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Abstract

We consider sets Γ (n, s, k) of narrow clauses expressing that no definition of a size s circuit with
n inputs is refutable in resolution R in k steps. We show that every CNF with a short refutation
in extended R, ER, can be easily reduced to an instance of Γ (0, s, k) (with s, k depending on the
size of the ER-refutation) and, in particular, that Γ (0, s, k) when interpreted as a relativized NP
search problem is complete among all such problems provably total in bounded arithmetic theory
V 1

1 . We use the ideas of implicit proofs from Krajı́ček [J. Symbolic Logic, 69 (2) (2004), 387–397;
J. Symbolic Logic, 70 (2) (2005), 619–630] to define from Γ (0, s, k) a nonrelativized NP search
problem iΓ and we show that it is complete among all such problems provably total in bounded
arithmetic theory V 1

2 . The reductions are definable in theory S1
2 . We indicate how similar results can

be proved for some other propositional proof systems and bounded arithmetic theories and how the
construction can be used to define specific random unsatisfiable formulas, and we formulate two
open problems about them.

2010 Mathematics Subject Classification: 03F20 (primary); 68Q15 (secondary)

Let C be a size s circuit with n Boolean inputs x = x1, . . . , xn over the basis 0,
1,¬,∨,∧. It is defined by s instructions how to compute Boolean values y = y1,

. . . , ys , all of which have one of the following forms:

• yi := xu for some u 6 n;

• yi := 0 or yi := 1;

• yi := ¬y j for some j < i ;

• yi := y j ∨ yk or yi := y j ∧ yk for some j, k < i .
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The value of ys is the output value of C and is denoted also as C(x). Let Defn,s
C

(x, y) be the canonical 3CNF formula expressing the conjunction of all
instructions. For example, the instruction yi := 0 is represented by one clause
{y0

i }, yi := ¬y j by 2 clauses {yi , y j }, {y0
i , y0

j } and the instruction yi := y j ∨ yk is
represented by three clauses

{y0
j , y1

i }, {y
0
k , y1

i }, {y
0
i , y1

j , y1
k }

where for a literal ` we let `1
:= ` and `0

:= ¬`. Defn,s
C (x, y) has at most 3s

clauses.
It is easy to prove in the propositional resolution proof system R that the

computation of C is unique: in O(i) steps derive from Defn,s
C (x, y) ∪ Defn,s

C
(x, z) clauses {y1

i , z0
i }, {y

0
i , z1

i } expressing that yi ≡ zi . The whole proof of ys ≡ zs

has O(s) clauses and its structure is quite close to that of C .
But can we prove equally easily that a computation of C on x exists? This

question is in propositional logic represented by the question of whether Defn,s
C

(x, y) is consistent, that is not refutable, and we take as our refutation system
R (more precisely, its slight technical variant Rw defined in Section 1). Given
n > 0, s, k > 1 we shall define a set Γ (n, s, k) of narrow clauses such that
satisfying assignments for Γ (n, s, k) would be precisely k step Rw-refutations
of sets Defn,s

C (x, y). Our question can be then phrased as follows: How hard is it
to refute Γ (n, s, k)?

We will, in fact, concentrate on the case n = 0 in which the sets
Γ (0, s, k) talk about refutations of Def0,s

C (y), sets of clauses defining a straight-
line program C computing Boolean constants (that is C has no inputs x). Using
standard techniques of proof complexity we show that sets Γ (0, s, k) express
the reflection principle for Tseitin’s [13] extended resolution ER, and hence
any proof system that refutes these sets by polynomial size proofs has at most
polynomial slow-down over ER (it simulates it in the standard terminology). In
fact, due to the combinatorial transparency of Γ (0, s, k) we use rather only the
idea how reflection principles work rather than any ‘technique’ surrounding them.
Further, the simulation yields straightforwardly a reduction of unsatisfiable CNFs
∆ to Γ (0, s, k) where k depends on the size of an ER-refutation of ∆, if we
interpret them as relativized total NP search problems with oracles representing
truth assignments.

