
1 Introduction

The ability to act autonomously in the environment is a key feature of intelligence.
An artificial intelligence (AI) acting system, for short an actor, is a computational
artifact capable of autonomous operation in its environment. It can be a software
system, such as a web-based service agent, or a robot embodied with sensory-motor
devices. Actors require essential cognitive functions without which intelligence is
hardly conceivable, and this book focuses on the functions of acting, planning, and
learning:

• Acting is more than just the sensory-motor execution of low-level commands.
There is always a need to decide how to perform each task, given the context,
and to adapt online to changes in the environment.

• Planning involves choosing and organizing actions that can achieve a task or a
goal. It usually involves reasoning on abstract models of a repertoire of actions
the actor may perform.

• Learning is critical for acquiring knowledge about actions’ actual effects, which
actions to perform when, and how to perform and plan them. Conversely, acting
and planning can be used to aid learning.

Combining these cognitive functions will be very important for the future of AI. To
explain why, we briefly summarize some recent developments in AI research.

During the past few decades, AI has produced numerous success stories. However,
most of them were costly, requiring huge development, modeling, and adaptation to
their respective domains. They also tended to be brittle and narrow, with capabilities
that were difficult to extend.1 For many years, AI learning systems lacked a capability
to adapt, generalize, and transfer to other domains. These adaptation capabilities,
essential to intelligence, are beginning to be reached in two primary areas: data
interpretation and data generation.2

• Data interpretation. Multi-layered neural networks have extended known prin-
ciples to provide robust universal approximation classifiers. Moreover, they
have incidentally provided, at several abstraction levels, representation features
adapted to specific training data. For decades, the field of pattern recognition
has devoted significant effort to designing representation features characteriz-
ing the data at hand. These features are now given for free as latent variables
in the successive hidden layers of a neural net. They result from scalable
training procedures, thanks to improvements in hardware performance and ar-
chitectures. AI for data interpretation is no longer costly and narrow. It is

1An example is the Watson system [355], the impressive champion of the Jeopardy Q/A game, which
was transposed to the medical domain but not successfully deployed despite huge investments.

2This oversimplifies a rich story. See, for example, [723, 756].
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2 Introduction

widely deployed for the analysis of all kinds of multi-modal data in numerous
demanding applications, from astronomy to health and education.

• Data generation. Here also the principles have been known for a while: learn
an adequate distribution for a domain, and sample from it for a given context.
Generative sampling and prediction of the next term in a sequence have ben-
efited from the progress in the performance and architectures of multi-layered
networks. The recent multi-head attention transformer architecture of large
language models, and their extensions in multimodal foundation models, have
led to impressive performance in natural language processing and image gen-
eration tasks. They also demonstrate emergent but still fragile capabilities in
other unexpected common-sense and reasoning tasks. Scalable AI tools for
generating texts, images, videos, and sounds are now widely deployed.

From Data to Actions
This, we believe, is the next big, two-sided challenge for the field. On the one hand, AI
has to pursue and leverage its successful achievements to transform current techniques
for acting and planning into easily learned and scalable approaches. An actor should
be able to extensively and efficiently learn how to act and how to plan. It should
also be able to act and plan in order to better learn and adapt to its environment and
mission. On the other hand, the challenge is to “put acting into AI.” For example,
the successful data interpretation and generation methods require numerous actions,
such as to gather and select training data, choose meta-parameters, and so on. These
should be part of the actions learned, planned for, and performed by the autonomous
agent.

In two previous books, we wrote about automated planning [409] and about com-
bining planning and acting [410]. The interactions between the acting, planning,
and learning functions open essential perspectives for addressing the next big AI
challenge. We hope through this book to contribute to the education and training of
researchers and practitioners tackling this challenge.

The rest of this chapter is organized as follows. Section 1.1 presents a conceptual
view of an AI actor, its architecture, and its main components. Section 1.2 intro-
duces the types of models needed for the design of an actor. Section 1.3 expresses
our concerns and recommendations about important ethical issues associated with
autonomous actors. The outline and organization of the book are detailed in the
Preface.

1.1 Architecture and Components of an Actor

This section introduces the main components and organization of a deliberative actor.
It first presents a simplified, conceptual of view an actor’s architecture. It then
discusses the acting, planning, and learning functions and their interplay.

1.1.1 Architecture

The methods discussed in this book are relevant both for software actors and for actors
embodied with sensory-motor devices. The latter are further detailed in Part VII on
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motion and manipulation. A simplified view of an actor distinguishes two main parts:
a deliberation part and an execution platform (see Figure 1.1).

