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Illuminating 1-unconditional convex bod-
ies in R3 and R4, and certain cases in higher
dimensions
Wen Rui Sun and Beatrice-Helen Vritsiou

Abstract. We settle the Hadwiger-Boltyanski Illumination Conjecture for all 1-unconditional con-
vex bodies in R3 and in R4. Moreover, we settle the conjecture for those higher-dimensional 1-
unconditional convex bodies which have at least one coordinate hyperplane projection equal to the
corresponding projection of the circumscribing rectangular box. Finally, we confirm the conjectured
equality cases of the Illumination Conjecture within the subclass of 1-unconditional bodies which,
just like the cube [−1, 1]𝑛 , have no extreme points on coordinate subspaces.
Our methods are combinatorial, and the illuminating sets that we use consist primarily of small per-
turbations of the standard basis vectors. In particular, we build on ideas and constructions from [37],
and mainly on the notion of deep illumination introduced there.

1 Introduction

This paper is a direct continuation of [37]: building on the approach there,which allowed
us to come up with a uniform way of illuminating 1-symmetric convex bodies of all
dimensions in accordance towhat the IlluminationConjecture stipulates, we extend this
to certain cases of 1-unconditional convex bodies.

Let 𝐾 be a convex body in the Euclidean space R𝑛, that is, a convex, compact set with
non-empty interior (which we will denote by int𝐾). Given a boundary point 𝑥 of 𝐾 and
a non-zero vector 𝑑 ∈ R𝑛 (a direction), we say that 𝑑 illuminates 𝑥 if there exists 𝜀 > 0
such that 𝑥 + 𝜀𝑑 ∈ int𝐾 . A set of directionsD = {𝑑1, 𝑑2, . . . , 𝑑𝑀 } such that, for each
boundary point 𝑥 of 𝐾 , there is at least one 𝑑𝑖 ∈ D which illuminates 𝑥, will be called
an illuminating set for 𝐾 . The smallest cardinality of an illuminating set for 𝐾 is called
the illumination number of 𝐾 , and we denote it by ℑ(𝐾).

This definition of illumination is due to Boltyanski [10]. There is also an equivalent
definition by Hadwiger [24], where we illuminate using point ‘light sources’ placed out-
side 𝐾 (and all rays emanating from them towards the boundary of 𝐾 , which meet the
boundary and then cross into the interior of 𝐾); it can be shown that both definitions
lead to the same number for a fixed body 𝐾 .

Moreover, we have that, for any convex body 𝐾 , ℑ(𝐾) = 𝑁 (𝐾, int𝐾), where the
latter stands for the covering number of 𝐾 by int𝐾 (that is, the smallest number of trans-
lates of int𝐾 whose union contains 𝐾). Thus the Illumination Conjecture, which we
formulate right below, is equivalent to Hadwiger’s Covering Problem. Finally, there is
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2 W. R. Sun and B.-H. Vritsiou

yet another equivalent formulation by Gohberg and Markus [22], where we cover 𝐾 by
smaller homothetic copies of it.

Hadwiger’s Covering Problem/The Hadwiger-Boltyanski Illumination Conjec-
ture. For every convex body 𝐾 in R𝑛, we should have ℑ(𝐾)=𝑁 (𝐾, int𝐾) ≤ 2𝑛.

Furthermore, the inequality should be strict, except in the case of the cube and of its
affine images (parallelepipeds) in R𝑛.

An excellent reference on the history of these equivalent conjectures, and of related
problems, and on progress up to recent years is the survey [6]. We also refer to the
monographs [4, 14] and the surveys [3, 12, 31].

Levi in 1955 [28] fully settled the problem of bounding 𝑁 (𝐾, int𝐾) for planar con-
vex bodies (showing that 𝑁 (𝐾, int𝐾) = 3 for 𝐾 ⊂ R2, except if 𝐾 is a parallelogram,
in which case 𝑁 (𝐾, int𝐾) = 4). Motivated by that, in 1957 Hadwiger [23] posed the
analogous question in higher dimensions. To date, aside from Levi’s solution in R2, in
all other dimensions the general problem remains open. In dimension 3 Lassak [26] has
shown that, if 𝐾 is centrally symmetric (that is, 𝐾 − 𝑥 = 𝑥 − 𝐾 for some 𝑥 ∈ R3), then
ℑ(𝐾) ≤ 8. Thus, short of the equality cases, the conjecture inR3 is settled for symmetric
convex bodies, but it remains open for the not-necessarily symmetric case, with the best
bound being 14 (due to Prymak [33]). We also refer to a very recent paper by Arman,
Bondarenko and Prymak [1], where the reader can find all the prior progress and the
most recent improvements on the bounds for other low dimensions.