We will also show, using the idea of implicit proofs from [9, 10], how to
define ordinary (that is nonrelativized) total NP search problems iΓ and show
that these are complete among all NP search problems provably total in theory V 1

2
of Buss [3]. The reductions are definable in theory S1

2 . Another total NP search
problems with this property have been defined earlier by Kolodziejczyk et al. [6]
and recently by Beckmann and Buss [2].
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Consistency of circuit evaluation 3

We shall conclude with remarks on how to modify the construction for some
other proof systems and how to use it to define random unsatisfiable formulas,
and we formulate two open problems.

The reader is assumed to have knowledge of standard results in proof
complexity, such as can be found in [8]. Only Section 3 presupposes knowledge
of specific material from [9, 10]; we explain there the underlying ideas and give
precise references but we shall not repeat that material here.

1. Formalization: sets Γ (n, s, k)

We shall first augment R a bit to make it technically more convenient. First,
we shall allow also constant 1 in clauses and allow as new initial clauses all C
containing 1 (we shall call these new initial clauses 1-axioms). We also allow that
both a variable and its negation occur in a clause. Second, we add the weakening
rule:

C
D

if C ⊆ D.

Denote this augmented resolution system Rw. The reason for the modifications is
that one can substitute constants for variables in an Rw-proof and it remains an
Rw-proof (delete all literals evaluated to 0 and replace resolution inferences on
variables substituted for by weakenings). An additional reason for the weakening
rule is that otherwise it is a bit cumbersome to talk about a derivation of D from
C ⊆ D: as R is a refutation system one has to talk instead of refuting the set of
clauses

{C} ∪ {{`0
} | ` ∈ D}

and such derivations is even more cumbersome to concatenate (recall from the
introduction that `0

:= ¬`).
Fix n > 0 and s, k > 1. Formula Γ (n, s, k) talks about a potential k-step Rw-

refutation of Defn,s
C for an unspecified C (it is coded by atoms of Γ (n, s, k)). There

are q and p variables; the former describe a sequence of clauses in a refutation
and the latter encode the inference structure of the refutation. For the purpose of
the following discussion call the steps in the refutation D1, . . . , Dk .

Clauses Di may contain constant 1 or literals corresponding to x, y variables,
that is all together up to 1 + 2(n + s) different objects. Formula Γ (n, s, k) will
thus use

• atoms qu
i with u = 1, . . . , k and i ∈ {−(n + s), . . . ,−1, 0, 1, . . . , (n + s)}.

The intended meaning of these is:

• qu
0 = 1 if and only if 1 ∈ Du;
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• qu
i = 1 for i = 1, . . . , n if and only if xi ∈ Du , and for i = −1, . . . ,−n if and

only if x0
i ∈ Du;

• qu
n+ j = 1 for j = 1, . . . , s if and only if y j ∈ Du , and qu

−n+ j = 1 for j = −1,
. . . ,−s if and only if y0

j ∈ Du .

We shall call these variables q-variables and their set q.
There will be also p-variables pu,v, u = 1, . . . , k and v = 1, . . . , t (we shall

specify t in a moment). The intended meaning is that an assignment au
∈ {0, 1}t

for pu = pu,1, . . . , pu,t uniquely determines complete information about how Du

was inferred from earlier clauses and if Du ∈ Defn,s
C it also contains information

assuring that Defn,s
C clauses have the right form. To simplify the notation we shall

assume that k > 3s and s > n and that the clauses of Defn,s
C are listed as first 3s

clauses D1, . . . , D3s , with D3r−2, D3r−1, D3r defining the instruction for yr (if the
instruction needs only one or two clauses the other are dummy, say {1}).

There are at most 2 + n + (r − 1) + 2(r − 1)2 6 O(k2) instructions how to
compute yr and au has to specify this uniquely for u = 1, . . . , 3s. For u = 3s+1,
. . . , k we need au to specify by which rule and from which earlier clauses was Du

inferred: there are at most 2 + (u − 1) + (2 + n + s)(u − 1)2 6 k3 possibilities.
Thus, if we pick t := 3 log k, {0, 1}t has enough room to encode by its elements
all possible situations.