The execution platform informs the actor about its environment and its current state.
It transforms its commands into actuations that perform its actions (e.g., movements of
a limb or of a virtual character). The platform of an embodied actor assembles sensors,
actuators and signal processing functions. The actor has to control its platform (e.g.,
where to put and how to use its sensors and actuators). Hence, it needs a model of
the platform’s capabilities and limitations.

The deliberation functions are used to choose what to do and how to do it to achieve
the actor’s mission, how to react to changes in the environment, and how to interact
with humans and other actors. We focus the book on the acting, planning, and learning
functions. Other functions, namely perceiving, monitoring and goal reasoning, are
briefly covered in Chapter 24. Communication, adaptation to, and interaction with
other actors are also important. They are not developed per se, but Chapter 23 intro-
duces large language models and discusses their possible use as deliberation functions.

Figure 1.1 Conceptual architecture of an actor.

The architecture depicted in Figure 1.1 is a simplified conceptual schema that can
be adapted to different classes of environments and actors. It presents the actor as a
centralized system, while it can also be distributed. More importantly, there are two
essential features, implicit in this figure:

• Hierarchical processing within and across functions. From abstract tasks to de-
tailed actuations, a hierarchy of methods reduce the complexity of deliberation
and integrate heterogeneous representations and models.

• Continual online closed-loop adaptation. The actor predicts what is expected;
monitors what is taking place; reacts to events; extends, updates, and re-
pairs its plan; and possibly revises its goals on the basis of its perception and
deliberation.

https://doi.org/10.1017/9781009579346.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009579346.003
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These organizational principles provide a guideline to be adapted to different classes
of environments and actors, about which the various parts of the book make different
assumptions. Let us now discuss the main components of this architecture.

1.1.2 Planning

Planning is about what to do. It relies on a predictive model to foresee what may
happen if some actions are performed, and a search over alternative options. It seeks
to synthesize a plan, i.e., an organized set of actions that may lead, according to
predictions, to a desired goal.

Planning problems vary in the kinds of actions, predictive models, and desired
plans involved. In some cases, specialized planning methods can be used with specific
problem representations. For instance, motion planning synthesizes a kinematic and
dynamic trajectory for moving a device; perception planning generates sensing and
interpretation actions to sense the world, or recognize or model an object or a scene.

In many cases, there are commonalities to various planning problems. Domain-
independent planning tries to grasp these commonalities with abstract models.
Domain-independent planners reason about actions by representing them uniformly
as state-transformation operators over widely applicable representations of states as
relations among objects.

Domain-independent and specialized planning are complementary. In a hierar-
chically organized actor, an abstract level can be tackled with domain-independent
techniques, whereas lower levels may require specialized techniques. The integration
of domain-independent and specialized planners raises several challenges, which are
exemplified by the integrated task and motion planning problems in Part VII.

1.1.3 Acting

Acting is about how to do chosen actions while reacting, in a closed loop, to the
observed context in which the activity takes place. An action is considered as a task
to be progressively refined, given the current context, into more primitive actions and
concrete commands. Whereas planning is a search over predicted states, acting is
a continual assessment of the current observed state, and a consequent adaptation.
Acting requires reacting to unexpected changes and exogenous events, which are
independent from the actor’s activity. It also requires a correct mapping between
what is perceived and actuated and what is reasoned about for acting.

The techniques used in planning and acting can be compared as follows. Planning
is organized as an open-loop search – a look-ahead process based on predictions.
Acting is a closed-loop process, with feedback from observed effects and events used
as input for subsequent decisions. Domain-independent planners can be developed
to take advantage of commonalities among different forms of planning problems, but
this is less true for acting systems, which require specific methods.

1.1.4 Interleaving Acting and Planning

Relationships between acting and planning are more complex than a simple linear
sequence ⟨plan, act⟩. Seeking a complete plan before starting to act is not always
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feasible, desirable, or needed. It is feasible when the environment is predictable and
well modeled, as in a manufacturing production line. It is needed in domains with
high costs or risks, or when actions are not reversible. In such domains, one often has
to engineer the environment to reduce diversity as much as possible beyond what is
modeled and can be predicted.

In open, dynamic domains with exogenous events that are difficult to model and
fully predict, plans are expected to fail. They cannot be carried out blindly until the
end. Plan modification and replanning are part of a global closed-loop process for
acting. Replanning is normal and should be embedded in the design of an actor.
Metaphorically, planning sheds light on the road ahead but does not lay an iron rail
all the way to the goal.

