
10

Quantum linear algebra

At a high level of abstraction, quantum computers compose unitary matri-

ces, and do so with classically unparalleled efficiency. This hints at quantum

speedups for linear algebra tasks. However, often one needs to work with large

non-unitary matrices; thus, for performing general linear algebra tasks we often

wish to embed certain non-unitary matrices into unitary matrices represented

by efficient quantum circuits, and then apply them to quantum states, take their

sums or products, or implement more general matrix functions. These tasks

are collectively referred to as “quantum linear algebra,” the building blocks of

which are discussed in this chapter.

The techniques described in this chapter evolved over the past decades and

converged to the presented unified framework within several distinct research

threads. Block-encodings emerged as a natural approach for embedding non-

unitary matrices into quantum circuits, inspired by approaches based on purifi-

cation, dilation (e.g., Stinespring representation [1050] or Stinespring dilation

[1044]), and postselection. Quantum signal processing (QSP) was discovered

as a byproduct of the characterization of simple single-qubit pulse sequences

used in nuclear magnetic resonance [719], for synthesizing polynomial trans-

formations applicable to a “signal parameter” encoded as a matrix element

of a single-qubit rotation matrix. Meanwhile, it was extensively studied how

matrix functions could be synthesized using the linear combinations of uni-

taries technique on matrix exponentials implemented by Hamiltonian simu-

lation [281, 48, 248], or Chebyshev polynomials of operators implemented

via quantum walk techniques [135, 136, 282]. Such matrix exponentials or

Chebyshev polynomials can be implemented, for example, via qubitization of

a block-encoded operator. In parallel to progress on advanced amplitude am-

plification [466, 1067] techniques, it was recognized [716, 717] that QSP can

be “lifted” for applying polynomial transformations to the eigenvalues of quan-

tum walk operators (such as those implemented by qubitization), and thus for

188

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

10.1 Block-encodings 189

implementing a rich family of matrix functions, immediately yielding an opti-

mal algorithm for time-independent Hamiltonian simulation. The concepts of

qubitization and QSP were later generalized and unified into the framework

of quantum singular value transformation [431], providing generalizations and

more efficient implementations of a number of existing quantum algorithms

and leading to the discovery of several new algorithms.

The authors are grateful to Lin Lin for reviewing this chapter.

10.1 Block-encodings

Rough overview (in words)

In a quantum algorithm, the quantum gates that are applied to quantum states

are necessarily unitary operators. However, one often needs to apply a linear

transformation to some encoded data that is not represented by a unitary opera-

tor, and furthermore, one generally needs coherent access to these non-unitary

transformations. How can we encode such a non-unitary transformation within

a unitary operator? Block-encoding is one method of providing exactly this

kind of coherent access to generic linear operators. Block-encoding works by

embedding the desired linear operator as a suitably normalized block within

a larger unitary matrix, such that the full encoding is a unitary operator, and

the desired linear operator is given by restricting the unitary to an easily rec-

ognizable subspace. To be useful for quantum algorithms, this block-encoding

unitary must also be realized by some specific quantum circuit acting on the

main register and additional ancilla qubits.

Block-encodings are ubiquitous within quantum algorithms, but they have

both benefits and drawbacks. They are easy to work with, since one can ef-

ficiently perform manipulations of block-encodings, such as taking products

or convex combinations. On the other hand, this improved working efficiency

comes at the cost of having more limited access. For example, if a matrix is

stored in classical random access memory, the matrix entries can be explicitly

accessed with a single query to the memory, whereas if one only has access

to a block-encoding of the matrix, estimating a matrix entry to precision ε re-

quires O(1/ε) uses of the block-encoding unitary in general (by utilizing an

amplitude estimation subroutine).

Block-encodings also provide a layer of abstraction that assists in the design

and analysis of quantum algorithms. One can simply assume access to a block-

encoding and count the number times it is applied. To run the algorithm, it is

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

190 10. Quantum linear algebra

necessary to choose a method for implementing the block-encoding. There

are many ways of constructing block-encodings that could be suited to the

structure of the input. For instance, there are efficient block-encoding strate-

gies for density matrices, positive operator-valued measures (POVMs), Gram

matrices, sparse matrices, matrices that are stored in quantum data structures,

structured matrices, and operators given as a linear combination of unitaries

(with a known implementation). We discuss these constructions below. For un-

structured, dense matrices, the strategy for Gram matrices can be instantiated

using state preparation and quantum random access memory (QRAM) as sub-

routines. For more details on a particular block-encoding scheme for loading

matrices of classical data, see Section 17.3 on block-encoding dense matrices

of classical data.

Rough overview (in math)

Our goal is to build a unitary operator that gives coherent access to an M × M

matrix A (we will later relax the assumption that A is square), with normaliza-

tion α ≥ ∥A∥, where ∥A∥ denotes the spectral norm of A. As the name suggests,

block-encoding is a way of encoding the matrix A as a block in a larger unitary

matrix

UA =

|0a⟩ |0a⟩⊥()
|0a⟩ A/α ·
|0a⟩⊥ · ·

,

where the labels |0a⟩ and |0a⟩⊥ indicate which portion of the vector space each

block corresponds to—specifically, whether the first a qubits are equal to or

orthogonal to the state |0a⟩, respectively. Three of the four blocks are unspeci-

fied and can take on any values such that UA is unitary. More precisely, we say

that the unitary UA is an (α, a, ϵ)-block-encoding of the matrix A ∈ CM×M if

∥A − α(⟨0a| ⊗ I)UA(|0a⟩ ⊗ I)∥ ≤ ϵ, (10.1)

where a ∈ N is the number of ancilla qubits used for embedding the block-

encoded operator, and α, ϵ ∈ R+ define the normalization and error, respec-

tively. Note that α ≥ ∥A∥ − ϵ is necessary for UA to be unitary. The definition

above can be extended for general matrices, though additional embedding or

padding may be needed (e.g., to make the matrix square).