It will be convenient to describe the clauses forming Γ (n, s, k) as sequents

`1, . . . , `e → `e+1, . . . , ` f

representing the clause
`0

1, . . . , `
0
e, `e+1, . . . , ` f .

For a ∈ {0, 1}t let pu(a) be the set of literals

(pu,1)
a1, . . . , (pu,t)

at .

That is, a is the unique truth assignment satisfying the conjunction of literals in
pu(a).

The set Γ (n, s, k) consists of the following clauses divided into five groups:

(γ 1) For u ∈ {3r−2, 3r−1, 3r} for r = 1, . . . , s, if a ∈ {0, 1}t does not specify
a valid instruction for computing yr then Γ (n, s, k) contains clause

pu(a)→ .

(γ 2) For u ∈ {3r − 2, 3r − 1, 3r} for r = 1, . . . , s, if a ∈ {0, 1}t does specify
a valid instruction for computing yr then we know about constant 1 and
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Consistency of circuit evaluation 5

about every x- and y-variable whether or not it occurs in Du and whether
or not this occurrence is positive or negative. Hence we include in Γ (n,
s, k) for every q-variable qu

i exactly one of the clauses

pu(a)→ qu
i or pu(a)→ ¬qu

i

as specified by a.

(γ 3) For u = 3s + 1, . . . , k, if a ∈ {0, 1}t does not specify a valid inference
for Du , Γ (n, s, k) contains clause

pu(a)→ .

(γ 4) For u = 3s + 1, . . . , k, if a ∈ {0, 1}t does specify a valid inference for
Du , three cases can happen:

(a) Du was inferred from Dv, Dw resolving literal `, where ` ∈ Dv and
`0
∈ Dw, and ` an x- or a y-literal.

Let i ∈ {(−(n+ s), . . . ,−1, 1, . . . , (n+ s)} correspond to ` and −i to
`0. Then Γ (n, s, k) contains clauses:

pu(a)→ qvi pu(a)→ qw
−i pu(a)→ ¬qu

i pu(a)→ ¬qu
−i

(these clauses enforce that ` and `0 appear in Du, Dv, Dw as prescribed
by the resolution rule),
and for j 6= i,−i , j ∈ {(−(n + s), . . . ,−1, 1, . . . , (n + s)} Γ (n, s, k)
contains further clauses

pu(a), qvj → qu
j pu(a), qwj → qu

j pu(a), qu
j → qvj , qwj

(these clauses enforce that other literals are passed from Dv, Dw to Du

and that no other are).
(b) Du was inferred by weakening from Dv, v < u. Then Γ (n, s, k)

contains all clauses
pu(a), qvi → qu

i .

(c) Du was inferred as a 1-axiom. Then Γ (n, s, k) contains clause:

pu(a)→ qu
0 .

(γ 5) Finally we add to Γ (n, s, k) clauses

→ ¬qk
i

for all i , enforcing that Dk = ∅.

Let us summarize.
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LEMMA 1.1. For all n > 0, s > n, k > 3s the set Γ (n, s, k) contains O(k5)

clauses of width at most 3+ 3 log k and it is not satisfiable.

2. Reductions

Reflection principles for a proof system Q imply, over an arbitrary fixed base
proof system satisfying a few technical properties, all Q-provable formulas and
only with a polynomial slow-down over Q. This means that if ϕ has a Q-proof of
size m then ϕ can be derived in the base system from a substitution instance of a
reflection principle for Q by a proof of size at most mO(1). The reader can find all
details in [8, Section 9.3] but these details are not needed for the arguments below
(although they may help in understanding what is going on).

The set Γ (n, s, k) expresses conditions an Rw-refutation of some set Defn,s
C

would have to satisfy and hence it is the formulas ¬
∧
Γ (n, s, k) which

correspond to reflection principles for ER. An ER-refutation of a set ∆ of
clauses amounts to proving the formula ¬

∧
∆. Thus, we want derivations (in

some base system, here it will be Rw) of ¬
∧
∆ from an instance of ¬

∧
Γ (n, s,

k). In the framework of refutation systems this means that we look for derivations
from ∆ of all clauses of a substitution instance of Γ (n, s, k). In fact, it will be
enough to consider Γ (0, s, k).

