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Abstract. Stellar convection is customarily described by the mixing-length theory, which makes
use of the mixing-length scale to express the convective flux, velocity, and temperature gradi-
ents of the convective elements and stellar medium. The mixing-length scale is taken to be pro-
portional to the local pressure scale height, and the proportionality factor (the mixing-length
parameter) must be determined by comparing the stellar models to some calibrator, usually
the Sun. No strong arguments exist to suggest that the mixing-length parameter is the same
in all stars and all evolutionary phases. Because of this, all stellar models in the literature are
hampered by this basic uncertainty.

In a recent paper (Pasetto et al. 2014) we presented a new theory that does not require the
mixing length parameter. Our self-consistent analytical formulation of stellar convection de-
termines all the properties of stellar convection as a function of the physical behaviour of the
convective elements themselves and the surrounding medium. The new theory of stellar convec-
tion is formulated starting from a conventional solution of the Navier-Stokes/Euler equations,
i.e. the Bernoulli equation for a perfect fluid, but expressed in a non-inertial reference frame
co-moving with the convective elements. In our formalism, the motion of stellar convective cells
inside convective-unstable layers is fully determined by a new system of equations for convection
in a non-local and time-dependent formalism.

We obtained an analytical, non-local, time-dependent solution for the convective energy trans-
port that does not depend on any free parameter. The predictions of the new theory are com-
pared with those from the standard mixing-length paradigm with positive results for atmosphere
models of the Sun and all the stars in the Hertzsprung-Russell diagram.

Keywords. Sun: fundamental parameters Sun: interior stars: evolution stars: fundamental pa-
rameters

1. Introduction
The transfer of energy by convection is of paramount importance in all the stars.

High-mass stars, roughly for masses m > 1.3m� contain fully convective cores, all stars
m ∈ [0.1, 100[ m� have outer convective envelopes, and finally stars smaller in mass than
m < 0.3m� are fully convective. Despite its great importance, a satisfactory treatment
of stellar convection in stars is still open to debate and a self-consistent treatment of the
physics of convective energy transfer is still missing. The ideal goal would be to obtain a
set of self-consistent equations, i.e. a set of equations resulting from physical assumptions
without ad-hoc parameters to be determined by means of suitable calibrators (usually
the Sun).
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It is worth recalling here that while convcetion in the inner regions of a star can
be simply reduced to assuming the temperature gradient of the convectively unstable
medium equal to the adiabatic value and to suppose that convection can easily carry
any amount of energy, in the external regions this is no longer possible and some theory
has to be used to predict the temperature gradient in the medium and convective ele-
ments and the amount of energy that can be carried by convection (the remaining part
being transported by radiation). The most successful theory dealing with the external
convection is the mixing-length Theory (MLT) long ago developed by Biermann (1951)
and Böhm-Vitense (1958). The MLT is paradigm reference to which every new theory
has to be compared with because of its success over decades in which it has been used.
In the MLT, the convective elements are supposed to travel a mean-free-path lm (e.g.,
Kippenhahn et al. 2012). lm which is assumed to be proportional to the natural distance
scale hP , given by the pressure stratification of the star, the proportionality constant
being the mixing-length (ML) parameter Λm , defined implicitly as lm ≡ Λm hP . The
parameter Λm is derived from comparing the theoretical luminosity, radius and effective
temperature of a stellar model for the Sun to its observational values.

In a recent paper Pasetto et al. (2014) developed the first theory of stellar convection
in which the solar properties are reproduced without making use of free parameters. In
the following we will refer to this theory as the scale-free convection (SFC) theory. In this
approach, reviewed in the next sections, the authors obtained a solution for the equa-
tions governing stellar atmospheres that self-consistently predict the energy transport,
luminosities, radii and effective temperatures all along the evolutionary sequence of a
star.

2. A mixing-length free set of equation for stellar atmospheres
In this section, after a short presentation of the basic stellar equations, we will review

the fundamentals of the Pasetto et al. (2014) theory of convection in stellar atmospheres.
On purpose, the discussion is kept light and equation-free in order to help the reader to
understand the results presented in Section 3 below. The reader interested to any other
detail of the new theory is referred to the original paper by Pasetto et al. (2014).