Once a block-encoding is constructed, it can be used in a quantum algorithm

to apply the matrix A to a quantum state by applying the unitary UA to the larger

quantum system. The application of the block-encoding can be thought of as a

probabilistic application of A—applying UA to |0a⟩|ψ⟩ and postselecting on the

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

10.1 Block-encodings 191

first register being in the state |0a⟩ gives an output state proportional to A|ψ⟩ in

the second register.

There are several ways of implementing block-encodings based on the

choice of matrix A [431, Section 4.2].1

• Unitary matrices are (1, 0, 0)-block-encodings of themselves. Controlled

unitaries (e.g., CNOT) are essentially (1, 1, 0)-block-encodings of the

controlled operation.

• Given an s-qubit density matrix ρ and an (a+s)-qubit unitary G that prepares

a purification of ρ as G|0a⟩|0s⟩ = |ρ⟩ (s.t. tra|ρ⟩⟨ρ| = ρ, where tra denotes trace

over the first register), then the operator [717]

(G† ⊗ Is)(Ia ⊗ SWAPs)(G ⊗ Is)

is a (1, a + s, 0)-block-encoding of the density matrix ρ, where Ix denotes

the identity operator on a register with x qubits, and SWAPs denotes the

operation that swaps two s-qubit registers [431, Lemma 45].

• Similarly, one can construct block-encodings of POVM operators, given ac-

cess to a unitary that implements the POVM [45]. Specifically, if U is a uni-

tary that implements the POVM M to precision ϵ, such that for all s-qubit

density operators ρ we have
∣∣∣∣tr(ρM) − tr

[
U(|0⟩⟨0|⊗a ⊗ ρ)U†(|0⟩⟨0| ⊗ Ia+s−1))

]∣∣∣∣ ≤ ϵ,

then (I1 ⊗ U†)(CNOT ⊗ Ia+s−1)(I1 ⊗ U) is a (1, 1 + a, ϵ)-block-encoding of

M [431, Lemma 46].

• One can also implement a block-encoding of a Gram matrix using a pair of

state preparation unitaries UL and UR. In particular, the product

UA = U
†
L
UR

is a (1, a, 0)-block-encoding of the Gram matrix A whose entries are Ai j =

⟨ψi|ϕ j⟩, where [431, Lemma 47]

UL|0a⟩|i⟩ = |ψi⟩, UR|0a⟩| j⟩ = |ϕ j⟩.

• One can generalize the above strategy from Gram matrices to arbitrary

matrices to produce (α, a, ϵ)-block-encodings of general matrices A, where

again α ≥ ∥A∥. See Section 17.3 on block-encoding dense matrices of

classical data for details.

• Sparse matrices: Given a matrix A ∈ C2w×2w

that is sr-row sparse and sc-

column sparse (meaning each row and column has at most sr and sc nonzero

1 References to locations in [431] typically refer to the longer arXiv version, rather than the
STOC version.

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

192 10. Quantum linear algebra

entries, respectively), then, defining ∥A∥max = maxi, j |Ai j|, one can create a

(
√

sr sc∥A∥max,w + 3, ϵ)-block-encoding of A using oracles Or, Oc, and OA,

defined as follows [431, Lemma 48]

Or : |i⟩|k⟩ 7→ |i⟩|rik⟩, ∀i ∈ [2w] − 1, k ∈ [sr],

Oc : |ℓ⟩| j⟩ 7→ |cℓ j⟩| j⟩, ∀ℓ ∈ [sc], j ∈ [2w] − 1,

OA : |i⟩| j⟩|0b⟩ 7→ |i⟩| j⟩|Ai j⟩, ∀i, j ∈ [2w] − 1.

In the above, ri j is the index of the j-th nonzero entry in the i-th row of

A (or j + 2w if there are less than i nonzero entries), ci j is the index of

the i-th nonzero entry in the j-th column of A (or i + 2w if there are less

than j nonzero entries), and |Ai j⟩ is a b-bit binary encoding of the matrix

element Ai j. To build the block-encoding, one needs one query to each

of Or and Oc, and two queries of OA. This input model is known as the

sparse access model. If, in addition to being sparse, the matrix also enjoys

some additional structure, for example, there are only a few distinct val-

ues that the matrix elements can take, the complexity can be further im-

proved [969, 227]. Finally, note that the sparsity dependence can be essen-

tially quadratically improved—reducing the block-encoding normalization

factor from
√

sr sc∥A∥max to (max(sr, sc))(1+o(1))/2∥A∥1→2, where ∥A∥1→2 =

maxv∥Av∥2/∥v∥1—using advanced Hamiltonian simulation techniques [714,

Theorem 2] combined with taking the logarithm of unitaries [431, Corollary

71], however, the resulting subroutine may be impractical and comes with a

worse precision dependence.

• For matrices given as a linear combination of unitary operators (LCU), we

can block-encode the matrix using the LCU technique [281]. We provide

a full description in §Linear combinations of Section 10.2, and only give

a brief outline here. For A =
∑L

i=1 ciVi with Vi unitary, we define the or-

acles PREPARE (acting on ⌈log2(L)⌉ ancilla qubits) and SELECT (acting

on the ancilla and register qubits), and implement a (
∑

i |ci|, ⌈log2(L)⌉, 0)-

block-encoding of A, using U := PREPARE† · SELECT · PREPARE. The

Hamiltonians of physical systems can often be written as a linear combi-

nation of a moderate number of Pauli operators, leading to a prevalence of

this technique in quantum algorithms for chemistry [75, 140] and condensed

matter physics [75, 283, 1011].

In addition to the definition of block-encoding in Eq. (10.1), one can also

define an asymmetric version as follows
∥∥∥A − α(⟨0a| ⊗ I)UA(|0b⟩ ⊗ I)

∥∥∥ ≤ ϵ,

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

10.1 Block-encodings 193

where a may not equal b. In this case, UA can be considered to be an

(α, (a, b), ϵ)- or an (α,max(a, b), ϵ)-block-encoding of A. This can be useful

for block-encoding a non-square matrix.