A longstanding general upper bound (which remains the best known when spe-
cialised to the symmetric case) was already given in 1964 by Erdős and Rogers [20]:

ℑ(𝐾) = 𝑁 (𝐾, int𝐾) ≤ vol(𝐾 − 𝐾)
vol(𝐾) 𝜃 (𝐾) ≤ vol(𝐾 − 𝐾)

vol(𝐾) 𝑛
(
ln 𝑛 + ln ln 𝑛 + 5

)
where 𝜃 (𝐾) is the asymptotic lower density of the most economical covering of R𝑛
by copies (translates) of 𝐾 . Erdős and Rogers adapted an earlier proof by Rogers [34]
which was giving the first polynomial-order, and essentially best known to date, bound
on 𝜃 (𝐾). In the symmetric case, this gives ℑ(𝐾) ≤ 𝐶2𝑛𝑛 ln 𝑛, where 𝐶 is an absolute
constant. Moreover, by also recalling the Rogers-Shephard inequality [35], we obtain
the bound ℑ(𝐾) ≤ 𝐶 ′4𝑛

√
𝑛 ln 𝑛 for every (not-necessarily symmetric) convex body

𝐾 ⊂ R𝑛 (see also [18] for a recent, slight improvement to the constant 4 in the expo-
nential here, with the general estimates however still being weaker than those in the
symmetric case).

The Illumination Conjecture has been fully settled for certain special classes of con-
vex bodies. Again, we refer the reader to the survey [6] for a comprehensive list of
references up to 2016. Just as examples, we mention that:

• Levi also showed in [28] that ℑ(𝑄) = 𝑛 + 1 for all smooth convex bodies𝑄 in R𝑛.
• Martini [30] settled the conjecture for the class of belt polytopes (which con-
tains the zonotopes). This was later extended by Boltyanski and Soltan [15, 16] to
zonoids, and by Boltyanski [11] to belt bodies (see also [13]).

• The conjecture is fully settled for convex bodies of constant width. For dimensions
𝑛 ≥ 16, this is due to Schramm [36]. For the remaining dimensions we have: [27],
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Illuminating certain 1-unconditional convex bodies 3

[39] (see also [8, Section 11]) dealing with 𝑛 = 3, [7] dealing with 𝑛 = 4, and [17]
dealing with 5 ≤ 𝑛 ≤ 15.

• Tikhomirov [38] settled the conjecture for 1-symmetric convex bodies of suf-
ficiently large dimension (1-symmetric means that the body is invariant under
reflections about coordinate subspaces and under any permutation of the coordi-
nates). His result was the main motivation for [37], where we gave an alternative
approach which can also deal with 1-symmetric bodies in low dimensions.

• Bezdek, Ivanov and Strachan [5] confirmed the conjecture for centrally symmetric
cap bodies in dimensions 𝑛 = 3 (see also [25]), 𝑛 = 4, and 𝑛 ≥ 20. They further
showed that, if the cap body is 1-unconditional (we recall the definition below),
then the Illumination Conjecture holds in all dimensions (and in that caseℑ(𝐾) ≤
4𝑛 once 𝑛 ≥ 5).

• Gao,Martini, Wu and Zhang [21] verified the conjecture for polytopes which arise
as the convex hull of the Minkowski sum of a finite subset of the lattice Z𝑛 and of
the unit-volume cube

[
− 1

2 ,
1
2
]𝑛.

• Finally, Livshyts and Tikhomirov [29] settled the conjecture for convex bodies in
sufficiently small neighbourhoods of the cube (with respect to either the geometric
or the Hausdorff distance). Given that ℑ(𝐾) = 𝑁 (𝐾, int𝐾) is an upper semicon-
tinuous quantity (see e.g. [32]), the bound 2𝑛 can already be deduced for bodies
sufficiently close to [−1, 1]𝑛, so their result is about settling the equality cases
(and indeed they show that, if dist(𝐾, [−1, 1]𝑛) is small enough, and 𝐾 is not a
parallelepiped, then 2𝑛 − 1 is a sharp upper bound for ℑ(𝐾)).

Recall that a convex body 𝐾 in R𝑛 is called 1-unconditional if it is invariant under
reflections about coordinate subspaces. Equivalently if

𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝐾 implies that (𝜖1𝑥1, 𝜖2𝑥2, . . . , 𝜖𝑛𝑥𝑛) ∈ 𝐾
for any choice of signs 𝜖𝑖 ∈ {±1}, 1 ≤ 𝑖 ≤ 𝑛.

Relevant results that would apply to this class are the following, which however only
deal with 3-dimensional convex bodies. Lassak [26] showed that ℑ(𝐾) ≤ 8 for every
centrally symmetric convex body 𝐾 in R3 (equivalently, for every origin-symmetric 𝐾 ,
that is, such that 𝐾 = −𝐾). Moreover, he showed this while using illuminating sets
formed by 4 pairs of opposite directions (and posed the questionwhether this is possible
to do in higher dimensions as well, if 𝐾 = −𝐾).

