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We characterize hyperbolic groups in terms of quasigeodesics in the Cayley graph
forming regular languages. We also obtain a quantitative characterization of
hyperbolicity of geodesic metric spaces by the non-existence of certain local
(3, 0)-quasigeodesic loops. As an application, we make progress towards a question of
Shapiro regarding groups admitting a uniquely geodesic Cayley graph.
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1. Introduction

Hyperbolic groups were introduced by Gromov [14] and revolutionized the study of
finitely generated groups. Arguably, their most remarkable feature is that hyper-
bolicity connects several, and at a first glance independent, areas of mathematics.
Confirming this, there are several different characterizations of hyperbolicity—such
as the geometric thin triangle condition [14], the dynamical characterization via
convergence actions [3], surjectivity of the comparison map in bounded cohomol-
ogy [11, 19, 20] and vanishing of `∞-cohomology [12], linear isoperimetric inequality
[14], all asymptotic cones being R-trees [14], and others [1, 4, 14, 15, 25, 27, 30].

Another significant feature of hyperbolic groups is that they present very strong
algorithmic properties. Most notably, they have solvable isomorphism problem
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[6, 28], they are biautomatic [10] and so the word problem can be solved via
finite state automata, and sets of their rational quasigeodesics form a regular
language [16].

This last property will be a central focus in the article, and we call it rational
regularity, or for short QREG.

Definition 1.1. A finitely generated group G is QREG if for all rational λ ≥ 1,
real ε ≥ 0, and finite generating sets S, the (λ, ε)-quasigeodesics in the Cayley graph
Γ(G,S) form a regular language.

As mentioned in [16], Holt and Rees prove that every word hyperbolic group is
QREG. It is natural to ask if this provides a characterization of hyperbolic groups,
as was conjectured in [5, problem 1]. The main result of the article is the following.

Theorem 1.2. A finitely generated group is hyperbolic if and only if it is QREG.

We remark that it is necessary to not consider only geodesics. In [18], Cannon
proved that for any finite generating set the geodesics in a hyperbolic group form a
regular language. However, this does not characterize hyperbolicity: Neumann and
Shapiro [21, Propositions 4.1 and 4.4] prove that for any finite generating set the
geodesics in an abelian group form a regular language.

In fact, we prove the following strong converse to the result of Holt and Rees.

Theorem 1.3. Let G be a finitely generated non-hyperbolic group. Then for all
finite generating sets S and all λ′ > 54, the set of (λ′, 0)-quasigeodesics is not
regular in Γ(G,S).

Once this is proved, it is clear that non-hyperbolic groups can never be QREG.
To prove Theorem 1.3, we need a strong quantitative characterization of hyper-

bolicity. It is known that a geodesic metric space is hyperbolic if and only if local
quasigeodesics are global quasigeodesics [14, Proposition 7.2.E]. More precisely,
the contrapositive can be stated as follows: a space is non-hyperbolic if and only
if there exists a pair of constants (λ, ε), a sequence Ln → ∞ and a sequence of
Ln-locally (λ, ε)-quasigeodesic paths which are not global (λ′, ε′)-quasigeodesics for
any uniform choice of constants (λ′, ε′). Hence, a priori, to check for hyperbolicity,
one would want to consider all choices of (λ, ε) and all choices of locally (λ, ε)-
quasigeodesic paths. We get around this using a criterion of Hume and Mackay [17]
that essentially states that one needs only consider L-locally (18, 0)-quasigeodesic
loops whose length is comparable to L. To prove Theorem 1.3, we use such a
sequence of loops to contradict the pumping lemma.

One of the limitations of the criterion of Hume and Mackay is that it only works
for graphs, as it relies on Papasoglu’s bigon criterion [25], which is false for general
geodesic metric spaces. We remark that a version of the bigon criterion for general
metric spaces appeared in the master’s thesis of Pomroy [26], a proof can be found in
[4, Appendix]. We develop a characterization of hyperbolicity, analogous to Hume
and Mackay, that works for all geodesic metric spaces and does not rely on any
bigon criteria.