Dominant resource cost (gates/qubits)

The complexity of block-encoding an operator depends on the type of data

or operator being encoded and any underlying assumptions. For instance, uni-

taries are naturally block-encodings of themselves, and hence their resource

requirements depend entirely on their circuit-level implementation without any

additional overhead for being a “block-encoding.” By contrast, approaches that

make use of state preparation and QRAM to implement the block-encoding

tend to have larger complexities, as those two subroutines typically dominate

the resource requirements. For example, the best known circuits that imple-

ment block-encodings of matrices of classical data for general, dense N × N

matrices use O(N log(1/ϵ)) qubits to achieve minimum T -gate count (which

also scales as O(N log(1/ϵ))), or a larger O(N2) number of qubits to achieve

minimum T -gate depth (which scales as O(log(N) + log(1/ϵ)) [296]. In the

sparse access model, one can use O(w + log2.5(sr sc/ϵ)) one- and two-qubit

gates, and O(b + log2.5(sr sc/ϵ)) ancilla qubits [431], in addition to the calls

to the matrix entry OA and sparse access oracles Or and Oc, which must be

implemented either by computing matrix entries “on-the-fly” or by using a

primitive (see [1084] for asymptotic resource statements for general sparse

matrices with varying ancilla availability). Assuming appropriate binary rep-

resentations of the numbers Ai j, the exponents of the above logarithms can be

reduced to 1 using the techniques of [894] (see also [75, Section III.D] and

[212, Supplementary Material VII.A.2]).

The value of block-encodings is not that it is always cheap to implement

them (as it depends on the relevant cost metric and the data access model);

rather, the concept of block-encodings is powerful because it allows a practi-

tioner of quantum algorithms to study and optimize the block-encoding con-

struction independently of how it is used within the larger algorithm.

Caveats

The definition of block-encoding requires ∥A∥/α ≤ 1. If ∥A∥/α = 1, then the

block-encoding achieves an optimal normalization factor α. However, note that

often the above constructions lead to suboptimal normalization factors in the

sense that α ≫ ∥A∥. In practical applications, this suboptimality usually leads

to a corresponding increase in the overall complexity.

For a given desired block-encoding, there can be several independent, yet

equally valid implementations, and one can sometimes optimize for various re-

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

194 10. Quantum linear algebra

sources when building the block-encoding. For example, many block-encoding

strategies require a step in which some classical data is loaded into QRAM, but

there are several ways of performing this data-loading step.

When using a block-encoding as part of a larger quantum algorithm,

it is important to ensure that the overhead introduced by implementing

a block-encoding will not outweigh any potential quantum speedups, as

block-encoding can be very resource intensive.

The use of |0⟩⊗a as the “signal” state is just one convention—we can use any

“signal” state, given a unitary to prepare it [717]. One can also consider a more

general definition known as “projected unitary encodings” which allows using

an arbitrary subspace, rather than just a state-indexed block [431].

Example use cases

Block-encodings are ubiquitous in quantum algorithms, and they prevail in

quantum algorithms that need coherent access to some linear operator or a

method of implementing a non-unitary transformation on quantum data. Some

specific examples:

• We can manipulate block-encoded operators—for example, take convex or

linear combinations, products, tensor products, and other transformations of

an input operator.

• The combination of qubitization with quantum signal processing, or quan-

tum singular value transformation can be used to realize algorithms by ap-

plying polynomial transformations to block-encoded matrices. Prominent

examples are Hamiltonian simulation via qubitization, and matrix (pseudo)

inversion [431, Theorem 41] that can be used for solving large linear sys-

tems of equations [500] or more generally least-squares regression prob-

lems [248].

• Block-encoding can be used to provide coherent access to classical data in

a quantum algorithm; for example, loading classical data into a quantum

interior point method for portfolio optimization [328].

Further reading

Reference [248] provides an instructive overview of the concept of block-

encoding and showcases its power in several applications related to (gener-

alized) regression problems. Meanwhile, [431] is a comprehensive collection

of technical results about block-encodings and quantum linear algebra more

generally.

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

10.2 Manipulating block-encodings 195

10.2 Manipulating block-encodings

Rough overview (in words)

Given one or more block-encodings, we often want to form a single block-

encoding of a product, tensor product, or linear combination of the individual

block-encoded operators. This can be achieved as outlined below, using addi-

tional ancilla qubits.

Rough overview (in math) and resource cost

We will consider the case of two operators A and B, with straightforward

generalizations to additional operators [431]. We are given an (α, a, ϵa)-block-

encoding UA of A, and a (β, b, ϵb)-block-encoding UB of B. Operators A and B

act on system qubits s.

Products: The operation UAB := (Ib⊗UA)(UB⊗ Ia) is an (αβ, a+b, αϵb+βϵa)-

block-encoding of AB [431, Lemma 53], where Ix denotes the identity operator

on x qubits (see Fig. 10.1). For example, if a = b, this construction uses twice

as many ancilla qubits for block-encoding the product compared to the block-

encoding of the individual matrices. In fact, we can assume without loss of

generality that a = b (by taking the maximum of the two) and improve the

construction using the circuit in Fig. 10.2, which uses a + 1 ancilla qubits in-

stead of 2a. This idea has been generalized to encompass products of L block-

encodings using only a + ⌈log2(L)⌉ + 1 ancillas (rather than aL), where it is

known as the “compression gadget”; see [718, Lemma 13] and [379, Lemma

3].

|0b⟩
UAB

UB
=

|0a⟩
UA

Figure 10.1 Implementing the block-encoding UAB of AB that acts on s qubits.

The cost is a + b ancilla qubits, and one call to each of UA, UB.

Tensor products: The operation UA⊗B := (UA⊗UB) is an (αβ, a+b, αϵb+βϵa)-

block-encoding of the operator A ⊗ B, as depicted in Fig. 10.3.