Bezdek [2] showed that ℑ(𝑃) ≤ 8 for any polytope in R3 which has a non-trivial
affine symmetry. Finally Dekster [19] obtained the same bound for any convex body 𝐾
in R3 which is symmetric about a plane.

The main results of this paper are the following. Note that, given a convex body 𝐾 ,
we denote by 𝜕𝐾 its boundary, and by dim(𝐾) the dimension of the ambient Euclidean
space. Moreover, assuming the dimension 𝑛 is clear from the context, we write 1 =

𝑒1 + 𝑒2 + · · · + 𝑒𝑛, where 𝑒𝑖 , 1 ≤ 𝑖 ≤ 𝑛 are the standard basis vectors in R𝑛.

Theorem 1 Let 𝐾 be a 1-unconditional convex body in R3 or R4, and assume that 𝐾 is not
a parallelepiped. Then ℑ(𝐾) ≤ 2dim(𝐾 ) − 2.

Moreover, we can use illuminating sets of cardinality 2dim(𝐾 ) − 2 which consist of pairs of
opposite directions.
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4 W. R. Sun and B.-H. Vritsiou

Observe that, because of Lassak’s andDekster’s results, the part of the above theorem
which concerns dimension 3 is only novel in that we also settle the equality cases.

Theorem 2 Let 𝑛 ≥ 3, and let 𝐾 be a 1-unconditional convex body in R𝑛. Without loss of
generality (to be justified below), assume that 𝑒𝑖 ∈ 𝜕𝐾 for all 1 ≤ 𝑖 ≤ 𝑛.

In addition, suppose that there exists at least one 𝑖0 ∈ {1, 2, . . . , 𝑛} such that the vector
1− 𝑒𝑖0 ∈ 𝜕𝐾 (in other words, 𝐾 contains at least one unit subcube of dimension 𝑛− 1). Then,
if 𝐾 is not a parallelepiped, we will have that ℑ(𝐾) ≤ 2𝑛 − 2.

Moreover, we can use illuminating sets of cardinality 2𝑛−2which consist of pairs of opposite
directions.

Similar to Theorem 2, we also have the following

Proposition 3 Let 𝑛 ≥ 4, and let 𝐾 be a 1-unconditional convex body in R𝑛 such that
𝑒𝑖 ∈ 𝜕𝐾 for all 1 ≤ 𝑖 ≤ 𝑛.

Assume that for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 we have that 1 − 𝑒𝑖 − 𝑒 𝑗 ∈ 𝜕𝐾 (in other words,
𝐾 contains all possible unit subcubes of dimension 𝑛 − 2). Then, if 𝐾 is not a parallelepiped,
we will have that ℑ(𝐾) ≤ 2𝑛 − 2 (and we can use illuminating sets of this cardinality which
consist of pairs of opposite directions).

Given that, in all the settings considered, we can use ‘small’ illuminating sets which
consist of pairs of opposite directions, we can also readily settle the Bezdek-Zamfirescu
X-ray conjecture in all these cases.

Recall that the X-ray number 𝑋 (𝐾) of a convex body 𝐾 inR𝑛, as proposed by Soltan,
is the minimum number𝑀 of non-zero vectors 𝑢1, 𝑢2, . . . , 𝑢𝑀 such that, for every 𝑝 ∈
𝜕𝐾 , we will have (𝑝 +R𝑢𝑖) ∩ int𝐾 ≠ ∅ for some 1 ≤ 𝑖 ≤ 𝑀 . Clearly, 𝑋 (𝐾) ≤ ℑ(𝐾) ≤
2𝑋 (𝐾), while Bezdek andZamfirescu [9] conjectured thatwemust have 𝑋 (𝐾) ≤ 3·2𝑛−2
for all 𝐾 ⊂ R𝑛 (see e.g. [9] and [7] for details on this conjecture).

Corollary 4 Let 𝐾 be a 1-unconditional convex body satisfying any of the assumptions of
Theorems 1 and 2 or of Proposition 3.

Then, because we can illuminate 𝐾 using no more than 2dim(𝐾 )−1 pairs of opposite direc-
tions, it holds that 𝐾 also satisfies the Bezdek-Zamfirescu 𝑋-ray conjecture, and that its 𝑋-ray
number 𝑋 (𝐾) ≤ 2dim(𝐾 ) .

The final main result of this paper is the following

Theorem 5 Let 𝑛 ≥ 3, and let 𝐾 be a 1-unconditional convex body in R𝑛 with the following
property:

if 𝑥 is an extreme point of 𝐾 , then 𝑥𝑖 ≠ 0 for all 1 ≤ 𝑖 ≤ 𝑛. (†)

If 𝐾 is not a parallelepiped, we will have that ℑ(𝐾) ≤ 2𝑛 − 2 (and we can use illuminating
sets of this cardinality which consist of pairs of opposite directions).