The interplay between acting and planning can be organized in many ways, de-
pending on how easy it is to plan, how predictable and dynamic the environment is,
and how costly or risky the actions are. A general paradigm is the receding-horizon
model of interleaved planning and acting. It consists of repeating the following two
steps until the goal is reached:

1. Plan from the current state toward the goal, but not necessarily all the way to
the goal, stopping at an arbitrary cutoff point called the planning horizon.

2. Perform one or more actions of the synthesized plan. Observe the current state
and decide whether further planning is needed.

A receding-horizon scheme can have various instantiations. Options depend, for
example, on the planning horizon, on what triggers replanning, on the number of
actions performed after a planning stage, and on whether planning can be interrupted.
Furthermore, the planning and acting procedures can be run either sequentially or
in parallel with synchronization. A receding-horizon approach can scale up to large
state spaces and can redirect the planning in a closed loop according to the results of
acting. But it may also lead to situations from which the goal cannot be reached.

Depending on the planning horizon, the actor may execute each action as soon as
it is planned or wait until a dynamically chosen planning horizon is reached. One
should expect the observed state to differ from the predicted one and to evolve even if
no action is executed. This may invalidate a plan and require replanning.

Interleaving acting and planning remains relevant if the planner synthesizes alter-
native courses of action for different contingencies (see Parts III and IV). It may not
be worthwhile or even feasible to plan for all possible contingencies, or the planner
may not know in advance what all of them are.

Several instances of the receding-horizon scheme will be illustrated throughout the
book, including anytime approaches.

1.1.5 Learning

Learning is a very broad notion that includes many cognitive capabilities. An actor
learns if it improves its performance with more autonomy and versatility, including
ways to perform new tasks and adaptation to new or changing environments. Learn-
ing may rely on the actor’s experiences, instructions from a tutor, and/or data and
knowledge gathered from external sources.
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Learning alleviates the costly efforts of programming an actor and specifying its
environment. Even when such programming can be performed, it can hardly cover
all the situations the actor may face, so adaptation by learning provides a significant
advantage. Furthermore, learning allows an actor to acquire skills for which the
designer may not have formalized knowledge or are difficult to program.3

An actor may want to learn a reactive function giving how to act in each situation
and context, without further need of reasoning. Alternatively, it may want to learn
models with which to reason for acting and planning. The former, called end-to-end
learning, produces a reactive program that can be effective and efficient, and possibly
amenable to continual adaptation; but it is usually a “black box” function, difficult to
explain, verify, or validate. The latter, in contrast, aims at acquiring explicit models
that are predictive but not executable; they can support analysis and explanation.

For example, a robot collaborating with a human should be proven safe to its users.
To be accepted as a co-worker, it should also be able to explain what it is doing
and remain intelligible. End-to-end learning may be less adequate in that regard.
However, it can be very useful for acquiring low-level reactive sensory-motor skills,
e.g., for grasping and manipulation, with additional mechanisms for verification and
validation. It can also be very useful for acquiring domain-dependent search heuristics
for more efficient planning and acting.

1.1.6 Integrating Acting, Planning, and Learning

Acting, planning, and learning are connected in many different ways, seldom limited
to a simple sequence ⟨learn, plan, act⟩. There is learning to plan and learning to act,
but there are also acting to learn and planning to learn. Let us mention a few possible
interplays between these three functions.

An actor learns by acting. It may have the leisure to act for the sole purpose
of learning. Possibly it may simulate its training actions to learn at an affordable
cost. However, it is always desirable for an actor to keep learning while pursuing its
activities, so it can improve and better adapt to a changing environment whose learned
models need to be updated. Learning can be done when the actor fails or when it can
benefit from additional advice or knowledge.

An actor or its user may reason about better ways to learn – for example, by
planning how to find states and activities that may be useful for learning. For example,
curriculum learning targets a progressive and rationally organized learning program,
or a well-organized training database [111], as would be elaborated by an educator.
Learning to learn, or meta-learning, seeks to improve learning.

Often, an actor engaged in its tasks as well as in learning will have to find a tradeoff
between learning more versus advancing in its task. This is the exploration versus
exploitation tradeoff. An actor without much knowledge may favor exploration, while
an expert actor may prefer to exploit known behaviors.

The planning-to-learn paradigm is important in this book. A learner can provide
models and control knowledge, such as heuristics, to an online planning–acting duo.