Linear combinations: Linear combinations of block-encodings can be

viewed as a generalization of the linear combination of unitaries (LCU)

trick [281]. We wish to implement a block-encoding of
∑L−1

i=0 ciAi, where

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

196 10. Quantum linear algebra

|0⟩
UAB

X

|0a⟩ =
UB UA

Figure 10.2 Implementing the block-encoding UAB of AB for the case where both

UA and UB act on a ancilla qubits. The controlled gate is an a-controlled general-

ized Toffoli gate.

|0a⟩

UA⊗B

UA

=
|0b⟩

UB

Figure 10.3 Implementing the block-encoding UA⊗B of A ⊗ B that acts on 2s

qubits. The cost is a + b ancilla qubits, and one call to each of UA, UB.

ci ∈ R (the LCU trick can also be extended to complex coefficients) and

define λ :=
∑L−1

i=0 |ci|. We consider L block-encodings Ui that are (1,m, ϵi)-

block-encodings of Ai. We note that in cases where the block-encodings have

different αi or mi values, the former can be absorbed into the ci values and the

latter can be taken as m = maxi mi.

We first define an operator PREPARE by the following action on |0⌈log2(L)⌉⟩

PREPARE|0⌈log2(L)⌉⟩ = 1√
λ

∑

j

√
|c j|| j⟩

that prepares a weighted superposition on an ancilla register, such that the am-

plitudes are proportional to the square roots of the absolute values of the de-

sired coefficients. We also define2

SELECT =

L−1∑

j=0

| j⟩⟨ j| ⊗ sign(c j)U j.

We then have the following result
(
⟨0⌈log2(L)⌉| ⊗ I

)
PREPARE† · SELECT · PREPARE

(
|0⌈log2(L)⌉⟩ ⊗ I

)

=
1

λ

L−1∑

i=0

ciUi ,
(10.2)

2 To be precise, for j < {0, 1, . . . , L − 1} we define sign(c j)U j := I.

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

10.2 Manipulating block-encodings 197

that is, ULC := PREPARE† · SELECT · PREPARE is a (λ, ⌈log2(L)⌉, 0)-block-

encoding of the LCU
∑

i ciUi, as depicted in Fig. 10.4. This is the standard

LCU trick [281], and it does not require Ui to be block-encodings (or we can

view them as (1, 0, 0)-block-encodings of themselves). This technique can be

used in Hamiltonian simulation, or to instantiate a block-encoding.

If, as specified above, Ui are block-encodings of Ãi (which approximate Ai),

we also have the following result
∥∥∥∥∥∥∥


L−1∑

i=0

ciAi

 − λ
(
⟨0m+⌈log2(L)⌉| ⊗ I

)
ULC

(
|0m+⌈log2(L)⌉⟩ ⊗ I

)
∥∥∥∥∥∥∥
≤

L−1∑

i=0

|ci|ϵi.

Hence, ULC is a (λ, ⌈log2(L)⌉ + m, λmaxi ϵi)-block-encoding of
∑L−1

i=0 ciAi.

|0⌈log2(L)⌉⟩
ULC

PREPARE

SELECT

PREPARE†

|0m⟩ =

Figure 10.4 Implementing the block-encoding ULC of
∑

i ciAi that acts on s

qubits. We require ⌈log2(L)⌉ + m ancilla qubits. The regular LCU circuit is

obtained by omitting the register |0m⟩ and the requirement that Ui are block-

encodings. The gate complexity of PREPARE depends on the coefficients ci

but is Θ(L) in the worst case (using no additional ancilla qubits) [835]. We

can also define PREPARE that leads to entanglement with a garbage register

PREPARE|0⌈log2(L)⌉⟩|0g⟩ = λ−0.5 ∑
i

√
|ci||i⟩|Gi⟩, which can be seen to satisfy the

relations required to implement the linear combination, Eq. (10.2). It can some-

times (e.g., [75]) be cheaper to implement this garbage-entangled PREPARE; see

Section 17.2 on preparing states from classical data. The cost of SELECT depends

on the form of Ui, but in the worst case requires Θ(L) primitive gates and Θ(L)

calls to |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗Ui [283, 75], although this can be improved in some rel-

evant special cases (e.g., [1011]). When Ui are multiqubit Pauli operators, [1084]

provides a depth-optimized implementation of SELECT that achieves O(log(Ln))

depth using Θ(Ln) total gates and total ancilla qubits.

Caveats

Performing linear algebraic manipulations of block-encodings using these

primitives can quickly increase the ancilla count of the algorithm and worsen

the normalization factor of the block-encoding. Amplifying a subnormalized

block-encoding is possible, but costly, requiring an amount of time scaling

roughly linearly in the amplification factor; see [715, 431]. Given a single

block-encoded operator A, the above primitives can be used to implement a

block-encoding of a polynomial in A. However, this can be achieved with

much lower overhead using quantum singular value transformation (QSVT).

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

198 10. Quantum linear algebra

Example use cases

• Linear combination of block-encodings are used to obtain mixed-parity

functions in QSVT required for Hamiltonian simulation.

• LCU trick is used for Hamiltonian simulation via Taylor series and to in-

stantiate block-encodings of chemistry or condensed matter physics Hamil-

tonians (see, e.g., [75, 1011]).

Further reading

• References [428, Section 3.3] and [687, Section 7.3] contain a comprehen-

sive discussion of manipulating block-encodings, including proofs of many

of the results stated above.

10.3 Quantum signal processing

Rough overview (in words)

Quantum signal processing (QSP) [719] describes a method for nonlinear

transformations of a signal parameter encoded in a single-qubit gate, using a

structured sequence that interleaves the “signal gate” with fixed parameterized

“modulation” gates. The technique was originally motivated by the desire

to characterize pulse sequences used in nuclear magnetic resonance [719].

Remarkably, it has been shown [719, 477] that there is a rich family of

polynomial transformations that are in one-to-one correspondence with

appropriate modulation sequences; moreover, given such a polynomial, one

can efficiently compute the corresponding modulation parameters.

Even more remarkably, this analysis holds not just for single-qubit “signal

gates” but can be extended for multiqubit operators that act like single-qubit

rotations when restricted to appropriate 2D subspaces [716]. This insight en-

ables the implementation of block-encodings of polynomials of Hermitian or

normal matrices when used in conjunction with qubitization. The two-step pro-

cess of qubitization and QSP can be unified and generalized through quantum

singular value transformation (QSVT).