2.1. Equation of a stellar layer
The atmosphere of a star is considered as a spherical distribution of gaseous plasma in
absence of rotation and magnetic field and in pressure equilibrium against self-gravity.
Assuming spherical coordinates {r, θ, φ} centered on the star’s center, any layer of thick-
ness dr and mass dm obeys to the mass conservation equation, dm

dr = 4πr2ρ, where ρ is the
mass density. The layer aloso obeys the Poisson equation linking the density distribution
ρ to its gravitational potential Φg , i.e. ΔrΦg = 4πgρ where Δr is the Laplacian operator
in spherical coordinates. The layer has an equations of motion (EoM) that at equilib-
rium in spherical symmetry is represented by the Euler equation, 1

4πr 2
∂ 2 r
∂ t2 = − ∂P

∂m − Gm
4πr 4 ,

where t is the time and G the gravitational constant. Finally, the equation for the energy
transfer ∂L

∂m = ε−εν +εg has to be considered. In principle, the layer could contain nuclear
ε = ε (P, T,Xi) and gravitational εg = εg (P, T,Xi) sources of energy, and in some cir-
cumstances even the neutrino production and consequent energy losses εν = εν (P, T,Xi)
could be considered. However, in a stellar atmosphere the production of energy by nu-
clear, gravitational, and neutrinos can be ignored and the luminosity is simply assumed
to be a constant (the luminosity has already been set up to its total value in the deep
interiors). Finally, the plasma obeys an equation of state that links pressure P , tempera-
ture T , density ρ and chemical composition of the elements, Xi (i = 1, n, n the number of

https://doi.org/10.1017/S1743921316006190 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921316006190


610 S. Pasetto et al.

chemical elements considered) and a suitable relation for the radiative opacity function of
the same quantities (in some cases the conductive opacity has to be considered). Last, in
a stellar atmosphere, the transport of energy is secured by radiation plus conduction and
convection. This environment represents the medium in which any theory of convection
has to be framed.

In addition to this we need a numerical procedure to solve all the above equations
together with their boundary conditions. We adoptthe code for stellar models written
by Hofmeister et al. (1964) and largely modified and updated by the Padua group:
(e.g., Chiosi & Summa 1970) with semiconvection, Bressan et al. (1981) with ballistic
convective overshoot from the core, Alongi et al. (1991) with envelope overshoot, Deng
et al. (1996a), Deng et al. (1996b) and Salasnich et al. (1999) with turbulent diffusion,
finally the many revision and improvements described in Bertelli et al. (1994), Bertelli
et al. (1995), Bertelli & Nasi (2001), Bertelli et al. (2003), Bertelli et al. (2008). In the
future we will be implement the new theory of convection also in the twin-code developed
independently by (Weiss & Schlattl 2008). The SFC theory of Pasetto et al. (2014) and
the classical MLT are run in parallel so that comparison is possible.

2.2. The idea for a new theory of stellar convection

The ideas at the base of the SFC theory are in principle simple. Let us think for example
of the upward motion of a convective element. The evolution of a single convective cell
can be considered as the sum of the upward motion the expansion. In the MLT only
the upward motion is considered. The free-parameter of the MLT stems indeed from the
assumptions made to describe the upward motion of the convective elements. Therefore,
the only logical alternative in developing a new theory is to consider the expansion of the
convective as the main driver of the whole process. To make the upward motion ineffective
it is enough to write the equations describing the motion of a convective element in a
reference frame co-moving with it. In such a case, all equatiions are referred to convective
element and this latter convective is at rest. Pasetto et al. (2014) name S1 this comoving
reference, to distinguish it from the inertial reference frame centred on the star and named
S0 . In Pasetto et al. (2014) the hydrodynamic equations have been integrated accounting
for the non-inertial apparent forces that arise in the treatment of any physical system
evolving in S1 . Under the assumption that viscous terms are much smaller than the
inertial ones and the magnetic field is negligible, the potential flow approximation can be
adopted and suitably formulated in S1 (mathematical formulation in S1 is slightly more
complicated). In order to keep the equations analytically treatable, Pasetto et al. (2014)
limit the analysis to the linear regime. If we limit ourselves to the subsonic regime of the
stellar convection, the velocity of a convective element, v, will be much smaller that its
expansion rate, ‖ dξ

dt ‖ ≡ ‖ξ̇‖, where ξ is the size of the convective elements. Therefore, a
linear theory on the small parameter ε ≡ ‖v‖

‖ξ̇‖ � 1 can be developed. In particular, within
the framework of this linear approximation, in the equations governing the evolution of
the expansion rate of a convective element, the role of the inertia of the fluid displaced
by the motion of the convective element turns out to be important. In contrast, this term
has been always neglected in the literature and the evolution of the convective elements
was always studied only in relation to its vertical motion (this led indeed to the problem
of the mixing-length scale).

As a result of this approach, we obtaine a new system of equations for the energy
transfer as a function of the radiative plus conductive flux ϕrad|cnd , the convective flux
ϕcnv , the average temperature over pressure gradient ∇e ≡ | d ln T

d ln P |e of the element, and
the stellar gradient ∇. Moreover, two extra variables, the mean velocity v̄ and the mean
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ξ̄e of the convective elements are obtained as a result of the solution of the system. All
these physical quantities are a function of the pressure P , temperature T , density ρ,
specific heat at constant pressure cp , adiabatic gradient of temperature over pressure
∇ad ≡

∣∣ d ln T
d ln P

∣∣
ad , radiative gradient ∇rad , molecular weight gradient ∇μ ≡ d ln μ

d ln P , the
gravity g, the opacity κ. Finally, all these quantities are a function of the position inside
the star and time.

