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[luminating 1-unconditional convex bod-
ies in R’ and R?, and certain cases in higher
dimensions

Wen Rui Sun and Beatrice-Helen Vritsiou

Abstract. We settle the Hadwiger-Boltyanski Illumination Conjecture for all 1-unconditional con-
vex bodies in R? and in R*. Moreover, we settle the conjecture for those higher-dimensional 1-
unconditional convex bodies which have at least one coordinate hyperplane projection equal to the
corresponding projection of the circumscribing rectangular box. Finally, we confirm the conjectured
equality cases of the Illumination Conjecture within the subclass of 1-unconditional bodies which,
just like the cube [—1, 1]", have no extreme points on coordinate subspaces.

Our methods are combinatorial, and the illuminating sets that we use consist primarily of small per-
turbations of the standard basis vectors. In particular, we build on ideas and constructions from [37],
and mainly on the notion of deep illumination introduced there.

1 Introduction

This paper is a direct continuation of [37]: building on the approach there, which allowed
us to come up with a uniform way of illuminating 1-symmetric convex bodies of all
dimensions in accordance to what the [llumination Conjecture stipulates, we extend this
to certain cases of 1-unconditional convex bodies.

Let K be a convex body in the Euclidean space R", that is, a convex, compact set with
non-empty interior (which we will denote by int K). Given a boundary point x of K and
anon-zero vector d € R" (a direction), we say that d illuminates x if there exists € > 0
such that x + &d € int K. A set of directions D = {d1,d,, ..., dp } such that, for each
boundary point x of K, there is at least one d; € D which illuminates x, will be called
an illuminating set for K. The smallest cardinality of an illuminating set for K is called
the illumination number of K, and we denote it by J(K).

This definition of illumination is due to Boltyanski [10]. There is also an equivalent
definition by Hadwiger [24], where we illuminate using point ‘light sources’ placed out-
side K (and all rays emanating from them towards the boundary of K, which meet the
boundary and then cross into the interior of K); it can be shown that both definitions
lead to the same number for a fixed body K.

Moreover, we have that, for any convex body K, I(K) = N(K,int K), where the
latter stands for the covering number of K by int K (that is, the smallest number of trans-
lates of int K whose union contains K). Thus the Illumination Conjecture, which we
formulate right below, is equivalent to Hadwiger’s Covering Problem. Finally, there is
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yet another equivalent formulation by Gohberg and Markus [22], where we cover K by
smaller homothetic copies of it.

Hadwiger’s Covering Problem/The Hadwiger-Boltyanski Illumination Conjec-
ture. For every convex body K in R", we should have J(K)=N (K, intK) < 2".

Furthermore, the inequality should be strict, except in the case of the cube and of its
affine images (parallelepipeds) in R”".

An excellent reference on the history of these equivalent conjectures, and of related
problems, and on progress up to recent years is the survey [6]. We also refer to the
monographs [4, 14] and the surveys [3, 12, 31].

Levi in 1955 [28] fully settled the problem of bounding N (K, int K) for planar con-
vex bodies (showing that N(K,intK) = 3 for K C R2, except if K is a parallelogram,
in which case N(K,int K) = 4). Motivated by that, in 1957 Hadwiger [23] posed the
analogous question in higher dimensions. To date, aside from Levi’s solution in R?, in
all other dimensions the general problem remains open. In dimension 3 Lassak [26] has
shown that, if K is centrally symmetric (that is, K — x = x — K for some x € R3), then
J(K) < 8.Thus, short of the equality cases, the conjecture in R? is settled for symmetric
convex bodies, but it remains open for the not-necessarily symmetric case, with the best
bound being 14 (due to Prymak [33]). We also refer to a very recent paper by Arman,
Bondarenko and Prymak [1], where the reader can find all the prior progress and the
most recent improvements on the bounds for other low dimensions.

A longstanding general upper bound (which remains the best known when spe-
cialised to the symmetric case) was already given in 1964 by Erdds and Rogers [20]:

J(K) =N(K,intK) < n(lnn+Inlnn+5)

where 6(K) is the asymptotic lower density of the most economical covering of R”
by copies (translates) of K. Erdés and Rogers adapted an earlier proof by Rogers [34]
which was giving the first polynomial-order, and essentially best known to date, bound
on 6(K). In the symmetric case, this gives J(K) < C2"nlnn, where C is an absolute
constant. Moreover, by also recalling the Rogers-Shephard inequality [35], we obtain
the bound J(K) < C’4"+nlnn for every (not-necessarily symmetric) convex body
K C R (see also [18] for a recent, slight improvement to the constant 4 in the expo-
nential here, with the general estimates however still being weaker than those in the
symmetric case).

The lumination Conjecture has been fully settled for certain special classes of con-
vex bodies. Again, we refer the reader to the survey [6] for a comprehensive list of
references up to 2016. Just as examples, we mention that:

* Levi also showed in [28] that J(Q) = n + 1 for all smooth convex bodies Q in R".

* Martini [30] settled the conjecture for the class of belt polytopes (which con-
tains the zonotopes). This was later extended by Boltyanski and Soltan [15, 16] to
zonoids, and by Boltyanski [11] to belt bodies (see also [13]).

* The conjecture is fully settled for convex bodies of constant width. For dimensions
n > 16, this is due to Schramm [36]. For the remaining dimensions we have: [27],
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[39] (see also [8, Section 11]) dealing with n = 3, [7] dealing with n = 4, and [17]
dealing with 5 < n < 15.

* Tikhomirov [38] settled the conjecture for 1-symmetric convex bodies of suf-
ficiently large dimension (1-symmetric means that the body is invariant under
reflections about coordinate subspaces and under any permutation of the coordi-
nates). His result was the main motivation for [37], where we gave an alternative
approach which can also deal with 1-symmetric bodies in low dimensions.

* Bezdek, Ivanov and Strachan [5] confirmed the conjecture for centrally symmetric
cap bodies in dimensions n = 3 (see also [25]), n = 4, and n > 20. They further
showed that, if the cap body is 1-unconditional (we recall the definition below),
then the Illumination Conjecture holds in all dimensions (and in that case J(K) <
4n oncen > 5).

* Gao, Martini, Wu and Zhang [21] verified the conjecture for polytopes which arise
as the convex hull of the Minkowski sum of a finite subset of the lattice Z" and of
the unit-volume cube —%, %]n

* Finally, Livshyts and Tikhomirov [29] settled the conjecture for convex bodies in
sufficiently small neighbourhoods of the cube (with respect to either the geometric
or the Hausdorff distance). Given that IJ(K) = N(K, int K) is an upper semicon-
tinuous quantity (see e.g. [32]), the bound 2" can already be deduced for bodies
sufficiently close to [—1, 1]", so their result is about settling the equality cases
(and indeed they show that, if dist(K, [—1, 1]") is small enough, and K is not a
parallelepiped, then 2" — 1 is a sharp upper bound for J(K)).

Recall that a convex body K in R" is called 1-unconditional if it is invariant under
reflections about coordinate subspaces. Equivalently if

x = (x1,X2,...,%,) € K implies that (e1x1, €X2,...,€,Xx,) € K
for any choice of signs €; € {+1},1 <i < n.

Relevant results that would apply to this class are the following, which however only
deal with 3-dimensional convex bodies. Lassak [26] showed that 3(K) < 8 for every
centrally symmetric convex body K in R? (equivalently, for every origin-symmetric K,
that is, such that K = —K). Moreover, he showed this while using illuminating sets
formed by 4 pairs of opposite directions (and posed the question whether this is possible
to do in higher dimensions as well, if K = —K).

Bezdek [2] showed that J(P) < 8 for any polytope in R® which has a non-trivial
affine symmetry. Finally Dekster [19] obtained the same bound for any convex body K
in R3 which is symmetric about a plane.

The main results of this paper are the following. Note that, given a convex body K,
we denote by 9K its boundary, and by dim(K) the dimension of the ambient Euclidean
space. Moreover, assuming the dimension 7 is clear from the context, we write 1 =
e1+ey+---+e,, wheree;, 1 <i < nare the standard basis vectors in R".

Theorem 1 Let K be a I-unconditional convex body in R® or R*, and assume that K is not
a parallelepiped. Then I(K) < 24m(K) 2,

Moreover, we can use illuminating sets of cardinality 29™K) — 2 which consist of pairs of
opposite directions.
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Observe that, because of Lassak’s and Dekster’s results, the part of the above theorem
which concerns dimension 3 is only novel in that we also settle the equality cases.

Theorem 2 Let n > 3, and let K be a 1-unconditional convex body in R". Without loss of
generality (to be justified below), assume that e; € 0K forall1 <i < n.

In addition, suppose that there exists at least one iy € {1,2,...,n} such that the vector
1-¢; € OK (in other words, K contains at least one unit subcube of dimension n — 1). Then,
if K is not a parallelepiped, we will have that J(K) < 2" — 2.

Moreover, we can use illuminating sets of cardinality 2" —2 which consist of pairs of opposite
directions.

Similar to Theorem 2, we also have the following

Proposition 3 Let n > 4, and let K be a I-unconditional convex body in R™ such that
e; €0K foralll <i<n.

Assume that forall 1 < i < j < n we have that 1 — e; — e; € 0K (in other words,
K contains all poss% unit subcubes of dimension n — 2). Then, if K is not a parallelepiped,
we will have that I(K) < 2" — 2 (and we can use illuminating sets of this cardinality which

consist of pairs of opposite directions).

Given that, in all the settings considered, we can use ‘small’ illuminating sets which
consist of pairs of opposite directions, we can also readily settle the Bezdek-Zamfirescu
X-ray conjecture in all these cases.

Recall that the X-ray number X (K) of a convex body K in R”, as proposed by Soltan,
is the minimum number M of non-zero vectors uy, U, . . . , s such that, for every p €
0K, we will have (p + Ru;) Nint K # @ for some 1 < i < M. Clearly, X(K) < J(K) <
2X(K), while Bezdek and Zamfirescu [9] conjectured that we must have X (K) < 3-2"72
for all K C R" (see e.g. [9] and [7] for details on this conjecture).

Corollary 4 Let K be a 1-unconditional convex body satisfying any of the assumptions of
Theorems 1 and 2 or of Proposition 3.

Then, because we can illuminate K using no more than 29™K)=1 pairs of opposite direc-
tions, it holds that K also satisfies the Bezdek-Zamfirescu X -ray conjecture, and that its X -ray
number X (K) < 24m(K),

The final main result of this paper is the following

Theorem 5 Letn > 3, and let K be a I-unconditional convex body in R with the following
property:

if x is an extreme point of K, then x; # 0 forall 1 <i < n. 1)
If K is not a parallelepiped, we will have that J(K) < 2" — 2 (and we can use illuminating

sets of this cardinality which consist of pairs of opposite directions).

Remark 6 1n this paper, 1-unconditional convex bodies which have Property (}) will
be called cubelike.
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As we will recall in the next section, such convex bodies in R" can be illuminated by
2" directions (and in fact, they can be illuminated by any illuminating set of the cube
[—1,1]™ in R™). Hence, this last theorem is about settling equality cases in this subclass
of bodies.

We will also see that its proof relies on an inductive process, which however on its
own can only recover the bound 2"; it is a combination of this inductive process and
Theorem 2 that finally allows us to obtain the claimed result.

The rest of the paper is organised as follows. For most of the 3-dimensional cases of
Theorem 1, a proof (or a proof sketch) is given in Section 3. The remaining cases are also
special cases of Theorem 2: all cases of this theorem, broken down into separate propo-
sitions, are proved in Section 4. The proof of Proposition 3 is also found at the end of this
section. In Section 5 we establish Theorem 5. Finally, the still unsettled 4-dimensional
cases of Theorem 1, which do not already follow as special cases of Theorem 2 and of
Proposition 3, are handled in Section 6.

Acknowledgements. Part of writing up the final version of this paper was done while
the two authors were in residence at the Hausdorff Research Institute for Mathemat-
ics for the programme “Synergies between modern probability, geometric analysis and
stochastic geometry”. The authors are grateful to the institute and the organisers for the
hospitality and the excellent working conditions. The second-named author is partially
supported by an NSERC Discovery Grant.

2 Preliminary results

We write [n] for the set {1,2,...,n},and ey, €3, ..., e, for the standard basis vectors
of R™. For any vector x € R", we will denote by Z, the set {i € [n] : x; = 0}. Also, we
will write |;| for the vector }’;c(y] |Xi| €;, namely the coordinate reflection of x which
has only non-negative coordinates.

As already mentioned, given a subset A of R"”, we denote its interior and its boundary
by int A and by A or bdA respectively. Recall that if A is a non-empty convex set, then
its affine hull

aff A .= {,u1a1+,u2a2+- ctpeae € > 1, a; € Aand yu; € Rwith yy+po+ -+ = l}

coincides with the smallest affine subspace of R” which contains A. In the subspace
topology on aff A, A has non-empty interior: we call this the relative interior of A and
denote it by relintA. Moreover, we call the set of points in aff A which are not contained
in relintA U relint(affA \ A) the relative boundary of A, and denote it by relbdA.

Recall that, if K is an origin-symmetric convex body, that is, if K = —K, then K is the
unit ball of a certain norm on R”, which is given by x € R" — ||x||g := inf{z > 0 :
x € tK}.

The illumination number of any convex body is affine invariant: namely J(K) =
J(TK + z) for any invertible linear transformation T € GL(n) and any (translation)
vector z.

Therefore, without loss of generality, we can assume that all the 1-unconditional con-
vex bodies B ¢ R" which we consider satisfy ¢; € B for alli € [n], or equivalently
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that ||e;||p = 1 for alli € [n] (indeed, if B does not already have this property, it suf-
fices to multiply it by the diagonal matrix diag(||e; ||El, ||ez||];1, e, ||en||1;1)). We will
denote this subclass of n-dimensional 1-unconditional convex bodies by U".

Finally, we should mention the following fact about illumination (which we will often
use in the sequel). Note that we will write ext K for the set of extreme points of K, that is,
points x € K which cannot be written in the form x = Ay + (1 — 1)z for some A € (0, 1)
and some y,z € K withy # z.

Fact A. Let K be a convex body. If a set D of directions illuminates all points in ext K,
then P illuminates K.

Quick justification of Fact A. Assuming P illuminates all points in ext K, it remains to
show that the same is true for the arbitrary point w € 9K \ ext K. But if w is not an
extreme point of K, we can find x,x,...,X;; € extK,and Ay,4;,...,4,, € (0,1)
such that w = A1x; + Axy + -+ - + AXm.

Consider now any direction dy € D which illuminates x;. By definition, there exists
£o > O such that x; + g9dy € int K. Then

w+ (/ll . Eo)do =A- ()Cl +8()d0) + Apxy + -+ Xy, € int K,

as a (non-trivial) convex combination of points in K with one of them being interior.
Hence dj illuminates the point w as well. |

We recall [37, Lemma 1, Corollary 2 and Remark 3] and [37, Lemma 6 and Corollary
7] (they are now Lemma 7, Corollary 8, Remark 9, Lemma 10 and Corollary 11 respec-
tively). Their proofs are standard, and are already given in [37], so we will not repeat
them here.

Lemma7 Let B be a I-unconditional convex body in R™. Suppose that x is a point in B, and
that y € R" satisfies:
foralli € [n], |yi| < |xil.

Then'y € B as well.
Moreover, if we have that

foralli € [n], |yi| < |xi|or|yi| = |x;] =0,

then y € intB.

Corollary 8 Let B be a 1-unconditional convex body in R", and let x € OB. Then x is
illuminated by any direction d € R" which satisfies

Za=2Zx andd; - x; < Oforalli € [n]\ Zx.

In particular, B is illuminated by the set {—1,0, 1}"* \ {0}. Furthermore, if B is cubelike
(namely if it has Property (T) from Theorem 5), then B can be illuminated by the set {—1, 1}"
(here we also rely on Fact A).

Remark 9 1f B is a 1-unconditional convex body in R”, and x € B, then, by Lemma 7,
we also have that |x;|e; € B foralli € [n].
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Thus, if B € U™, then ||x||c = m[zi)i |x;| < 1.In other words, B C [-1, 1]"™.
1€|n

Lemma 10 Let K be a convex body in R", and let H be an affine subspace of R". Suppose
that (int K) N H # 0. Then

relint(K N H) = (int K) N H and relbd(K N H) = (0K) N H.
Corollary 11~ Given the same general assumptions as in Lemma 10, consider p € relbd(K N
H), and a non-zero vector d’ in the linear subspace H — p C R" such that p + €d’ €
relint(K N H) for some € > 0. Then p + £d’ € int K.

In other words, if p is (K N H)-illuminated by d’, within H = aff(K N H), then it is also
K-illuminated by d’, viewed within R" now.

In the sequel, we will also need the following
Lemma 12 Let K be a convex body inR", let xo € 0K, and let dg be a direction in R™ which

illuminates x.

(@) We can find p > O such that, if d’ € R™ \ {6} satisfies ||do — d’||c < p, then d’ also
illuminates x.

(b) We can find T > O such that, for every y € 0K which satisfies ||x — y||e < T, we will
have that the direction dy illuminates y as well.
Proof Fix &y > 0 such that xo + £ody € int K. Then we can find 179 > 0 such that
{z € R": ||[(x0 + £0dp) — zlleo < 770} C intK.

Now, set p = siono, and consider d’ € R™ \ {0} such that ||dy — d’||lc < p. For
Z0 = Xo + £od’, we will have

[|(xo + £0do) — zo||, = lleo(do — d")lleo = &0lldo — d’|leo < 70,

which shows that zg = xo + £9d’ € int K. In other words, d’ illuminates xq too, which
completes the proof of part (a).

Similarly, set T = 1. Suppose that y € 9K and satisfies ||xg — ¥||oo < 7. Then, for
71 =y + &ody, we have

[|(xo + £0do) — z1]| , = lIx0 = Ylleo < 70,

and hence z; = y + g9dy € int K. In other words, dj illuminates the boundary point y
too, which shows part (b). ]

2.1 A brief review of tools from [37]: illuminating 1-symmetric convex
bodies in all dimensions

Recall that 1-symmetric convex bodies are a subclass of 1-unconditional convex bodies:
abody B C R" is called 1-symmetric if

x = (x1,Xx2,...,Xx,) € K implies that (61X (1), €2X5(2),- - -» EnXo(n)) € K
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for any choice of signs €; € {+1}, 1 < i < n, and any permutation o on [n].

In [37] we dealt with illuminating 1-symmetric convex bodies in all dimensions, and for
this purpose we introduced the notion of deep illumination: given 6 € (0, 1), consider
the set

G"(6) :=4d € R" : i € [n] suchthatd = +e; + Z tbej ¢, (1)
Jeln\{i}

of directions in R". A direction d € G"(8) is said to deep illuminate a non-zero vector
x € R™if (i) sign(x;) = —sign(d;) foreveryi € [n]\Zy and (i) 1 = ||d||, = |dj| for an
index j € [n]\Zy. A subset S of G"(6) is said to deep illuminate a subset A of R \ {0}
if every y € A is deep illuminated by some dy € S.

Subsequently we showed that there exists a smaller subset 7" (8) of G"(§) with car-
dinality 2" which still deep illuminates every non-zero vector in R”. We gave two explicit
constructions, a more geometric one, and a purely combinatorial and recursive one.

In this paper, when we write 7" (8), we will exclusively refer to the 2nd type of con-
struction, which we recall below. This is partly because it will be easier to define/describe
variations of this set, which, as we can then show, we can use as illuminating sets in
different settings.

Reminder 13 (Construction of I"(5) from [37])

(i) Check that 72(¢) := {i( 1,0), =(6, —1)} deep illuminates every non-zero vector in
R2.

(ii) Construct I77*1(§) from I"(5) as follows: out of the 2! directions that 7"+ (§)
will have in the end, the first 2" are formed by appending to each direction d¥} of 7" (8)
one more ‘small’ coordinate at the end, so that this new coordinate will have the same
sign as the last coordinate of d¥; that is,

d;’“ = (df, sign(d?’n)é).

At the same time, this direction d} allows us to also define one of the remaining 2"
directions for 77**1(§), which we will denote by dg’f{is: the sign of each of the first n
coordinates of dg,ﬂs will be the same as for the respective coordinate of d}, while the
last coordinate of dg’,ﬂ , will be equal to 1 in absolute value and will have opposite sign

to the previous coordinate, the n-th one. That is,

dyil, = (6 (sign(d?,). sign(dl,), ... sign(d?, ), sign(d?,)), — sign(dZ,)).

Given this construction, we can inductively check that 7" () deep illuminates R".

If we consider a 1-symmetric convex body BinR" and x € 0B, itis not hard to check
that, if a direction d € G" #) deep illuminates the vector x, then x + &d € intB for
some € > 0 (see [37, Lemma 11]). Thus, B is illuminated by both the set G"(#) and
by its smaller subset 7" (L) (since each of these sets deep illuminates all the boundary

n+1
points of B).

Moreover, by examining more carefully
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(1) which directions are included in the set 7" ( #) when it is constructed as above, and
(2) in which other cases deep illumination is guaranteed to imply illumination,

we could establish the following
Theorem 14  ([37, Theorem 23]) Let n > 3, and let B be a 1-symmetric convex body in R"
which is not affinely equivalent to the cube. Without loss of generality assume that B € U".

Then we can find a minimal ag > 1 such that B C [—1,1]" C apB.
We can illuminate B using the set

[I”(ﬁ)\{i(ﬂ&ﬁ&ﬁ, ot L),

++L+L+L +L_;+l
- n+l’ " n+l’ "np+l’ 0077 0 n+l? Il+1,

1 1 1 1
U febtrmtreatn it mo+ido) )

for some i € (0, ﬁ) (which will only depend on how close ag is to 1).

One of the main ingredients in the proof of this theorem is the following
Fact B. ([37, Lemma 24]) The following subset of 7" (8) (6 € (0, 1)):

I%(8) = 1"(6) \ {£(+6, 46, ...,+5,+5,—6, +1)} )

deep illuminates every vector x € R \ {6} which has at least one zero coordinate, that
is, every vector x with 1 < | Zx| < n — 1.

A further observation that we will need here is the following: if B is 1-symmetric and

in U", and moreover

1-¢;€B
for alli € [n], while 1 ¢ B, then B can more simply be illuminated by the set " (5),
with § € (0, 1) only depending on ||1]|.

As we will see (Proposition 20), this can be extended to 1-unconditional convex bod-
ies with the same properties (note that these do not necessarily have to be 1-symmetric
too, because for example we could have B contain some points of the form 1 — %ei, say,
but not for alli € [n], and this would not violate 1-unconditionality, but it would break
1-symmetry).