Rough overview (in math)

We follow the “Wx convention” of QSP [431, 744]. We define the single-qubit

signal operator

W(x) :=


x i

√
1 − x2

i
√

1 − x2 x

 = ei arccos(x)X

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

10.3 Quantum signal processing 199

which is a single-qubit X rotation. We can verify that

W(x)2 =

(
2x2 − 1 ·
· ·

)

W(x)3 =

(
4x3 − 3x ·
· ·

)

...

W(x)n =

(
Tn(x) ·
· ·

)
,

where Tn(x) is the n-th Chebyshev polynomial of the first kind, showcasing

that even a simple sequence of the signal unitaries can implement a rich family

of polynomials of the signal x.

More complex behavior is obtained by interleaving W(x) with parameterized

single-qubit Z rotations eiϕ jZ . We define a QSP sequence as

UQSP(Φ) := eiϕ0Z

d∏

j=1

W(x)eiϕ jZ ,

where Φ denotes the vector of angles (ϕ0, ϕ1, . . . , ϕd). The QSP sequence im-

plements the following unitary

UQSP(Φ) =


P(x) iQ(x)

√
1 − x2

iQ∗(x)
√

1 − x2 P∗(x)

, (10.3)

where P(x),Q(x) are complex polynomials obeying a number of constraints

(see below), and P∗(x), Q∗(x) denote their complex conjugates. Note also that

the relationship between the sequence Φ and the corresponding polynomial

P(x) can be understood through nonlinear Fourier analysis [19].

Dominant resource cost (gates/qubits)

A QSP circuit that implements a degree-d polynomial in the signal parame-

ter requires d uses of W(x) and d + 1 fixed-angle Z rotations. There are ef-

ficient classical algorithms to determine the angles for a given target poly-

nomial, either using high-precision arithmetic with ∼ d log(d) bits of preci-

sion [477] (or more [431]—though this can be mitigated using heuristic tech-

niques [255, 1065]) or in some regimes using more efficient optimization-

based or iterative algorithms [356, 1018, 359, 360, 19, 18]. In particular, this

line of work has culminated in [18] with an algorithm for finding the angles that

is provably numerically stable, that is, it requires only polylog(d/ϵ) bits of pre-

cision to achieve ϵ error. An alternative method computes the angles directly

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

200 10. Quantum linear algebra

if both P(x) and Q(x) are known, and offers a way to compute Q(x) if only

P(x) is known [782, 130]. Although these procedures are efficient in theory, in

practice it may still be nontrivial to find the angles. Nevertheless, researchers

reportedly computed angle sequences corresponding to various degree d ≈ 107

polynomials [782, 130].

Caveats

As discussed above, not all polynomials can be implemented by a QSP se-

quence. Implementable polynomials must obey a number of constraints, which

can be somewhat restrictive. For the standard QSP circuit UQSP(Φ) given

above, the achievable polynomials pairs P(x),Q(x) ∈ C can be characterized

by the following three conditions

• Deg(P) ≤ d and Deg(Q) ≤ d − 1,

• Parity(P) = Parity(d) and Parity(Q) = Parity(d − 1),

• ∀ x ∈ [−1, 1] : |P(x)|2 + (1 − x2)|Q(x)|2 = 1 (required for Eq. (10.3) to be

unitary).

This last requirement can be particularly limiting. A useful way to circum-

vent this for real functions is to encode the polynomial in the matrix element

⟨+|UQSP(Φ)|+⟩ rather than in ⟨0|UQSP(Φ)|0⟩, where |+⟩ = (|0⟩ + |1⟩)/
√

2. This

matrix element evaluates to

⟨+|UQSP(Φ)|+⟩ = Re[P(x)] + i
√

1 − x2 Re[Q(x)] .

Given a real target polynomial f (x) with parity equal to Parity(d), we can guar-

antee that the matrix element evaluates to f (x) by choosing Re[P(x)] = f (x)

and Re[Q(x)] = 0. The third condition above then reduces to 1 − f (x)2 =

|Im[P(x)]|2 + (1 − x2)|Im[Q(x)]|2. By [431, Lemma 6], there exist choices for

Im[P(x)] and Im[Q(x)] that satisfy this identity as well as the first two condi-

tions above, provided | f (x)| ≤ 1 ∀ x ∈ [−1, 1]. In summary, we may implement

any real polynomial f (x) satisfying the requirements [431, Corollary 10]:

• Deg(f) = d,

• Parity(f) = Parity(d),

• ∀ x ∈ [−1, 1] : | f (x)| ≤ 1.

There are several related conventions considered in the literature for the ex-

plicit form of the single-qubit operators used in QSP; a thorough discussion

is given in [744, Appendix A]. One common form that links closely to qubiti-

zation and QSVT is the reflection convention, which replaces W(x) by the

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

10.4 Qubitization 201

reflection

R(x) =


x

√
1 − x2

√
1 − x2 −x

 , (10.4)

and adjusts the parameters {ϕ j} accordingly [431].

Example use cases

• Functions of Hermitian or normal matrices, in conjunction with qubitization,

including for Hamiltonian simulation.

• Functions of general matrices via QSVT.

• Reference [357] applied QSP to beyond-Heisenberg-limit calibration of

two-qubit gates in a superconducting system.

Further reading

• A pedagogical discussion of QSP [744].

• Detailed proofs of the key results of QSP [719, 431].

• Lecture notes on QSP [687, Section 7.6].

10.4 Qubitization

Rough overview (in words)

Qubitization is a method for using a block-encoding UA of a Hermitian oper-

ator A to manipulate A, for example, implement A2, or, more generally, some

function f (A) [717]. However, the eigenvalues of UA are typically unrelated

to those of A, and plain repeated applications of UA do not in general produce

the desired behavior. Qubitization converts the block-encoding UA into a uni-

tary operator W (sometimes called a qubiterate or a qubitized quantum walk

operator) having the following guaranteed advantageous properties:

• W is a block-encoding of the operator A.

• The spectrum of W is directly related to the spectrum of A.