Theorem 1.4. A geodesic metric space X is not hyperbolic if and only if there exists
a sequence Ln → ∞ and a sequence of non-constant Ln-locally (3, 0)-quasigeodesic
loops γn that satisfy `(γn) ≤ KLn, where K is some constant that does not depend
on n.
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Note that requiring that the loops are non-constant implies that diam(γn)
diverges to infinity. Indeed, (3, 0)-quasigeodesics are injective and for γn to be a
loop we must have that [0, Ln] is a proper subset of the domain. Therefore, morally,
Theorem 1.4 states that in a non-hyperbolic group there are paths that are very
well-behaved locally, but globally are loops of increasing size, hence cannot be global
quasi-geodesics for any choice of constants.

Although striking, the presence of a sharp gap in the behaviour of local-
quasigeodesics is not surprising. For instance, it is known that the Dehn function
of a finitely presented group has a gap. A deep theorem of Wenger [31], extend-
ing results of [2, 14, 22, 24], shows that if the isoperimetric function satisfies
D(x) ≤ 1−ε

4π x2, then it is in fact linear.
Our strategy in proving Theorem 1.4 relies on the study of asymptotic cones of

metric spaces. If X is non-hyperbolic, then there is an asymptotic cone that is not
a tree [15, 2.A], and it contains a simple loop. By using a series of approximations,
we exploit this loop to produce a family of loops of controlled length that are locally
(3, 0)-quasigeodesic.

1.1. A question of Shapiro

A natural class of graphs to consider is the class of geodetic graphs. A connected
graph is called geodetic if for any pair of vertices there is exactly one geodesic
connecting them. In [29], Shapiro asked when a group admits a (locally finite)
geodetic Cayley graph. He conjectures that such a group needs to be plain, that is,
a free product where the factors are either free or finite. In [23], Papasoglu proved
that a geodetic hyperbolic group is virtually free. It is still open whether all geodetic
groups are hyperbolic, and whether all geodetic virtually free groups are plain.

We provide an answer to the first implication under an additional, language
theoretic, assumption.

Theorem 1.5. Let G be a finitely generated group with a generating set S
such that Γ(G,S) is geodetic. If there exists λ> 3 such that the language of
(λ, 0)-quasigeodesics is regular, then G is hyperbolic and hence virtually free.

1.2. Structure of the article

In §2, we give the necessary background on Cayley graphs, hyperbolic metric spaces,
quasigeodesics, languages, automata, and asymptotic cones. In §3, we provide proofs
of the results from §1. More specifically, in §3.1, we prove Theorem 1.4 and compare
it to [17, Proposition 1.5], in §3.2, we prove Theorems 1.2 and 1.3, and in §3.3, we
prove Theorem 1.5.

2. Background

2.1. Cayley graphs, hyperbolicity, and quasigeodesics

Let G be a finitely generated group with generating set S. We denote by Γ(G,S)
the Cayley graph of G with respect to S, that is, the graph with vertices G and
edges {g, gs} where g ∈ G and s ∈ S. We denote by |g| the word-length of g with
respect to S ; equivalently, this is equal to dΓ(G,S)(e, g).
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Let δ ≥ 1. A metric space X is δ-hyperbolic if every geodesic triangle in X
is δ-thin. Here a geodesic triangle is δ-thin if every edge is contained in the δ-
neighbourhood of the two other edges. We say a finitely generated group G is
hyperbolic if the Cayley graph Γ(G,S) is a δ-hyperbolic metric space for some
finite generating set S.

Let λ ≥ 1 and ε ≥ 0. Given metric spaces X and Y, a (λ, ε)-quasi-isometric
embedding f : X → Y is a function satisfying

1

λ
dX(x, y)− ε ≤ dY (f(x), f(y)) ≤ λdX(x, y) + ε

for all x, y ∈ X.

Definition 2.1. In the context of a Cayley graph Γ(G,S), by a (λ, ε)-quasigeodesic
of length a ∈ N, we mean a simplicial path c : [0, a] → Γ(G,S) such that for any
two integers x, y ∈ [0, a] we have

d[0,a](x, y) ≤ λdG(c(x), c(y)) + ε.

Equivalently, a (λ, ε)-quasigeodesic is a finite word w on the alphabet S ∪ S−1 for
which length(u) ≤ λdG(e, u) + ε for all subwords of u of w.

Definition 2.2. In the context of an arbitrary metric space X, a (λ, ε)-
quasigeodesic of length a> 0 in X is a quasiisometric embedding c : [0, a] →
X.