3These are related to the notion of tacit knowledge, e.g., how to recognize a face or ride a bicycle, as
opposed to explicit knowledge, such as scientific facts and models [574].
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1.2 Descriptive and Operational Models of Actions 7

Conversely, a planner can synthesize a number of random cases of problems and
solutions to feed a learner’s training database. Planning can be used to create curricula
for curriculum learning. In a continual-learning scheme, the actor’s experiences are
fed back to the original planner for use in additional training to improve what has been
learned. These interactions, partially depicted in Figure 1.2, may possibly require
different planners and interactions with a simulator as well as with the real world.

LearningPlanning

Acting

Planning

External World

Simulator

Training 
data Models

Figure 1.2 Interactions
among acting, planning,
and learning.

In some cases, a learner’s output can be directly used for acting without additional
planning. In these cases, the learner may synthesize a policy for reactive acting from
a training database. This can be effective for focused and specialized functions, such
as the sensory-motor control of a device. However, adaptation to a broad diversity of
tasks and environments requires planning; hence it also requires learning for better
planning, and possibly planning for learning as in the previous paragraph.

1.2 Descriptive and Operational Models of Actions

The book presents different models for acting, planning, and learning, starting from
the simplest deterministic state-transition systems and proceeding to temporal, prob-
abilistic, and nondeterministic cases. The formal representations used for expressing
these models will be introduced when needed. Most of the chapters use discrete mod-
els, except for Part VII which uses continuous models of motion and manipulation.

Actors’ models of actions can be classified into two types:

• Descriptive models specify what effects an action may have and when it is
feasible. Descriptive models, also called causal models, are relations from the
precondition to the effects of an action. The actor uses these models during
planning, to reason about what actions may achieve the actor’s objectives.

• Operational models specify how to perform an action: what commands to
execute in the current context and how to organize them to achieve the action’s
intended effects. The actor uses these models during acting, to perform the
actions that it has decided to perform.

Descriptive models are more abstract than operational models. They tend to ignore
details and focus on the main effects needed to decide about the eventual use of an
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action. For example, if you plan to take a book from a bookshelf, at planning time
you usually are not concerned with the available space around the book to insert your
fingers and extract the book. A descriptive model of an action abstracts away these
details to focus on higher-level concerns, such as which shelf the book is on, whether
it is within your reach, and whether you have a free hand with which to take it.

There are several reasons why these idealized abstract models are useful for plan-
ning. First, it is difficult to develop very detailed descriptive models. Second, these
models may require information that is unknown during planning. Third, reason-
ing with detailed models is computationally very complex. Planners often need to
search over many different combinations of actions, and if such a planner were to use
operational (rather than descriptive) models for this search, it may run very slowly.

Operational models of how to perform actions cannot work with the simplifications
allowed in descriptive models. To pick up a book on a shelf, you will need to determine
precisely where the book is located, whether you need to remove an obstacle to reach
the book, which positions of your hand and fingers give a feasible grasp, and which
sequences of precise motions and manipulations will allow you to perform the action.

Furthermore, operational models may need to include ways to respond to exogenous
events, that is, events that occur because of external factors beyond the actor’s control.
For example, someone might be standing in front of the bookshelf, or the stool you
intended to use to reach the book on a high shelf might be missing, or a potentially
huge number of other possibilities might interfere with your plan.

In principle, descriptive models can take into account the uncertainty caused by
exogenous events (see Parts III and IV). However, exogenous events are often ignored
in descriptive models because it is impractical to try to model all of the possible
joint effects of actions and exogenous events or to plan in advance for all of the
contingencies. In operational models, however, the need to handle exogenous events
is much more compelling. Operational models must have ways to respond to such
events if they happen, because they can interfere with the achievement of an action.
In the bookshelf example, you might need to ask someone to move out of the way, or
you might have to stand on a chair instead of the missing stool.

Finally, an actor’s hierarchical organization and continual online processing can
be integrated in these two types of models. We may have a hierarchy of operational
models, sketching how to perform abstract tasks and giving more detailed recipes
for primitive actions. Similarly, we may have a hierarchy of descriptive models,
from abstract tasks down to the effects of commands executable by the platform.
Furthermore, deliberation may perform a continual and interleaved processing of
operational models and descriptive models at different levels of the hierarchy. The
book illustrates instances of these hierarchical models.

1.3 Responsible Research on Autonomous Actors

Autonomous deliberative actors are scientifically and technically challenging for AI.
They are also ethically very challenging. We, and all contributors to AI, hold a
particular responsibility regarding ethical issues. However, since no chapter of this
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book is devoted to ethics, we felt important to clarify our position and concerns here,
particularly regarding actor-centered AI.