• Repeated application of W leads to structured behavior that can be cleanly

analyzed.

This combination of features means that qubitization can be used for applying

polynomial transformations to the spectrum of A. For example, repeated appli-

cation of W implements Chebyshev polynomials of A, while other polynomials

can also be implemented by using quantum signal processing [716, 717, 431].

The key observation is that a qubitization unitary W has eigenvalues and

eigenvectors that relate in a nice way to those of A. Thus, one can also perform

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

202 10. Quantum linear algebra

quantum phase estimation on W to learn these quantities [841, 139], providing

a potentially cheaper alternative to such tasks compared to approaches based

on explicit Hamiltonian simulation for implementing U = eiAt.

Rough overview (in math)

We are given a (1,m, 0)-block-encoding UA of Hermitian A, such that

A = (⟨0m| ⊗ I)UA(|0m⟩ ⊗ I)⇐⇒ UA =

(
A ·
· ·

)
.

First, we will assume UA is also Hermitian (implying U2
A
= I, where I is

the identity matrix). Let A have spectral decomposition A =
∑
λ λ|λ⟩⟨λ|. An

application of UA to an eigenstate |λ⟩ of A gives

UA|0m⟩|λ⟩ = λ|0m⟩|λ⟩ +
√

1 − λ2|⊥0m,λ⟩,

where |⊥0m,λ⟩ is a state perpendicular to |0m⟩.3 Noting U2
A
= I reveals that the

2D subspace S λ spanned by {|0m⟩|λ⟩, |⊥0m,λ⟩} is invariant under the action of

UA. UA restricted onto S λ can be described by the matrix

|0m⟩|λ⟩ |⊥0m,λ⟩()
|0m⟩|λ⟩ λ

√
1 − λ2

|⊥0m,λ⟩
√

1 − λ2 −λ
,

which is a 2D reflection with eigenvalues ±1. Clearly, repeated application of

(self-inverse) UA can have limited effect on any input state. Qubitization uses

a reflection Z|0m⟩ = (2|0m⟩⟨0m| − I) to transform UA into a Grover-like operator

W = Z|0m⟩UA which has the following matrix when restricted onto the invariant

subspace S λ in the {|0m⟩|λ⟩, |⊥0m,λ⟩} basis

[W]{|0m⟩|λ⟩,|⊥0m ,λ⟩} =

(
1 0

0 −1

)
λ

√
1 − λ2

√
1 − λ2 −λ



=


λ

√
1 − λ2

−
√

1 − λ2 λ

 ,

showing that W is still a (1,m, 0)-block-encoding of A. This has the form of a

Y-axis rotation

[W]{|0m⟩|λ⟩,|⊥0m ,λ⟩} =

(
cos(θλ) sin(θλ)

− sin(θλ) cos(θλ)

)
,

3 If λ = ±1, then there is no need for |⊥0m ,λ⟩, and the subspace S λ becomes 1D.

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

10.4 Qubitization 203

where θλ = arccos(λ). Therefore, W has eigenvalues e±i arccos(λ) with respec-

tive eigenvectors
(|0m⟩|λ⟩ ± i|⊥0m,λ⟩

)
/
√

2, which can be accessed using quan-

tum phase estimation.

Furthermore, we can see that on the span of the subspaces S λ repeated ap-

plication of W acts as

Wd =
⊕

λ

(
cos(dθλ) sin(dθλ)

− sin(dθλ) cos(dθλ)

)

=
⊕

λ


Td(λ)

√
1 − λ2Ud−1(λ)

−
√

1 − λ2Ud−1(λ) Td(λ)



=

(
Td(A) ·
· ·

)
,

where Td(·) and Ud(·) are degree-d Chebyshev polynomials of the first and

second kind, respectively. Therefore, Wd applies the polynomial transforma-

tion Td to each eigenvalue of A, thereby implementing Td(A).

Dominant resource cost (gates/qubits)

The resource cost of qubitization is inherited from the cost of the block-

encoding. Given a Hermitian (α,m, 0)-block-encoding UA, the qubitization

operator W is a (non-Hermitian) (α,m, 0)-block-encoding, and it uses no

additional qubits. The operation Z|0m⟩ = (2|0m⟩⟨0m| − I) can be implemented

(up to a global phase) with an m-qubit (anti)controlled −Z gate, equivalent to

an m-qubit Toffoli up to single-qubit gates. An example qubitization circuit

is shown below in Fig. 10.5 for m = 3. Implementing a block-encoding of a

degree-d Chebyshev polynomial applied to A requires d calls to UA and Z|0m⟩.

UA

−Z

Figure 10.5 An example qubitization circuit using the Hermitian (1, 3, 0)-block-

encoding UA.

If the block-encoding UA is not Hermitian, qubitization can be achieved

using the construction of [717, Lemma 10] that uses one additional qubit, one

call to controlled UA, and one call to controlled U
†
A

to implement the Hermitian

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

204 10. Quantum linear algebra

block-encoding

U′A := ((HX) ⊗ I)(|0⟩⟨0| ⊗ UA + |1⟩⟨1| ⊗ U
†
A
)(H ⊗ I) . (10.5)

An alternative to qubitization is based on quantum singular value transfor-

mation (QSVT) that uses the sequence Z|0m⟩U
†
A
Z|0m⟩UA, analogous to the earlier

W2, acting as


λ
√

1 − λ2

−
√

1 − λ2 λ


2

on a 2D subspace analogous to S λ. The approach can be extended to odd-

degree polynomials with a single additional application of Z|0m⟩UA [431]. The

advantage of this approach is that it does not require UA to be Hermitian, thus

there is no need for an additional qubit or calls to controlled U±1
A

. This ap-

proach may be referred to as “quantum eigenvalue transformation” [687, 356]

as this is a special case of QSVT applied to Hermitian A.