3 1-unconditional convex bodies in R3

Observe that if B € U3 is not affinely equivalent to the cube, then, by our convention,
e; € dBforalli € [3],while 1 = ¢1 + e¢; + e3 ¢ B. Thus we can separate the different
3-dimensional cases of Theorem 1 into four groups, based on whether any coordinate
permutations of e1 + e; are contained in B, and if yes, how many (equivalently, based on
whether B contains any unit squares (2-dimensional subcubes), and how many).

We summarise the conclusions for each of these groups of cases in the following
theorem (the numerical subscripts correspond to the numbering of the proposition(s)
where each illuminating set appears).
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Theorem 15  Let B € U> which is not a parallelepiped. Then B is illuminated by a coordinate
permutation of one of the following sets:

oo = (21.6.0. 2(-0,10) 20.0.0)
or
Fis o = 101,61, 1), 281,61, ~1), £(=61, 1,0)} | |
o TR g = (@ 1) 200 1.56) (0, —0g, 1)) S
or
F0.6 = {J_r(l, 6,0),x(6,-1,-6), (6,6, —1)} cases with three unit squares,

where the relevant parameter(s) 8, 61, €2, 8¢, > 0 should also be chosen based on B (in explicit
ways, as we will see).

The theorem will follow from the proofs of Propositions 16 and 17, of Proposition
18, which is treated as a special case of Proposition 28, and of Proposition 20. We will
use the following terminology for the last two cases mentioned here: they concern bod-
ies B € U3 which contain exactly two maximal unit subcubes, or all possible maximal unit
subcubes, respectively (where ‘subcube’ implies proper inclusion here, and where ‘maxi-
mality’ is in terms of dimension). We treat these cases in the next section, in Propositions
28 and 20, proving the analogous results in an arbitrary dimensionn > 3.

Proposition 16 Let B € U3 and suppose
||el~ + ej”B > 1 foreveryi,j € [3]. (%)
Then there exists & > 0 so that B can be illuminated by some coordinate permutation of the set

Fio,17,6 = {£(1,6,0), £(-6,1,0), £(0,0,1)}.

Proof For every i € [3] and for every j € [3]\{i}, set a; ; to be the supremum of
non-negative numbers x ; such that

e txje; €B

(note that the set of such numbers is nonempty as x; = 0 belongs to it). Observe that by
compactness the vector e; + a; je; is also in B, and so are all its coordinate reflections.
By assumption (), we have a; ; < 1foralli € [3] and for every j € [3]\{i}.

Let aj,, j, be the maximum of these numbers (not necessarily unique). For the rest
of the proof, without loss of generality, we assume that {ig, jo} = {1,2}. We fix some

0 < l_a% and consider the corresponding set Fi¢.17,5-
Consider a boundary point y = (y1, y2, y3) of B. We will show how to illuminate y
based on the number |Zy| of zero coordinates of y.

|Zy| = 2. Here we necessarily have that y = e for some s € [3].If y = +e3, then Fe3 from
F16.17,s illuminates y. If y = ey, say y = ey, theny + (-1,-6,0) = (0,-6,0) €
int B given that 6 € (0, 1). Similarly we deal with y = —e; or y = *e;.
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Illuminating certain 1-unconditional convex bodies 11

|Zy| = 1. We consider subcases based on which coordinate is equal to zero, and also based
on how large (in absolute value) the remaining two coordinates are.

« Suppose first that y = (1, y2, 0). Then we choose the direction dy, in Fi6,17,s
which has 1st and 2nd entries non-zero and with opposite signs to the cor-
responding entries of y. Clearly y + ed, € intB for € € (0, min(|y:], |y2|))
(recall Corollary 8).

« If y = (y1,0,£1) or y = (0, y,, 1), we use the directions Fe; (since by our
assumptions we must have |y;| < 1 or |y;| < 1 in these cases). We can use
the same directions if y = (y1,0, y3) or y = (0, y,, y3) with y; representing
numbers in (=1, 1) \ {0} here.

+ Finally, suppose that y is a boundary point of the form (1, 0, y3). Then

(1,0,y3) + (-1,-6,0) = (0,-6, y3).

Based on our notation, and because of the 1-unconditionality, we have |y3| <
a3 < aj,,j, < 1. By convexity the vector

l_aiOij

1+ai0’j0
> e

2

ey +

is in B. Moreover, it has strictly larger 2nd and 3rd entries in absolute value
compared to (1,0, y3) + (=1, =6, 0), thus, by Lemma 7, the latter vector is in
int B.

+ Analogously to the last subcase, we deal with points of the form (-1, 0, y3)

and (0, £1, y3).
|Zy| = 0. Here we distinguish subcases based on the magnitude of |y;|.

« If |y3] < 1, we can choose the direction dy in Fis,17, s which has 1st and 2nd
entries non-zero and with opposite signs to the corresponding entries of y,
and then employ Corollaries 8 and 11.

+ In the opposite case we have y = (y1, Y2, %1); say, for illustration pur-
poses, y3 = 1. Note that, by the 1-unconditionality, the points (|y1],0, 1) and
(0,]y2], 1) arein B, thus |y;| < a1 < a;,, j, and |y2| < a3 < a;,, j,- Hence,
(y1,¥2,1) + (0,0,—1) = (y1, y2,0) and at least one of the following holds:
|v1] < land |y2| < a1z < 1,0r|yz] < 1and |yi| < az,1 < 1. Thus, regard-
less of whether (io, jo) = (1,2) or (2, 1), we can use Lemmas 7 and 10 (with
BN{£eR3: & =y orBN{& € R3: & =y}, respectively) to conclude
that (yq, y2,0) = y+(0,0,-1) € intB.

In cases where {io, jo} # {1, 2} (that is, if neither a; ; nor a, ; is the maximum of
the numbers we defined above), we set 1 for the remaining element of [3] and consider
the linear map/coordinate permutation

. R3 3
LR RY, xjei, +xjpejy + Xer, = (Xig, Xjgs Xg)-

Then ¢(B) is illuminated by Fi4.17, 5 as above, and B is illuminated by t ™! (Fi6.17.5). ®

Note that in the previous proposition we did not have to add the assumption that B
is not an affine image of the cube: this is in fact implied from the other assumptions,
namely that B is in U° and does not contain any unit squares, which were enough to
verify that B can be illuminated by (at most) 6 directions.
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The same happens in the next proposition.

Proposition 17 Let B € U> and suppose that there is exactly one pair of indices i1, i, € [3]
such that ||e,~1 + ei2||B = 1. Then there exists 6 > 0 so that B can be illuminated by some
coordinate permutation of the set

Fio,17,6 = {£(1,6,0), £(-6,1,0), £(0,0,1)}.

Proof Let us assume without loss of generality that (1,1,0) € B. Moreover, let
ai,a, > 0be maximum possible such that (1,0,a;) and (0, 1,a,) € B (by our main
assumption we have that ay,a; € [0, 1)). Without loss of generality as well, we can
assume that a; > a,.

Here we will distinguish three main cases for boundary points y = (y1, ¥2, y3) of B:
@) |Zy| > 1and |ys] < 1, (i) |Zy| = 0and |y3] < 1, and (iii) |y3| = 1. We start with the
following key observation.

4 Wecan choose §; > 0small enough so that the directions +(1, §, 0) will illuminate
both the point (1, 0, a1) and all its coordinate reflections whenever § < §;.Indeed,
we have e.g. that (1,0,a1) + (—1,-6,0) = (0,-8,a;) = —de; + aje; € intB, as
longas0 < 6§ < 1—ay,sowecansetd; = (1—ay)/2.

¢ At the same time, as long as § € (0, 1), the directions +(—, 1, 0) will illuminate
(0, 1, ay) and its coordinate reflections: this is because e.g. (0, 1, a3) + (8, —1,0) =
(6,0, ay), which has strictly smaller 1st coordinate compared to (1,0, a;) and at
most as large 3rd coordinate, while a; < 1 too (so we can either use Lemma 7
alone, or combine it with Lemma 10).

Now, suppose that y = (y1,0, y3) with0 < |y;]| < 1.

* If |y;| = 1, then necessarily (by the maximality of a1) we have that |y;| < a;. Thus:
- if |y3] = ay, we have already seen that the directions (1, §, 0) illuminate y
(aslongasd < d1);
- if |y3] < ay, then y is in the convex hull of the point (1,0, a1) and its coor-
dinate reflections, and hence it is also illuminated by the directions +(1, §, 0)
(refer to Fact A and its justification).
* If |y1| < 1, then the direction (0, 0, — sign(y3)) illuminates y (since (y;,0,0) €
int B).

In an analogous way, we see that the directions +(-6, 1,0), (0,0, 1) illuminate
boundary points of the form y = (0, y,, y3) with 0 < |y3| < 1.

Furthermore, the directions =(1, 8,0), £(-8,1,0),5 < §; < 1, also illuminate:

* the point (1, 1, 0) and its coordinate reflections (and thus also any boundary point
y which satisfies y3 = 0, since this will be in the convex hull of the former points);
* any boundary point y of B which satisfies i.Zy| =0and |y;| < 1.

This takes care of the first two cases of boundary points in our breakdown. It remains
to explain how to illuminate boundary points y satisfying |y3;| = 1. In such a case, by
our main assumption we will have that |y;| < 1 and |y;| < 1, and hence the point
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Illuminating certain 1-unconditional convex bodies 13

(¥1,¥2,0) € intB (we see this if we compare with the point (1, 1,0) € B). Thus the
direction (0, 0, — sign(y3)) illuminates y. |

In contrast with the previous two propositions, the main assumption in the next one
can also be satisfied by certain affine images of the cube [—1, 1]3. In fact, in all bodies
in U? which satisfy the main assumption we can inscribe such an affine image of the
cube, one that is also in U>. Therefore, we have to explicitly rule out the cases where we
do not have proper inclusion, and in the remaining cases we have to make crucial use of
‘special’ boundary points which verify the proper inclusion.

Proposition 18 Suppose that B € U? is not an affine image of the cube but has the prop-
erty that, for some permutation (iy,i,,i3) of [3], ||e,~1 + e,-2||B = ||e,-1 + e,-3||B = 1, while
||e,-2 +e;, HB > 1. Then there exist 61 > 0 or €3,0¢, > O such that B can be illuminated by a
coordinate permutation of one of the following sets:

Fl o, = Lo (61) = {£(61,61, £1), £(=51,1,0)}
or

7:128’52’552 = I;_xz,z(fz’ 662) = { + (627 1» 1)’ i(_é‘eza 17 662)’ i(_6627 _662’ 1)}

As before, we can check that, after applying some coordinate permutation on B
(something which would not ruin our main assumptions), we would be able to use one
of the above sets exactly. We can thus assume without loss of generality that B contains
the points (1, 1,0) and (1, 0, 1) but not the point (0, 1, 1). We first need the following

Lemma 19  Suppose that B € U? satisfies:

¢ [I(1,1,0)]ls = [[(1,0, 1)][B = 1, while [|(0, 1, 1)]lp > 1;
¢ B is not an affine image of the cube.

Then, for any € € (0, 1], the point

)

o=

[l

o=

is an interior point of B.

Proof Since B contains the points (1,1,0) and (1,0, 1) and all their coordinate
reflections, it will contain their convex hull too, which is the set

{(xl,xz,x3) eR?: [xi] €1, x| + |x3] < 1} =[-1,1] XCP%.

This is an affine image of the cube, therefore, by our last assumption for B, we must have

that B\ ([-1,1] X CP?) # 0.
Combined with the assumption that B € U?, this implies that B contains a point of
the form (0, z», z3) where 25, z3 € (0, 1] and z, + z3 > 1. From this we can obtain that
(0,1,3) €intB ©)

as follows. Without loss of generality we can assume that z, > z3.
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e Ifz3 > %, then (3) follows immediately by Lemma 7.
* Ifz3 < %, then we can observe the following: z,+z3 > 1impliesthatz, > 1—2z3 >
%, and hence 7, + (1 —z3) > 2(1—2z3) > 1. Therefore, we can find A € (0, 1) such
that
A'(Zz+(1—Z3))=1 = /lZzz/lZ3+(1—/l).

From this we obtain that the point (0, y;, y3) = 2(0, z2,23) + (1-2)(0,0,1) € B
has equal 2nd and 3rd coordinates, and moreover that

Vo+y3=Az+ A3+ (1 =) =A(za+23) +(1=2) > 1.
In other words, y, = y3 > L \whence (3) follows as in the previous case.

Finally, we note that (1, 1, 1) = $(1,1,0) + 3(1,0, 1) € B. Thus, forany € € (0, 1),

2
the point
11y _ 11 11
(1= 3. 3) = (1=a)(1,3,3) +€(0.5.3)
is an interior point of B as a (non-trivial) convex combination of two points of B with
one of them being interior. [

Comment on the proof of Proposition 18. As mentioned above, we can assume that B
contains the points (1, 1, 0) and (1, 0, 1) but not the point (0, 1, 1).

We will distinguish two main cases:

¢ either both (1, 1,0) and (1, 0, 1) are extreme points of B,
¢ or at least one of them is not an extreme point of B.

In the former case, we will see that the set 7"128 0.5 (which coincides with the set
s £l 52
1, ,(&,0¢) of Proposition 28 when n = 3) illuminates B for some explicit €, d ¢,

depending on B.

On the other hand, if e.g. (1, 1, 0) is not an extreme point of B, then necessarily we
canfinda € (0, 1) such that (1, 1, a) € B.In such a case we can show that the set 7"118’61
illuminates B for some explicit 8.

Similarly, if (1, 1,0) is an extreme point of B, but (1,0, 1) is not, then (assuming
what is claimed in the previous paragraph) it is not hard to conclude that a coordinate
permutation of Tlls s illuminates B: indeed, it suffices to consider the transformation
that swaps the 2nd and the 3rd coordinate.

Full details can be found in the proof of Proposition 28, which is the generalisation
of Proposition 18 to all dimensions n > 3. |

The proof of Theorem 15 will be completed with the proofs of Propositions 28 and
20 in the next section.

4 Bodies with maximal unit subcubes

In this section we deal with 1-unconditional convex bodies B in arbitrary dimensions n
which:

4 have been normalised to be in U", thus are contained in the unit cube [—1, 1]";
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¢ are not affine images of the cube, and thus certainly satisfy B ¢ [-1, 1]";

¢ and have at least one coordinate hyperplane projection (equivalently, coordinate
hyperplane section) equal to [—1, 1]™! (this is equivalent to saying that B contains
the point 1 — ¢; for at least one i € [n]). As mentioned before, we will also say in
this case that B contains a maximal unit subcube.

Classifying 1-unconditional convex bodies in this way, by whether points of the form
e; +e;,+ - -+e;, arecontainedin 0B or not, for differentm € {1,...,n—1},isinspired
by recent approaches to settle the [llumination Conjecture for bodies with many sym-
metries (starting with Tikhomirov’s work [38], and also adopted in the precursor [37] to
this paper).

Of course, we could also describe the instances that we are focusing on here with-
out/before employing the ‘special’ normalisation that we use. We are considering 1-
unconditional convex bodies B which satisfy the following: if Rp is the circumscribing
rectangular box given by

Ry = {x eR": |x;] < ||e,-||]_3I foralli € [n]},

then at least one coordinate hyperplane projection of B and the corresponding one of
Rp coincide. We will show that, for such bodies B, 3(B) < 2" — 2 unless B is an affine
image of the cube.

The results of this section will also help us obtain the main result of the next section.
We consider cases based on how many of the coordinate hyperplane projections of B
coincide with the corresponding ones of [—1, 1]" (or, before normalisation, with those
of the circumscribing rectangular box); equivalently, based on how many maximal unit
subcubes B contains.

Proposition 20 Let n > 3 and let B € U™ with the property that, for alli € [n],
||Zj¢,~ ej”B = ||[L—e;llg = 1 but B # [—1,1]". Then thereis 6 = &g > 0 such that
B can be illuminated by the set

7%(8) = I ()\{£(+0,+6, ..., +0,+6,— 6, +1) }.

In other words, 3(B) < 2" — 2.

Proof Sety = ||1||§1; then y1l € 9B (clearly ¥y < 1since B C [—1, 1]"). We will see
that B is illuminated by the set in the statement as longasd < 1 — .

Observe that, for every boundary point y = (y1, ¥2, - - -, Yn-1, Yn) of B, we can pick
two different indices iy, jy € [n] such that |y; | <y < |y; | This is because, if we had
|vi| > y for alli € [n], then by Lemma 7 we would get that y1 € int B, which would
contradict our choice of y. Moreover, if the first of the desired inequalities were satisfied
by every coordinate of y, that is, if we had |y;| < y for all i € [n], then for at least one
index j we should have |y ;| = y, otherwise y would not be a boundary point of B.

Fix now some y € 0B, and pick the smallest, say, index iy such that |y; | < y. As
recalled in Subsection 2.1, Fact B, we can find a directiond = d, ;, € I f‘z (6) which
deep illuminates Proj,. (y) (since the latter vector is non-zero and has at most n — 1

o

non-zero coordinates).
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Note that the direction d = d, ;, that we just considered illuminates the point y.
Indeed, if 7 is the index at which ||d||, is attained (by the definition of deep illumination,
this also ensures that y,, # 0), then

(v + yeld)y =0,

+ and at the same time |(y + |y, |d);:| < max(|yi| — [y |0, |y, |6) < 1foralli €
[7]\{%0, i0} (here this is satisfied as long as § < 1).

* Finally, [(y + |y |d)iy| < |yigl + 1¥5l0 < |yi,] + 8 < 1, as long as we choose
0<1-—y.

We can now invoke Lemma 10 for the affine subspace {¢ € R" : & = 0}: we compare
Y + |ys,|d with 1 — e, (both points of B N {¢£ € R" : &, = 0}) to conclude that the
former point is in the interior of B. |

Proposition 21  Let v > 4 and let B € U" with the property that there is so € [n] such
that ||1 — e;|lg = 1foralli # so, while Hl - eSOHB > 1. Then thereis 6 = &g > 0 such that
B can be illuminated by coordinate permutations of the set

I"571(6) x {-6, +6}.
In other words, 3(B) < 2- (2" 1 —2) =2" — 4,

Note. Given our notation,

516 = I (0)\{ %[ en1 —Sena+6 ). e;

je[n-3]

(where the standard basis vectors here are considered in R”1).

Proof Without loss of generality, suppose that so = n. Set 8, = ||1 — enllgl. Then
0,(1—e,) € 0B,and we have 0 < 6,, < 1. We will see that B is illuminated by the set in
the statement aslong as § < 1—6,, (and by coordinate permutations of this set if 5o # n).

Consider aboundary point y of B, and moreover suppose that y is an extreme bound-
ary point (recall Fact A from Section 2, namely that it suffices to show how to illuminate
these boundary points). Because n > 4, because y is an extreme boundary point, and
given that, by our assumptions, 1 — e¢; € dB foralli € [n — 1], we can find two distinct
indices 7y, jy € [n— 1] such that y; -y; # 0. Moreover, since §,,(1 — ¢,) € 9B, and
by the 1-unconditionality of B, we can find an index iy € [n — 1] such that y;; < 6,,.

Note that at least one of the two indices iy, j, is different from iy, and thus the vector
Proj [eigren]* (y) is non-zero. At the same time, it has at most n — 2 non-zero coordinates
among its first n — 1. Therefore, looking initially at these coordinates, we can find a
direction d’ = d; o € I"71(6) which deep illuminates the subvector of the first n — 1

coordinates of Pr(;j o+ () (recall Fact B from Subsection 2.1), and then we can naturally
1o
rely on this to pick a direction d = dy, ;, € I'5'(6) X {8, +6} which deep illuminates
Proj et ().
Given the way we selected d = d, ;, if o is the index at which ||d||« is attained,
thenty € [n — 1] \ {io}. Moreover, y,, # 0. We can now check, just as in the previous
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proposition, that y + |y, |d € int B (by comparing coordinate-wise the displaced vector
¥ + |y4,1d with the boundary point 1 — e,,). [ ]

Remark 22 The above proposition cannot be restated as simply as above whenn = 3
because in R3 there are Q € U? which are affine images of the cube and satisfy the main
assumption (namely that there exists so € [n] such that [|1 - ei||é = 1foralli # s,
”Q > 1; this is the case when e.g. é = CP% X [-1, 1], where CP% is the

standard cross-polytope in R?). Therefore, when n = 3, we need to further assume that

while ||1 - ey,

B is not an affine image of the cube, and we need to have extra steps in our proof which
essentially encode and capitalise on this additional, necessary assumption. This leads to
Proposition 18, which finds a better high-dimensional analogue in Proposition 28.

For the remaining cases, we need to introduce some further, combinatorially con-
structed, sets of directions in R" that will serve as building blocks for the illuminating
sets we will use.

4.1 Constructing other illuminating sets

Notation 23 Letusfixn > 2and ¢ € (0, 1), and consider the set 7" (§) from Reminder
13 (exactly as is described there).

Define a function m.c. which maps each d € I"(§) to the index of its maxi-

mum (in absolute value) coordinate; in other words m.c. : I"(§) — [n] and e.g.
m.c.((=6,6,—1,-6,...,—8,—6)) = 3. Note that the index of the maximum coordinate,
as well as its sign, will not change no matter what value of § € (0, 1) we pick. Thus, we
can also identify directions d; € 7"(81) and d, € I"(8,) if their respective coordi-
nates have the same signs and if their maximum coordinate is the same, and then we can
view m.c. as a function from the set of these equivalence classes to [n].
By abusing our notation, we also consider the set 7" (1), which is simply the set {—1, 1}".
For each d’ € I"(1), there is a unique direction dg € 7™(1/2) (say) which agrees in
sign in each coordinate. Then we can also define a functionm.c. : 7"(1) = {-1,1}"' —
[n] by setting m.c.(d”") = m.c.(dy).

Notation 24  Starting from the set 7" (§), we construct a new, similar set fn'il ,(0) in
the following way:

¢ if d € T"(6) satisfies m.c.(d) € {n — 1,n}, then we keep it in Zl”_l’n(é) as well
(there are 2! + 272 such directions).

¢ If d € I"™(6) satisfies m.c.(d) < n — 1, then replace d by a direction d’
which agrees in sign with d in every coordinate, but has maximum (in abso-

lute value) coordinate the (n — 1)-th one, and place d’ in -’[;1”71,n(5)- Thus e.g.
the direction (-1,-6,-6,...,—0d,—8,—08) from I"(5) will give the direction
(=0,-6,-6,...,-6,-1,=6)in L," |  (9).

. . An
Similarly, we construct a new set 7, 2n—1n

(6) in the following way:
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¢ ifd € I"(6) satisfiesm.c.(d) € {n—2,n—1,n}, then we keep itin J,;"_Z,n_l’n(é)
as well (there are 271 + 2772 + 2”73 such directions).