Given a path c : [0, a] → Γ(G,S) or c : [0, a] → X, we say that c is an L-locally
(λ, ε)-quasigeodesic or an (L, λ, ε)-local-quasigeodesic if c restricted to each subset
of [0, a] of length L is a (λ, ε)-quasigeodesic. We say c is a (L, λ, ε)-quasigeodesic
loop if, in addition, c(0) = c(a). We denote the length of a path c by `(c).

2.2. Regular languages and automata

The following definitions are standard and may be found in [10, chapter 1]. Given
a finite set A, let A∗ be the free monoid generated by A, i.e. the set of finite words
that can be written with letters in A. A language over the alphabet A is a subset
L ⊆ A∗. A finite state automaton (FSA) M over the alphabet A consists a finite
oriented graph Γ(M), together with an edge label function ` : E(Γ(M)) → A, a
chosen vertex qI ∈ V (Γ(M)) called the initial state and subset QF ⊂ V (Γ(M)) of
final states. The vertices of Γ(M) are often referred to as states.

Let M be an FSA over an alphabet A. We say a string w ∈ L is accepted by A
if and only if there is an oriented path γ in Γ(M) starting from qI and ending in
a vertex q ∈ QF such that γ is labelled by w. A language L is regular if and only
if there exists an FSA M such that L coincides with the strings of A∗ accepted by
M.

Let G be a group generated by a finite set S. An element w ∈ (S ∪ S−1)∗

labels a path in Γ(G,S) which starts at e. We say w is a geodesic/ (λ, ε)-
quasigeodesic/ (L, λ, ε)-local-quasigeodesic word if it labels a path in Γ(G,S) with
the corresponding property.
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We say that the set L(λ,ε) of (λ, ε)-quasigeodesic words w over S ∪S−1 form the
(λ, ε)-quasigeodesic language of G over S.

2.3. Asymptotic cones

In this section, we will give the necessary background on asymptotic cones. These
concepts and definitions will only be needed for the proof of Theorem 1.4 in §3.1.
The idea of an asymptotic cone first appeared in the proof of Gromov’s Polynomial
Growth Theorem [13]; however, it was first formalized by Wilkie and van den Dries
[32].

An ultrafilter ω on N is a set of nonempty subsets of N which is closed under finite
intersection, upwards-closed, and if given any subset X ⊆ N, contains either X or
N\X. We say ω is non-principal if ω contains no finite sets. We may equivalently
view a non-principal ultrafilter ω as a finitely additive measure on the class 2N of
subsets of N such that each subset has measure equal to 0 or 1, and all finite sets
have measure 0. If some statement P(n) holds for all n ∈ X where X ∈ ω, then we
say that P(n) holds ω-almost surely.

Let ω be a non-principal ultrafilter on N and let X be a metric space. If
(xn)n∈N is a sequence of points in X, then a point x satisfying for every ε> 0
that {n | d(xn, x) ≤ ε} ∈ ω is called an ω-limit of xn and denoted by limω xn.
Given a bounded sequence xn ∈ X, there always exists a unique ultralimit limω xn.

Let ω be a non-principal ultrafilter on N. Let (Xn, dn)n∈N be a sequence of metric
spaces with specified base-points pn ∈ Xn. Say a sequence (yn)n∈N is admissible if
the sequence (dXn(pn, yn))n∈N is bounded. Given admissible sequences x = (xn)

and y = (yn), the sequence (dXn(xn, yn)) is bounded and we define d̂∞(x, y) :=
limω dn(xn, yn). Denote the set of admissible sequences by X . For x, y ∈ X define

an equivalence relation by x ∼ y if d̂∞(x, y) = 0. The ultralimit of (Xn, pn) with
respect to ω is the metric space (X∞, d∞), where X∞ = X/ ∼ and for [x], [y] ∈ X∞
we set d∞([x], [y]) = d̂∞(x, y). Given an admissible sequence of elements xn ∈ Xn,
we define their ultralimit inX∞ to be limω xn := [(xn)]. Given a sequence of subsets
An ⊂ Xn, we can define their ultralimit in X∞ to be the set limω(An) := {[(xn)] |
xn ∈ An}, where we only consider admissible sequences (xn).

Let ω be a non-principal ultrafilter on N and let (µn) be a diverging, non-
decreasing sequence. Let (X, d) be a metric space and consider the sequence of

metric spaces Xn =
(
X, 1

µn
d
)

for n ∈ N with basepoints (pn). The ω-ultralimit

of the sequence (Xn, pn) is called the asymptotic cone of X with respect to ω,
(µn), and (pn) and denoted Coneω(X, (µn), (pn)). If the sequence of basepoints is
constant, then we denote the asymptotic cone by Coneω(X, (µn)). In the case of a
finitely generated group, we always assume that the basepoint is the identity.