Caveats

The original formulation of qubitization [717] discussed above requires a Her-

mitian or normal block-encoded matrix A. The concept can be extended to

general (non-square) matrices via QSVT, providing a significant generaliza-

tion, however, in some cases quantum signal processing and its generalized

versions [477, 255] can exploit additional structure that comes, for example,

from the extra symmetries of Hermitian block-encodings, leading to potential

constant-factor savings. Consider, for example, Hamiltonian simulation, where

QSVT separately implements sin(tH) and cos(tH) using a block-encoding UH

of the Hamiltonian H, and applies a three-step oblivious amplification proce-

dure on top of linear combination of unitaries to implement exp(itH) [431].

Meanwhile, quantum signal processing implements exp(itH) directly but re-

quires an additional ancilla qubit and controlled access to a Hermitian block-

encoding U′
H

, which, when implemented via Eq. (10.5), uses both controlled

UH and U
†
H

, resulting in a factor of ∼ 4 overhead. Altogether these consid-

erations suggest that the QSVT-based approach might have a slightly bet-

ter constant-factor overhead, particularly when controlled UH is significantly

more costly to implement than UH . If UH is already Hermitian, then quantum

signal processing can have an improved complexity.

Example use cases

• Some quantum algorithms in quantum chemistry that compute energies per-

form phase estimation on a qubitization operator W implemented via calls

to a block-encoding of the electronic structure Hamiltonian. This avoids the

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

10.5 Quantum singular value transformation 205

approximation error incurred when performing phase estimation on eiHt, im-

plemented via Hamiltonian simulation [841, 139].

• Qubitization acts as a precursor to QSVT, which extends the concept to

general matrices and unifies it with quantum signal processing.

Further reading

• Original introduction of qubitization [717] and QSVT [431].

• A pedagogical overview of quantum signal processing, its lifting to QSVT,

and their applications [744].

• Reference [687, Chapters 7 & 8] provides an accessible derivation of qubiti-

zation and QSVT.

10.5 Quantum singular value transformation

Rough overview (in words)

Quantum singular value transformation (QSVT) can be viewed as both a unifi-

cation and generalization of qubitization and quantum signal processing. Given

a block-encoding UA of a general matrix A, QSVT enables the transformation

of the singular values of A by a polynomial f (·). In QSVT, there is a one-

to-one correspondence between the desired polynomial transformation and its

quantum circuit implementation whose parameters can be found by efficient

classical algorithms.

It transpires that a number of existing quantum algorithms have simple and

optimal (or near-optimal) implementations via the QSVT framework, includ-

ing Hamiltonian simulation [716, 717, 431], amplitude amplification and esti-

mation [431, 855], quantum linear systems solving [431, 744], Gibbs sampling

[431], algorithms for topological data analysis [514, 755, 143], and quantum

phase estimation [744, 854].

Rough overview (in math)

We are given a (1,m, 0)-block-encoding UA of operator A (for simplicity, we

will restrict our presentation to square matrices A, noting there is a straightfor-

ward generalization to non-square A [431]), such that

A = (⟨0m| ⊗ I)UA(|0m⟩ ⊗ I),

where |0m⟩ denotes |0⟩⊗m. The matrix A has a singular value decomposition

(SVD)

A =
∑

i

σi|wi⟩⟨vi|.

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

206 10. Quantum linear algebra

QSVT provides a method for implementing

f (S V)(A) :=

{ ∑
i f (σi)|wi⟩⟨vi| if f is odd, and∑
i f (σi)|vi⟩⟨vi| if f is even,

for certain definite-parity polynomials f : [−1, 1] → C, such that | f (x)| ≤
1 ∀ x ∈ [−1, 1]. Crucially, QSVT does not require us to know the SVD in

advance; the transformation is carried out automatically by following an SVD-

agnostic procedure outlined below. Note that f (S V)(A) only coincides with the

matrix function f (A) for Hermitian A (see §Caveats, below). In the Hermitian

case, we can also obtain block-encodings of mixed-parity or complex functions

by taking linear combinations of block-encodings—see [356] for examples.

By considering UA|0m⟩|vi⟩ and U
†
A
|0m⟩|wi⟩ one can show that (see [687] for

a step-by-step derivation) UA and U
†
A

act as linear maps between the 2D sub-

spaces S i := Span{|0m⟩|vi⟩, |⊥i⟩} and S ′
i

:= Span{|0m⟩|wi⟩, |⊥′i⟩}, with UA being

a transition matrix between these bases given by

|0m⟩|vi⟩ |⊥i⟩


|0m⟩|wi⟩ σi

√
1 − σ2

i

|⊥′
i
⟩

√
1 − σ2

i
−σi

, (10.6)

where both |⊥i⟩, |⊥′i⟩ are orthogonal to |0m⟩ (but not necessarily to each other).4

The 2D subspace S i is invariant under the operation W := Z|0m⟩U
†
A
Z|0m⟩UA

(where Z|0m⟩ = (2|0m⟩⟨0m| − I)). The operation W, restricted onto the 2D sub-

space S i, is written as


σi

√
1 − σ2

i

−
√

1 − σ2
i

σi



2

.

An additional application of Z|0m⟩UA maps back into the S ′
i

subspace. By anal-

ogy with qubitization, repeated application of W applies a Chebyshev poly-

nomial to each of the singular values of A. In analogy with quantum signal

processing, by lifting the Z|0m⟩ reflection operation to a (controlled) rotation

eiϕ jZ|0m⟩ we can impose polynomial transformations of the singular values of A,

which then induce the claimed polynomial transformation of A. It is typically

convenient to use an additional ancilla qubit to implement eiϕ jZ|0m⟩ .

4 If σi = 1, then there is no need for |⊥i⟩, |⊥′i ⟩, and the subspaces S i, S ′
i

become 1D.