¢ If d € I"™(0) satisfies m.c.(d) < n — 2, then replace d by a direction d’
which agrees in sign with d in every coordinate, but has maximum (in absolute

value) coordinate the (n — 2)-th one, and place d’ in Z’;"_z’n_l’n(é). Thus e.g.
the direction (-1,-6,-6,...,—0d,—8,—06) from I"(6) will give the direction

(=6,=8,=6,...,—1,-6,=8)in I, ().

Definition 1 Let n > 3 be an integer. If n is even, we set
Jn={deI"(1): #{i€n]:d;=+1} € {2,4,6...,n—2}}.
If n is odd, we distinguish cases.

¢ Ifn=3 weset 55 ={(1,1,1), (-1,-1,-1)}.
¢ Ifn > 3and (n— 1)/2is odd, we first define

Ji={deI"(1): #{i € [n] :d; =+1} € {2,4,..., 5L - 1}}
and then
TIn =T U (=T)).
¢ Finally, if n > 3 is odd and (n — 1)/2 is even, then we set
Jl={deI"(1): #{ic[n]:di=+1} €{1,3,..., 51 -1}
and afterwards we set
I =T U (=T)).
Remarks 25 (I) With the above definition, we have ensured that the sets ., are
symmetric (that is, J;, = —Jp).

(IT) We also need some ‘efficient’ bounds on the cardinalities of ;. Note that | 3| =
2 =21 — 2. We will check that, for alln > 3, | J,| < 27! - 2.

When 7 is even, observe that, to determine a direction in J;,, we simply need to know
which coordinates are equal to +1, and the subset of the corresponding indices will range
over all subsets of [1] of even cardinality > 2 and < n — 2. Thus

2 2" (n n .
B TR RIS

Lm/2]
2m
(the fact that Z (;n) = Z (m) = B regardless of whether m is even or odd,
S u

s=0 ueven <m
can be checked using induction in m).

To estimate the cardinality of J;, when both n > 3 and (n — 1) /2 are odd, we first

observe that
(n-1)/2
Z n — 2n—1
u

u=0
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and also that, for u < (n — 1)/2, we have that (Z) < (uzl) Therefore,
= Ly
- =(o)+(1)+ MZ:; (u) 21+ =42 ; (2s)’
which shows that

(n=3)/4
1 _ n n—a ontl
=Y, (o) s2e- T

s=1

This gives that

(n23)/4 n n (n23)/4 n 5n+1
= =2 <l
|l Z [(ZS) * (n - ZS)] Z (ZS) - 4

s=1 s=1

Finally, when n > 3 is odd and (n — 1) /2 is even, we similarly observe that

RS\ L (g
2= )+ > 1+ +2
SR HESEE I

u=1 s=1

which shows that

(n=1)/4
1 _ n o, _n+3
7= > (zs_l)SZ" S

s=1
Thus, in this case
+3
|l < 2n = 22
4
As claimed, in all cases we have that | | < 2" — 2.

(IIT) The last key property of the sets J;, which we use in the sequel is the following:
consider any directiond’ € {0, 1, —1}" such that exactly two coordinates of d’ are equal
to 0; then we can find a direction d € 9, suchthatd; = d l’ whenever d l’ # 0.

Indeed, let i1,i, € [n] be the two indices for which dlfl = dlfz = 0 (suppose that
i1 < ip). In all the cases that we have to examine, we will automatically assume that we
work with directions d € 7" (1) which agree with d’ in each non-zero entry of d’, so
we will only have to explain how we define d;, and d;, so that d € J,.

Assume first that n is even. The subset of indices i for which d; = +1 is a subset P
of [n]\{i1,ir}. If |Pa| = 0,set d;; = d;, = +1 (and d; = —1 = d for all other indices
i), and then the corresponding subset $; for d will have cardinality 2, so d € J,. If

instead |P4| is a positive even integer, then we can set d;, = d;, = —1; we will have that
0 < |Pg| € n— 2, thusd € 9, again. Finally, if |Py| is odd, then it must be an odd
integer between 1 and n — 3, thus we can set d;, = +1,d;, = —1.

Assume now that n is odd. We first deal with the case n = 3. In this case, |Py| = 0
or |Py| = 1.If the former holds, set d = (—1,—1,—1), while, if the latter holds, set
d = (+1,+1,+1). In both cases, d will agree with d” in the unique entry of d” that is
non-zero.

If n > 3 and (n — 1)/2 is odd, observe again that P is a subset of [n]\{i{,i;}. If
|Par| = 0,setd;; =d;, = +1 (and d; = d] for all other indices i), and it will hold that
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|Pal = 2,thusd € . If instead |P, | is a positive even integer less than (n—1)/2, then
we set d;; = dj, = —1. On the other hand, if [P | is even and greater than (n — 1)/2,
it must also be less than 7 — 2 (since n — 2 is odd in this case), so we can set d;, = +1,
di, = —1; then |P4| will be an odd integer between ”T+3 =n-— ("T_l —1)andn - 2,
thus d € J,. Next, if [Py | is odd and less than (n — 1)/2, thensetd;, = +1,d;, = —1,

in which case || will be an even integer between 2 and "T_3 = "2;1 — 1.If |Py | is odd

and "T_l < |Pa| < n—2setd; =d;, =+1,in which case |P4| will be an odd integer
between "TH and n — 2. Finally, if [Py | =n — 2,setd;, =d;, = —1.

Similarly we deal with the last case, where n > 3 is odd and (n — 1)/2 is even. If
|Par| is an even integer less than (n — 1)/2, then set d;, = +1, d;, = —1.If |Py| is
even and greater than or equal to (n — 1)/2, then it will also be less than n — 2 (since
n — 2 is odd), and thus we can set d;, = d;, = +1 to ensure that |P4| will be an even

integer between "T” =n- ("T_l —1)andn — 1.If |P4| is odd and less than (n — 1) /2,
then set d;, = d;, = —1.If |Py| is odd and greater than (n — 1)/2 (and obviously
less than or equal to n — 2 since Py C [n]\{i1,i2}), thensetd;, = +1and d;, = —1.

We thus see that, in all cases, it is possible to pick d € 7, such thatd; = d l’ whenever
d! +0.
13

With these properties at hand, we are now ready to illuminate the remaining cases of
bodies in U" which contain a maximal unit subcube.

4.2 Remaining cases with maximal unit subcubes

Proposition 26 Let k > 2 and n > k + 3, and consider B € U" such that we can find k
indices j1 < jp < -+ < ji in [n] with the property that

1-¢;€B
forall j € [n]\{j1. ja, .. .. jk} while if js € {j1. J2s - o Ji}
1-e; ¢B.
There is & = 0g such that:
¢ if k = 2, then B can be illuminated by a coordinate permutation of the set
[[Z"2()\{% (6.6, ...,6,-6,1)}] x {6, -6}*] U {£(5.6,...,6,-6,1,0,0)},
N S

n-2

4)
¢ and if k > 3, then B can be illuminated by a coordinate permutation of the set
[[I”‘k(é)\{i (63 6’ ey 69 _63 1)}] X {6’ _6}k:| U [{i (6’ 63 ey 69 _63 1)} X6 - «%{] .
—————— —————

n—k n—k

)

Thus 3(B) < (272 —2) - 4+2=2"—6if k = 2, while S(B) < (2" K -2)-2Fk+2.
(k1 —2)y=2" -2k —4ifk > 3.
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Proof Case k = 2. Without loss of generality, suppose that {ji, j»} = {n — 1,n}. In
other words, 1 — e,_; and 1 — e, are not in B, while 1 — e; € dB forall j € [n - 2].

Set0,_1 = ||[1—e,-1 ||];l and 6, = ||1-e, ||];1; by our assumptions 8,,_1, 6, € (0, 1).
Set also ®¢ = max{60,,_1, 0, }. We will show that B is illuminated by the set in (4) as long
asd < 1 —0,.

Consider a boundary point y of B, and moreover suppose that y is an extreme bound-
ary point. Because n > k + 3 = 5, because y is an extreme boundary point, and given
that, by our assumptions, 1 —e; € 0B foralli € [n—2], we can find two distinct indices
iy, Jy € [n— 2] suchthaty; -y; # 0. Moreover,since 6,(1 —e,) € 9B, and by the
1-unconditionality of B, we can find an index i,, € [n — 1] such that |y; | < 8, < O,.
Similarly, because 6,1 (1 —e,,—1) € OB, we can find an index i,y € [n] \ {n—1} such
that |y;, | < 6,-1 < Og (note that it is possible that i,_; = ip,).

Assume first that either i, or i,,_ can be picked from [n—2], and denote the smallest
such index by ip. Note that at least one of the two indices iy, j, is different from iy,
and thus the vector Proj [eig-en1.en]* (y) is non-zero. At the same time, it has at most
n — 3 non-zero coordinates among its first n — 2. Therefore, looking initially at these
coordinates, we can find a direction

) )
d = d;’io eI"2(6) =1"*(6)\{=(6,6,...,6,-6,1)}
| ——
n-2

which deep illuminates the subvector of the first n — 2 coordinates of Proj,. (y) (recall
iy

Fact B), and then we can rely on this to pick a directiond = dy ;, € I"572(6) x{—6, +6}*
which deep illuminates Proj " (y).

Given the way we selecteci d = dy ), if ty is the index at which ||d||« is attained,
in other words, if fo = m.c.(d), thenty € [n — 2] \ {ip}. Moreover, y;, # 0. We can
now check that y + |y, |d € int B (by comparing coordinate-wise the displaced vector
¥ + |y4,1d with the boundary point 1 — e;,).

Next assume that |y;| > ®g for alli € [n — 2]. Then necessarily i, = n — 1 and
in—1 = n.In other words, max{|yn-1|, |[yn|} < ®9 < 1. We can then pick a direction d
from the set in (4) such that d; - y; < Oforalli € [n — 2], and, as before, we can check
that y + |y, |d € int B (where g = m.c.(d)).

Cases where k > 3. Without loss of generality, we suppose that {1, j2,...,jx} =
{n-k+1,n—k+2,...,n},andforeachj € {n—k+1,n—k+2,...,n} weset
0; = Hl - ej”;.We also set @) = max{6; : n — k+1 < j < n}; by our assumptions
®) € (0, 1). We will show that B is illuminated by the set in (5) as long as § < 1 — @y

Again consider an extreme boundary point y of B (and recall thatn > k +3 > 5). As
before, we can find two distinct indices iy, jy € [n — k] such that y; - y; # 0.1f we
can also find an index iy € [n — k] such that |y;,| < @y, then we can pick a direction

d e [T" (O\{=(6,0,...,6,-6, )}] x {5, ~6}*

[ —
n-k

which will deep illuminate Proj,. (), and we can check that y + |y, |d € int B (where
io
to = m.c.(d)).
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Assume now that |y;| > @¢ foralli € [n — k]. Since 6,,(1 — e,,) € OB, there is an
indexi, € [n—1] suchthat|y; | < 6, < @¢. Given our prior assumption, we also have
thati, € {n—k+1,...,n—1}. Next we also use the assumption that 6; (1—e;, ) € 9B,
which implies that there is an index

in

spn€{n—k+1,n—k+2,....,n}\{in}

such that |y, | < 6;, < ©,.
We can find a (unique) direction d’ € 7" (6) such that d{-y; < Oforalli € [n—Kk].

o If
d ¢{£(5,6,...,6,-6,1)},
then we can extend d’ to a direction

de [I" )\ {(6,6,...,6,-6,1)}] x {6, -6}
—————
n—k
which deep illuminates y.
* On the other hand, if ' € {%(4,6,...,8,—0, 1)}, then, given the third main
property of the set Ji (see Remark 25-(III)), we can find a direction

de{x(6,6,...,6,-6,1)} x6-Jx
which deep illuminates the vector Projj,, . | (y).

In both subcases, we can check that, for the direction d that we ended up picking, y +
|vs,1d € int B (where tg = m.c.(d) € [n — k]). The proof is complete. |

It is clear from the above proof that the assumption that n—k > 3 (that is, the number
of maximal unit subcubes contained in B is at least 3) was crucially used (so that, given an
extreme boundary point y, we could find two distinct indices iy, j, € [n — k] such that
Yiy Vi, F 0). This is not an artefact of the proof though. As we will see, if the number of
maximal unit subcubes contained in B is exactly 2, then B could also be an affine image
of the cube (e.g. B = CP? X [—1, 1]"72). Thus we need to argue more carefully about
how to illuminate such B which are not parallelepipeds.

Albeit not for the same reason, we also have to argue more carefully when B contains
only one maximal unit subcube; this is the case that we deal with now.

Proposition 27 Let n > 4, and let B € U" with the property that there exists exactly one
index iy € [n] such that 1 — e;, € B. Then there are 6,15 and § > 0 such that B can be
illuminated by a coordinate permutation of the set

I&,r;,gz ‘Z-fs”l v [(5 \j;’l—l) X {1’_1}]

where Jy,—1 is defined as in the previous subsection (note that n — 1 > 3 here), and where

Ts.y = {(£(1,ns), £6,£6, ..., %6,0), (£(-ns, 1), £6, £6, ..., £5,0)}.

Note. Recall that | J,—1| < 2772 — 2 and thus

I, g‘ <2" 422" -2)=2" -4
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Recall also that, since J;,—1 is symmetric, the set (g jn_l) X {1, =1} is formed from pairs
of opposite directions, and so is I g 0.5
Proof Without loss of generality, we can assume that iy = n, and thus 1 — ¢, € B,
while 1 —e; ¢ Bfor j € [n — 1]. For each such j, we set @; to be the supremum of
non-negative numbers x,, such that

Xnén + Z e; €B.
ie[n-1]\{j}

By compactness the point w; = a@je, + 2jern-1]\(;} ¢ € B (in fact, it is found in
0B), and a; € [0, 1) by our assumptions. Without loss of generality, we assume that
@) >y > @ foreach j € [n—1]\{1,2}.

Given any § € (0, 1), the directions (+1,0, 8, 6, . . ., £4, 0) will illuminate the
point wy = @€, + Xic[n-1]\ 2} € and all its coordinate reflections (we can use Corol-
lary 11 here). Furthermore, by Lemma 12, we can find 17,5 > 0 sufficiently small so that
the directions

(£(1,7m), £6,£6,...,%6,0)

will illuminate the same points if 0 < 1 < 19,5 (note that, in the latter subset of
(perturbed) directions, we have sign(d;) = sign(d,) for each direction d).

Similarly, the directions (0, =1, 8, 6, ..., +4,0) will illuminate w; = e, +
2ie[n-1]\{1} € and all its coordinate reflections, and if we pick 79,5 even smaller if
needed, so will the directions

(£(-10,6, 1), £6, £6, ..., £6,0)

(note that, in the latter subset of directions, sign(d;) = — sign(d;) for each direction d’;
this shows that the set 755, ,, ; we just formed contains any combination of signs for the
first n — 1 coordinates).

Consider now j € [n—1]\{1, 2}, and suppose x is one of the coordinate reflections
of the point

wji=a e, + Z e;.
ie[n-11\{;j}
Based on whether sign(x;) = sign(x,) or not, choose a direction d from I, ; such
that d ; - x; < Ofor alli (to avoid any ambiguity later, we can agree to set dx ; = +6). Then
the coordinates of x + d satisfy the following:

* oneof (x +dy)1, (x +dy), isequal to 0,

* while the other one is less than 1 in absolute value (in fact, it is equal to 1 — 779, s in
absolute value).

* In addition, |(x + dx)j| =9,

« andforalli € [n— 1]\{1,2,j}, |(x +dy)i| =1-6.

* Finally |[(x + dy)nl = Ixpl=aj < a2 < a1 < 1.

Hence we can use Lemma 10 (combined with Lemma 7), and compare with one of the
points @jen+Yic[n-1]\(1} € and @2e,+2;c[n-1]\ {2} €i to conclude that x+d € int B.
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For the rest of the proof we fix ¢ € (0, 1) and 170 = 10,5, such that the set 15, ;,
illuminates all the points w ; and their coordinate reflections. Moreover, for each of these
points x we fix a direction d from Z, ,,, which illuminates x (we pick it as before, when
it is not unique), and then, recalling Lemma 12(b), we also find 7,, > 0 with the property
that,if z € dBand ||x — z||,, < Ty, then zis also illuminated by d. Given that the points
@jen + Xic[n-1]\{;} €i and their coordinate reflections are finitely many, we can set

1-«a

To = min L , min {Tx : X is a coordinate reflection of one of the points wj} .
Next, for each j € [n — 1], set §; = Bj(a;, 7o) to be the supremum of positive
numbers u such that

(aj+T0)e, +u Z e; €B
ie[n-11\{;}

(such positive numbers exist since we can consider convex combinations of the point e,
and the point Z?:_II ¢;, and focus on those convex combinations which are closer to e;,).
By compactness we have that the point (@ +7o)en + B - Xie[n-1]\(;} € € B (in fact, it
is found in GB); moreover B; < 1since (@, + To)en + Xic[n-1]\(;} €¢i ¢ B (by how we
chose a; previously).

Finally, as before, for each j € [n—1] set6; := ||1 - ej”;l; by our main assumption,
we have that @ := max{6; : j € [n— 1]} € (0, 1). We can finally choose

So < min{‘ro, min{l -B;:je[n-1]}, 1 —G)o}.

We are now ready to illuminate all boundary points of B using the set 75 Let

y € 0B.

. 170, 60"

e If y = 1 — ¢, or one of its coordinate reflections, then y is illuminated by some
direction in 7, 5, (since we can find any combination of signs for the first n — 1
coordinates).

e If n € Z,, then y is contained in the convex hull of 1 — ¢, and its coordinate
reflections, and thus it is also illuminated by some direction in 7, .

e Assume now thatn ¢ Z,.

+ Suppose also that y has the property that:

for two distinct indices 51, 52 € [n — 1], max{|yg, |, |ys,|} <1 - So. (%)

By the third main property of the set J,_;, we can find a direction d €
(50 “ Jn—1) x {1, =1} which deep illuminates the vector Proj [es, 5,1 (y). We
can then check that the displaced vector y + |y,|d is in int B (by comparing
coordinate-wise with the vector 1 — e,,).
Note that property () is satisfied in several instances, including the follow-
ing:
- when |Zy| > 2, given also our previous assumption that n ¢ Z,.
- When |y,| > ©y. Indeed, in this case, since 0,1 (1 — e;,—1) € OB, we
must be able to find an index s; € [n — 2] such that |y, | < 6,1 <
@0 <1- g().
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Similarly, because 6, (1 — e5,) € OB, we should be able to find an
index s € [n— 1] \ {s1} such that |y,,| < €5, < O,.

- When Z, = {to} C [n— 1], and |y,| > @4, + To. Indeed, by our choice
of By, we have that vy = (ay, + T0)en + Bry Dic[n-1]\{1o} ¢ € OB.
Given that the n-th coordinate of Proj et () is strictly bigger in absolute
value than the n-th coordinate of v, while their #y-th coordinates are
both zero, we must have that some other coordinate of v, exceeds the
respective one of P1rojeri0 (y) in absolute value. Thus, we can find some
1 € [n—1]\ {to} such that |y, | < B;, < 1 - do.

« Suppose now that, for at least n — 2 indicesi € [n—1],|y;| > 1-60 > 1—1o.

First of all, this implies that |y,| < ®¢ < 1. Therefore,

- if Z, = 0, then, since |y,| € (0, 1), we can use Corollary 11 to conclude
that a direction d from I, ;, illuminates y (it suffices to pick the unique
direction from 7, 5, which satisfies d; - y; < Oforalli € [n - 1]).

- If instead Z, # 0, then necessarily, given our main assumptions here,
we will have that Z, = {#;} C [n — 1]. From the previous remarks, we
know that this implies that |y, | < a;, + 0.

If [yn| < @, then y is in the convex hull of the point

Wt] :a'l»len+ Z e;
ie[n-11\{n}

and its coordinate reflections, and thus it is illuminated by some direc-
tion in Zs,_ .

If instead |y,| € (ay,, @ + To], then we will have that ||x — y||, <
To < Tx with x some coordinate reflection of w;,. Thus, y will again be
illuminated by some direction d € I, ;, (in fact, the selected direction

d, which illuminates x).

In this way, we have illuminated all boundary points of B. [ ]

We now turn to the case where a convex body B € U" contains exactly two maximal
unit subcubes. The proof of the following proposition will also encompass the full proof
of Proposition 18, that is, the relevant result in R3.

Proposition 28 Let n > 3, and suppose B € U" is not an affine image of the cube but has
the property that there are exactly two distinct indices i1, i, € [n] such that1 —e;, € B for
s =1,2,while1 —e; ¢ B forany j € [n]\{i1,i2}. Then, up to coordinate permutations,
one of the following sets illuminates B.

L. Theset 1, ((6), for some 6 = 6p € (0, 1), which consists of the following directions:
& the directions {6 - (d, sign(dm_c_(d))) :d € I"‘Z(l)} X {1} for some & > 0
which depends only on B (these are 22 - 2 = 2! directions);
& the directions {(6 -d, —sign(dm.c.(a)),0) : d € I"‘z(l)}for the same 6 > 0
as above (these are 2% directions);
¢ if n > 4, the directions {6 . (d, —sign(dm_c_(d))) :d € jn_z} X {1} for the
same 8 > 0 as above (these are < (273 —2) - 2 = 2"""2 — 4 directions).
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Important Clarification. Note that, in the cases of n = 3 and n = 4, we have not
defined a set J,_». In these cases, as we will see, we do not need a third subfamily of
directions, and we can quickly list all the elements of the sets I}, | (6) and I}, | (6):

13,1(6) = {£(8,6,+1), (6,6, -1), +(6,-1,0)} and

1}01(0) = {%(6,6,6,1),%(5,6,6,-1),%(=6,6,6,1),+(=6,6,6,-1),
+(6,6,-1,0), £(-6,6,-1,0)}.
2 Theset 1), ,(€,0¢), for some € > 0 and 6¢ > O which depend only on B, which is

ex

defined as below:
]-erfv2,2(€5 66) = {i(E’ € ...,€, 1’ 1)}
T BONEGer b 6ei1.86), £(Serben. . Ge =6, DY

We then see that in both cases J(B) < 2" — 2.

Proof Without loss of generality, assume thati; = n — 1 and i, = n. In other words,
B contains the points (1, 1,1,...,1,0,1)and (1, 1,1, ..., 1, 1,0), but does not contain
other similar points, that is, points of the form 1 — e; for j € [n — 2]. We distinguish
two cases.