A map σ assigning to variables from a set Y constants 0, 1 or disjunctions of
literals corresponding to a set of variables X will be called a clause substitution
and the maximal size of a disjunction σ assigns is the width of σ .

Let Γ,∆ be two sets of clauses in disjoint sets of variables Y and X ,
respectively (to avoid any confusion when dealing with substitutions). We say that
a clause substitution σ is a clause reduction of ∆ to Γ if and only if σ substitutes
for Y -variables clauses of X -literals such that for each clause D ∈ Γ one of the
following cases occurs:

(a) σ(D) is a 1-axiom;

(b) σ(D) has the form:
Π,

∨
E →

∨
F,Σ (1)

where E ⊆ F are sets of literals;

(c) σ(D) contains as a subset a clause from ∆.

Note that in cases (a) and (b) σ(D) is logically valid, and if σ(D) is written in the
sequent form then being a 1-axiom may also mean that ¬1 is in its antecedent.

For the construction in the proof of the next theorem it will be handy to use the
following notation. For z a variable and a,b ∈ {0, 1}t put

sel(z, a,b)
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to be the t-tuple from {0, 1, z,¬z}t whose i th coordinate is

sel(z, ai , bi) := (ai ∧ z) ∨ (bi ∧ ¬z) ∨ (ai ∧ bi).

That is, sel(z, ai , bi) is a constant or a literal defined by the following cases:

sel(z, ai , bi) :=


0 if ai = bi = 0,
1 if ai = bi = 1,
z if ai = 1 ∧ bi = 0,
¬z if ai = 0 ∧ bi = 1.

THEOREM 2.1. Assume∆ is a set of clauses of width 6 w in n variables that has
an ER-refutation π with k(π) clauses.

Then for some k = O(nk((π)) and s 6 k/3 there is a clause reduction σ of ∆
to Γ (0, s, k) and σ has the width at most max(w, 3).

Proof. Assume x are the n variables of ∆. Introducing up to O(nk(π)) new
extensions variables we may assume the width of π is at most max(w, 3). Let
y be s extensions atoms used in π . We may further rearrange the resulting proof
so that the clauses defining the y variables are precisely the first 3s clauses and
are followed by all |∆| clauses from∆. Let k = O(nk(π)) be the number of steps
in the resulting ER-refutation and call these steps Du .

Take the set Γ (0, s, k). Our aim is to define a clause substitution σ such that
every clause of σ(Γ (0, s, k)) is logically true or can be derived by a weakening
from a clause of ∆. In fact, all clauses D of Γ (0, s, k) will yield logically valid
σ(D) falling under items (a) and (b) of the definition of clauses reductions except
possibly when D is from group γ 4(c): if σ(D) will not be a 1-axiom then it will
follow by a weakening from a clauses of ∆.

Define the substitution σ for the p- and q-variables of Γ (0, s, k) as follows:

(1) For all q-variables qu
i with i 6= 0 substitute 0 or 1, depending on whether the

y-literal corresponding to i occurs in Du .

(2) For all variables qu
0 substitute

∨
Eu , where Eu is the set of x-literals

occurring in Du together with 1, if 1 ∈ Du . (Note that |Eu| 6 w.)

(3) For p-variables pu with u = 3r −2, 3r −1, 3r and r 6 s define σ as follows:

(a) If Du is one of the three clauses corresponding to an instruction of the
form yr := x j , put

σ(pu) := sel(x j , a,b)
where a and b ∈ {0, 1}t define the instructions yr := 1 and yr := 0,
respectively.
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(b) Otherwise substitute for pu the string au
∈ {0, 1}t defining the particular

instruction of Defn,s
C in π .

(4) For pu variables with u = 3s+1, . . . , 3s+|∆| substitute a ∈ {0, 1}t defining
the clause Du as being a 1-axiom.