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

10.5 Quantum singular value transformation 207

We define a QSVT circuit as the unitary sequence

UΦ :=


eiϕ1Z|0m⟩UA

∏(d−1)/2
j=1

(
eiϕ2 jZ|0m⟩U

†
A
eiϕ2 j+1Z|0m⟩UA

)
if d is odd, and

∏d/2
j=1

(
eiϕ2 j−1Z|0m⟩U

†
A
eiϕ2 jZ|0m⟩UA

)
if d is even ,

where Φ = (ϕ1, ϕ2, . . . , ϕd). We have that

(⟨0m| ⊗ I)UΦ(|0m⟩ ⊗ I) = P(S V)(A) =

{ ∑
i P(σi)|wi⟩⟨vi|, for odd d, and∑
i P(σi)|vi⟩⟨vi|, for even d ,

that is, the unitary UΦ is a block-encoding of P(S V)(A), were P is the same

polynomial that appears in quantum signal processing because the 2D matrix

of Eq. (10.6) has the same form as the analogous 2D matrix in Eq. (10.4).

We note that the constraints on the polynomials typically preclude direct im-

plementation of the desired function as outlined above. By exploiting that −Φ
implements P∗, we can use the circuit shown in Fig. 10.6 to implement a block-

encoding of

Pℜ(A) = (⟨+| ⊗ ⟨0m| ⊗ I)(|0⟩⟨0| ⊗ UΦ + |1⟩⟨1| ⊗ U−Φ)(|+⟩ ⊗ |0m⟩ ⊗ I)

for any definite-parity polynomial Pℜ : [−1, 1] → [−1, 1] by appropriately

choosing Φ to implement a complex polynomial that fulfills the QSP condi-

tions and then taking linear combinations of UΦ,U−Φ to give a block-encoding

of Pℜ(A) [431, 744, 356].

H eiϕdZ eiϕd−1Z · · · eiϕ1Z H

UA U
†
A

· · ·
· · ·
· · ·
· · ·
· · ·


|0⟩⊗m

Figure 10.6 The QSVT circuit UΦ which transforms a block-encoding UA of A

into a block-encoding of f (A) for definite-parity f : [−1, 1]→ [−1, 1] polynomial

of degree d. As discussed in the main text, the angles {ϕi} can be calculated using

efficient classical algorithms.

Dominant resource cost (gates/qubits)

Given a degree-d even-parity polynomial f : [−1, 1] → [−1, 1] and a (1,m, 0)-

block-encoding UA of A, one can implement a block-encoding of f (A) using

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

208 10. Quantum linear algebra

d/2 calls to UA, d/2 calls to U
†
A
, 2d m-controlled Toffoli gates, and d single-

qubit Z rotations (as shown in Fig. 10.6). Implementing a degree d + 1 odd

polynomial additionally requires another call to UA, another two m-controlled

Toffoli gates, and another single-qubit Z rotation. The QSVT circuit imple-

ments a (1,m + 1, 0)-block-encoding of f (A).

If UA is imperfect (i.e., it is a (1,m, ϵ)-block-encoding of A), then [431,

Lemma 22] shows that the error in f (A) is bounded by 4d
√
ϵ; that is, QSVT

implements a (1,m+ 1, 4d
√
ϵ)-block-encoding of f (A). Moreover, if the norm

of A is bounded away from 1, for example, ∥A∥ ≤ 1/2, then the perturbation

bound can be improved to O(dϵ) [431, Lemma 23].

Given an initial state |ψ⟩, the success probability of implementing f (A)|ψ⟩ is

given by |⟨ψ| f (A)† f (A)|ψ⟩|2.

Caveats

Since the output must be subnormalized to ensure the existence of a unitary

block-encoding of f (A), f must satisfy | f (x)| ≤ 1 ∀ x ∈ [−1, 1].

As noted above, f (S V)(A) is only guaranteed to coincide with the matrix

function f (A) for Hermitian A. As an example, choosing f (x) = x2 we have

f (S V)(A) =
∑

i σ
2
i
|vi⟩⟨vi| = A†A whereas A2 =

∑
i, j σiσ j|wi⟩⟨vi|w j⟩⟨v j|. As dis-

cussed above, for the Hermitian case we can implement a block-encoding of

a mixed-parity function f by taking linear combinations of block-encodings

of its even and odd parts. However, in the general case when |wi⟩ and |vi⟩ do

not coincide, it does not seem to be possible to remove the parity constraint, as

the odd
∑

i fodd(σi)|wi⟩⟨vi| and even
∑

i feven(σi)|vi⟩⟨vi| singular value transforms

potentially map to different subspaces.

As discussed in Section 10.3 on quantum signal processing, computing the

angle sequence Φ can be a nontrivial classical task. Several approaches for

accomplishing this task have been studied [477, 431, 255, 1065, 356, 1018,

359, 360, 19, 18, 782, 130], and researchers have reported computing angle

sequences for polynomials up to d ≈ 107 [782, 130].

As noted above, if f (A) has small singular values, then preparing a quantum

state f (A)|ψ⟩ might require many repeated uses of its block-encoding, thus the

normalization factor of f plays a crucial role in efficiency.

In many applications, one seeks to apply a function that is not a polynomial

(e.g., ex, eix, erf(x)). In such cases, one needs to first approximate the desired

function by a polynomial (incurring an approximation error ϵ) in order to apply

QSVT.

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

10.5 Quantum singular value transformation 209

Example use cases

• Linear equation solving: Apply a polynomial approximation of 1/x to a

block-encoding of A† to get an approximate block-encoding of the pseu-

doinverse A+.

• Hamiltonian simulation: Apply polynomial approximations of sin(x) and

cos(x) to a block-encoding of a Hamiltonian H and combine them with lin-

ear combination of unitaries and amplitude amplification to obtain a block-

encoding of eiHt.

• Fixed-point amplitude amplification [1067]: Construct a polynomial that

maps values in the domain [amin, 1] to the range [1 − δ, 1], and apply this

polynomial to a state-preparation unitary that prepares the desired state with

amplitude a. The result is amplification of the amplitude to at least 1 − δ as

long as a > amin.

• For additional applications, see [431, 854, 744, 689, 688].

Further reading

• The QSVT framework was introduced in [431] and is also discussed in detail

in [428].

• A pedagogical tutorial of the QSVT framework is given in [744, 687].

• A streamlined derivation of QSVT is presented in [980].

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.013
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.3, on 22 Jul 2025 at 09:05:13, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.013
https://www.cambridge.org/core