Case 1. Atleast one of the points 1 —e,_; and 1 —¢,, is not an extreme point of B. In other
words, thereisa > Osuch thatae,—1+Xc[n]\ (n-1} € € Borae,+2;cin_1) €i €
B. Without loss of generality, assume that B contains at least points of the form
aen + Xje[n-1] €i With a positive.
Let a;,—1 be the supremum of all y,,_; > 0 such that

Yn-1€pn-1t+ Z e; €B.
i€[n]\{n-1}

By compactness we have that @,,—1€,-1+2;¢ [n]\{n-1} € € B,andthus0 < a1 <
1. Similarly, set @, to be the supremum of all y,, > 0 such that

Yneén + Z e; €B.
]

ie[n-1

By compactness we have that @,e, + X;e[,-1] €i € B, and by our assumptions it
follows that 1 > a,, > 0.

As in the previous propositions, for every j € [n — 2], set 6; = ||1 - ej”l;l,
and ©p = max;c[p—2] 0;. Also, set y = ||1||1;1. Clearly, forall j € [n—2], 0 <
¥ £ 60; < 0 < 1. On the other hand, max(@,-1, @,) < 7y (because otherwise
v1 would not be a boundary point of B). We will show that, in the setting here,
1;,.,(0) illuminates B as longas 6 < 1 — ©.

Consider a boundary point x of B.

e Assume first that x = @p-1€4-1 + Xje[n]\(n-1} € OT one of its coordi-
nate reflections. Then we find the unique direction dy in 7"*72(1) which
has opposite signs to x in each of the first n — 2 coordinates. Observe that
d, = (6 dyx,6sign(dy m.c.(ay)) — sign(x,)) illuminates x (we can compare

2025/07/29 21:18

https://doi.org/10.4153/S0008414X25101260 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101260

Illuminating certain 1-unconditional convex bodies 27

the displaced vector x+d’, with the point 1—e,, to confirm this; this is because
Ap-1+0<y+5<Op+06 < 1)

e Similarly, the first two types of directionsin 7.\, | (6) illuminate all the coor-
dinate reflections of @, e, + X [,-1] €i (here is where we use the assumption that
1 — e, is not an extreme point of B, and thus that v, > 0O; indeed, this allows us to
have access to all of the 2™~ combinations of signs for the first n — 1 coordinates,
that are all needed, without having to include 21 a1l new directions, which would
otherwise lead to an illuminating set of larger than desired size).

In more detail now, if x is one of these coordinate reflections, again we pick
the unique direction dy in 7"2(1) which has opposite signs to x in each of
the first n — 2 coordinates. In the case that sign(dy m.c.(a,)) = sign(x,_1),
then the direction d’ = (6 - dy, —sign(dy m.c.(a,)), 0) (of the second type
that we included) illuminates x (this is because |x,| = @, € (0, 1), and thus
we can use Corollary 11).

Otherwise, the direction d”’ = (& - dx, & sign(dx m.c.(a,)), — sign(xy,)) (of
the first type) will work instead.

e Next, assume that either |x,_{| < a@,_; or |x,| < @, (or both). Then x is in the
convex hull of the points @p—1€n-1+ Xic[n]\ (n-1} € a0d @nen + Xic[n-1] €
and their coordinate reflections, and thus it is illuminated by some of the
directions we have already used.

e We now suppose that |x,_;| > @,—; = 0 and |x,| > @, > 0.

« Assume first that min{|x,,—|, [x,|} < ©o.

- In this case, if |x,| > @, then necessarily |x,,—;| < ©q. Thus,
just as for the point @,-1€,-1 + Xjc[n]\ (n—1} € and its coordinate
reflections, we can use a direction of the first type in 7.7, | () to
illuminate the boundary point x that we are considering now (it
suffices to pick dy such thatd, ; - x; < Oforalli € [n—2] U {n},
and then compare the displaced vector x + |x,|d, with the point
1-e,).

- If |x,| € ©g < 1, then, since we also have |x,,_;| > 0, we can pick a
direction d,, from the first two types in I;;z’l (6) sothatdy ;-x; <
0 for all i € [n]. Depending on whether m.c.(dx) = n — 1 or
not, we consider the displaced vector x + |x,,—1|dy or the displaced
vector x + |x,|dy, and we compare with the points 1 — e, or
1 — e, respectively.

+ We finally consider the cases where min{|x,—;|, |x,|} > ®¢ > y. Then
we can find 51 € [n — 2] such that |x;, | <y < 1-6.

— In the case where n = 3, we can quickly confirm that x is
illuminated by one of the directions (48, 8, +1).

- Ifinstead n > 4, then we can find one more index s, € [n — 2] \
{s1} such that |x5,| < ©. Indeed, since 05, (1 — eg,) € OB, we
should be able to find an index s, € [n] \ {s1} such that |x,,| <
05, < Oy. Since both |x,,_1| and |x,| are larger than @¢, we must
have s, € [n—2] \ {s1}.
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We can now conclude the following: if n = 4, then {51, 52} =
{1, 2}, and we have that x is illuminated by one of the directions
+(6,6,6,1), £(6, 0,8, —1) (indeed, set d, to be the unique direc-
tion among these that satisfies dy ; - x; < O fori € {n — 1,n}, and
then compare x + |x,,|dy with the point 1 — e, to conclude that the
former is in int B).

If instead n > 4, then we have access to the set J,_, that we
defined earlier, and hence we can find a direction d’ € 7, such
that d} -xj < Oforallj € [n—2]\ {sy,52}. Clearly d’ € I""%(1)
as well, and thus both vectors

(6-d, 6sign(d;n_c_(d,)), — sign(xy))
and (6-d’, =6 sign(d:n_c_(d,)), — sign(xy))

X
opposite sign to x,_; will illuminate x (and we can compare the

displaced vector to the point 1 — ¢, to confirm this).
We have thus illuminated all boundary points of B (regardless of what the dimen-
sion n > 3 is), when Case 1 holds.

are in 1, |(6). The one which has (n — 1)-th coordinate of

Case 2. Both of the points 1 —e,,_1 and 1 — ¢,, are extreme points of B. Recall that we have
assumed that B is not an affine image of the cube, however the convex hull of these
two points and of their coordinate reflections is an affine image of the cube, the
convex body [~1, 1]"7% x CP%. Thus there must exist a point x € B outside of this
convex hull, which in particular implies that |x;,—1| + |x;| > 1. Just as in Lemma
19, we can show that this entails that

1
%(en_l +e,) € intB, orequivalently ||e,—; + en||l;1 > >

which further implies that
for every € € (0, 1), thepoint (1 —¢,1—€,1—¢€,...,1—¢, %, %) € int B.

Fix some €y € (0, 1), and note that, because the point

€ € € €0

(__ _ % _ % _ %

11
27 27 20 2722
we can find ¢, € (O, %) such that
(1-2,1-2,1-2,...,1-2, 1+, 1+ %)
is also an interior point of B.

Next, we set 3,1 to be the supremum of positive constants ¢ such that

506,171 +c Z e; € B.
i€[n]\{n-1}

By compactness {o€—1+Bn-1 Zic[n]\(n-1} €¢i € B,and by the main assumption of
Case 2, 8,-1 € (0, 1). Similarly, we set 3,, to be the supremum of positive constants
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¢’ such that
loen + ' Z e; €B.
ie[n-1]

Again, we have {oe, + Bn 2ic[n-1] €¢i € Band B, € (0,1).

Now we pick

60 < mln(l - §0’ 1 _,Bn—l’ 1 _ﬁn)
and consider the corresponding set 7}, , (€, 69). We will show that this illumi-
nates B.

Consider a boundary point x of B.

e If x is the point 1 — e,,_; or one of its coordinate reflections, then we find
a direction dx € 1, , (€, do) which has opposite signs to x in all the first
n — 2 entries, as well as the n-th entry, and has maximum entry the n-th entry.
Unless sign(x;) = sign(x;) = sign(x3) = - - = sign(x,—;) = sign(x;), we
take d, from the set

zln_l,n(éo)\{i(%, 80, - - -, 00, 1,00), (80, b0, - - ., 80, =F0, 1)}

and it is clear that x + d, € int B if we compare to the point 1 — e,,. In the
remaining case, dy will be one of the directions +(€, €, . . ., €, 1, 1), and
again we can see that
x+1dy €intB

since x+ %dx will be a coordinate reflection of the point (1— %, 1- % R
21,5

e Analogously we illuminate the point 1 — e, and its coordinate reflections.

o Given the above, we have now also illuminated all boundary points x of B
which fall in the convex hull of the points 1 —e¢,,_;, 1—e¢, and their coordinate
reflections; thus all boundary points x which satisfy |x,—| + |x,| < 1.

e Suppose now that |x,_| + |x,| > 1.

+ Assume first that |x,_;| < o. Again, we find a direction d, which has
opposite signs to x in all the first n — 2 entries, as well as the n-th entry,
and has maximum entry the n-th entry. Unless sign(x;) = sign(x;) =
sign(x3) = - -+ = sign(x,—,) = sign(x, ), we take d, from the set

Inn_l’n((so)\{i(éo, 50, e ,50, 1, 50), i(50, 60, ceey 60, —50, 1)}
and then compare x + |x,|dy to the point 1 — e, (since in particular
|(x + [xpld)n-1] < [xp-1] + [xp|00 < Lo+ 0 < 1).

In the remaining case, we choose d, from +(€, €, . . ., €9, 1, 1). We
can see that
x+1d, €intB
because we will have
- ‘(x+ %dx),-| <max(1-25,9)=1-Fforalli € [n-2],
- |(‘x+ %dx)nl S maX(l - %s %) = %y

— and finally | (x + 2dy)ni| < lai ] + 1 < 1+ ¢,
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while the point
& & & € 1 1
( _7091_7051_709"'9 _703E+§05§+§0)
is an interior point of B, given our choice of .
+ We argue analogously if |x,| < .
+ Finally, let us assume that min(|x,—1|, |x,|) > &o-

- Suppose also that max(|x,-1], |x,|) < max(B,-1,8,) < 1 — .
If x,—1 - X, < 0, then we can pick a direction d, from the set

f,,n,l,n((so)\{iwo, 0, - - ., 00, 1,00), £(d0, 60, . . . , 00, =00, 1) }

to illuminate x. In fact, in most cases we can take d from the sec-
ond half of this set, which contains directions with maximum (in
absolute value) coordinate the n-th one (and consider the vector
X + |x,|dy, comparing it to 1 — e,). This will work in all cases
except when all entries of x are non-zero and

sign(x;) = sign(x,) = sign(x3) = - -
= sign(x,—3) = sign(x,) = —sign(x,_1).

In this last subcase, we instead choose d, from
+(60, 80,00, ...,00,—1,—0p) (and consider the vector
X + |xy-1|dy, comparing it to 1 — e,_1, given that we have
|(x + |x,,_1|dx),,| = |xu| + |xn=1|00 < |xn| + 6o < 1 by our last
assumption above).

Similarly, if x,—y - x > 0, we choose dy from the

first half of the set I, (J¢), except in the case where
all entries of x are non-zero and

sign(x1) = sign(xz) = sign(x3) = ---
= sign(x,—,) = sign(x,-1) = sign(x,).

In this last subcase we can instead choose d to be one of the direc-
tions = (€, €, . . . , €0, 1, 1) and consider the vector x+&d where
£x = Minje[n] Xl

- Now, suppose that max(|x,—1]|, |x,|) > max(B,-1,8,). Given
also our ‘parent’ assumption that min(|x,-1], |x,|) > o, by the
choice of the constants 8,,_1 and 8,, we can find j, € [n — 2] such
that |x ;| < max(B,-1,8s) < 1—3Jo.But then it is possible to find
a direction d, from

zln_l’n(éo)\{i(éo, 60, ey 60, 1, 60), i(éo, (50, e ,50, —60, 1)}

such that dy ; - x; < Oforalli € [n]\{jo}, and we can check that
this d illuminates x.

We have completed the proof in both Case 1 and Case 2. |
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Remark 29 (I) Combining Propositions 20, 21 and 26, Proposition 27 (and its 3-
dimensional version, Proposition 17) and Proposition 28, we reach the following con-
clusion: for any dimension n > 3,if B € U" is not an affine image of the cube, but
has the property that there is at least one index iy € [n] such that 1 — ¢;, € B, then
J(B) < 2"-2.Inother words, if B contains at least one maximal unit subcube (according
to our terminology) but is not a parallelepiped, then J(B) < 2" — 2.

(IT) Moreover, Proposition 20 and the proof of Proposition 28 allow us to complete
the discussion of Section 3: we can conclude that, for all 1-unconditional bodies B in R3,
J(B) < 6, unless B is a parallelepiped.

(III) As a ‘bonus’, we have also confirmed all the above results while using illuminating
sets which consist of pairs of opposite directions.

4.3 Bodies with all unit subcubes of dimension n — 2

We finish this section by proving a similar result to the above, namely Proposition 3
of the Introduction, since a similar argument can work here as well. To keep the proof
simpler, we assume that the convex bodies that we will consider are not already handled
by any of the previous propositions, or in other words by Theorem 2.

Proposition 30 Let n > 4 and let B € U™ with the property that B contains
ei+ey+-+eun
and all its coordinate permutations, but it does not contain any coordinate permutation of
e1+er+-+e,a+eny.

For6 € (0,1)and ¢ = s € (0,0), let ]~'5’§ be the following set of directions:

¢ we will include most of the directions in Zl"_z’n_l’n(é) except
(i) the directions d, = (6,6,...,6,-6,1)andd_ = —(6,6,...,8,-6,1), and
(ii’) all the other directions d € Z’;”_z’ n-ln (0) whose sequence of coordinate signs differs
from that of either d, or d_ in exactly one place (e.g. +(6,6,...,5,1,8,0) or
+(6,8,...,8,—0,—0,1)); note that, for each of these directions d, the place where
its sequence of signs differs from that of d or d_ is not the place where d has its

maximum in absolute value coordinate.

& For each of the directions d in (ii’) we introduce a ‘replacement’ direction d’ as follows:
we first distinguish whether d has an almost identical sequence of signs to that of d or
to that of d_ (suppose for illustration purposes that it is d., here). We then set d’ to be the
direction which has the same respective entries as d, except for the one entry d; , of d which
differs in sign from the respective entry of d, in which case we set d; = sign(d;,){
eg ifd=(6,6,...,6,-6,-6,1), thend’ = (6,6,...,6,-¢, -6, 1)).

Then there are 6 = 6 > Oand { = {g > O such that B can be illuminated by the
corresponding set I ;.
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Remark 31 For illustration purposes, let us write down what the sets 7 s are in R*:
we get the set of directions

{£(6,1,£,6), £(6,-1,-6,-6), £(3,6,-1,-(), (6,6, 1,6),
+(6,06,0,-1), £(6,-¢,-6,1), =(=¢,6,-6,1)}.

Proof We first verify the following

Claim. Let y € R" \ {6} such that |Zy| = 2. Then we can find d € _Z;,( which deep
illuminates y, and which in addition satisfies the following: if d; = { for some i € [n]
(unique in our setting), then y; = 0 (in other words, if d is one of the modified directions
in T, 5,7, and d; is the modified coordinate, then this corresponds to one of the two zero
coordinates of y).

Proof of Claim. Note that, due to the way we construct 7, 5,¢ from _Zl"_z’ n1.n(0) (and
ultimately from 7" (6)), all sequences of signs whose last 3 terms take one of the forms
+(1,1,1) or +(~1,1,1) or £(1, 1, —1) are still there (there are 2”2 sequences of signs
of each such form). Moreover, there is exactly one pair of opposite directions in each of

these subgroups which comes from the modified directions: in fact,

« in the first subgroup the coordinate which may be equal to ¢ is the (n — 1)-th one,

« in the second subgroup the coordinate which may be equal to { is the n-th one,

« and in the third subgroup the coordinate which may be equal to ¢ is the (n — 2)-th
one.

At the same time, we observe that (because of the specific, combinatorial construction of

I (6) that we rely on in this paper, and then the construction of I (6) from that)

n-2,n—1,n
+ the maximum (in absolute value) coordinate of all directions in the first subgroup
is the (n — 2)-th one,
« the maximum coordinate of all directions in the second subgroup is the (n — 1)-th
one,
« and the maximum coordinate of all directions in the third subgroup is the n-th one.

We can now analyse what d should be, based on where the zero coordinates of y are
found.

Case 1. The two zero coordinates of y are among the last three ones. Then the remaining
coordinate from these, say coordinate iy € {n — 2,n — 1, n}, is non-zero, and so
are all the coordinates with index < n — 2. Thus we can focus on one of the first
three subgroups of directions in 75 », which contains directions with maximum
(in absolute value) coordinate the io-th one, and pick the unique direction d whose
signs on the non-zero coordinates of y are opposite to the corresponding signs of
y (in such a case, even if d has a coordinate equal to +Z, this will have index in
{}'l -2,n- Ln} \ {10})

Case 2. Only one of the zero coordinates of y is among the last three ones, say the coor-
dinate with index iy € {n — 2,n — 1, n}. Let us also write i, for the index of the
other zero coordinate of y: i, < n — 2. For illustration purposes, let us assume that
i1 = n (the other cases can be treated completely analogously). Then we can use
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directions either from the first subgroup (if the (n — 2)-th and (n — 1)-th coordi-
nates of y have the same sign), or from the second subgroup (if these coordinates
of y have opposite signs). To avoid the one pair of directions in these subgroups
which has an (n — 1)-th coordinate equal to ¢ (in absolute value), we can focus on
directions d which satisfy sign(d;,) # sign(d,—1) (since d;, will correspond to a
zero coordinate of y, so it can have either positive or negative sign without issue).

Case 3. Both of the zero coordinates of y have indices < n — 2, say indices i3 and i4 (where
1 < i3 < iy < n— 3). Clearly this case can occur only when n > 5. We first
focus on the subgroup of directions in f(s,g whose sequences of signs in the last
three coordinates match or are exactly opposite to the respective sequence for y.
From within this subgroup, it suffices to consider those directions d which satisfy
sign(d;,) # sign(d;,) (because in this way we both avoid the one pair of opposite
directions/sign-sequences missing from _2:5’4’ compared to f”"fz,nil’n(é), which
we would not have been able to pick anyway, and also we make sure that, even if a
suitable direction d has a coordinate equal to +, this will be its i3-th or its i4-th
one, as desired).

The proof of the claim is complete.

Since B does not contain any of the coordinate permutations of 1 — e,,, as previously
we can set, for each j € [n], 6; = Hl - ej”;l; we will have §; € (0, 1). We also set
© := max;c[,] 0}, and pick

1 1-0
6 2 ’

O<6<min{—,

Furthermore, set y := ||1||§1. A suitable value for £ will become clear towards the end
of the proof, but for now we just make sure that { < 6.

Let x be an extreme point of B. We distinguish two main cases.

|Zx| = 1. Suppose x;, = O for some iy € [n]. Because 9,-0(1 - eio) € 0B, for at least one
index i; € [n] \ {ip} we must have |xi1| < 0, < Oy < 1. Moreover, for every
J € [n] \ {io, i1}, we must have x; # 0, because otherwise x would not be an
extreme point of B (it would be in the convex hull of a point of the form 1 —e¢;, —¢;
for some j € [n] \ {io, i1}, and of its coordinate reflections, without being any of
those points). Thus the point

Vx =X — xioeio —xileil =X — xileil

has exactly two zero coordinates, and hence, by the above claim, we can find a
direction d € _Z;, ¢ which deep illuminates y . Moreover, we can make sure that,
if d; = £{ for some s € [n], then y, s = 0 (or, in other words, |ds| = { = s €
{io, i1}

Let jo = m.c.(d). Then x + |xj0| d satisfies the following:

+ its jo-th coordinate is zero,

« while |(X + \xjol d)i0| < |)Cj0| o,

« and i(x + |xj0| d)i1| < Qg + |xj0| 0. Moreover, by our assumptions on 6, we

have @ + |xj,|0 < 1 —|xj| o
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+ Finally, for any j € [n] \ {Jo, 0,71}, we will have that
i(x + |x10| d)j| < max{ixj| - |xj0i J, |xjo| 6} <1- |xj0| 0.
We now compare this point to the convex combinations

c1(x) = (1= x| 6) (1 — e, —ejy) + |xjo| - €4
and ¢;(x) = (1—|x]-0|6)(1—ei0—ejo—eil) + |xj0|6‘el-o + |()c+|)cj0ia'),-l‘~eil

which are contained in B. All the respective coordinates of c¢1(x) and c;(x) are
equal, except for the i1-th coordinate: in that case, c;(x) has a strictly smaller
coordinate than ¢ (x). Moreover, the coordinates of x + |x j0| d do not exceed
the corresponding ones of ¢, (x) in absolute value. Thus it suffices to show that
¢, (x) € int B to also obtain that x + |x j0| d € int B. To do this, we will use the fact
that

c3(x) = (1- |xj0‘6)(1 —e—ej,—e;) + |xj0|6 - e,

is an interior point of B (which is verified if we compare with the point 1 — e, —
e;, € B). Thus the desired conclusions follow by applying Lemma 10 on the section

{z eEB:zy,=(1- |xj0|6) forall s € [n] \ {io, i1, jo}, 2j, =0, zi, = |xj0|6},

which contains all three points ¢ (x), ¢ (x), c3(x).
| Zx| = 0. Here, it suffices to pick a direction d from Z~'§, ¢ which deep illuminates x (which,
in this case, simply means that sign(d;) = —sign(x;) for alli € [n]). This will
not be possible only in the case that sign(x;) = sign(x,) foralli € [n — 2] and
sign(x,-1) = —sign(x,) (since we removed without any replacement the only
two directions in ‘Zzn—z, n-1.n(0) which had exactly this property). To deal with this
remaining case, we distinguish two subcases.
« Atleast two coordinates of x are < % in absolute value. Say max(ixi1 | R |xi2 |) <
% with 1 < i; < i; < n.Recall that we have also assumed that x has no zero
coordinates. For the point

Yx =X — X, € — Xj,€4,

we again use our initial claim, and find a direction d € 1:5’ ¢ which deep illu-
minates Y, and is such that, if d; = +{ for some s € [n], then y, ¢ = 0 (in
other words, |ds| = ¢ = s € {i1,i2}).

Let jo = m.c.(d). Then x + |xj0| d satisfies the following:

— its jo-th coordinate is zero,

— while

1

1
|()C+|)Cjo|d)is +|Xj0|6ﬁg+5<5

< \x,-s

for both s = 1 ors = 2 (the last inequality holds because of our
assumptions on o).
- Finally, for any j € [n] \ {Jo, 1,2}, we will have that

‘(x + |xjo| d)j| < maX{|xj| - |xj0| d, ixjo’ 6} <1- |xjo| 0.
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We can now compare to the convex combination

1 1

S —ej—ei) + S(1-ej—ep)

in B, to conclude that x + ix jo’ d € intB.