Remark 6 ln this paper, 1-unconditional convex bodies which have Property (†) will
be called cubelike.
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Illuminating certain 1-unconditional convex bodies 5

As we will recall in the next section, such convex bodies in R𝑛 can be illuminated by
2𝑛 directions (and in fact, they can be illuminated by any illuminating set of the cube
[−1, 1]𝑛 in R𝑛). Hence, this last theorem is about settling equality cases in this subclass
of bodies.

We will also see that its proof relies on an inductive process, which however on its
own can only recover the bound 2𝑛; it is a combination of this inductive process and
Theorem 2 that finally allows us to obtain the claimed result.

The rest of the paper is organised as follows. For most of the 3-dimensional cases of
Theorem 1, a proof (or a proof sketch) is given in Section 3. The remaining cases are also
special cases of Theorem 2: all cases of this theorem, broken down into separate propo-
sitions, are proved in Section 4. The proof of Proposition 3 is also found at the end of this
section. In Section 5 we establish Theorem 5. Finally, the still unsettled 4-dimensional
cases of Theorem 1, which do not already follow as special cases of Theorem 2 and of
Proposition 3, are handled in Section 6.

Acknowledgements. Part of writing up the final version of this paper was done while
the two authors were in residence at the Hausdorff Research Institute for Mathemat-
ics for the programme “Synergies between modern probability, geometric analysis and
stochastic geometry”. The authors are grateful to the institute and the organisers for the
hospitality and the excellent working conditions. The second-named author is partially
supported by an NSERC Discovery Grant.

2 Preliminary results

We write [𝑛] for the set {1, 2, . . . , 𝑛}, and 𝑒1, 𝑒2, . . . , 𝑒𝑛 for the standard basis vectors
of R𝑛. For any vector 𝑥 ∈ R𝑛, we will denote byZ𝑥 the set {𝑖 ∈ [𝑛] : 𝑥𝑖 = 0}. Also, we
will write ®|𝑥 | for the vector∑𝑖∈[𝑛] |𝑥𝑖 | 𝑒𝑖 , namely the coordinate reflection of 𝑥 which
has only non-negative coordinates.

As alreadymentioned, given a subset 𝐴 ofR𝑛, we denote its interior and its boundary
by int 𝐴 and by 𝜕𝐴 or bd𝐴 respectively. Recall that if 𝐴 is a non-empty convex set, then
its affine hull

aff 𝐴 :=
{
𝜇1𝑎1+𝜇2𝑎2+· · ·+𝜇ℓ𝑎ℓ : ℓ > 1, 𝑎𝑖 ∈ 𝐴 and 𝜇𝑖 ∈ Rwith 𝜇1+𝜇2+· · ·+𝜇ℓ = 1

}
coincides with the smallest affine subspace of R𝑛 which contains 𝐴. In the subspace
topology on aff 𝐴, 𝐴 has non-empty interior: we call this the relative interior of 𝐴 and
denote it by relint𝐴. Moreover, we call the set of points in aff𝐴which are not contained
in relint𝐴 ∪ relint

(
aff𝐴 \ 𝐴

)
the relative boundary of 𝐴, and denote it by relbd𝐴.

Recall that, if𝐾 is an origin-symmetric convex body, that is, if𝐾 = −𝐾 , then𝐾 is the
unit ball of a certain norm on R𝑛, which is given by 𝑥 ∈ R𝑛 ↦→ ‖𝑥‖𝐾 := inf{𝑡 > 0 :
𝑥 ∈ 𝑡𝐾}.

The illumination number of any convex body is affine invariant: namely ℑ(𝐾) =

ℑ(𝑇𝐾 + 𝑧) for any invertible linear transformation 𝑇 ∈ GL(𝑛) and any (translation)
vector 𝑧.

Therefore,without loss of generality, we can assume that all the 1-unconditional con-
vex bodies B ⊂ R𝑛 which we consider satisfy 𝑒𝑖 ∈ 𝜕B for all 𝑖 ∈ [𝑛] , or equivalently
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6 W. R. Sun and B.-H. Vritsiou

that ‖𝑒𝑖 ‖B = 1 for all 𝑖 ∈ [𝑛] (indeed, if B does not already have this property, it suf-
fices to multiply it by the diagonal matrix diag

(
‖𝑒1‖−1B , ‖𝑒2‖−1B , . . . , ‖𝑒𝑛‖−1B

)
). We will

denote this subclass of 𝑛-dimensional 1-unconditional convex bodies byU𝑛.
Finally, we shouldmention the following fact about illumination (whichwewill often

use in the sequel). Note that wewill write ext𝐾 for the set of extreme points of𝐾 , that is,
points 𝑥 ∈ 𝐾 which cannot be written in the form 𝑥 = 𝜆𝑦 + (1−𝜆)𝑧 for some 𝜆 ∈ (0, 1)
and some 𝑦, 𝑧 ∈ 𝐾 with 𝑦 ≠ 𝑧.

