC analysis can aid in predicting susceptibility 
to autoimmune diseases and cancer while also informing vaccine design by optimizing patient antigen 
selection. 

 

 

3 Outlook: Future inspired by the past of functional representations 

Most of the biophysics, including the powerful integrative models we know, is predicated upon the se- 
quence → structure → function → phenotype paradigm. With the maturation of machine learning tech- 
niques and the availability of data at various scales, researchers (particularly bioinformaticians) have been 
trying to bridge gaps between the different tiers of this process, starting from the age-old genotype–type 
modeling to CASP and Alphafold’s sequence structure up to recent attempts to go from sequence to en- 
semble. However, physical causality is often missing in the traditional bioinformatics models, thus far 
sidelining the role of AI-driven advances only to predictions of the forward direction. So, it is high time 
that we introduce physical ideas to conceive generative models that backmap phenotypes down to an 
ensemble of structures and sequences. Model representations play a central role in this mapping process. 
The traditional sequence of 3D coordinate structural representations require an enormous amount of 
training data, and prone to overfitting, nonetheless offer the most extensive models. In contrast, the ther- 
modynamic or kinetic representations, using ideas of entropy or committor functions are quite generaliz- 
able across application domains but lack the physical interpretability[59]. Loosely, they draw analogies to 
the plane wave basis set representations that find application in several areas of quantum mechanics [60]. 
However, akin to how quantum mechanics was represented in the molecular systems using the Gaussian- 
like basis set representations, we posit that biophysical representations offer a segue for representing the 
deep learning models in the molecular space. To this end, we highlight a number of representations 
that are either being used or hold the potential for multiscale applications in computational immunology. 
Similar to how the Gaussian orbitals offer physical interpretation to highly resolved electronic structures 
e.g. using the molecular orbital theory, the biophysical functions (pocket fields, QM/MM charge density, 
binding affinity, catch bonding, contact matrices, molecular electrostatics) offer interpretability in terms of 
deep rooted physical theories associated (thermodynamic integration, electronic structure theory, equi- 
librium and non-equilibrium statistical theories, linear response theories, polymer folding, continuum 
mechanics) that can be projected on structure and function. Essentially they offer a physical basis to the 
loss functions and the latent spaces, that gets to learning both the data as well as the context. So, we 
propose a sustained intellectual effort in this direction. 
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