Discussions of the ethics of AI are very active, with numerous publications, com-
mittees, and recommendations (see for example [174, 334, 404, 1107]). Most of
these discussions deal with data-centered ethical concerns, such as biases, privacy,
fairness, transparency, trustworthiness, or ownership. They have been triggered by the
significant AI advances in data interpretation and data generation. They are certainly
very important. They need to be pursued and implemented into regulations (beyond
the GDPR4), institutions (e.g., data trusts), and active monitoring processes.

These data-centered ethical concerns are more focused on individuals than on
embracing broader social considerations, such as social cohesion, values, and demo-
cratic organization, which are becoming even more critical with the development of
autonomous acting systems. Actor-related ethical issues may have more vital impacts
on humanity – but they have not been as widely studied, possibly because of a less
advanced state of the art.

Some of the actor-centered ethical issues are related to the possible automation of
many human activities, including rewarding qualified professional and creative jobs.
Such a trend, in particular if fast and widespread, would create economic problems
regarding employment, inequalities, and social wealth sharing. It would entail a
questioning of our role in and value to society, and hence to ourselves. Feeling socially
superfluous, because machines might do most of what many people can do, may lead
to significant human and social turmoil. It may cause infringements on human dignity.

Human interactions have already changed with social networks. They are fast
changing with conversational agents becoming language-fluent and apparently knowl-
edgeable. They will further change with the advent of autonomous actors that have not
only the capabilities described earlier but also capable sensory-motor skills, detailed
knowledge of a person, and the ability nudge or prod them with respect to dubious
utility criteria. This prospect raises the risk of reduced autonomy and infringements
on human freedom and agency.

Autonomous actors may possibly amplify inequalities and further tilt the power
imbalance between human groups and nations. Leaders may be more likely to
engage in conflicts if they can do so with no risks to their soldiers. Weaponized
actors are a very serious concern. Despite a call from many scientists to ban lethal
autonomous weapons [377], now supported by the UN and other organizations, there
is unfortunately for the moment no international agreement on these matters. Strong
opposition from most powerful nations remains.

Autonomous actors may also be beneficial to our well-being and health, for example
as long-life empathic, serviceable, and trustable companions. We need to remain
proactively engaged toward these ends, but we must also keep in mind that the
individual acceptance of a technology (even as a widespread market) is not equivalent
to its social acceptance or acceptability. The latter must include, among other things,
long-term effects, social cohesion and values, and environmental impacts.

Neither the best outcome nor the worst are the most probable. However, our current
social organization, and the profit-and-power motive for much of its development, do

4EU General Data Protection Regulation.
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not lean naturally toward the best. To avoid the worst, we need to be well aware of
the risks and be proactive in mitigating them.

A possible ambition is to seek machines aligned with human values [230, 964].
However, it is unclear whether it is feasible to have machines behaving with and
enforcing our values, if their understanding of those values comes from our specifica-
tions or from observation of our inconsistent behaviors.5 It is even more questionable
whether we could put the risks of fast deployment on hold until we are able to have
all of our AI machines human-aligned.

A more questionable option is to seek machines capable of moral choices. Ma-
chines do not have intrinsic motivations, desires, no feelings with respect to which
moral choices are meaningful. So-called “ethics by design” can be quite misleading:
techniques cannot solve everything, including our ethical choices and responsibili-
ties. We certainly must improve and implement verification and validation methods
toward provable trustworthiness, under appropriate assumptions. However, the re-
sponsibilities for designing, using, and allowing the deployment of AI actors remain
ours. Researchers should not only be concerned with how AI should not be used for
harmful purposes but also with how it can be used to promote positive values and
counteract antidemocratic and deceptive practices.

It is well known that technology is ambivalent, with both good and ugly faces.6
Everyone in society is, to some degree, responsible for harmful technical deployments.
Scientists hold particular responsibilities because they can investigate and foresee
long-term risks and search for mitigating means. They can disseminate knowledge
and be active in social debates about these risks. For that, we believe, they have to
remain cautiously optimistic. This optimism is justified by the numerous expressions
of risk-related concerns published by AI scientists and developers, and their calls for
effective oversight and open independent verifications. It is also justified by some
more advanced regulations (for example, the recently approved European AI Act). We
urge our responsible reader to remain actively vigilant.

5After centuries of moral effort, we have been able to state some of these values in documents such as
the Universal Declaration of Human Rights. However, these rights are routinely violated, and we are
still unable to enforce them.

6Hephaestus, the Greek god of technology, is described as a limping deity.
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