« At most one of the coordinates of x is < % in absolute value. Let iy be the
(smallest) index of min; [, |x;|. We must have |x,-0| < v (otherwise the point
v1 would not be aboundary point of B). Moreover, recall that the only subcase
that we have to still consider here is the one satisfying the following:

(i) forall j € [n] \ {io} we have |xj| > % > 6;
(i) sign(x;) = sign(x,) foralli € [n — 2] and sign(x,_1) = — sign(x,).
We now pick the unique direction d € -ZS, ¢ which satisfies idio’ = and
sign(d;,) = sign(x;,), while sign(d;) = —sign(x;) forall j € [n] \ {io}. Let
jo=m.c.(d). Thenx + |xj0| d satisfies the following: for all j € [n] \ {io},

|+ Jejo| )] < sl = ] 6.
while
|(x+ |xj0|d)io| = |)Ci0| + \xjolg’ < |x,-0| +/Z.

Fix some A € (0, £); then, forall j € [n] \ {io}, we can write
)
/lo|xj'| <A < 5 < |)Cj0|6,

and thus |xj| - |xj0| 6 < (1-2p) ixj|. Based on this, we consider the convex
combination

co(x) = (1=29) D lxiler + Ao~ eiy = (1= Ao)lx| + Ao - e,

i€[n]
which is contained in B, and we observe that:
- eachof its coordinates with index j € [n]\{io}isequalto (1—-2o) |xj| >
|(x + |)Cj0| d)j|,

— while the coordinate with index iy is equal to
(1= o) xip| + Ao = |xip| + A0 (1 = [xi]) > |xio| + 20(1 = ).

Hence, if we fix some { < Ao(1-7) (e.g. fix Ao = g and { = g(l —1y); note that
none of these quantities has to depend on the point x that we are considering), we can
also ensure that |(x + |x joi d)i0| is strictly smaller than the iy-th coordinate of
the convex combination c(x). This will imply that x + |x j0| d € intB.

We have addressed all possibilities for the arbitrary extreme point of B, and we have
shown how to illuminate it in each case using some direction from J5 , (with 6 and

{ suitably chosen with respect to B). Therefore J~'5, ¢ is an illuminating set for B, and
J(B) <2"-2. [
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5 Cubelike 1-unconditional convex bodies

Here we prove Theorem 5, namely we settle the Illumination Conjecture for 1-
unconditional convex bodies K which have the following property:

if x is an extreme point of K, then x; # 0 foralli € [n] @)

(we called these cubelike bodies).

Recall that, because of standard results such as Fact A and Corollary 8, it is well-
known that such convex bodies can be illuminated by 24m(K) directions. Therefore,
the novelty in Theorem 5 is that we also verify the conjectured equality cases of the
[llumination Conjecture.

The proof of Theorem 5 could be summarised as follows: we will use induction in the
dimension, and in the inductive step we will rely on combining two key lemmas, which
we present first.

The first of these lemmas could be of independent interest as well, since it applies in
a broader setting than that of ‘cubelike’ 1-unconditional convex bodies.

Lemma 32 Letn > 3, and let K be a convex body in R"™ and H a(n) (affine) hyperplane of
R". Suppose that: (i) Projg; (K) = K N H (where projection of any given vector here means
translating the vector parallel to a normal vector to H until we hit H), and (ii) K has no extreme
points in H, that is, ext K N H = 0.

Then J(K) < 2-J(KNH) =2-3I(Projy (K)) (note that J(K N H) is the illumination
number of an (n — 1)-dimensional convex body, found by illuminating K N H = Projy (K)
within H).

Proof Without loss of generality, we can assume that H = e,ll + ae,, for some a € R,
and then, by translating both H and K by —ae,, we can assume (for simplicity) that
H = e;t. From now on, we will write K, instead of K N H = K N e;y.

Note also that, because K N H = Projy (K), we have that aff(K N H) = H.

Next we observe that K contains points x with x,, = (x, e,;) > 0, as well as points y
with y,, < 0. This is because, if this were not true, we would have that K, is a support
set of K, and thus it would have to contain some extreme points of K, contrary to our
second main assumption. As a consequence of this, we also get that int K N e; # 0.

Set now No = J(K,,) (Where we initially view K, as a subset of R""! instead of
;). We can find a set D = {dy, ds, ..., dn,} of directions in R"~! which illuminates
K., . Let us also restate this as a statement about subsets and directions of R": D can
be viewed as a (minimum-size) subset of ¢;; which has the property that, for every p €
relbd K,,,, we can find d; € O and &€ > 0 such that p + &d; € relintK,,,.

Claim. We can find acommon gy > 0 with the property that, for every p contained in
K., (and notjustinrelbd K, ), there willbe some d; € D suchthat p+eod; € relint Ke,,.
By convexity, this will also imply that, for p and d; as before, p + £’d; € relint K, for
every &’ € (0, &).

Proof of the claim. We will use compactness (working with relatively open sets in the
subspace topology on e;-, so as not to further complicate our notation). The following is
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essentially the (core of the) standard argument that shows that the illumination number
and the covering number of a convex body coincide.

For every p € K., we can findd;, € D and some &, > Osuch that p + &,d;, €
relint K, . For points on the relative boundary of K, this is already guaranteed by our
choice of the set . On the other hand, if p € relint K, then, no matter which direction
d we choose from aff K, = e;- (more accurately, from aff K., — p, which just happens to
coincide with aff K,, here), we can get the desired conclusion aslongas we pick e, = €54
small enough.

We can rewrite this as p € —&,,d; Lt relint K., , and thus
K., C U (—spdip + relint Ken).
PekKe,

Therefore, by compactness, we can find finitely many positive numbers €1, €3, . . ., €pr,
M > 1, such that, for every p € K,,,, it will be possible to write

p € —gjd; +relintK, & p+eg;d; €relintK,,

forsome j € {1,2,...,M}andi € {1,2,..., No}. Finally, if we set g0 = min{g; : 1 <
J < M}, by convexity we will have that p + god; € relint K, as well, while ¢ will not
depend on the point p anymore. The proof of the claim is complete.

We can finally define an illuminating set for the convex body K. Set

aop = max{|x,| : x € K}.

Simply because K has non-empty interior, we have that ag > 0. Set 9 = j—g We claim
that the set

n0D x {1} = {(nod;, 1), (nod;, —1) : 1 <i < No}
illuminates K (where we abuse our notation a bit again, and view D as a subset of (n —

1)-dimensional vectors now).
Indeed, let x be an extreme point of K. Then, by our assumptions x,, # 0, and also

Proj,. (x) € Proj,. (K) = KN ey =K, .
Hence, we can find d; € D such that Proj,: (x) +&’d; € relint K., forany &’ € (0, &o].
We will show that x is illuminated by the direction (nodi, - sign(xn)):
x + |xn|(nod;, — sign(x,)) = (Projeﬁ (x) + |xn|§_g d;, 0) € relint K,

given that |x,,| Z—g < g&¢ (again, we abuse our notation and view Proj el (x) as avector with
n—1 coordinates). It remains to recall that, since int K N e;; # 0 due to our assumptions
on e; = H, Lemma 10 gives us that relint K,, = relint(K N e;) C intK. [

Remark 33 Let K be a 1-unconditional convex body in R” which has Property (). It
is not hard to see that we can find at least one affine image K of K which belongs to the
subclass U™ and still has Property (7).

Indeed, as mentioned in Section 2, an obvious choice for an affine image of
K from U" is the convex body we get if we multiply K by the diagonal matrix
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diag(le; ||;<1, ||ez||2, cees ||en||1}1) Let us write Ty for the linear transformation of R™
which corresponds to this matrix. It is clear that

xeextK o Ty(x) € extTo(K),

while this transformation T is such that, forally € R" andi € [n],y; # 0 &
(To())i # 0.

Lemma 34  Let B be a cubelike 1-unconditional convex body in U" (in other words, assume
that B has Property (1), and that ||e;||p = 1 for alli € [n]).
Suppose that for some iy € [n] we have that Proj,. (B) is a(n) ((n — 1)-dimensional)
io

parallelepiped. Then we will have that Proj,. (B) coincides with Proj,. ([-1, 1]") (and not
0 0
only that they are affinely equivalent). Equivalently, B must contain the point 1 — e;.

Proof Without loss of generality, we can assume that iy = 7. By the linearity of
projections, we can observe that

ext Proj,. (B) C {Proje# (x):x€ eXtB}.

Moreover, since we have assumed that Proj,. (B) is an (n — 1)-dimensional paral-
lelepiped, we know that it has exactly 2! extreme points. Let v| be one of them; as
already observed, we can find an extreme point x; of B such that v; = Proj el (x1).

Now note that, because of Property (1), all coordinates of x; are non-zero, and hence
the first n — 1 coordinates of v; will be non-zero. Moreover, by the 1-unconditionality,
we know that all coordinate reflections of v; must also be extreme points of Proj,: (B),
and given what we just remarked, we have that there are 2"~! different such coordinate
reflections (including v itself).

We conclude that the extreme points of Proj,. (B) are precisely vi = Proj,. (x1) and
its coordinate reflections. Without loss of generality, we can assume that v; has only
positive coordinates (except for its last one).

We finally observe that, for all j € [n — 1], ¢; € Proj,.(B), and thus it must be
possible to write it as a convex combination of v and its coordinate reflections. This
implies that [vy j| = v;; > 1 (and since B € U", we also have v; ; = x;; < 1). We
conclude that v; = Proj,: (x1) = 1 — ey, and by the 1-unconditionality we know that
this is contained in B. ]

We are now ready to give the
Proof of Theorem 5 Let n > 3, and consider a cubelike 1-unconditional convex
body B in R" which is not a parallelepiped. Because of Remark 33, we can also assume
that B € U" without ruining any of the other assumptions. We will show that J(B) <

2" — 2 by using induction in the dimension #.

Base of induction. If n = 3, then Theorem 15 gives us that 3(B) < 6 (without even hav-
ing to use the assumption that B is cubelike), and it also guarantees that we can illuminate
(any affine image of) B using 3 pairs of opposite directions.

Induction Step. Let us now assume that the theorem holds in dimension 7 — 1 for some
n > 3, and consider B € U™ as above.
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Because of the 1-unconditionality, we have that Proj e (B) = B N e;. Moreover, as
we also observed in the proof of Lemma 34, it holds that

ext Proj,. (B) C {Projei (x) :x € ext B},
and thus Proj,. (B) (viewed as a convex body in R™ 1) is 1-unconditional and cubelike.

+ If Proj,. (B) is a parallelepiped of R"™!, then Lemma 34 gives us that B contains
the point 1 —e,,. Recall that B is assumed not to be a parallelepiped of R", and thus
Theorem 2 applies in this case, allowing us to illuminate B using %(2" — 2) pairs
of opposite directions.

+ If instead Proj,. (B) is not a parallelepiped of R™! then we can invoke the induc-
tive hypothesis and conclude that 3(Proj,. (B)) < 2"~1 —2.In fact, we obtain that
Proj,. (B) can be illuminated using 2’*~2 — 1 pairs of opposite directions.

We can then combine this with Lemma 32 (given our assumptions, which imply
the conditions of that lemma), and this gives that 3(B) < 2-J(Proj,; (B)) < 2"-4.

In addition, by looking at the proof of Lemma 32 as well, we can check that, if
we start with an illuminating set of Proj,. (B) which consists of pairs of opposite
directions, then we pass to an illuminating set for B which also consists of pairs of
opposite directions (and has double cardinality).

This completes the proof. [ ]

It is worth remarking that we only looked at the particular hyperplane projection
Proj,. (B) of B for simplicity. By the 1-unconditionality assumption (which is a rather
strong symmetry assumption from certain points of view), we have that Proj,. (B) =

J

Bn ejl. for all j € [n]. Therefore, we could have applied the inductive hypothesis and

Lemma 32, exactly as we did above, for any index j, € [n] for which we would know

that Proj,. (B) is not a parallelepiped. Moreover, if it turned out that no such index
Ji

0
exists, then (by also recalling Lemma 34) we would deduce that we are in the setting of
Proposition 20, which is just a special case of Theorem 2 (in fact, the case with the easiest,
most direct proof). Thus, the proof of Theorem 5 only truly requires Proposition 20.

Still, in this paper we sought to give a full proof of Theorem 2, because this allows
us to settle more high-dimensional cases of the Illumination Conjecture in the class of
1-unconditional bodies.

6 1-unconditional convex bodies in R*

It remains to complete the proof of Theorem 1: note that we have already fully settled
the part of the theorem that concerns R3. Recall also that Propositions 20, 21, 27 and
28 apply with n = 4 too, and cover all cases where we have at least one coordinate
permutation of e| + e, + e3 contained in a 1-unconditional convex body B € U*. Anal-
ogously, Proposition 30 corresponds to, and settles, the case of 1-unconditional convex
bodies in U* which contain all coordinate permutations of e; + €, and no coordinate
permutations of e + e, +e3.

Therefore, to also fully confirm the Illumination Conjecture for 1-unconditional
convex bodies in R?, it remains to address the cases where B € U* contains only some of
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the coordinate permutations of e; + €, or none of them. We summarise the conclusions
that we reach in this section in the following
Theorem 35  Let B € U* which is not a parallelepiped.

¢ If B contains at least one coordinate permutation of 1 +e3 +e3, then, as we have already
seen, there exist 6 € (0, 1), or 61 € (0, 1), or €3 and 5, € (0, 1), or 3,63 € (0, 1)
andnz € (0, 03), which depend only on B, so that B is illuminated by one of the following
sets:

Fro.6 = L5(6) = {£(1,6.6.6), £(5.-1,-6,-6), (5,6, —1,-6), (5, -6, 1,6),
+(6,6,0,-1), £(6,-6,-6,1), (5,-6,6,-1)},

or Foy 5= I%(6) x {8} = {£(1,6,6), £(5,~1,-6), +(6,6,-1)} x {6},

or 77;;’,151 =1}, 1(61) = {£(61,61,61,1), £(61,61,61,-1), (61, =61, 61, 1),
i(61’_61,_617_1)3 1(61,615_190)5 i(él’_él, 1’0)}7

4,2 4
or 7:28,52,562 =1 00(6,0e) = {i(ez,ez, L, 1), £(d¢,» =0,

i((SEz?_(SeZ’ 1,662)7 i(6€2’56276€27_1)’ i(5€2’_562’_6€27 1)5 1(6627_56256627_1)}7

> _15 _662)’ i(66276627 _1, _662)7

or 7’247,53,7,3,53 = {(x(1,m3), £63,0), (£(=13, 1), £53,0)} U [{£(53,63,63)} x {£1}],

or by some coordinate permutation of one of these sets.

& Again, as we have seen, if B contains all coordinate permutations of e + e, (and none of
the coordinate permutations of ey + €3 + e3), then B can be illuminated by the set

Foboe =1a, ={+(6.1,0,6), £(6.-1,-8,-6), £(6,8,~1,-0), +(6,-6.,1,6),
+(6,6,6,-1), £(6,-¢,—6,1), +(=¢,6,-6,1)}

for some 6 € (0,1) and { € (0, 8) which depend only on B. Note that an equivalent
description for B here is that it contains all possible unit squares.

¢ In the remaining 4-dimensional cases, where B may contain only some unit squares, or
none at all, we can use a coordinate permutation of one of the following illuminating sets:

7“36,4],(5,7},( = {i (1» 6’ n, O)» i(é»_la_n’ 0)» i(é» -n, 1’ 4)7 i(_69 -1, 1’ g)’
+(0,+(n,6),1), £(0,1,-6,n)},

7:37,38,5,7] = {i (17 57 n, 0)7 i(é"_l’ 7770)’ i(_r]96a 1,0), i(T], 6’ _170)5
* (_n’ 0’ 6’ 1)’ i("],os 6,_1)3 i(l, 0, 1, 0)},

7:38,alt,(51 = {i(l9 61’ 03 0)9 i(_él, 1’ 0’ 0)3 i(()’ 09 1961)9 i(o9 O’ _61’ 1)}9

ﬁ9,42,(5,77 = {i (1759n’ 0)7 i(67_1’_n, 0)7 i(67 _]79 1’0)’ i(éa T]7_1’O)7
+(0,£(n,6),1), £(0,1,-1,0)},
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7:39,alt,62,772 = {i(ﬂz, 15 62»0)5 i(_UZ’ 1’ 629 O)’ i(_nz’ 1’ _62’0)7
i(nZ’ 772’ 17 62)’ i(_TIZ’ _7723 19 62)3 i(n27 7727 _62’ 1)a i(_n29 _772, _629 1)}a

or ﬁz,alt,ég,,]h = {i (1’ -3, _63’ _63)’ i(_TI3, 1’ _63’ _63)9
+ (03,0, 1,-13), £(63,0,-7m3, 1), £(0,63,1,-13), +(0,63,—n3, 1)}.

Note that the order in which we include the parameters/‘small’ constants that we use
as subscripts should indicate how they (potentially) depend on each other: parameters
appearing earlier do not depend on later ones, but how small one may need to choose
the later one(s) depends on the values of the earlier parameters.

In the same manner as in earlier sections, we divide the remaining cases into the
following propositions (according to how many unit squares the given 1-unconditional
body contains).

Proposition 36 Suppose that B € U* satisfies ||ei + ej”B > 1 for every i, j € [4]. Then
there exist 6 > 0,1 = ns > Oand { = {5, > O so that B can be illuminated by some
coordinate permutation of the set
%6,41,5,1],{ = {i (19 6, n, 0)9 i-(és _1a -, 0)9 i(és -, 19 ()9 i-(_(s’ -n, 1’ §)7
+(0,+(n,6),1), £(0,1,-6,n)}.

Observe that |7"36,41,5,,7,4| = 14.

Proof Foralli,j € [4],i # j,set6;; = ||e,~ + ej”;l; this is equivalent to 6; ;(e; +
e;) € 0B,and thus §; ; < 1foralli # j by our main assumption. Set ®p = max;; 6; ;.

Next, similarly to the proof of Proposition 16, for each i € [4] and for each j €
[4]\{i}, set a; ; to be the supremum of non-negative numbers x; such that

l+®()

e txje; € B.

Then 1+2®° ei +a; je; € B,and we must have @; ; < 1 (in fact, a; j must be strictly less

than 6; j, since otherwise the point 6; ;(e; + e ;) would not be a boundary point of B; indeed,

since 0; j < 1, if we had that 1+2®0 e; +0; je; € B, we could use Lemma 10 to conclude that
yvie; + Gi,jej S inthor anyy; € (0, 1+2®0 ))

Set @y = max;<;#j<4@; ; and without loss of generality assume that (at least) one
of @y 5, @1 is equal to @y. We will now show that F3¢ 41,5,5,¢ (With suitably chosen
0,1, {) illuminates B. Let x € JB. Consider the following cases for the index set Z of

zero coordinates of x.

|Zx| = 2. First of all, if x = x;e; for some i € [4], where x; = +1, then we find a direction
d € F36,41,5,5,¢ satisfyingm.c.(d) = iand d;-x; < 0.Observe that ||d—d,e;[|cc =
0, and thus, as long as we choose { <1 < ¢ < %, we will have that x + d € intB.

Similarly, if x = x;e;+x e, and we assume without loss of generality that |x;| >
xi| > 0, we will have that [x;| < 6; ; < Op. Again we choose d € F36.41.6
5 0 Il have that |x;| < 0, ; < ©. Ag h d € F36,41,6,n.¢
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which satisfies m.c.(d) = i and d; - x; < 0. Then, for the displaced vector x + |x;|d,
we will have that

« |(x +|xild)i| =0,
(x + |x;ld) ;| < x|+ 1x]6 < |xj] +6 < O + 6,

« andfors € [4]\ {i,j}, |(x + |x;|d)s] < 6.
Thus, if we also choose <77 < § < 1_390 , we will have that x + |x;|d € int B (note
that these restrictions on §,1n and { do not depend on what the coordinates of x are).

|Zx| = 0. We consider two subcases here.
« First, assume that |x;| < @. Then |x;| < 1, and we can invoke Corollary
11 to conclude that a direction d from

+(0,%(n,6),1), +(0,1,-6,n)

will illuminate x if it holds that ds - xg < O for all s € [4] \ {1}. Other-
wise, if none of these directions can satisfy this requirement, it will mean that
sign(x,) = —sign(x3) = — sign(x4), in which case one of the directions

i(67 -1, 1, g)’ i(_év -1, 1, {)

will illuminate x (the one direction d which also satisfies dq - x; < 0).
1+0g
2

« Now we assume that |x;| > . Then, by our choice of the numbers «;_;,
we will have that |x4] < @14 < @ < 1.

If sign(x;) = sign(x,) = sign(x3) or sign(x;) = —sign(x;) = —sign(x3),
then one of +(1, 8,7,0), £(8, —1, —n, 0) will illuminate x (by Corollary 11).
Thus, assume for the remainder of this case that x does not satisfy either of
these sign assumptions. We consider further subcases here.

— 1f max(|xa, ) < L5 < L2

that { <np <6 < 1_8“", we can choose a direction d € {i(l, 0,1, O)}
which satisfies d; - x; < 0 (and we can check that x + |x;|d € intB by

comparing to the point 1+2”0 e4+ 1_400 (ey +e3) € B).

!, then, as long as we also make sure

— Assume now that max(|x;|, |x3]) > 1_800 > min(|x;|, |x3]). Also

assume first that max(|x;|, |x3]) = |x2|. Then we choose the unique
direction d from {i(l, 6,1m,0), £(5,-1,-n, 0)} which satisfies d -
Xxg < 0for s € [2] (recall that, by our last assumption on the signs of x,
we will also have here that d3-x3 > 0). For the displaced vector x+ %d
we observe that

b+ Bt | < 0= Aol fors e 12,
6

aslongas Ay < FTaoé.
Based on this, we can compare with the vector

- 3+ 1-a
Ug, = (l—ﬂo)|X|+ﬂo 7 0€4+ 7 063 € B.
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We have that |(x + 1—8a0 d)s| < Ug,,s fors € {1,2,4}, and also that

— Qo 1—0’0

1
Ugy,3 = |x3| + Ao ( - |x3|) > |x3| + Ao

Thus, if we also choose

1—0,’0

n<dy< 0,

=% 1) < 14 4.3, which finally

we will have that |(x + %dM < ol + =

shows that x + 1_8‘10 d € intB.