Fact A. Let 𝐾 be a convex body. If a set D of directions illuminates all points in ext𝐾 ,
thenD illuminates 𝐾 .

Quick justification of Fact A. AssumingD illuminates all points in ext𝐾 , it remains to
show that the same is true for the arbitrary point 𝑤 ∈ 𝜕𝐾 \ ext𝐾 . But if 𝑤 is not an
extreme point of 𝐾 , we can find 𝑥1, 𝑥2, . . . , 𝑥𝑚 ∈ ext𝐾 , and 𝜆1, 𝜆2, . . . , 𝜆𝑚 ∈ (0, 1)
such that 𝑤 = 𝜆1𝑥1 + 𝜆2𝑥2 + · · · + 𝜆𝑚𝑥𝑚.

Consider now any direction 𝑑0 ∈ D which illuminates 𝑥1. By definition, there exists
𝜀0 > 0 such that 𝑥1 + 𝜀0𝑑0 ∈ int𝐾 . Then

𝑤 + (𝜆1 · 𝜀0)𝑑0 = 𝜆1 ·
(
𝑥1 + 𝜀0𝑑0

)
+ 𝜆2𝑥2 + · · · + 𝜆𝑚𝑥𝑚 ∈ int𝐾,

as a (non-trivial) convex combination of points in 𝐾 with one of them being interior.
Hence 𝑑0 illuminates the point 𝑤 as well. �

We recall [37, Lemma 1, Corollary 2 and Remark 3] and [37, Lemma 6 and Corollary
7] (they are now Lemma 7, Corollary 8, Remark 9, Lemma 10 and Corollary 11 respec-
tively). Their proofs are standard, and are already given in [37], so we will not repeat
them here.

Lemma 7 Let B be a 1-unconditional convex body in R𝑛. Suppose that 𝑥 is a point in B, and
that 𝑦 ∈ R𝑛 satisfies:

for all 𝑖 ∈ [𝑛], |𝑦𝑖 | ≤ |𝑥𝑖 |.
Then 𝑦 ∈ B as well.

Moreover, if we have that

for all 𝑖 ∈ [𝑛], |𝑦𝑖 | < |𝑥𝑖 | or |𝑦𝑖 | = |𝑥𝑖 | = 0,

then 𝑦 ∈ intB.

Corollary 8 Let B be a 1-unconditional convex body in R𝑛, and let 𝑥 ∈ 𝜕B. Then 𝑥 is
illuminated by any direction 𝑑 ∈ R𝑛 which satisfies

Z𝑑 = Z𝑥 , and 𝑑𝑖 · 𝑥𝑖 < 0 for all 𝑖 ∈ [𝑛] \ Z𝑥 .

In particular, B is illuminated by the set {−1, 0, 1}𝑛 \ {®0}. Furthermore, if B is cubelike
(namely if it has Property (†) from Theorem 5), then B can be illuminated by the set {−1, 1}𝑛
(here we also rely on Fact A).

Remark 9 If B is a 1-unconditional convex body in R𝑛, and 𝑥 ∈ B, then, by Lemma 7,
we also have that |𝑥𝑖 |𝑒𝑖 ∈ B for all 𝑖 ∈ [𝑛].
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Illuminating certain 1-unconditional convex bodies 7

Thus, if B ∈ U𝑛, then ‖𝑥‖∞ := max
𝑖∈[𝑛]

|𝑥𝑖 | ≤ 1. In other words, B ⊆ [−1, 1]𝑛.

Lemma 10 Let 𝐾 be a convex body in R𝑛, and let 𝐻 be an affine subspace of R𝑛. Suppose
that (int𝐾) ∩ 𝐻 ≠ ∅. Then

relint(𝐾 ∩ 𝐻) = (int𝐾) ∩ 𝐻 and relbd(𝐾 ∩ 𝐻) = (𝜕𝐾) ∩ 𝐻.

Corollary 11 Given the same general assumptions as in Lemma 10, consider 𝑝 ∈ relbd(𝐾∩
𝐻), and a non-zero vector 𝑑 ′ in the linear subspace 𝐻 − 𝑝 ⊂ R𝑛 such that 𝑝 + 𝜀𝑑 ′ ∈
relint(𝐾 ∩ 𝐻) for some 𝜀 > 0. Then 𝑝 + 𝜀𝑑 ′ ∈ int𝐾 .

In other words, if 𝑝 is (𝐾 ∩𝐻)-illuminated by 𝑑 ′, within 𝐻 = aff(𝐾 ∩𝐻), then it is also
𝐾-illuminated by 𝑑 ′, viewed within R𝑛 now.

In the sequel, we will also need the following

Lemma 12 Let𝐾 be a convex body inR𝑛, let 𝑥0 ∈ 𝜕𝐾 , and let 𝑑0 be a direction inR𝑛 which
illuminates 𝑥0.