(5) For u = 3s + |∆| + 1, . . . , k consider several cases what to substitute for pu:

(a) Du was inferred as a 1-axiom: substitute for pu as in item (4).

(b) Du was derived in π by weakening from Dv: substitute for pu the a
specifying this information.

(c) Du was derived by resolution from De, D f resolving variable yi :
substitute for pu the a specifying this information.

(d) As in (c) but the resolved variable was xi . Assume xi ∈ De and ¬xi ∈

D f . Substitute for pu the expression

sel(xi , a,b)

where a,b ∈ {0, 1}t specify that Du was derived by the weakening from
D f or De, respectively.

We need to verify that for every clause D ∈ Γ (0, s, k), σ(D) falls under one of
the three cases (a), (b) or (c) in the definition of reductions by clause substitutions
above. We shall treat the five groups γ 1–γ 5 of clauses forming Γ (0, s, k)
separately.

If D = pu(a)→ belongs to groups γ 1 or γ 3, σ(pu(a)) contains a false literal
and so σ(D) is a 1-axiom.

If D is from group γ 2, then σ(D) is clearly a 1-axiom by the definition of
σ(qu

i ) for all instructions for yr falling under 3(b) above, that is except when it
has the form yr := x j . In the latter case the instruction is represented by clauses

{yr ,¬x j }, {¬yr , x j }, {1}

and D is one of them. The definition of σ in 3(a) above using selection term on
x j yields σ(D) which either contains 0 in the antecedent (and hence σ(D) is a
1-axiom) or one of the literals x j , x0

j occurs in both antecedent and succedent of
σ(D) and hence it falls under the case (b) of the definition of reductions.

If D is from group γ 4(a) then by item 5(c) of the definition of σ , σ(D) becomes
a 1-axiom. If D is from group γ 4(b) then σ(D) falls under the case (b) of the
definition of reductions: in particular, for i = 0, σ(qvi ) is contained in σ(qu

i ) (the
E and F in that definition). If D is from group γ 4(c) of Γ (0, s, k) then σ(D)
is either a 1-axiom as σ(qu

0 ) contains constant 1 if Du was a 1-axiom, or it falls
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Consistency of circuit evaluation 9

under the case (c) of the definition of reductions as σ(qu
0 ) is Du ∈ ∆ (item 4 of

the definition of σ ).
Finally, D from group γ 5 of Γ (0, s, k) is trivially turned by σ to a 1-axiom.

We may interpret Theorem 2.1 as a proof-theoretic reduction: each clause of
σ(Γ (0, s, k)) can be derived from∆ very easily in any proof system P simulating
efficiently the weakening rule and deriving quickly all 1-axioms and all formulas
as in (1) and hence the task to refute ∆ is in P reduced to the task to refute Γ (0,
s, k). One can easily list various suitable weak P (for example, tree-like R∗(log)
or talk about Rw-derivations of F,Π from all Σ, `, ` ∈ E , in (1)) but it seems
redundant to do so.

Alternatively, we may interpret the theorem as a reduction between relativized
total NP search problems (see for example, [1] for definitions). That is, given an
ER-refutation π of ∆ in n variables x with k(π) steps, we have Γ (0, s, k) for
specific s, k bounded by O(nk(π)) such that it holds:

• For any assignment α to variables x of ∆ (α is the oracle), if we know a clause
of Γ (0, s, k) false under the assignment α ◦ σ to its variables, we also know a
clause of ∆ false under α: α ◦ σ(D) can only fail if it falls under item 2 of the
definition of reductions and hence it contains a clause of ∆ false under α.

Note that, for a fixed π and Γ (0, s, k) with parameters determined by it,
computing σ requires at most w calls to α. Hence if w is a constant or at least
bounded by log(n|∆|) the reduction is polynomial time in the sense of [1].

It is well known (see for example, [6, 8]) that propositional translations of
a second-order ∀Σb

1 (α)-formula (expressing the totality of a relativized NP
search problem) that is provable in bounded arithmetic theory V 1

1 of Buss [3]
have polynomial size extended Frege proofs, that is in the refutation set-up the
corresponding sets of clauses have polynomial size ER-refutations. This is [8,
Theorem 9.1.5], building on earlier results of Cook [4] and Buss [3].