On the other hand, if max(|x;|, |x3|) = |x3|, then we pick the unique
direction d’ from {i(é, -n,1,0), £(-6,-n,1, {)} which satisfies d, -
xs < Ofor s € {1, 3}. Similarly, we compare the displaced vector x +
l%fod ’ with the vector

7+ agp 1-a

u:l():(l—/ll)|x|+/ll 3 e4+ 3 e,| €B,

where A; needs to be < 1%8”06. Observe that, as long as < 74; <

@6, we will have that x + l%ga"d’ € intB.

- Finally, assume that min(|x,]|, |x3|) > 1_8"0. Then we pick the unique

directiond € {1(6, -n,1,0), £(-6,-n,1, g)} which satisfies d-xg <
0 for s € [3]. Again, we can check that x + 178"°d € intB as long as
¢ < (1-ao)n.

We now turn to the cases where:

| Zx| = 1. We will argue similarly to the previous case, but will now rely on the existence of

the points
3+0, 1 -0
Vi@, = 2 e; + B Z e;
J#i
in B.
« Assume first of all that x4 = 0.
- If |x3] < 1+2®°, then we cannot have max(|x{|, |x2]) < 1_2?0 (because

otherwise we could compare the entries of x with those of v3,0, and we would
obtain that x is not a boundary point). If |x;| = min(|x;|, |x2|) and it is less
than 1_24®° , then we simply choose a direction from +(1, §, 17, 0) such that
dy - x; < 0.Thenx + |x;|d € intB as long as
1-0
24

(this can be seen by comparing with the corresponding coordinates of
the point v3,¢, again).

{<n<o6<

1-0

=i then we illuminate x with

Similarly, if |x;| = min(|x{], |x2]) <
a direction from +(6, -1, -7, 0).

2025/07/29 21:18

https://doi.org/10.4153/S0008414X25101260 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101260

44 W. R. Sun and B.-H. Vritsiou
Finally, if min(|x4], |x2]) > 1_2?0, then we choose d from the same
directions as previously, (1, 8,7, 0), +(5, -1, -7, 0),so thatds-x; <0
for s € [2]. We compare the coordinates of the displaced vector x +

1_2?0 d with those of a convex combination of the form

Aes+ (1= DIx] = (1= Dlxi], (1= Dlxal, fes|+2(1 = [x3]). 0) (@)

where 1 < 1_2?06. But then, as long as 1_24@"77 < /l% < A(1 - |xs])
(which can be achieved, with the choice of some suitable positive 1 <

1_24@" 0,ifn < 1_290 0), we will have that x + 4®°d € intB.

1
2
- If instead |x3| > @, then we make the following observations: by
1-unconditionality, we will have that |x;|e; + |x3]lez € B = |xi| <
3,1 < @ = max(a@1 2, @,1). Similarly |x;| < @3, < max(aq 2, @2,1).
Therefore, we can pick the unique directiond € {+(8, —n, 1, ¢) } which
satisfies d3 - x3 < 0, and we will have that x + |x3|d € intB as long as
01— @ 01— max(a;,az,1)

<0< d ¢< ! 1 o
= an —(1-—
n 2 2 2 01,2

(we can confirm this by comparing to the point

91,2 + o
2

1 Qg

(81 +€2)+(2 291’2)64

which is a convex combination of 8; 2 (e; + e3) and of ey).

« Now we assume that x3 = 0.

- If|xy4| < 1+2® ¢, we argue exactly as before, and we illuminate x using one
of the directions =(1, 8,7, 0), +(d, —1, -1, 0). The only change that we
make is that, in the subcases where min(|x], |x3|) > 1_2460, instead of

comparing the displaced vector x + 154@" d with a vector analogous to

the one in (7), we compare with a vector of the form

A, + (1 =2")|x|.

- If |x4| > 1+2® ¢ again we argue similarly to the previous case, while illu-

minating x with the unique direction d € {£(0,n, d, 1) } which satisfies
d4 - x4 < 0.
« Next, assume that x, = 0. In this case we illuminate x with a direction d from

i(lvésn’o)’ i‘(&—’%l’{), i(_é’_n’l’g)’ i(o’i(n’6)’1)

and we distinguish subcases based on whether |x4] < 1+2® 2 or not (in
fact, in the latter subcase we illuminate x with one of the directions from

+(0, £(n, 8), 1), relying on the fact that |x1| < @41 < a@p < @).

+ Finally assume that x; = 0. Then we illuminate x with one of the directions
from

+(0,%(n,6),1), £(0,1,-6,n), £(6,-n,1,0).
If sign(x,) = sign(x3), then we use one of the first 4 directions. We also use
one of these directions in the cases where sign(x;) = — sign(x3), but at the
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1-0g

. 1+0, . .
same time |x;| < <5 and |x4] > 5%, whereas we use the last pair of direc-

tions here if, instead of the last assumption, we have min(|x3/|, |x4]) = |x4| <

1-0g
24 -
. . . _ . 1+0 .
Finally, if sign(x;) = —sign(x3) and |x;| > 5=, then we will have that
|x4] € @2,4 < ap. Thus, regardless of whether min(|x2], [x3|) = |x3] < 1_2?0

or not, we will illuminate x by a direction d € {+(0, 1, -0, n)} (it is just that
in the former subcase we will compare the displaced vector x + |x;|d with the
vector v4,@,, Whereas in the latter subcase we will compare the same displaced
vector with a convex combination of the form des + (1 — /l)|)_c)|, note that
in the latter subcase we again consider the displacement x + |x;|d because
|x3] > 12460 > § by our restrictions so far, and thus | (x+|x;|d)3| = |x3]—|x2]|8,
which we can make sure is less than the 3rd coordinate (1 — 2)|x3| of a point

of the form dey + (1 — Q) |)_é| for a suitably chosen A € (0, 1); compare with
how we found suitable Ay and A in (6) and (7)).

We have thus illuminated all boundary points of B. We finally remark that, if B does
not satisfy the assumption that max; <;» j<4 @;,j = max(a; 3, @2,1), then clearly a coor-
dinate permutation ¢ of R* suffices to give an affine image ¢(B) of B which does. This
completes the proof. [ ]

Proposition 37  Suppose that for a given B € U* there is exactly one pair of indices i1,1, €
[4] such that ||e,-1 + el-2”B = 1. Then there exist § > 0 and n = ns > 0 so that B can be
illuminated by some coordinate permutation of the set

%7,38,(5,7] = {i (1563 7750)’ i(é’_l’ 773 0)’ i(_n’ 69 1’0)5 i(’h 69_13 0)’
+(-1,0,6,1), £(-n,0,6,-1), £(1,0,1,0)}.

Proof Without loss of generality, we can assume that e; + e, € B.Forany 1 < i #
Jj < 4with {i, j} # {1, 2}, we set

Gi,j = ||e,' + ej||§1,

which by our assumption will be strictly less than 1. Set ®¢ = max{@i,j 1 <i#j <

4,{i,j} # {1, 2}} and fix some ¢ € (0, 1_460) and some 575 € (0, 5/2) (we will further

restrict 775 by the end of the proof). Let x be a boundary point of B, and consider the
following cases.

|Zx] =3. Sincen < 6 < %, to illuminate a boundary point x = x;e; with x; = %1, it suffices
to pick a direction d from the first 12 in F37 3, 5,,, which satisfies m.c.(dy) =
m.c.(x) =ianddy; -x; <O.
| Zx| = 2. We first deal with the subcase where
« Zx = {3,4}. Here we will pick the unique direction d € +(1,6,7n,0),
+(0,—1,1,0) which satisfies dg - x; < 0 for s € [2]. Then the non-zero
coordinates of x +d do not exceed in absolute value the non-zero coordinates
of either (1-6,0,7,0) or (0, 1 —§, 7, 0). The latter points are interior points
of Bsince 1 — 6 + 1 < 1, and thus x + d € intB too.
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o Zx # {3,4}. If we write x = x;,e;, + x;,e;, with {i1,i2} = [4] \ Zy, and
we assume without loss of generality that |x;, | > |x;,|, then we will have that
|xi,| < 6i.;, < ©p. Thus, we can pick a direction d from the first 12 in
F37,38,5,7 S0 that m.c.(dx) = iy and dy;, - x;; < 0. We can compare the
displaced vector x + |x;, |dy to either (B¢ +6)e;, + ey, or Ope;, +5(e;; +e4,),
where {i3,i4} = Zy. Given that ©¢ + 26 < 1, the latter points are in int B,
and thus the same is true for x + |x;, |dy.

| Zx| = 0. Here we distinguish subcases based on the magnitude of |x4].

« If |x4] < ©g < 1, then, by employing Corollary 11 (combined with Corollary
8), we can illuminate x using one of the first 8 directions in %37 33 5,;; (We
choose the unique direction d among these which satisfies dg - x4 < 0 for

s € [3]).
+ Assume now that |x4| > ©. Then [x;| < 6 4 < ©p and |x;| < 02 4 < By.
- If |x3] < 1:?0’ we use the unique direction d € {+(-n,0,d, 1)} which

satisfies d4 - x4 < 0. We compare the displaced vector x + |x4|d with the
convex combination

1 1-
+®0(6’1 +es) + %

Uz@, == e; € B.

- If |x3] > 174?0' then we use the unique direction d € {+(-7,0,6,1),
+(-n,0, 8, —1)} which satisfies dg - x; < O for s € {3, 4}. For the same
indices s, we have that

|Cx+ legld)s] < (1= 20)

aslongas Ay € (0, 6) (since (x+|x4|d)4 = 0,and since Ag|x3| < A3 4 <
2009 and |x4]6 = Op6). But then we compare x + |x4|d with the vector

(1= A0)|¥| + Ao(e1 +¢2) €B,

and we can conclude that x + |x4|d € intBaslongasn < 4o(1 —0) <
(1= Oo) (so that | (x + [xg|d)1| < |xi| + xaln < |x1] + A0(1 = ©p) <
x|+ Ao (1 = x1]))-
| Zx| = 1. First of all, if Z, = {4}, then we argue as in the cases where | Z,| = 0 and |x4| <
Op: the first 8 directions of F37 33 5,5 illuminate x.

The remaining subcases are the following.

+ Assume that x3 = 0. Then, if |x4] < O, while min(|x1], |x2|) < % <
max(|x1], |x2|), we use a direction d from +(1, 6,7, 0), (5, —1, 7, 0) so that
m.c.(d) is the same index where max(|x{], |x;|) is attained, and so that
dm.c.(d) * Xm.c.(d) < 0. We will have that x + |xX,, c.(q)|d € intB based on
our restrictions on § and 7.

If instead |x4] < ®¢ and min(|x{], |x2]) > 1—:90} then we choose from the

same directions a direction d such that ds - x; < 0 for s € [2]. We compare

1—:90 d with a convex combination of the form

the displaced vector x +

- 1+ 06 1-0
(1= )lxl +2|— Qeu+ : KPR
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1—@0
4

n < 1_—2606 (which also ensures that we can pick a suitable positive 4 < %6).

where 4 < 0; we can then conclude that x + %d € intB as long as

Finally, if |x4] > @y, then we use a direction d € {+(-n,0,6,1)} and
compare X + |x4|d with uze, = 146, (e1 +ep) + 1_2@0 3 again.
+ Assume now thatx; = 0. Then we will illuminate x using one of the directions

2

+(6,-1,n,0), =(-n,6,1,0), £(n,6,-1,0), +(-n,0,6,1), =(-n,0,6,—1)

while distinguishing subcases based on whether |x4] < g or not, and

whether in the former case min(|x,/, |x3|) < 17460 or not, or whether in the
latter case |x3| < 1_4@)0 or not.

+ Finally, we assume that x; = 0. If |x4| > @y, then we will have that |x;| < @,
and thus we can use a direction d from +(—17,0, 6, 1), £(-n,0, 6, —1) so that
dg - xg < Ofors € {3,4}: we can conclude that x + |x4|d € intB (while

distinguishing subcases in our analysis based on whether |x3| < 1746 % or not).

If instead |x4]| < @¢ < 1, then we can also rely on Corollary 11. We distin-
guish cases based on whether sign(x;) = — sign(x3) or not. In the former case,
we use again one of the directions +(-7,0,d, 1), +(-n,0,, —1) to illumi-
nate x (here we can find a direction d such that d - xg < Oforalls € {1, 3, 4}).
If instead sign(x;) = sign(x3), then Corollary 11 guarantees that one of the
directions =(1, 0, 1, 0) illuminates x.

In the end, by examining our analysis more carefully, we can see that the restrictions

s € (0, 1_490) and7 < %6 are sufficient to complete the proof. [ ]

Proposition 38  Suppose that for a given B € U* there are exactly two pairs of indices
i1,ip € [4] such that ||e,v1 +ei,|lp = 1. Then at least one of the following two statements
holds:

(i) there exist 61 > 0and 1 = 15, > 0 so that B can be illuminated by some coordinate
permutation of the set

7:37,38,51,7]1 = {i (1561977]’0)’ i(él»_19771’0)» i(_nl’éls 150)7 i(nl’éls_l’o)»
+ (-11,0,61, 1), £(-11,0,61,-1), £(1,0,1,0)};

Iy

(ii) there exists 5, > O so that B can be illuminated by some coordinate permutation of the set

7:3)8,a1t,52 = {i(19 62’0» 0)’ i(_627 1’09 O)? i(ov 0’ 1562)9 i(o’ O; _629 1)}

Proof We first deal with the cases where statement (ii) definitely applies. These are
the cases where the two pairs of indices i1 # i and j; # j, € [4] for which we have
||el~1 + eiZHB = ||ej] + ej2||B = 1satisfy {i1,i2} N {j1, j2} = 0.

Without loss of generality, we can assume that {iy, i, } = {1,2}and {J1, jo} = {3, 4}.
For any other pair (i, j) of (distinct) indices, we set 8; ; = ||le;+e; ||];1, and we know from
our assumptions that 8; ; < 1. Letusset @ =max{6; ; : 1 <i < j < 4,e; +e; ¢ B},
and let us fix 6, < 1 — ©q.

Consider now a boundary point x of B, and suppose |x;| is its maximum coor-
dinate (in absolute value); note that this does not have to be unique. Necessarily
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max{|x3|, [x4]} < max{6 3,014} < g, and thus (0, 0, x3, x4) is an interior point of B
(since e3 + e4 € B).

If x, = 0, then we illuminate x using the direction dx = — sign(x1)(1, §;, 0, 0): we
will have x + |x;|dyx = (0, —x182, X3, X4), which by our assumptions is an interior point
of B (this can be seen by comparing with the point (1 — ©¢)e; + Og(e3 + e4) € B).

If x, # 0O, then we pick instead a direction dy from +(1, d,,0,0), +(-5,,1,0,0)
which satisfies dy s - x5 < 0 for both s = 1 and s = 2. Then, using Corollary 11, we see
that d, illuminates x.

We argue analogously if the maximum (in absolute value) coordinate of x is its 2nd
or 3rd or 4th one.

Consider now the cases where {i1, i} N {j1, j2} # 0. Without loss of generality, let
e1+ey, e3+e3 € B.Againletusset @y = max{6; ; : 1 <i < j < 4,e;+¢; ¢ B},
where 6; ; = |le; +¢; ”1_31’ and observe that ®y < 1. Fix now some

1-0
4

61<

and suppose also that we have chosen some 777 < /2 (we will soon see that we need to
restrict 7y further, but this will be done in an unambiguous manner).

The argument that 37 33, 5,,,, illuminates B is very analogous to that of the previous
proposition: let us fix an extreme point x € 9B, and consider the following (possible)
cases.

|Zx| = 3. By our assumptions here, x is an extreme point only if x = +e4. But then x is
illuminated by the directions (-7, 0, 61, 1), aslong as 71, 81 < 1.

|Zx| =2. If x = +e; + +e, or +e; + *ej3, then one of the first 8 directions of 737 38,5,.7,
illuminates x. The ‘trickiest’ case here is if x = £(e; — ;). Then we have to use the
directions (81, —1,71,0): e.g. (1 — e2) + (=01, 1,—11,0) = (1 = 61,0, -1, 0),
which is found in int B since 1 — 61 + 1 < 1.

Note that all other points x € dB with Z, = {3,4} or Z, = {1, 4} are not
extreme, but in the convex hull of +e; + +e; and +e; + +e; (so they are also illu-
minated by the same 8 directions). Other subcases that we need to consider here
are the following.

« If x = (x1,0,x3,0), then by our assumptions we have that min(|xy[, |x3]) <

Oo. If |x1| < |x3], then we illuminate x using the directions +(-n, 61, 1, 0):

X+ (— Sign(X3)|X3|)(—7]1,61, 1,0) = (x1 + X311, —.X361,0, 0) € intB

since |x1 +x3171| < Og + 1%8@0 <1- 1_260,while |x361] < 61 < %.

Similarly, if we have that |x3| < |x{|, we illuminate x with the directions
+(1,61,71,0).
+ Assume now thatx = x;e;+x4e4 forsome j € [3]. One of the ‘trickiest’ cases
here is if j = 2. Again, we distinguish the subcases |x4] < |x2| and |x;| < |x4]
(with min(]x;|, |x4]) < ©¢ by our assumptions). In the former one we have

X+ (— sign(x2)|x2|)(—61, 1, —7’]1,0) = (Xzé],O,)CzT]l,)u) € intB
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1—@0
4

above displaced vector with the convex combination ®ge 4+

and |x4| < Oy, and thus we can compare the

1-0
5 (e1+e3) € B.

since |)C2771| < |X261| <

On the other hand, in the subcase where |x;| < |x4], we will have
X+ (— sign(x4)|x4|)(—n1, 0,01, 1) = ()C4T]1,)C2, —X401, 0)
which is in int B by completely analogous reasoning.

The remaining cases, where x = xje; + x4e4 with j = 1 or j = 3, are
handled very similarly (and we illuminate x using one of the first 12 directions
of F37.38,8,,m1)-

|Zx| = 1. If we have that Z, = {4}, then we can use one of the first 8 directions to illu-
minate x (since they contain all possible combinations of signs for the first three
coordinates).
+ Assume now that Z, = {3}. If |x4| < Oy, then max(|x{], [x2]) = 1 — Oy
(because otherwise x would not be a boundary point, since B contains (1 —
®p)(e1 + €3) + Opey and we could apply Lemma 10 with the section {¢ €
B : &4 = Og}). If in addition min(|x{[, |x2]) < 1_490, and we write s1 for the
index where the maximum is attained, then we can pick a direction d from
+(1,61,1m1,0), £(61,—1,1m1,0) sothatm.c.(d) = s; € {1,2} and dy, - x5, <
0. We will have that x + |x;, |d € int B by our assumptions on ¢ and 1;.

If instead |x4] < O and min(|x{], |xz]) = 1—:90’ then we pick d from the

same directions so that ds - x; < O for both s = 1 and s = 2. We compare
X+ %d with a convex combination of the form

1+ 0®g 1 -0

(1= x|+ et e
where 4 < %(&As longasn; < 24 < 726"61,We will have that x +
l_f)"d € int B.

Finally, if |x4] > ©g, then max(|x1], |x2|) < ®p. Therefore, we pick a direc-
tiond € {£(-1n1,0,01,1)} such that ds - x4 < 0, and we can check that
X + |x4|d € int B by comparing to the point 1+2®° (e +e) + 1_2@0 e3 € B.

+ We argue completely analogously when Z, = {1}, and we use the directions

+(01,-1,171,0), =(-71,61,1,0), £(n1,d1,-1,0), £(-11,0,8;,1)

to illuminate x.

+ Let us finally assume that Z, = {2}. If we have that |x4] < @y, and at
the same time sign(x;) = —sign(x;), then we use one of the directions
+(-n1,0,61,1), £(-n1,0, 1, —1) to illuminate x.

If instead |x4] < ®9 < 1 and sign(x;) = sign(x3), then one of the
directions +(1, 0, 1, 0) illuminates x because of Corollary 11.

On the other hand, if |x4] > @, then |x;| < ®q. Then we choose d €
{J_r(—r]l, 0,601,1),£(-n1,0, 6y, —1)} sothatdg-x; < Ofors € {3,4}. Wewill
have that x+|x4|d € int B (where we distinguish subcases in our analysis based
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1-0,
4 -
a convex combination of the form (1 —2)|x|+de; where A < @y < |x4]d71,
and observe that, as long as 7; < A(1 — @p) < (1 — ©g)BOyd1, the desired

conclusion will follow).
| Zx| = 0. Here we can argue as in the very last subcase when we have that |x4] > ©g:
indeed, it will then hold that max(]x{[, |x2]) < ©y, and thus we can pick d €
{i(—m,o, 61, 1), £(-11,0, 61, —1)} so that dy - x; < O for s € {3, 4} to illumi-
nate x (considering again the displaced vector x +|x4|d and distinguishing subcases
based on whether |x3| < =% or not; the only change we have to make is that,

4
in the latter subcase, we compare x + |x4|d to a convex combination of the form

(1= )[x| + (e +e2)).

onwhether |x3| < or not; in the latter subcase we compare x +|x4|d with

On the other hand, if |x4] < ®g < 1, then one of the first 8 directions in
¥37,38,6,,; Will illuminate x by Corollary 11.

Gathering all the restrictions on 171, we see that, as long as

1-0
< 0
m 2 1
(which also implies that 7; < (1 — @)®d; given that @y > 1/2), the set F37,33.5,,1,
will illuminate B under the assumptions of our second main case here. [ ]

Proposition 39 Suppose that for a given B € U* there are exactly three pairs of indices
i1,ip € [4] such that Heil + eiz”s = 1 (and at the same time there are no triples of indices
J1sJ2, J3 € [4] suchthat ej, +e;j,+e;, € B). Then at least one of the following two statements
holds:

(i) there exist 61 > 0 and 1 = ns, > 0 so that B can be illuminated by some coordinate
permutation of the set

7:3)9,42,51,7]1 = {i (1»61,)7170)9 i(éla_la_nl»o)’ i(él,_nh 1,0), i(élanlv_l’o)’
+ (0’ '—"(771, 61)’ 1)9 i-(os 17 _1’0)}7

(ii) there exist 5, > 0 and 17, = 15, > 0 so that B can be illuminated by some coordinate
permutation of the set

‘7:39,alt,('52,772 = {i(nz’ 1’ 62’ O)’ i(_n27 1» 627 0)» i(_nz’ 1’ _527 0)9
+ (7727 7729 19 62)7 i(_n23 _le’ 1’ 62)9 i(n29 7]29 _623 1), i(_TIZ’ _7727 _62’ 1)}'
Proof We single out three non-equivalent cases, and observe that any other case here
can be reduced to one of these three after a coordinate permutation:

Case 1. B contains the points e1 + €3, €, + €3 and e, + e3 (but does not contain the point
e +e;+e3).

Case 2. B contains the points e; + €3, e; + €3 and e3 + e.