The following is [8, Proposition 3.29(c)] which we will use in the proof of
Theorem 1.4.

Proposition 2.3. Consider a non-principal ultrafilter ω on N and a sequence
of metric spaces (Xn, dn) with basepoints pn ∈ Xn. Suppose there exists a sim-
ple geodesic triangle in (X∞, d∞). Then there exists a (possibly different) simple
geodesic triangle ∆ in X∞, a constant k ≥ 2, and a sequence of simple geodesic
k-gons Pn in Xn such that limω(Pn) = ∆.
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3. Proofs of the results

3.1. A characterization of hyperbolic geodesic metric spaces

In this section, we prove Theorem 1.4, and this is a version of a result of Hume and
Mackay [17, Proposition 5.1] for arbitrary metric spaces.

Definition 3.1. Let X be a metric space and consider the following condition:

There exists an increasing sequence of positive numbers Ln → ∞
and a pair of constants K,λ ≥ 1 such that for every n there exists a

non-constant Ln-locally (λ, 0)-quasigeodesic loop γn in X with `(γn) ≤ KLn.

(?)

At times, it is convenient to specify the values of the constants K and λ. In that
case we say that a metric space X satisfies (?) with constants (K,λ).

Proposition 3.2. If a metric space X satisfies (?), then X is not hyperbolic.

Proof. If X is hyperbolic then it satisfies the local-to-global property for quasi-
geodesics: for every choice of λ, ε, there exist constants L = L(λ, ε), λ′ =
λ′(λ, ε), and ε′ = ε′(λ, ε) such that every L-locally (λ, ε)-quasigeodesic is a global
(λ′, ε′)-quasigeodesic.

Suppose X satisfies the local-to-global property for quasigeodesics and X sat-
isfies (?) with constants (K,λ). Let L = L(λ, 0) be the constant given by the
local-to-global property. Choose n ∈ N such that Ln ≥ L. Then γn is an L-locally
(λ, 0)-quasigeodesic. However, γn is a loop and so cannot be a (λ′, ε′)-quasigeodesic
for any choice of λ′, ε′. �

Proposition 3.3. If X is a non-hyperbolic geodesic metric space, then there exists
a constant K ≥ 1 such that X satisfies (?) with constants (K, 3).

Proof. Since X is not hyperbolic, there exists an ultrafilter ω and a non-decreasing
scaling sequence µn such that Coneω(X, (µn)) is not a real tree. In particular, there
exists a simple geodesic triangle ∆ ⊆ Coneω(X, (µn)). Using Proposition 2.3, up to
replacing ∆ with another simple geodesic triangle, we obtain that ∆ = limω(Pn),
where each Pn is a geodesic k -gon in X for some k. Let z1n, . . . , z

k
n be the vertices of

Pn, where the labels are taken respecting the cyclic order on Pn. From now on, we
always consider the indices mod k. Denote by ein the geodesic segment connecting
zin, z

i+1
n , that is the appropriate restriction of Pn.

Consider the points ziω = (zin) ∈ ∆, and let eiω = limω(ei). It is a standard
argument to show that eiω are geodesic segments whose endpoints are ziω, see for
instance [7, lemma 10.48, exercise 10.71]. Since limω(Pn) = ∆, we have eiω ⊆ ∆.
Since there are only k edges, for any ρ> 1, ω-almost surely we have

`(ein) ≤ ρµn`(e
i
ω). (3.2)

In particular, ω-almost surely we have `(Pn) ≤ ρµn`(∆), that is to say that the
length of the polygons Pn is bounded above by a linear function of µn. Our goal is to
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modify the polygons Pn to obtain loops that are (cµn)-locally (3, 0)-quasigeodesics
for some c> 0, and whose lengths are comparable to those of the Pn.

To this end, we restrict our attention to only some edges of Pn. We say that an
index 1 ≤ i ≤ k is active if eiω 6= {ziω}. Let i1 ≤ · · · ≤ id be the active indices.
From now on, we will only consider edges with active indices, and thus we rename

e
ij
ω as ajω and e

ij
n as ajn. Thus, a

1
ω, . . . , a

d
ω is a subdivision of the triangle ∆ into a

geodesic d -gon. Since ∆ is simple and its edges are compact, we have that there
exists a δ > 0 such that for all edges aiω and points x ∈ aiω we have

max{d(x, ai−1
ω ), d(x, ai+1

ω )} ≥ δ.