(a) We can find 𝜌 > 0 such that, if 𝑑 ′ ∈ R𝑛 \ {®0} satisfies ‖𝑑0 − 𝑑 ′‖∞ < 𝜌, then 𝑑 ′ also
illuminates 𝑥.

(b) We can find 𝜏 > 0 such that, for every 𝑦 ∈ 𝜕𝐾 which satisfies ‖𝑥 − 𝑦‖∞ < 𝜏, we will
have that the direction 𝑑0 illuminates 𝑦 as well.

Proof Fix 𝜀0 > 0 such that 𝑥0 + 𝜀0𝑑0 ∈ int𝐾 . Then we can find 𝜂0 > 0 such that{
𝑧 ∈ R𝑛 : ‖(𝑥0 + 𝜀0𝑑0) − 𝑧‖∞ < 𝜂0

}
⊆ int𝐾.

Now, set 𝜌 = 1
𝜀0
𝜂0, and consider 𝑑 ′ ∈ R𝑛 \ {0} such that ‖𝑑0 − 𝑑 ′‖∞ < 𝜌. For

𝑧0 = 𝑥0 + 𝜀0𝑑 ′, we will have

(𝑥0 + 𝜀0𝑑0) − 𝑧0

∞ = ‖𝜀0 (𝑑0 − 𝑑 ′)‖∞ = 𝜀0‖𝑑0 − 𝑑 ′‖∞ < 𝜂0,

which shows that 𝑧0 = 𝑥0 + 𝜀0𝑑 ′ ∈ int𝐾 . In other words, 𝑑 ′ illuminates 𝑥0 too, which
completes the proof of part (a).

Similarly, set 𝜏 = 𝜂0. Suppose that 𝑦 ∈ 𝜕𝐾 and satisfies ‖𝑥0 − 𝑦‖∞ < 𝜏. Then, for
𝑧1 = 𝑦 + 𝜀0𝑑0, we have

(𝑥0 + 𝜀0𝑑0) − 𝑧1

∞ = ‖𝑥0 − 𝑦‖∞ < 𝜂0,

and hence 𝑧1 = 𝑦 + 𝜀0𝑑0 ∈ int𝐾 . In other words, 𝑑0 illuminates the boundary point 𝑦
too, which shows part (b). �

2.1 A brief review of tools from [37]: illuminating 1-symmetric convex
bodies in all dimensions

Recall that 1-symmetric convex bodies are a subclass of 1-unconditional convex bodies:
a body B ⊂ R𝑛 is called 1-symmetric if

𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝐾 implies that (𝜖1𝑥𝜎 (1) , 𝜖2𝑥𝜎 (2) , . . . , 𝜖𝑛𝑥𝜎 (𝑛) ) ∈ 𝐾
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8 W. R. Sun and B.-H. Vritsiou

for any choice of signs 𝜖𝑖 ∈ {±1}, 1 6 𝑖 6 𝑛, and any permutation 𝜎 on [𝑛].

In [37] we dealt with illuminating 1-symmetric convex bodies in all dimensions, and for
this purpose we introduced the notion of deep illumination: given 𝛿 ∈ (0, 1), consider
the set

𝐺𝑛 (𝛿) :=
𝑑 ∈ R𝑛 : ∃ 𝑖 ∈ [𝑛] such that 𝑑 = ±𝑒𝑖 +

∑︁
𝑗∈[𝑛]\{𝑖 }

±𝛿𝑒 𝑗
 , (1)

of directions in R𝑛. A direction 𝑑 ∈ 𝐺𝑛 (𝛿) is said to deep illuminate a non-zero vector
𝑥 ∈ R𝑛 if (i) sign(𝑥𝑖) = − sign(𝑑𝑖) for every 𝑖 ∈ [𝑛]\Z𝑥 and (ii) 1 = ‖𝑑‖∞ =

��𝑑 𝑗 �� for an
index 𝑗 ∈ [𝑛]\Z𝑥 . A subset 𝑆 of𝐺𝑛 (𝛿) is said to deep illuminate a subset 𝐴 ofR𝑛 \ {0}
if every 𝑦 ∈ 𝐴 is deep illuminated by some 𝑑𝑦 ∈ 𝑆.

Subsequently we showed that there exists a smaller subsetI𝑛 (𝛿) of𝐺𝑛 (𝛿) with car-
dinality 2𝑛which still deep illuminates everynon-zero vector inR𝑛.We gave two explicit
constructions, a more geometric one, and a purely combinatorial and recursive one.

In this paper, when we write I𝑛 (𝛿), we will exclusively refer to the 2nd type of con-
struction,whichwe recall below.This is partly because itwill be easier to define/describe
variations of this set, which, as we can then show, we can use as illuminating sets in
different settings.

Reminder 13 (Construction of I𝑛 (𝛿) from [37])
(i) Check that I2 (𝛿) :=

{
±(1, 𝛿), ±(𝛿,−1)

}
deep illuminates every non-zero vector in

R2.