The general form of the system of equations obtained in Pasetto et al. (2014) is:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕrad/cnd = 4ac
3

T 4

κhP ρ∇
ϕrad/cnd + ϕcnv = 4ac

3
T 4

κhP ρ∇rad

v̄2 = ∇−∇e − ϕ
δ ∇μ

3 h P
2 δ v̄ τ +(∇e +2∇− ϕ

2 δ ∇μ )
ξ̄eg

ϕcnv = ρcP T (∇−∇e) v̄ 2 τ
hP

∇e −∇a d
∇−∇e

= 4acT 3

κρ2 cP

τ
ξ̄ 2

e

ξ̄e = g
4

∇−∇e − ϕ
δ ∇μ

3 h P
2 δ v̄ τ +(∇e +2∇− ϕ

2 δ ∇μ )
χ̄,

(2.1)

where a is the radiation-density constant, and c the speed of light and for the purposes
of this paper χ̄ is a function of time linking size to velocity (i.e. a monotonic linear map
(a bijection) between time, velocity and size of the convective elements). For any other
see Appendix A of Pasetto et al. (2014)).

It is worth remarking here that the SFC theory, although developed in spherical co-
ordinates, does not really depend on it because no assumption is made about the shape
of convective elements whwn carrying energy up and down. The elements indeed are not
separated from the surrounding medium by a surface (in such a case one should use the
Young-Laplace treatment of the surface tension). Our approach differ from the classical
physical description in literature (e.g., Tuteja et al. 2010, and references therein), but
it agrees with astrophysical 3D-hydrodynamical simulations in which the convection is
represented by small volumes moving up and down for a short time†.

This system of equations can be proved to be ‘“closed”’, i.e. self-consistently deter-
mined. A unique manifold of solution exists (see “theorem of uniqueness” in Pasetto et al.
(2014)) that yields all the possible solutions. This differs from the MLT where the same
solution is obtained with a degree of freedom (i.e. the mixing-length). Now, this extra
degree of freedom is fixed by introducing another equation of motion for the convective
layers (i.e. expansion in addition to the vertical motion). Finally, it is worth noting that
in the SFC theory the convective energy transport of the energy occurs mainly by the
expansion of the elements and less by their vertical motion.

3. Results
We present here an extended comparison between the standard MLT and the SFC

theory. The results are obtained from solving the system of Eq.2.1 for each layer of a
stellar atmosphere governed by the equations considered in Section 2.1.

3.1. The model matching the Sun
We consider the stellar track of Bertelli et al. (2008) best fiiting the present position of
the Sun on the HRD e.g., log10 {L/L�, Teff } ∼= {0.000, 3.762} with standard chemical
composition {X,Y } = {0.71, 0.27}. The results are shown in Fig.1. In the same plot we

† The present formulation, however, cannot be applied to convective overshooting for which
a suitable approach must be developed.
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Figure 1. Solar fluxes and temperature gradient profiles for the internal convective stratification
of the star. The upper panels show the expectation for ϕrad |cnd on the left and ϕcnv on the right.
Blue refers to our theory, purple to the MLT.

show also the predictions of the MLT with Λm = 1.65 (the MLT is according to the
version presented in Kippenhahn et al. (2012)), so that comparison between SFC theory
and MLT is possible. Both the temperature gradients ∇ and ∇e and fluxes ϕrad|cnd
and ϕcnv predicted by SFC theory and MLT are in mutual agreement. A slightly larger
convective zone is predicted by SFC theory the systematically lower radiative flux is
balanced by higher convective flux.

4. Conclusions
We have presented here the first results of the integration of stellar atmospheres with

SFC theory developed in Pasetto et al. (2014). We have set up a numerical code to sys-
tematically integrate as function of time and position the equations presented in Pasetto
et al. (2014) and have run it in parallel with the standard MLT. All the results achieved
by MLT are successfully recovered by the SFC theory without making use of any ad-
justable free-parameter. We argue that the new theory despite its linear formulation is
able to capture the essence of the convection in the stellar atmospheric layers in a simple
manner.

Furthermore, the SFC theory has a predictive potential that descriptive analyses of nu-
merical simulations still miss. To be able to generate numerical simulations with million-
degrees of freedoms does notautomatically mean that we fully understand them. An em-
blematic example of these problems has recently been discussed by Arnett et al. (2015)
where the authors fail to close the equations suggested their hydrodynamic simulations.
Their ultimate goal is to search 1D theory based on 3D simulations passing through a
2D intermediate stage. We dare to claim here that a 1D, parameter-free theory already
exist Pasetto et al. (2014) and that this is right trail to follow.
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