For any active edge ain and x ∈ ain, ω-almost surely we have

max{d(x, ai−1
n ), d(x, ai+1

n )} ≥ δρ−1µn. (3.3)

Further, since the terminal vertex of aiω and the initial vertex of ai+1
ω coincide,

ω-almost surely we have

d(ain, a
i+1
n ) ≤ 1

2
δρ−1µn. (3.4)

The intuitive idea is now as follows. For infinitely many n, we have a collection
of geodesic segments (ajn) whose length keeps increasing (3.2) and such that we
have some control on the distance between them (3.3) and (3.4). Using this, we
can connect the segments to obtain loops of controlled length which are locally
quasigeodesics.

More formally, fix n such that (3.2), (3.3), and (3.4) are satisfied and orient the
ajn with the orientation of Pn that agrees with the numbering. Let Ln = 1

2δρ
−1µn.

From now on, we will drop the subscript n and denote, for instance, Ln = L.
Let q1 be the first point of a1 such that d(q1, a2) ≤ L. By the continuity of the
distance function and the choice of q1, we see that d(q1, a2) = L.

Let p2 be a point in a2 such that d(q1, p2) = L. Therefore, we see that d(p2, a3) ≥
δρ−1µn > L. Let q2 be the first point in a2 after p2 such that d(q2, a3) ≤ L. Again,
we have d(q2, a3) = L, and let p3 ∈ a3 be a point such that d(q2, p3) = L. We
iterate this procedure until we obtain a point qd ∈ ad and a point p1 ∈ a1 such that
d(qd, p1) = L.

We claim that d(pj , qj) ≥ L. Indeed, since d(pj , aj−1) ≤ L, Eq. (3.3) implies
d(pj , aj+1) ≥ δρ−1µn = 2L, and the result follows from the triangle inequality.

From now on, we denote by [pj , qj ] the restriction of aj between pj , qj , and we
choose once and for all geodesic segments [qj , pj+1] connecting qj , pj+1. Let γn = γ
be the concatenation

γ = [p1, q1] ∗ [q1, p2] ∗ · · · ∗ [qd, p1],

where we consider γ to be parameterized by arc length. We will show that γ is a
(L; 3, 0)-local quasigeodesic.

Let x, y be two points of γ of parameterized distance less than L. We denote by
dγ(x, y) the parameter distance. We will prove that dγ(x, y) ≤ 3d(x, y). If a and b
are contained in the same segment of γ, then the inequality clearly holds. Thus, we
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can assume that x and y are on two consecutive segments of γ since the length of
each segment of γ is at least L.

Firstly, consider the case x ∈ [pj , qj ], y ∈ [qj , pj+1]. If x = qj , then we would be
in the previous case, so x 6= qj . We claim d(x, y) > d(qj , y). If not, this would
contradict the choice of qj as the first point at distance L from aj+1. Indeed,
d(x, y) ≤ d(qj , y) implies d(x, pj+1) ≤ d(qj , pj+1). Therefore, d(x, y) > d(qj , y).
In particular:

dγ(x, y) = d(x, qj) + d(qj , y) ≤
(
d(x, y) + d(y, qj)

)
+ d(qj , y) ≤ 3d(x, y).

Consider now the case x ∈ [qj−1, pj ] and y ∈ [pj , qj ]. Since d(qj−1, aj) =
d(qj−1, pj), we have d(x, y) ≥ d(x, pj). Hence

dγ(x, y) = d(x, pj) + d(pj , y) ≤ d(x, pj) +
(
d(pj , x) + d(x, y)

)
≤ 3d(x, y).

Thus, γ is a (L; 3, 0)-local quasigeodesic, where L = Ln = 1
2δρ

−1µn. To conclude
the proposition, we need to bound the length of γ linearly in terms of µn. However,
observe that d(qj , pj+1) = L for all j and d(pj , qj) ≤ `(ajn) ≤ ρµn`(a

j
∞). Setting

M = max `(aj∞), we obtain

`(γ) ≤ d

(
1

2
δρ−1µn + ρMµn

)
= d

(
1

2
δρ−1 + ρM

)
µn.