(ii) Construct I𝑛+1 (𝛿) from I𝑛 (𝛿) as follows: out of the 2𝑛+1 directions that I𝑛+1 (𝛿)
will have in the end, the first 2𝑛 are formed by appending to each direction d𝑛𝑠 of I𝑛 (𝛿)
one more ‘small’ coordinate at the end, so that this new coordinate will have the same
sign as the last coordinate of d𝑛𝑠 ; that is,

d𝑛+1𝑠 :=
(
d𝑛𝑠 , sign(d𝑛𝑠,𝑛)𝛿

)
.

At the same time, this direction d𝑛𝑠 allows us to also define one of the remaining 2𝑛
directions for I𝑛+1 (𝛿), which we will denote by d𝑛+12𝑛+𝑠 : the sign of each of the first 𝑛
coordinates of d𝑛+12𝑛+𝑠 will be the same as for the respective coordinate of d𝑛𝑠 , while the
last coordinate of d𝑛+12𝑛+𝑠 will be equal to 1 in absolute value and will have opposite sign
to the previous coordinate, the 𝑛-th one. That is,

d𝑛+12𝑛+𝑠 :=
(
𝛿 ·

(
sign(d𝑛𝑠,1), sign(d𝑛𝑠,2), . . . , sign(d𝑛𝑠,𝑛−1), sign(d𝑛𝑠,𝑛)

)
, −− sign(d𝑛𝑠,𝑛)

)
.

Given this construction, we can inductively check that I𝑛 (𝛿) deep illuminates R𝑛.

If we consider a 1-symmetric convex bodyB inR𝑛 and 𝑥 ∈ 𝜕B, it is not hard to check
that, if a direction 𝑑 ∈ 𝐺𝑛 ( 1

𝑛+1 ) deep illuminates the vector 𝑥, then 𝑥 + 𝜀𝑑 ∈ intB for
some 𝜀 > 0 (see [37, Lemma 11]). Thus, B is illuminated by both the set 𝐺𝑛 ( 1

𝑛+1 ) and
by its smaller subsetI𝑛 ( 1

𝑛+1 ) (since each of these sets deep illuminates all the boundary
points of B).

Moreover, by examining more carefully
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Illuminating certain 1-unconditional convex bodies 9

(1) which directions are included in the setI𝑛 ( 1
𝑛+1 ) when it is constructed as above, and

(2) in which other cases deep illumination is guaranteed to imply illumination,

we could establish the following

Theorem 14 ([37, Theorem 23]) Let 𝑛 ≥ 3, and let B be a 1-symmetric convex body in R𝑛

which is not affinely equivalent to the cube. Without loss of generality assume that B ∈ U𝑛.
Then we can find a minimal 𝛼B > 1 such that B ⊂ [−1, 1]𝑛 ⊂ 𝛼BB.

We can illuminate B using the set[
I𝑛

( 1
𝑛+1

)
\
{
±
(
+1, + 1

𝑛+1 , +
1
𝑛+1 , . . . , +

1
𝑛+1 , +

1
𝑛+1 , +

1
𝑛+1

)
,

±
(
+ 1
𝑛+1 , +

1
𝑛+1 , +

1
𝑛+1 , . . . , +

1
𝑛+1 ,−−

1
n + 1

, +1
)}]

⋃ {
±
(
+1, + 1

𝑛+1 , +
1
𝑛+1 , . . . , +

1
𝑛+1 , η, +

1
𝑛+1

)}
for some 𝜂 ∈ (0, 1

𝑛+1 ) (which will only depend on how close 𝛼B is to 1).

One of the main ingredients in the proof of this theorem is the following
Fact B. ([37, Lemma 24]) The following subset of I𝑛 (𝛿) (𝛿 ∈ (0, 1)):

I𝑛−2 (𝛿) := I𝑛 (𝛿) \
{
±(+𝛿, +𝛿, . . . , +𝛿, +𝛿, −− δ, +1)

}
(2)

deep illuminates every vector 𝑥 ∈ R𝑛 \ {®0} which has at least one zero coordinate, that
is, every vector 𝑥 with 1 ≤ |Z𝑥 | ≤ 𝑛 − 1.

A further observation that we will need here is the following: ifB is 1-symmetric and
inU𝑛, and moreover

1 − 𝑒𝑖 ∈ B
for all 𝑖 ∈ [𝑛] , while 1 ∉ B, then B can more simply be illuminated by the set I𝑛−2 (𝛿),
with 𝛿 ∈ (0, 1) only depending on ‖1‖B.

As we will see (Proposition 20), this can be extended to 1-unconditional convex bod-
ies with the same properties (note that these do not necessarily have to be 1-symmetric
too, because for example we could have B contain some points of the form 1− 1

2e𝑖 , say,
but not for all 𝑖 ∈ [𝑛] , and this would not violate 1-unconditionality, but it would break
1-symmetry).