Theorem 2.1 thus yields the following statement (the definability of the
reduction in V 0

1 follows from its explicit nature).

COROLLARY 2.2. Assume that a relativized NP search problem is provably total
in bounded arithmetic theory V 1

1 .
Then the problem polynomially reduces to Γ (0, s, k) and the reduction is

definable in V 0
1 .

3. Total NP search problems iΓ

Following Papadimitriou [12] we shall consider total (nonrelativized) NP
search problems given as follows. Let D(v1, . . . , vt) be a circuit with tm inputs
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divided into t blocks of size m. Such D defines a t-ary relation on {0, 1}m ; as
a structure it may be exponentially large relative to the size of D. The general
form of search tasks we shall consider is: Given pair (1(m), D), find a subset W ⊆
{0, 1}m of some specific polynomial size mO(1) such that the induced substructure
contains a specific configuration known to exist by a general combinatorial or
geometric statement. Krajı́ček [10] gives several examples but perhaps the most
interesting is when t = 2 and we think of D as defining an undirected graph
without loops and W either contains a list of m/2 vertices from {0, 1}m inducing a
homogeneous subgraphs or one or two vertices certifying that D has a loop or is
nonsymmetric. Ramsey’s theorem 2m

→ (m/2)22 guarantees the existence of such
a W .

We shall use the idea of implicit proofs from [9], proofs of exponential size
described bit-by-bit by a circuit and accompanied by a certificate that the circuit
indeed defines a proof. In particular, a refutation of a formula φ in implicit ER
proof system, denoted iER, is a pair (ρ, D) such that:

• D(u, v) is a circuit with two inputs strings u, v ∈ {0, 1}m defining a 2m
×2m 0-1

array which we interpret as describing an ER-refutation of φ in the same sense
as truth assignments to p- and q-variable of Γ (0, s, k) talk about a potential
ER-refutation,

• ρ is an ER-proof of the propositional formula formalizing the statement:

– D defines a valid ER-refutation of φ.

The reader is invited to consult [9] for details of the definition.
The way how we shall use iER was first employed (and justified) in [10,

Theorem 5.4]. The idea is simple: we may allow D above to describe not
only refutations of polynomial size formulas (as it was defined in [9]) but of
exponential size formulas given themselves by small circuits.

In particular, if (∃y, |y| 6 |x |c)ϕ(x, y) is a Σb
1 -formula with ϕ ∈ Σb

0 , then the
sentence (∀x, |x | = n)(∃y, |y| 6 |x |c)ϕ(x, y) is true If and only if the set

¬ϕ(x, w) all w such that |w| 6 nc (2)

is not satisfiable by any x ∈ {0, 1}n , and hence it is refutable (in ER, in particular).
The set (2) has exponential size but it can be easily generated by a size nO(c) circuit
from w’s. We use these ideas as follows.

The iΓ (m) NP search problem, the instance of iΓ for parameter m, is defined
as follows:

(1) The input is pair (1(m), D) with D(x, y) a size m2 circuit with 2 · m inputs.

(2) Interpret D as defining an evaluation of the p and q-variables of Γ (0, s, k)
where k = 2m and s = k1/2.
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[There are 2s + 1 variables qu
i and 3 log k = 3m variables in pu , all u 6 k =

2m , so D has enough input bits to define a 0 − 1 array of bits evaluating all
the variables.]

(3) Output: find a clause of Γ (0, s, k) false under the evaluation.

[There are O(k5) = O(25m) of possible outcomes so the output is 6 5m bits.]

The parameters are fixed at |D| = m2 and s = 2m/2 in order to reduce the number
of parameters in the problem. Modifying m linearly allows to accommodate
arbitrary polynomial relations among k, s and log k, |D|.

We state and prove the next theorem using the ideas and referring to facts about
the concepts described above; all details for these facts can be found in [9, 10] at
the specifically cited places.