�

Theorem 1.4. A geodesic metric space X is not hyperbolic if and only if there exists
a sequence Ln → ∞ and a sequence of non-constant Ln-locally (3, 0)-quasigeodesic
loops γn that satisfy `(γn) ≤ KLn, where K is some constant that does not depend
on n.

Proof. One direction is given by Proposition 3.3 and the other by Proposition 3.2.
�

In [17], by an 18-bilipschitz embedded cyclic subgraph in X, Hume and Mackay
mean an injective graph homomorphism φ : Cn → X of the circular graph Cn into
the graph X such that dCn(x, y) ≤ 18dX(φ(x), φ(y)) for all vertices x, y ∈ Cn. We
now compare our results above to the following proposition of Hume and Mackay.

Proposition 3.4. ([17], Proposition 5.1) Let X be a connected graph. X is hyper-
bolic if and only if there is some N such that every 18-bilipschitz embedded cyclic
subgraph in X has length at most N.

From this, we obtain a version of Theorem 3.3 with different constants. Notably
in Hume and Mackay’s result, we obtain a good multiplicative constant but a
relatively large additive constant, whereas in our result, Theorem 3.3, the size of
the constants is reversed.

Corollary 3.5. Let K> 2. If G is a non-hyperbolic group, then for any finite
generating set S, the Cayley graph Γ(G,S) satisfies (?) with constants (K, 18).
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Proof. Proposition 3.4 tells us that there exists an increasing sequence of natural
numbers ln → ∞ and a sequence of 18-bilipschitz embedded cyclic subgraphs in
Γ(G,S) of length ln. We may write these cyclic subgraphs as injective graph homo-
morphisms φn : Cln → Γ(G,S). If Ln = bln/2c then any subpath in Cln of length
Ln is a geodesic. So Cln is Ln-locally (1, 0)-quasigeodesic, from which it follows that
its image in Γ(G,S) is Ln-locally (18, 0)-quasigeodesic. For ln sufficiently large we
have ln ≤ KLn, and by passing to a subsequence if necessary, we may assume that
Ln → ∞ is an increasing sequence. The result follows. �

3.2. Regularity

Proposition 3.6. Suppose Γ(G,S) is a Cayley graph that satisfies (?) with con-
stants (K,λ). Then for all λ′ > (2K − 1)λ, the set of (λ′, 0)-quasigeodesics does
not form a regular language.

Proof. To prove the proposition, we will show that any automata accepting the
language of (λ′, 0)-quasigeodesics must have infinitely many distinct states. In
particular, the language is not accepted by an FSA and so is not regular.

Fix a generating set S such that the Cayley graph Γ(G,S) satisfies (?) with
constants (K,λ). Let λ′ > (2K − 1)λ. Write ln = `(γn).

We need to choose the parametrization of our loops γn thoughtfully.
Claim. There exists an arclength parametrization γn : [0, ln] → Γ(G,S) of the loop
n such that if Tn ∈ N is the minimal natural number such that γn|[0,Tn] is not a
(λ′, 0)-quasigeodesic, then γn|[1,Tn] is a (λ′, 0)-quasigeodesic.

Proof of Claim. To begin with, suppose γ′
n : [0, ln] → Γ(G,S) is some arbitrary

parametrization by arclength of the loop γn. Let T ′
n ∈ N be the minimal natural

number such that γ′
n|[0,T ′

n] is not a (λ′, 0)-quasigeodesic. It follows that there exists
a non-empty collection of non-negative integers

T ′
n = {T ∈ N0 : T ≤ T ′

n and λ′|γ′
n(T )

−1γ′
n(T

′
n)| < T ′

n − T}.

Let S′
n = max T ′

n. Consider now the alternate parametrization γn : [0, ln] → Γ(G,S)
of our loop defined by γn(t) = γ′

n(t + S′
n). It follows that γn(0) = γ′

n(S
′
n) and

γn(T
′
n − S′

n) = γ′
n(T

′
n). If we define Tn = T ′

n − S′
n then

• γn|[0,Tn−1] is a (λ′, 0)-quasigeodesic;
• γn|[0,Tn] is not a (λ′, 0)-quasigeodesic;
• γn|[1,Tn] is a (λ′, 0)-quasigeodesic;

and the claim follows. �

Evidently, we may also assume that γn(0) = e for all n. For each n, we fix the
following notation:

• Let tn be the maximal natural number such that γn|[0,tn] is a (λ, 0)-
quasigeodesic;
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• let Tn be the minimal natural number such that γn|[0,Tn] is not a (λ′, 0)-
quasigeodesic;

• let gn := γn(tn);
• let hn := γn(tn)

−1γn(Tn). So γn(Tn) = gnhn.