Case 3. B contains the points e; + e, €1 + e3 and e1 + e4.

We will see that if either Case 1 or Case 2 holds, then F39 43, 5,5, illuminates B (for some
suitably chosen 61, 771), while, if Case 3 holds, we may use %39 a1, 5,, 7, to illuminate B.
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Proof for Case 1. For everyi € [3],set8; 4 = |le; + e4 ||1;1. By our assumptions for this
(3]

main case, @¢ := max{6; 4 : i € [3]} € (0, 1).

We pick 61 < %, and 7, < % (which we will restrict further by the end of the
proof).

Note that the only extreme points x of B with |Z,| = 3 are +ey4. To illuminate

such a point x, we use the directions ¥(0,7y,d1, 1): eg. es + (0,-n1,—61,—1) =
(0,-11,—01,0) € int B if we compare with the point e, + e3.
We now consider the other possibilities for | Z|.

|Zx| = 2. Consider first the (potentially extreme) points +e; + +e; with i,j € [3]. The
“trickiest” case here are the points +e; + +e3, for which we can pick a direction
d from =(81,-1,-11,0), (61, -11,1,0) so that ds - x; < O fors € {2,3}. Eg.
ey —e3z+ (01,-11,1,0) = (61,1 —11,0,0) € int B, and this can be confirmed if
we compare with the point e; + e;.
Note also that there are no other extreme points of Bwith | Z,| = 2and 4 € Z,.

Consider now a (potentially extreme) point x € 9B of the form x; e; +
X4e4, where i; € [3] (write also {iz,i3} = [3] \ {i1}). By our assumptions,
min(|x; |, ) < ©p.

o If |x;,| < ©g, then we choose d € {+(0, 71,61, 1)} so that d4 - x4 < 0. Then

X + |x4|d € int B, which can be seen if we compare with one of the points

(I-xill + |x4|61)ei1 + |)C4|(51€i2 or I'xil Ieil + |)C4|61 (eiz + eis)

(where the values of i, i3 from [3] \ {1 } are suitably chosen based on x). Note
that both the above points are interior points of B by our restriction on ¢;, and
at least one of them has larger in absolute value corresponding coordinates to
those of x + |x4]d.

« If instead |x4] < @y, then we pick a direction d from the first 8 in F39 42, 5,.1;,
so that d;, - x;, < 0.In a similar manner to above, we can compare the point
X + |x;,|d to the point |x4]es + |x;,|61(ei, + ei,) to see that the former point
(as well as the latter) is in int B.

| Zx| = 1. If Z, = {4}, the first 8 directions of F39 42 s, ,, illuminate x.

« If instead Z, = {1}, and we assume first that [x4] < Oy, then one of the
directions from {i(O, +(m1,61), 1), £(0,1,-1, 0)} illuminates x (we use one
of the first 4 if sign(x,) = sign(x3), and we use one of the last 2 if sign(x;) =
— sign(x3) while relying on Corollary 11 as well).

When |x4] > @, we will instead have that |x;| < @, and thus we can pick
adirection d’ from +(0, £(171, 91), 1) so that d} - x; < Ofors € {3, 4}. Then
X+|x4]d” € int B, since we can compare it to the point (@g+771)e2+(1-51)e;3
which is also an interior point of B.

« If Z, = {2}, and we assume first that |x4] < @y, then we use the direc-
tions +(1, 61,11, 0), (61,11, 1,0), £(61,71,—1,0) to illuminate x (and
we consider subcases based on whether min(|x{[, |x3]) < 1%4@0 or not; in
the latter subcase, we pick d € {1(61, -11,1,0), +(61,71, -1, O)} so that

1-0, .
0 d with a convex

dg - xg < O0fors € {1,3}, and we compare x + —;
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combination of the form

- 1-6 140
(1=2)|x|+1 5 Oes + 3 %

01;aslongasn; < 1_260
17

2®° 01), we can conclude that x + %d € int B).

4

1—@0
4
sothatn; < 24 <

where A < 01 (which ensures that we can find A

If instead |x4] > @y, then we have that max(|x1], |x3]) < ®g. We thus
pick d’ € {i(O, +(1m1,01), 1)} so that d} - x; < Ofors € {3,4}, and we
check that x + |x4|d’ € int B by comparing this point to a point of the form
Oo(er+es)+ 1_260 e, which is also an interior point of B (here we also use the

fact that ® > 1/2, and thus |(x + |x4|d")3] < max(|x3| — [x4|61, [x4]61) <

max(|x3], 61) < ©p).
+ Finally, if Z, = {3}, then we argue similarly to the previous subcase, and we
illuminate x using one of the directions

i(17 61’ )71,0)7 i(619 _17 _7]1,0), i(O’ i(’]l, 61)’ 1)

(while distinguishing subcases based on whether |x4] > ©¢ or not, and in the

latter case, based on whether min(|x1], |x3]) < 17490 or not).

| Zx| = 0. If |x4] < O < 1, then we use the first 8 directions in F39 42,5, ,5, to illuminate x.

If instead |x4| > @y, then, as before, we observe that max(|x], |x2|) < ©g. Thus,
we can illuminate x using a direction d from +(0, +(11, 81), 1) which satisfies d -
x5 < Ofors € {3,4} (to show that the point x + |x4|d € intB, we distinguish
subcases based on whether |x3| > 1—:90 or not; in those cases that |x3| is ‘not too
small, we compare the point x + |x4|d with a convex combination of the form
(1- /l)l)?l + A(e; + e3) where 4 < ©pd; < |x4]01, and note that, as long as
N1 < A(1 = 0p) < (1 —0g)Byd1, the desired conclusion holds).

We can conclude that, as long as §; < 1_4@0 andn; < 1_29051 < (1 = ©g)Bp61, the
set F390,42,5,,;, Will illuminate the body B which contains the points e; +e;, e +e3 and

e, + e3, but not the points e; + e4,7 € [3], or the point €1 + €, + €3.

Proof for Case 2. Analogously to the proof of Case 1, we set §; ; = ||ei + ej”; for all
1<i<j<4suchthat(i,j) ¢ {(1,2), (1,3), (3,4)}, and then set

®g := max {Hi,j 1<i<j<4,(,7)¢{1,2), (1,3), (3,4)}}.

We will again pick d; < 1_4@" and 7y < 1_2@" 01.
Let x be an extreme boundary point of B. In this main case, the additional assumption

that x is extreme implies that | Z,| < 2.

| Zx| = 2. Consider first the (potentially extreme) points +e; * e; with (i,j) €
{(1, 2), (1,3), (3, 4)} The “trickiest” cases here are the points +(e; + e;) and
+e3 + e4. We have e.g. that —(61 + 82) + (1,61,7]1,0) = (0, -1+ 61,7]1,0) €
int B because (1 — §1) + 7y < 1. Similarly, for +e3; + e4 we use the directions
+(0, (171, 01), 1), and we have e.g. that —e3 + e4 + (0,771,681, —1) = (0,777, -1 +
61,0) € int B for the same reason.
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If x is a different extreme point of B with |Z,| = 2, then we must have
x = xje; + xje; with {i,j} = ([4] \ Zx) ¢ {{1,2}, {1, 3}, {3,4}}. But
then min(|x;|, [x;]) < ©p. Without loss of generality, suppose that |x;| =
max(|x;|, |x;|), and pick a direction d from the first 12 in 39 42,5,,1, so that
d; -x; < 0. Then x + |x;|d € int B, which can be seen in the same manner as in the
previous main case, by comparing to coordinate permutations of the points

(®o+51)€1+61€2 and ®0€1+51(€2+€3)

(all coordinate permutations of these points are in B, and are interior points
because of our restriction on 01).

| Zx| = 1. We argue exactly as in the corresponding subcases in the proof of Case 1 when
Zx = {4} or when Z, = {3}.
We also argue as in Case 1 when Z, = {1} or Z, = {2}, and we additionally
have that |x4| < .

« If Zy = {1} and |x4] > Op, we have that |x;| < Oy. Just as we did in the proof
of Case 1, we pick a direction d’ from +(0, £(7;, 61), 1) so that d -x; < Ofor
s € {3, 4}, but now we distinguish cases according to whether |x3| < 1_49 2 or
not. In both subcases, we consider the displaced vector x + |x4|d’. Moreover,

1- . .
when |x3| > 4®°, we compare X + |x4|d’ to a convex combination of the

form (1 - Q) |;| + Ae,, where 4 < ®gdy; similarly to before, as long as ; <
(1 =09)A < (1 —0By)Byd;, we will obtain that x + |x4]|d’ € intB.

If instead Z, = {2} and |x4] > ©g, we similarly have that |x;| < O (but
unlike the previous main case, we cannot claim anymore that |x3| < ©y). Still,
as earlier, we pick a direction d” € {i(O, +(n1,61), 1)} sothatd} -xs < Ofor
s € {3, 4}, but now we distinguish cases based on whether |x3| < ¢ or not.
In the former case, we continue as we did before, while, in the cases where
|x3] > @9, we compare x + |x4|d’ with a convex combination of the form

(1= ) [x| + A (er +e2)

where 1’ < ®yd1, and obtain the desired conclusion as longas ; < A’ <
@051.

| Zx| = 0. In this final subcase, we can argue exactly as in the proof of Case 1.

We are done with the proof of Case 2 as well.

Proof for Case 3. Just as in the proofs for Case 1 and Case 2, for any pair (i, j) for
whiche; +¢; ¢ B, weset; ; := ||ei + ej”];l, and then we define

Qg :=max{f; ;:2 <i<j<4}.

We pick 6, < 1_460 and 17, < (1 — ©g)0,, and, under these restrictions, we show that

F39,alt, 55,1, illuminates the convex body B of Case 3. We will be relying on the following

Key Observation for Case 3. Let 2 < i < j < 4,let u;, u; € (0, 1) be such that
Mi +p; < 1,andlet Ao € (0, 1). Then the point

/1061 +uie; +uje;
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is an interior point of B, since it can be written as a (non-trivial) convex combination of
the points dge| + e;, dge; + e, € B and the interior point Age:

Adoer + piei + pjej = pi(doer +e;) + pj(doer +e;) + (1 — py — pj)Agery.

Consider now an extreme pointx € dB. Observe that there are no such x with | Z| =
3, thus we consider the remaining possibilities.

| Zx| = 2. Consider first the (potentially extreme) points +e; * e, where j € {2,3,4}. We
pick a direction d such that m.c(d) = j, and such that dg - x; < O for s € {1, j}.
Then x + |x|d = x + d satisfies:
. ()C + d)] =0,
(x+dh|=1-m <1,
« and [(x+d);, | +|(x+d)i,| < 62+1m2 < 28, < 1, where {i1,i2} = [4]\ {1, j}.
We obtain that x + d € int B from the above “key observation”.

Next, note that there are no other extreme points in B with |Z,| = 2and 1 ¢
Z. Thus, assume now that x = x;e; + xje; with i, j € {2,3,4},i # j. Without
loss of generality, assume that max(|x;|, |x;]) = |x;|, which in turn implies that
|x;| < ©g. Thus, we pick a direction d’ such that m.c.(d’) =i and d] - x; < 0. We
will have that x + |x;|d’ satisfies:

« (x+|xld")i =0,

(x+ [xild )l = Ixilma < ma2,

NG+ Pxld?) ] < O+ 65,

« and |(x + |x;|d’)s| < 82, where {s} ={2,3,4} \ {i,j}.

Since [(x + |x;|d") ;| + | (x + |x;|d")s| < Op + 28, < 1, we conclude from the “key
observation” that x + |x;|d’” € intB.

| Zx| = 0. Here we suppose first that |x4] < ©,. Except for the cases where sign(x;) =
sign(x,) = — sign(x3), we can use the first 6 directions of 739 a1, s,,, to illuminate
X.
On the other hand, if sign(x;) = sign(x;) = -—sign(x3), then one of the
directions =(-13, —12, 1, 62), £(12, 172, =02, 1) illuminates x (based also on what

sign(xy) is).

Next, suppose that |x4] > ©y. In that case we must have |x;| < O. If we
first assume that |x3| < 17490, then we pick a direction d from +(1;, 12, =62, 1),
+(-12,-12,—62, 1) so that d - xg < 0 for s € {1, 4}. We will have that x + |x4|d
satisfies:

« (x+[xsld)s =0,

« [(x+ |xqld)i] £ 1= |x4lm2 < 1 - Ooma,

o |(x + [x4ld)2] < O+,

- and |(x + |xald)s] < =20 + 6,
Thus |(.X + I.X4|d)2| + |(.X + |X4|d)3| < @0 + 1_460 + 2(52 < @0 + %(1 - @0) <1,
which implies that x + |x4|d € int B because of the “key observation”.

If instead |x3| > 1—:90

so that d} - x; < Ofors € {1, 3, 4}. We can compare x +

, then we pick a direction d’ from the last 8 in F39 4it, 5,7,

1-0 .
+—d’ with a convex
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combination of the form

(1= )%+ A(e; +e2)

1:?0 02. Aslongas 1, < (1 — ©g)d,, we can deduce that x + 1%4@051’

where A <
int B.

|Zx| = 1. Assumefirstthat Z, = {r} withr € {2, 3, 4}. Letuswrite {i, j} = {2, 3, 4}\Zx
{2,3,4} \ {r}, and without loss of generality let us assume that max(|x;|, |x;|)
|x;|. Then we will also have that |x ;| = min(|x;|, |x;|) < ©.
We pick a direction d so that m.c.(d) =i, and so that d - x; < O for s € {1,i}.
Then x + |x;|d will satisfy:
« (x+[xi|d); =0,
(x+|xild)| € 1= |xilm2 < 1,
« and |(x + |x;|d) ;| + [(x + |x;|d),| < Op + |x;|02 + |x;|62 < 1, given our
restrictions on d, and 1.
Thus, by the “key observation”, x + |x;|d € intB.

m

It remains to deal with the cases where ZZ, = {1}. Here, we first consider the
subcases where |x3| < 1_490. Let {i, j} = {2,4}, and let us write i for the index
where max(|x,|[, |x4|) is attained (if |x,| = |x4], then seti = 2). We then know that
|x;] < ©o. Again, we pick a direction d’ so that m.c.(d’) = iand d; - x; < 0. Then,
similarly to above, we can check that x + |x;|d’ € intB by the “key observation”
(given that | (x +|x;|d")1] < 172, and |(x + |x;1d") j| + | (x + [x;|d")3] < O + |x;]62+

1220+ |x;16, < 1).

1-0Qg

We argue very similarly when |x;| > while at the same time |x;| =

4
max(|x;], |x;|) = max(|xa], |x4]) < 1_4@)": in those subcases, we pick a direction
d’ from £(12,72, 1, 62) so that d - x3 < 0, and check in an analogous way that

X+ |x3|d’ € intB.

The last subcase to consider is when min(|x;|, |x3]) > 1%4@0. Then we pick a
direction d"’ so that {|dlf’|, |d§'|} ={1, 6.}, and so thatd; - x; < Ofors € {i, 3}.

1-0g

+d”" with a convex combination of the

We compare the displaced vector x +
form

(1= ) x|+ (er +e))
where I/ < %62: the former vector is guaranteed to be in intB as long as
Eop, < X(1-0p) < A'(1-x;]) & 12 <44 < (1-60)é,.
This completes the proof in all main cases. |
Remark 40 Taking into account that parameters which appear as later subscripts
depend on previous parameters, and can be chosen much smaller if needed, we can now

also verify, through a minor adaptation of the above argument, that, for Cases 1 and 2
of Proposition 39, we can use the illuminating set

%6,41,(5,17,_{ = {i (1967 T]? 0)5 i(éa _15 _777 O)’ i(67 _]79 1’ §)7 i(_67 _T]7 19 g)’
+(0,£(n,6),1), £(0,1,-6,1)}
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instead of

F39,42,60,m71 = {i (1,81,71,0), £(61,—1,-11,0), £(61,-11,1,0), +(61,71,—1,0),
+ (0, £(m1,61),1), £(0,1,-1,0)}.

This reduces further the number of non-equivalent illuminating sets that we need (we
still chose to work with the latter set to keep the proof a little more transparent).

Next we prove the case where B contains five 2-dimensional unit subcubes, because
it is much more similar to the previous settings compared to the case where B contains
four such subcubes (which we will handle last).

Proposition 41  Suppose that for a given B € U* there are exactly five pairs of indices
i1,iy € [4] such that Hei] + eiZHB = 1 (and at the same time there are no triples of indices
J1,J2, J3 € [4] such that e, + e}, + e, € B). Then there exist 6 > 0,7 = 115 > 0 and
{ = s,y > 0such that B can be illuminated by a coordinate permutation of the set

Fasaro.me = {£(1,6,1,0), £(6,-1,-1,0), £(5,-n,1,{), £(=6,-n,1,7),
+(0,£(n,6),1), (0, 1,-6,1)}.

Proof Without loss of generality, we can assume that the only pair of distinct indices
i1, i € [4] for which e;, +e;, ¢ Bsatisfies {i1,i2} = {1,4}. Set @ = |le1 + esll5’ < 1.
Also, for each j € [4] set

vi=l1-ellg"
By our assumptions, yo := max;e[4] ¥; < 1. Fix now some

< mln(l — @0, 1- 7())
4
and some ¢ < 17/2 < &/4 (which we will further restrict shortly).

Clearly there are no extreme boundary points x € B with | Z,| = 3, thus we focus
on the remaining cases.

|Zx| = 2. Here most cases are similar, except for the case where Z, = {2, 3} (or in other
words, where x = (x1,0,0,x4)). From the remaining cases the only potentially
extreme points are of the form +e; + +e; where {i, j} # {1,4}. We illuminate
these points using a direction d as follows:

’ Boundary point ‘ Possible illuminating directions ‘
+e+te; +(1,6,1,0), £(5,—1,-n,0)
+e +=xe3 +(6,-n,1,¢), £(=6,-1n,1,¢)
+ ey +tes +(8,-1,-1,0), =(5,-1,1,¢)

ey + ey, ez + tey +(0,n,6,1), +(0,-n,—6,1)

sothatd - x; < Ofors € {i,j}.Eg.
(e3+e3)+(6,-1,-n,0) = (5, 0, 1 —n, 0) € intB,
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which follows simply from the facts that ¢;+e3 € Band thatd, n € (0, 1). Similarly
(—ex+e3) +(=6,1,-1,-¢) = (=6, =(1-1), 0, ={) € intB,

which can be seen by comparing to the point (1 — 77) (€1 + €3) + ey, that is also
an interior point of Bsince 1 —n+ ¢ < 1.

Now assume that x = (x1, 0,0, x4). Then min(|x;][, |x4]) < ©q. Thus, if i is the
(smallest) index at which max(|x], |x4]) is attained, we can illuminate x choosing
a direction d from +(1,6,7,0), £(0,7,8,1) so that m.c.(d) =iand d; - x; < 0.
We will have that x + |x;|d € int B, which can be seen by comparing with the point

1+2®° ej+ 172@)" (e2 + e3) € B, where j is the remaining index in {1, 4} \ {i}.

| Zx| = 1. Here we have to separately consider all four possibilities for the index of the zero
coordinate.
« If Z, = {4}, then we illuminate x choosing from the directions

+(1,6,n,0), £(6,-1,-n,0), =(6,-n,1,¢), £(-6,-n,1,7).

This is straightforward to do in the cases that sign(x;) = sign(x3), so we
examine how to handle the remaining subcases here.

Note that min(|x1], |x2[, |x3]) < ¥4 < 0. If sign(x;) = —sign(x;), but
also |x3| < 1o, then we still pick a direction d from the first 4 above so that
dg - xg < Ofors € [2]. Then, ifi = m.c.(d) € [2], we will have that
X + |x;|d € int B by comparing it to one of the points ¢; + €3 or e, + e3.

If instead |x3| > 7o, then we pick a direction d’ from (6, -1, 1, ),
+(=0,-1n,1,) sothat d; - x; < Ofor s € [3]. We then check that x + |x3|d’
satisfies:

- (x+x3ld"); =0,

= |(x + |x3ld")al = |x3]¢,

- and [(x+[x3]d")1| < 1-|x3]6 < 1-|x3|n, and similarly | (x+|x3]|d")2| <

1= [x3[n.
Thus we can compare x + |x3|d’ with the point (1 — |x3|n) (€1 +e2) +|x3|{ e4,
with the latter point being an interior point of B, since 1 — |x3|n + |x3]{ < 1.

« If Z, = {1}, we use the directions +(0, +(n, §), 1), (0, 1, =6, ) to illumi-
nate x. Again, this will be straightforward when sign(x;) = sign(x3), so we
examine the remaining subcases.

Note that min(|xz|, |x3], [x4]) < y1 < yo. If |x4] < o and sign(x;) =
—sign(x3), then we pick the unique direction d € {%(0,1,-8,n)} which
satisfies dg - x; < O for s € {2, 3}. We will have that x + |x,|d € int B, which
can be seen by comparing to the point e; + e4.

If instead |x4| > 7o, then min(|x;|, |x3]) < yo. Leti € {2, 3} be the index
at which max(|x,/|, |x3|) is attained, and pick d’ € {(0, =(n, ), 1)} so that
di - xs < Ofors € {i,4}. Then x + |x4]d’ € intB, which can be seen by
comparing to the point e, + €3.

+ Now, assume that Z, = {2}. Then min(|x1], |x4]) < ©y. If we also have that
Ix3] < =90 andifi is the (smallest) index at which max(|x; |, [x4]) is attained,

1_
4
then we pick a direction d from +(1, 8,7, 0), +(0,7,8, 1) sothatm.c.(d) =i
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and d; -x; < 0. We have thatx+|x;|d € int B, which can be seen by comparing
to the point %ej + 17280 (ex+e3),j€{1,4}\ {i}.
Suppose now that |x3| > 1_4@‘)

1(6’ -1, 19 é’)’ i(_é’ -1, 19 é’)s i(o9 i(ﬂ, 6)’ 1)

sothat {|d!], |d;|} = {1,0} and so that d§ - x5 < Ofors € {i, 3}. We compare
X+ 1_4@0 d’ with a convex combination of the form (1-2) |)_E|+/l(e2+ej), where
je{1,4}\ {itand 2 < %6.Aslongasn <dand ¢ < 41 < (1 —0y)6,

we can conclude that x + 1%4@007’ € int B.