THEOREM 3.1. Assume an NP search problem is provably total in theory V 1
2 .

Then the problem can be polynomially reduced to iΓ . The reduction is definable
in S1

2 .
Moreover, iΓ is itself provably total in V 1

2 .

Proof. Let (∃y, |y| 6 |x |c)ϕ(x, y) be a Σb
1 -formula with ϕ ∈ Σb

0 such that V 1
2

proves
∀x(∃y, |y| 6 |x |c)ϕ(x, y).

In particular, |y| 6 |x |c ∧ ϕ(x, y) defines a total NP search problem.
By the construction underlying [9, Theorem 2.1], as shown in the proof of [10,

Theorem 5.4], there exists an iER refutation (ρ, B) of formulas from (2) above
expressed as a set of 2O(nc) clauses of width 6 w = nO(c) such that:

• B(i, j) is a size nO(c) circuit with 2 · nO(c) inputs describing an ER-refutation π
of (2);

• circuit B is definable in S1
2 from 1(n) and S1

2 proves that B defines an ER-
refutation of the set (2) (ρ plays a role in this).

Use π for the definition of a clause substitution σ as in the proof of Theorem 2.1
but whenever we need a bit of π we compute it by circuit B. The substitution has
width 6 w = nO(c) and so the reduction so obtained is a polynomial reduction of
the search problem (∃y, |y| 6 |x |c)ϕ(x, y) for x of length |x | = n.

The second statement follows as V 1
2 proves the soundness iEF (= iER) proofs;

see [9, Theorem 2.1].

One can generalize this construction to stronger theories as follows. In [9] we
used the characterization from [7] of bounded first-order consequences of V 1

2 as
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those of formal system S1
2 + 1-Exp : δ(x) is provable in this system if and only if

S1
2 proves

t (x) 6 |y| → δ(x)

for some term t (x). The intuition is that while ER corresponds to S1
2 , iER

corresponds to adding 1-Exp and that corresponds to extending first-order S1
2 to

second-order V 1
2 . The construction in [9, 10] works also for S1

2+2-Exp (and third-
order extension of S1

2 ) and i(iER), and higher iterates, as pointed out in [9, Section
4]. In general, if a theory T corresponds to a proof system P then iP corresponds
to T + 1-Exp and one may try to define NP search problems analogous to iΓ
where B is assumed to describe a P-refutation. It is a challenge to describe this
construction in a direct, combinatorially transparent, way.

4. Concluding remarks

One can restrict circuits C that can be used in Defn,s
C to a class of circuits

and it is clear from the construction that taking for these classes NC1, AC0

or AC0(2) yield statements analogous to Theorem 2.1 for Frege system and
constant depth Frege system in the DeMorgan language, and constant depth Frege
systems in DeMorgan language augmented by the parity connective, respectively.
Similarly, Corollary 2.2 and Theorem 3.1 can be analogously derived for theories
corresponding to those proof systems; see [5, 8].

For a given s > 1 and k > 3s we can define the following random process
yielding a set of clauses (r are the random bits used):

(i) pick s instructions for computing variables y defining a circuit Cr without
variables: the instruction for yi is picked uniformly at random from all legal
instructions for yi ;

(ii) substitute in Γ (0, s, k) for all variables pu and qu
i with u 6 3s the bits

defining clauses of Def0,s
C corresponding to Cr chosen in step (i).

Let us denote the random set of clauses so constructed by Γ (0, s, k)(Cr); it is
always unsatisfiable. The following seem to be interesting open problems:

Q1 Is it true that with a high probability over r the set Γ (0, s, k)(Cr) requires
long refutations in any proof system not simulating ER?

Q2 Is it true that Γ (0, s, k) can be reduced by a clause substitution to a problem
Γ (0, s ′, k ′)(C) for some k ′ polynomially bounded in k and some specific size
s ′ circuit C?
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If the first question had an affirmative answer the sets Γ (0, s, k)(Cr) would
provide an easy to compute source of hard formulas that are always unsatisfiable
(other proposed constructions yield sets unsatisfiable with a high probability but
not always).
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