Now, let m ∈ N be arbitrary and let n be such that

Ln >
2KLm

κ
(3.5)

where κ is the positive constant

κ :=
1

λ
− 2K − 1

λ′ . (3.6)

We will show that the (λ′, 0)-quasigeodesics γm|[0,tm] and γn|[0,tn] are in different
states at times tm and tn, respectively.

Let η : [0, tm + Tn − tn] denote the concatenation of γm|[0,tm] with the path
γn|[tn,Tn].

Suppose first that η|[0,tm+Tn−tn−1] is not a (λ′, 0)-quasigeodesic. Then we are
done since we know that γn|[0,tn] concatenated with γn|[tn,Tn−1] is a (λ′, 0)-
quasigeodesic (by the minimality of Tn) whereas γm|[0,tm] concatenated with the
same path is not a (λ′, 0)-quasigeodesic. So we may assume that η|[0,tm+Tn−tn−1]

is a (λ′, 0)-quasigeodesic.
Suppose we have proven that η|[0,tm+Tn−tn] is a (λ′, 0)-quasigeodesic. Then

γn|[0,tn] concatenated with the path γn|[tn,Tn] is not a (λ′, 0)-quasigeodesic (by
the definition of Tn), but γm|[0,tm] concatenated with the same path is a (λ′, 0)-
quasigeodesic. It follows that the (λ′, 0)-quasigeodesics γm|[0,tm] and γn|[0,tn] are
in different states at times tm and tn, respectively. So we would like to prove that
η|[0,tm+Tn−tn] is a (λ′, 0)-quasigeodesic. Looking for a contradiction, suppose this
is false. Then there exists some 0 ≤ t ≤ tm + Tn − tn, t ∈ N0, such that

λ′|η(t)−1η(tm + Tn − tn)| < tm + Tn − tn − t.

If t ≥ tm, then γn|[t,Tn] is not a (λ′, 0)-quasigeodesic. However, by our assumption
on the parametrizations of the loops, we know this is not the case. So we may
assume that t ≤ tm. Hence,

λ′|γm(t)−1gmhn| < tm + Tn − tn − t. (3.7)

To conclude the proof, we’ll need to recall the following inequalities. By
condition (?), we have:

Lm ≤ tm ≤ KLm; (3.8)

Ln ≤ tn; (3.9)

Tn ≤ KLn ≤ Ktn. (3.10)
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Since the path γm is simplicial, and since γn|[0,tn] is a (λ, 0)-quasigeodesic, we have:

|γm(t)−1gm| ≤ tm − t; (3.11)

tn
λ

≤ |gn|. (3.12)

Finally, since γn|[0,Tn−1] and γn|[1,Tn] are both (λ′, 0)-quasigeodesics yet γn|[0,Tn]

is not a (λ′, 0)-quasigeodesic, we obtain:

|γn(Tn)| <
Tn

λ′ . (3.13)

We have |hn| ≥ |gn−|γn(Tn)|, so by (3.12) and (3.13), we see that |hn| ≥ tn
λ − Tn

λ′ .
It then follows from (3.10) that

|hn| ≥
(
1

λ
− K

λ′

)
tn. (3.14)

Now, |γm(t)−1gmhn| ≥ |hn| − |γm(t)−1gm|, so by (3.14) and (3.11) we obtain

|γm(t)−1gmhn| ≥
(
1

λ
− K

λ′

)
tn − (tm − t). (3.15)

Combining our assumption (3.7) with (3.10), we obtain

λ′|γm(t)−1gmhn| ≤ tm − t+ (K − 1)tn. (3.16)

Next, combining (3.15) and (3.16) yields

tm − t+ (K − 1)tn
λ′ ≥

(
1

λ
− K

λ′

)
tn − (tm − t).