. Then we pick a direction d’ from

Analogously we argue if Z, = {3}, while picking a direction d from
+(1,6,1n,0), =(5,-1,-n,0), +(0,x(n,9),1)

to illuminate x. For most subcases we can simply rely on the restrictions 7 <
< ﬂ
4

In the subcases where it holds that |x,| > 1:?0 and |x4| > |x1], we pick

d e {i(O, +(n,9), 1)} so that dg - x; < O for s € {2,4}. We will have that
X + |x4]d € int B because we can compare this displaced vector to the vector
1+ @0 1- @0

1-|x e, + e + e
( |x4l1)e2 > 1 2 3

which we can show is an interior point of B as well, in a similar manner to
how we proved the “Key Observation for Case 3” of Proposition 39.

|Zx]| =0. If |x;] < Oy, then we can use the directions +(0, +(n,d), 1), £(0,1,-35,n)
to illuminate x, except in the subcases where sign(x;) = —sign(x3) =
—sign(xy). In these latter subcases, we can instead use one of the directions

+(6,-1n,1,¢), £(-6,-n, 1, ) (which we choose based also on what sign(x) is).

If instead |x1| > @y, then |x4] < ®¢ < 1. Here we also consider subcases
according to whether max(|x,|, |x3]) < l_f" or not. If this maximum is “small’, we
simply pick d € {+(1,6,1,0)} so that d; - x; < 0, and we compare the displaced
vector x + |x1|d to the vector

1—@0 1+®()
(ex+e3) +

e4 €B.

If instead max(|x3], |x3]|) > 1_490, then we pick a direction d’ from among all the

first 8 in F36 41,55, - We consider further subcases according to whether it also

holds that min(|x5], |x3|) > 1_490 or not: if the minimum is “small”,and i € {2, 3} is
the index at which max(|x;|, [x3]) is attained, then we pick d” so that {|d{ ]|, |d]|} =
{1,0} and so that d;, - x; < O for s € {1,i}; on the other hand, if the minimum is
“not too small’, we pick d’ so that d} - x5 < O forall s € [3]. Then, in all subcases

we can conclude that, as long as
<< (1-0)0, and also ¢ < (1 —0y)n,

the displaced vector x + % d’ (with x being displaced in the appropriately chosen
direction d’, as explained above) will be an interior point of B.

2025/07/29 21:18

https://doi.org/10.4153/S0008414X25101260 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101260

Illuminating certain 1-unconditional convex bodies 59

The proof is complete. L]

Proposition 42 Suppose that for a given B € U*, which is not an affine image of the cube,

there are exactly four pairs of indices i1,i, € [4] such that e;, +e;, € B, and at the same time
there are no triples of indices ji, ja, j3 € [4] such that e, +ej, + e, € B. Then at least one
of the following two statements holds:

(i) there exist 61 > 0 and 1 = ns, > 0 so that B can be illuminated by some coordinate
permutation of the set

9739,42,51,7]1 = {i (1’61,771’0)’ i(dls_ls_nl’0)3 i(él,_nl,l,o), i(6197719_1’0)9
+ (0, +(171,61), 1), £(0,1,-1,0)};

(ii) there exist §, > 0 and 17, = 15, > 0 so that B can be illuminated by some coordinate
permutation of the set

7:42,a1t,52,7]2 = {i (15 -2, _625 _62)7 i(_TIZa 1’ _627 _62)’
+ (62’ 0’ 17 _772)’ i(62, 03 —12, 1), i(o, 62’ 15 _772)’ i(o9 629 12, 1)}'

Proof Up to coordinate permutations, there are two main cases to consider:

Case 1. B contains the points e1 + e, €] + €3, €3 + 3 and e3 + ¢4 (and does not contain
the point e1 + e; + e3).

Case 2. B contains the points e; + e3, e; + e4 and e, + e3, e, + e4. Here we need to
further observe that the convex hull of all coordinate reflections of these points
is C P% x C P% which is an affine image of the 4-dimensional cube, therefore
by our assumptions B must contain at least one more point zy which satisfies
|zo.1] + |zo2] > 1 or|zo3| + |zo.4] > 1. We can check that this is equivalent to
having Sy := max{||61 +esllgh lles + e4||l;1} > % Without loss of generality, we
assume here that ||e3 + e4||1;1 =By > %

Proof for Case 1. We set @ := max{||el + e4||]_31 , llex + 84”1;1}, and note that @y €
(0, 1). We pick ; < 1_49" and 771 < 1_—6061, and we will show that F30 43 5,5, illumi-
nates the convex body B that we consider here, which satisfies the assumptions of the

2
1st main case.

Let x be a boundary point of B. As previously, we ignore boundary points which are
guaranteed to not be extreme, so we do not consider cases where | Z,| = 3.

| Zx| = 2. Here we first consider points of the form +e; ++e, with {i, j} ¢ {{1, 4}, {2, 4}}
Given such a point, we pick a direction d as follows:

Boundary point ‘ Possible illuminating directions ‘

+ e+ e i(l,él,i]l,()), 1(51,—1,—7]1,0)

+ e+ xe3 i((sl,—m,l,O), i(él,nl,—l,O)

+ ey + tej i(&l,—l,—m,O), i(51,—7’]1,1,0)

+e3+ tey i(O,?]l,él,l), i(O,—m,—dl,l)
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sothat dg - xg < Ofor s € {i, j}. We will have that x + d € int B because it can be
compared to one of these points again:if 1 <7 < j < 3,theny, = (x;e;+x;e;)+d
(where |x;| = |x;| = 1) will satisfy ||yx]l, < 1, ‘Zyx| =2,and4 € Z, , thus we
cansee that y, € int B by comparing it to one of the points ey +e;, e1+e3, e;+e3.

Similarly, ife.g.x = e3—ey, thenx+(0, -1y, =61, 1) = (0, -11, 1-61,0) € int B,
which can be seen by comparing with the point e, + e3.

Note now that no other point of B with support the same as one of the above
points can be extreme, as they will be contained in the convex hull of the above
points, so all these other points can be illuminated by the same directions. This
leaves two more subcases to consider here.

« Suppose that x = xje; + x4e4. Then min(|x{], |x4]) < BOp. If |x4] < Oy, then

we illuminate x using the unique direction d € {+(1,81,1,,0)} satisfying
6111@- x1 < l0 (\B/Ve will have that x + |x;|d € int B, by comparing it to the point
10 —Y

T€4+ 2 (€2+€3).

Analogously, if |x4] > g, we can use the unique direction d’ €
{#(0,m1, 61, 1)} which satisfies d} x4 < 0: we will have that x+|x4|d” € intB,
as before.

+ Finally, suppose thatx = x;e,+x4e4. In this subcase, pick the unique direction
d e {i(O, +(n1,01), 1)} which satisfies ds - x; < 0 for s € {2,4}. Then
X+ |x4|d € intB, since (x + |x4]|d)4 = (x+|x4]|d); = 0, while |(x + |x4]|d);| <
1= [x4lm < 1,and |(x + [x4]d)3| = |x4l61 < L.

|Zxl=1. If Zy = {4}, then the first 8 directions of F39 43 5,5, illuminate x. We now
examine the remaining subcases here.

« If Z, = {1}, then we illuminate x using the directions (0, +(11, 61), 1),
+(0,1,—-1,0). Indeed, if |x;| > O, then necessarily |x4| < g, and thus we
can use the first 4 directions here if sign(x,) = sign(x3), otherwise we can rely
on Corollary 11 and illuminate x using one of the directions +(0, 1, -1, 0).

If instead |x;| < @y, then we pick d from (0, £(771, 81), 1) so that d-x;
0 for s € {3,4}. We will have that x + |x4|d € intB, since (x + |x4|d)4
(x + |x4ld)1 = 0, while |(x + |x4]d)s] < 1= |x4|61 < 1, and |(x + |x4]d)>]
@0 + |X4|7]1 <1
+ Next assume that Z, = {2}. Then we use the directions

i(1961777170)9 i(éla_nl,190)’ i(élanl,_lao)’ i(0$i(n1551)’1)

to illuminate x. If it holds that |x;| > g and |x3| < 1_f°, we pick d €

{x(1,61,711,0)} so that d; - x; < 0: we have that x + |x1|d € int B, which can

A

IN I

be seen by comparing to the point %64 + 17260 (e2 + e3) again (recall that
|x1| > ©¢ implies that |x4] < Bp).
If instead |x1| > ©g and |x;| > 1_46", we pick d’ from (61, -1, 1,0),

+(81,71,—1,0) so that d; - x4 < Ofor s € {1,3}. We can then compare the
displaced vector x + %d ’ with a convex combination of the form
1- @0 1+ @0

1= )]+ 41
(1= DR+ {2+ —e,
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1_49061. Then, as longasn; < 24 <

x+ 124" € intB.

1_290 01, we will obtain that

where 1 <

Finally, if |x;| < @y, thenwe pickd € {+(0, +(11, 1), 1)} so thatd-xg <
0 for s € {3,4}. We will have that x + |x4|d € int B, which can be seen by
comparing with the point

(1= |x4]61)(e1 +e3) + |x4ln1 ez

which is also an interior point of B since 1 — |x4|&1 + |x4]71 < 1.
« It remains to consider the subcases where Z, = {3}: we will now illuminate
X using the directions

i(l, 61’ UI’O), i(617_1’_n170)’ i(09’715617 1)'

Similarly to the previous subcase, we first assume that max(|x{], |x2|) > ®o.
Then we will have that |x4| < ©y. If we also have that min(|x], |x2|) < 1_4&,
and we write i for the index at which max(|x1|, |x;]) is attained, then we sim-
ply pick d from the first 4 directions above so that m.c.(d) = i and so that
d,‘ -x; <O.

If instead min(|x1], |x2|) > 1_490 ,then we pick d’ from the first 4 directions
again, but this time so that dy - x; < 0 for s € [2]. Similarly to above, we
1-0g

4

consider the displaced vector x + d’, and conclude that it is in int B as

longasn; < 1_29051.

Finally, if max(|x;], |x2]) < @, then we pick d € {£(0,n;,d;, 1)} so that
dy-x4 < 0. Wewill have that x+|x4|d € int B, which can be seen by comparing

with the point 1+2®° (e1+e2) + 1_29063'

Z,| =0. If |x4] < O, then, as in previous propositions and subcases, we illuminate x usin,
p prop g
the first 8 directions of F39 42,5,,, (Which capture all combinations of signs for
the first three coordinates).

Next assume that |x4] > ©¢. Then max(|x{], [x2]) < ©p. Hence, we can pick

d € {£(0,+(n1,61),1)} so that ds - x5 < 0 for s € {3,4}.1f |x3] < =2 then

4
1+0,
+20(€1+€2)+

we simply compare the displaced vector x + |x4|d with the vector

1—@0
5 es.

1-0g d
)

On the other hand, if |x3| > 1%4@0, we consider the displaced vector x + 1

and compare it with a convex combination of the form

(1= )%+ A(er +e2)

where 1 < 1—:9051. We will have that x + I_A‘ﬂd € intB, as long as 1_490711 <

A(1 =0p) < A(1 - |x2]) © 11 <42 < (1 — Op)dy, which is already guaranteed
(to hold for some suitable 1) by the restrictions we imposed on 7;.

This completes the proof of Case 1.

Proof for Case 2. Recall that we have set By := max{ lle1+e; ||]_31, lles+ e4||]_31 }, and we
know that By > % (since we assumed that B is not an affine image of the cube). Recall
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also that we supposed without loss of generality that By = ||es + e4||1;1. We will then
show that F4 a1, 5,, 5, illuminates B for some suitably chosen 63, 77;. In this main case,
we need some preparatory/key observations first.

Observation 1 for Case 2. Since %(63 + e4) € intB, we get that, for every € €
(0,1)\ {%}, the point
(1-¢€)e; +e€ey

is also an interior point of B. Indeed, assume first that € < %, and set 1 = 2¢ (in which
case 1 € (0,1)). Then

(1 —/1)83 +A %(63 + 64) € intB

because it is a non-trivial convex combination of points in B with one of them being
interior. But

(1=A)ez+1 %(63 +eq)=(1- ’51) e;+ /%64 =(1—-€)e; +€ey.
Analogously we show the result if € € (%, 1), by considering convex combinations of
%(63 + 64) with ey.

Observation 2 for Case 2. For every a, € € (0, 1), we have that the points
(a,0,1—-€,¢) and (0,a,1—¢€,¢)

are interior points of B. Indeed, by the previous key observation we know that the point
(0,0,1 — €, €) € int B. At the same time B contains the point

(1,0,1—€,6) =(1—€)(ey +e3) +e(er +eq).
But then
(a,0,1—€,¢) =a(1,0,1—€,¢6) + (1 —a)(0,0,1 —¢,¢),

which shows that it is an interior point of B. Similarly we check that (0,a,1 — €, €) €
int B.

For the rest of the proof we fix 6, < %, and 77, < (1 — Bo)d,. We are ready to

illuminate the boundary points of B, and as before, we only focus on potentially extreme
points x € B. By our current assumptions for B, there are certainly no such points with
| Zx| = 3, so we move on with the remaining possibilities for | Zy|.

|Zx| = 2. If x = +e; + *e3, then we use the directions
£(1,-12, =02, —02) £ (62,0,1,-12)
to illuminate x. Indeed, e.g.
e1—e3+(=1,12,02,62) = (0, 172, =1+ 62, 62)

which is in int B by the 2nd key observation.

On the other hand, if eg. x = —e; — e3, then x + (5,,0,1,-12) = (-1 +
02,0,0,—1;), which we can immediately confirm is an interior point of B by
comparing it to e; + ey4.

2025/07/29 21:18

https://doi.org/10.4153/S0008414X25101260 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101260

Illuminating certain 1-unconditional convex bodies 63

In a very analogous manner, we can illuminate all the points +e| + ey, +e; +
+e3 and +e; + ey, and then we will have also illuminated every other point in
their convex hull.

Assume now that x = xje; +x;e,. Then min(|x; |, |x2]|) < Bo.Ifi is the index at
which max(|x;], |x2|) is attained, and {j} = {1, 2} \ {i}, then we pick a direction d
from =(1, —n,, =02, =62), £(-n,, 1,-8,,—62) sothatm.c.(d) = iand d;-x; < O.
We will have that x + |x;|d € int B, which can be readily seen if we compare with

the point (,80 + lfﬁ") ej+ 1A (e3+ey4) € intB.

4 4

Similarly, if x = x3e3 +x4e4, then min(|x3|, |x4|) < Bo.If r is the index at which
max(|x3|, |x4|) is attained, and {t} = {3,4} \ {r}, then we pick a direction d’
from +(82,0, 1, =172), £(J2, 0, =12, 1) so that m.c.(d") = r and d;. - x, < 0. We
will have that x + |x,.|d’ € int B, which can be seen by comparing with the point

1+2/30 (e; +e;) €intB.

|Zx| = 1. There are four possibilities to consider here, but, as we will see, there are enough
‘symmetries’ under the assumptions of Case 2 for these possibilities to form only
two types of truly different cases.
o If Z, = {2}, then we consider the following subcases:
« sign(x3) = —sign(xy4). Then one of the directions from +(4,, 0, 1, —17,),
+(8,,0, -1, 1) illuminates x.
sign(x3) = sign(x4). We also recall that min(|x3|, |x4]) < Bo; write i for
the index at which max(|x3|, |x4]) is attained, and j for the other index.

If at the same time sign(x;) = —sign(x3) = —sign(xy), then the
unique direction d € {£(1, —175, =02, —0)} satisfying ds - x5 < O for
s € {1, 3,4} illuminates x. Indeed, if |x;| = min(|x3], [x4]) < |x]62,
then x + |x1|d satisfies:

- (x+|xild)1 =0,

= |(x + Ixild)i| < max(|x;| = [x1162, 61162 = |xi]) < max(|x;] -

lx1162, |x1162) < 1= |x1]62,

- |(x + Ix11d) ;] < max(|x;] = |x1]62, |x1]62 = |xj]) < |x1162,

- and [(x + |x1]d)2| < |x1lm2 < 1.

Thus x + |x{ |d has smaller (in absolute value) corresponding coordinates
compared to the vector

[x1lm2ez + (1 —|x1]62)e; + |x1]62¢;. 8

It remains to recall that the latter point is in int B because of the 2nd key
observation.

On the other hand, if |x;| = min(|xs], [x4]) = [x]62, then we

compare x + |x1|d with a point of the form
(1= 2)|x| + des

where A < |x1|8;. Then, since we have assumed that 7, < (1 —89)d; <
07, we can choose A so that |x1]|n; < A < |x1|d2, which will then allow
us to confirm that x + |x;|d € intB.
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Next we consider the cases where sign(x;) = sign(x3) = sign(xs).
Then we pick d’ from +(62, 0, 1, —173), £(82, 0, =172, 1) so that d - x5 <
0 for s € {1,i} (recall that we write i € {3, 4} for the (smallest) index at
which max(|x3|, |x4]) is attained, and j for the remaining index). Then
X + |x;|d’ satisfies:
- (x+|xi|d")i =0 = (x +|x;|d"),
- G+ Ixild ] < 1= |xiloz < 1,
— and |(x + |ld");| < o+ il < 1.
It follows that x+|x;|d” € int B since its non-zero coordinates are strictly
smaller than the corresponding coordinates of e; + ;. -
o If Z, = {1}, then we illuminate x in a completely symmetric way compared
to the previous subcase, by using one of the directions +(-7,, 1, =92, —05),
*(0,02, 1,-172), £(0, 82, =172, 1).

o If Z, = {3}, then we illuminate x using one of the directions
i(l’ _)72, _62’ _62)’ i(_TIZ’ 1, _629 _62)’ i(62’ 07 _TIZ’ 1)’ i(07 52, _772, 1)'

We recall that min(|x{], [x2]) < Bo; let us write i for the index at which
max(|x1[, |x2|) is attained, and j for the other index in [2].

Then, if we first assume that sign(x;) = -—sign(x4), we pick d from
+(1,-1,, =062, -63), £(-n,,1,-6,,—0) so that m.c.(d) = i and so that
ds - xg < Ofors € {i,4}. We can check that x + |x;|d will have smaller (in
absolute value) corresponding coordinates compared to the point

(Bo + |xilm2)e; + [xi|62e3 + (1 — |x;]62)ea, ©)

which is in int B by the 2nd key observation. Hence x + |x;|d € int B too.

If instead it holds that sign(x;) = sign(x4), then we pick d’ from
*(02,0,-12, 1), (0, 62, —72, 1) so that |d]| = &5 and so that dj - x; < O
1-fo

for s € {i,4}. Assuming also that |x;| < , we will compare x + |x4|d’

with the vector

4

1-Bo
4

On the other hand, if |x;| > I_TBO, then we compare x + |x4|d’ with a convex

(e; +e; +e3) €intB.

combination of the form (1 — /l’)l)_;l + A’(ej + e3) where 1’ < |x4]6,. Our
assumption that 77, < &, implies that we can choose such a A’ so that |x4|n, <
A’ < |x4]62, which in turn implies that x + |x4|d” € intB.

e We illuminate x in a symmetric fashion when Z, = {4}, by using one of the
directions

i(l’ -2, _62’ _62)’ i(_7729 19 _629 _62)7 i(627 0’ 17 _772)7 i((), 627 17 —772)'

|Zx| = 0. We know that min(|x;], [x2]) < o, and the same inequality holds true for
min(|x3[, |x4|). Let us write i for the index at which max(|x1], |x;|) is attained,
and j for the other index in [2]. Similarly, let us write r for the index at which
max(]xs|, |x4]) is attained, and 7 for the other index in {3, 4}.
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o Assume first that sign(x3) = —sign(x4). Then, by Corollary 11, x is illumi-
nated by the unique direction d among the last 8 directions in F4 ai,s,,7,
which satisfies d; # 0 and dy - x; < O for s € {i, 3, 4}.

e Next, assume that sign(x3) = sign(xy4).

« If sign(x;) = sign(x3) = sign(x4), then we pick d’ from the last 8 direc-
tions of Fu3 a1t, 55,1, S0 that m.c.(d") = r, |d]| = 6, and df - x; < O for
s e{i,r}.
- If in addition |x;| < l_f 2, then we simply compare the displaced
vector x + |x, |d’ to the point

1—Bo 1+ﬁoe _1-Fo
4 2 ! 4

(el-+ej)+

(61 + 82) +

1+
ﬁo e; € B
2
to conclude that x + |x,|d” € int B (we can do this because, by our
assumptions here, |(x + |x,|d");| < max(|x;| — |x/|02, |x,]62 —

1- 1-
bil) < max(jxil, 62) < 222 and |xj] < x| < 222,

. 1-
- If instead |x;| > fo, then we compare x + |x,|d’ to a convex

combination of the form
(1= Dx| +A(ej +e)

where 1 < |x,|62. Aslong as |x, |72 < A(1 = Bo) < A(1 = |x;])
(which a suitably chosen A can satisfy, given the restriction 17, <
(1 = Bo)83), we will be able to obtain that x + |x,-|d’ € int B.

« It remains to consider the cases where sign(x;) = —sign(xz) =
—sign(xy). Then we pick the unique direction d from
i(l, -2, -0y, —62), i(—]]z, 1, -85, —62) so that mc(d) = [ and
sothatd; - xy < Ofors € {i, 3, 4}.

- If |x;| = min(|xs], |x4]) < |x;]|82, then, similarly to a few of the
subcases analysed in the setting where | Zx| = 1 (compare e.g. with
the subcases where we use the points in (8) and (9)), we will have
that the displaced vector x + |x;|d has smaller (in absolute value)
corresponding coordinates compared to the vector

(,30 + 1_430) e; +(1—|x;|62)e, + |xi|02e;

which is an interior point of B itself, by the 2nd key observation.
Thus x + |x;|d € intB.

- If |x;| = min(]x3], |x4]) > |x;|02, then we compare x + |x;|d with
a convex combination of the form

(1=2) x|+ Ae;

where 4 < |x;|8,. As long as |x;|12 < A(1 = Bo) < A(1 — |x;]),
which is again possible for some 4 € (0, |x;|d,) because of the
restriction 17, < (1 — Bo)d,, we can deduce that x + |x;|d € intB.

This completes the proof of Case 2 as well. |
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We can also make a similar note to Remark 40.

Remark 43 By slightly adjusting the proof of Case 1 of this last proposition, we can
also confirm that any set B € U* which contains the points e; + €3, €1 + e3,€3 + €3
and e3 + ey, but does not contain e; + e4 and e, + e4 (nor does it contain the ‘triple’
e + e, + e3) can be illuminated by the set

Fasar,o.m.c = {£(1,6,1,0), £(6,-1,-1,0), £(6,-n,1,{), £(=6,-n,1,0),
+(0,(n,06), 1), £(0,1,-6,1)}

instead of the set

%9,42,(51,771 = {i (1’5]’n1’0)’ i(éla_la_n17o)9 i(619_)71’ 170)9 i(617]715_1’0)7
+ (0, £(m1,61),1), £(0,1,-1,0)}.
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