This rearranges to

0 ≥
(
1

λ
− (2K − 1)

λ′

)
tn −

(
1 +

1

λ′

)
(tm − t);

≥ κtn − 2(tm − t),

where κ is defined in (3.6). Now,

tn ≤ 2(tm − t)

κ
≤ 2tm

κ
,

and so by (3.8) and (3.9) we have

Ln ≤ 2KLm

κ

which contradicts (3.5). So η|[0,tm+Tn−tn] is a (λ′, 0)-quasigeodesic and so the
(λ′, 0)-quasigeodesics γm|[0,tm] and γn|[0,tn] are in different states at times tm and
tn, respectively.
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Let ξ : N → N be the function

ξ(m) = min

{
n ∈ N : Ln >

2KLm

κ

}
.

Let (ni)i∈N be the integer sequence defined inductively by n1 = 1, ni+1 = ξ(ni). By
the above, we know that for every i ∈ N and for every j < i, γni(tni) is in a different
state to γnj (tnj ) as a (λ′, 0)-quasigeodesic. It follows that there are infinitely many

different (λ′, 0)-states. Hence, the (λ′, 0)-quasigeodesics in Γ(G,S) cannot form a
regular language. �

Theorem 1.3. Let G be a finitely generated non-hyperbolic group. Then for all
finite generating sets S and all λ′ > 54 the set of (λ′, 0)-quasigeodesics is not regular
in Γ(G,S).

Proof. Since G is not hyperbolic, by Theorem 3.3, for each finitely generated Cayley
graph Γ of G, there exists some K > 1 such that Γ satisfies (?) with constants
(K, 3). Instead, by corollary 3.5, we may take the constants (K, 18) with K > 2—we
choose to work with these constants. Now, Proposition 3.6 implies that for all
λ′ > (2×2−1)×18 = 54, the set of (λ′, 0)-quasigeodesics is not regular in Γ(G,S),
as required. �

Theorem 1.2. A finitely generated group is hyperbolic if and only if it is QREG.

Proof. That hyperbolicity implies QREG was proven by Holt and Rees in [16].
The other direction is given by our Theorem 1.3. �

Theorem 1.3 suggests that for every non-hyperbolic group G and every finite
generating set S there exists some infimal value of λ such that for all λ′ > λ the
language of (λ′, 0)-quasigeodesics in Γ(G,S) is not regular. Given a non-hyperbolic
group G, it is interesting to ask what this infimal λ might be. As far as we are
aware, there are no known examples of non-hyperbolic Cayley graphs Γ(G,S) with
regular (λ, 0)-quasigeodesics unless λ=1.

Conjecture 3.7 If G is a non-hyperbolic finitely generated group, then for all
generating sets S, and for all λ′ > 1, the (λ′, 0)-quasigeodesics in Γ(G,S) do not
form a regular language.

3.3. Geodetic Cayley graphs

Finally, we prove our application to Shaprio’s question on geodetic Cayley graphs.

Theorem 1.5. Let G be a finitely generated group with a generating set S
such that Γ(G,S) is geodetic. If there exists λ> 3 such that the language of
(λ, 0)-quasigeodesics is regular, then G is hyperbolic and hence virtually free.

Proof. Let Γ be a graph. An isometrically embedded circuit (IEC) is a simplicial
loop of length 2n+1 such that the restriction of each subsegment of length at most
n is a geodesic.
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We claim that if Γ is geodetic and not hyperbolic then there are IECs of arbi-
trarily large length. So suppose Γ is geodetic and there is a uniform bound on the
length of IECs. We will show that Γ is hyperbolic. By [25, Theorem 1.4], a Cayley
graph is hyperbolic if and only if all geodesic bigons are uniformly thin, i.e. any two
geodesics sharing endpoints have uniformly bounded Hausdoff distance. Consider
an arbitrary geodesic bigon in Γ. Since Γ is geodetic, if the geodesic endpoints are
vertices, the geodesics need to coincide. Further, it is straightforward to check that
if the endpoints are both in an edge one can reduce to a case where at least one
endpoint is a vertex. So, the only case left is a bigon where one endpoint is a vertex
and the other is the midpoint of an edge. By [9, lemma 4], such a configuration
produces an IEC. Since these have uniformly bounded length, the bigon is thin. So
Γ is hyperbolic and the claim is proved.

Observe that an IEC of length 2n+1 is an n-local geodesic. By Proposition 3.6,
we conclude that if a group is non-hyperbolic and geodetic, then for any λ′ > 3 the
set of (λ′, 0)-quasigeodesics cannot form a regular language. �
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