3 1-unconditional convex bodies in R3

Observe that if B ∈ U3 is not affinely equivalent to the cube, then, by our convention,
𝑒𝑖 ∈ 𝜕B for all 𝑖 ∈ [3] , while 1 = 𝑒1 + 𝑒2 + 𝑒3 ∉ B. Thus we can separate the different
3-dimensional cases of Theorem 1 into four groups, based on whether any coordinate
permutations of 𝑒1 + 𝑒2 are contained in B, and if yes, howmany (equivalently, based on
whether B contains any unit squares (2-dimensional subcubes), and how many).

We summarise the conclusions for each of these groups of cases in the following
theorem (the numerical subscripts correspond to the numbering of the proposition(s)
where each illuminating set appears).
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10 W. R. Sun and B.-H. Vritsiou

Theorem 15 LetB ∈ U3 which is not a parallelepiped. ThenB is illuminated by a coordinate
permutation of one of the following sets:

F16,17, 𝛿 :=
{
±(1, 𝛿, 0), ±(−𝛿, 1, 0), ±(0, 0, 1)

} cases with no unit squares
or one unit square

or

F 1
18, 𝛿1 :=

{
±(𝛿1, 𝛿1, 1),±(𝛿1, 𝛿1,−1),±(−𝛿1, 1, 0)

}
or F 2

18, 𝜖2 , 𝛿𝜖2
:=

{
± (𝜖2, 1, 1),±(−𝛿𝜖2 , 1, 𝛿𝜖2 ),±(−𝛿𝜖2 ,−𝛿𝜖2 , 1)

} cases with two unit squares

or

F20, 𝛿 :=
{
±(1, 𝛿, 𝛿),±(𝛿,−1,−𝛿),±(𝛿, 𝛿,−1)

}
cases with three unit squares,

where the relevant parameter(s) 𝛿, 𝛿1, 𝜖2, 𝛿𝜖2 > 0 should also be chosen based on B (in explicit
ways, as we will see).

The theorem will follow from the proofs of Propositions 16 and 17, of Proposition
18, which is treated as a special case of Proposition 28, and of Proposition 20. We will
use the following terminology for the last two cases mentioned here: they concern bod-
iesB ∈ U3 which contain exactly twomaximal unit subcubes, or all possiblemaximal unit
subcubes, respectively (where ‘subcube’ implies proper inclusion here, and where ‘maxi-
mality’ is in terms of dimension).We treat these cases in the next section, in Propositions
28 and 20, proving the analogous results in an arbitrary dimension 𝑛 ≥ 3.

Proposition 16 Let B ∈ U3 and suppose

𝑒𝑖 + 𝑒 𝑗

B > 1 for every 𝑖, 𝑗 ∈ [3]. (∗)

Then there exists 𝛿 > 0 so that B can be illuminated by some coordinate permutation of the set

F16,17, 𝛿 :=
{
±(1, 𝛿, 0), ±(−𝛿, 1, 0), ±(0, 0, 1)

}
.

Proof For every 𝑖 ∈ [3] and for every 𝑗 ∈ [3]\{𝑖}, set 𝑎𝑖, 𝑗 to be the supremum of
non-negative numbers 𝑥 𝑗 such that

𝑒𝑖 + 𝑥 𝑗𝑒 𝑗 ∈ B

(note that the set of such numbers is nonempty as 𝑥 𝑗 = 0 belongs to it). Observe that by
compactness the vector 𝑒𝑖 + 𝑎𝑖, 𝑗𝑒 𝑗 is also in B, and so are all its coordinate reflections.
By assumption (∗), we have 𝑎𝑖, 𝑗 < 1 for all 𝑖 ∈ [3] and for every 𝑗 ∈ [3]\{𝑖}.

Let 𝑎𝑖0 , 𝑗0 be the maximum of these numbers (not necessarily unique). For the rest
of the proof, without loss of generality, we assume that {𝑖0, 𝑗0} = {1, 2}. We fix some
𝛿 <

1−𝑎𝑖0 , 𝑗0
2 and consider the corresponding set F16,17, 𝛿 .

Consider a boundary point 𝑦 = (𝑦1, 𝑦2, 𝑦3) of B. We will show how to illuminate 𝑦
based on the number

��Z𝑦

�� of zero coordinates of 𝑦.��Z𝑦

�� = 2. Here we necessarily have that 𝑦 = 𝑒𝑠 for some 𝑠 ∈ [3]. If 𝑦 = ±𝑒3, then ∓𝑒3 from
F16,17, 𝛿 illuminates 𝑦. If 𝑦 = ±𝑒1, say 𝑦 = 𝑒1, then 𝑦 + (−1,−𝛿, 0) = (0,−𝛿, 0) ∈
intB given that 𝛿 ∈ (0, 1). Similarly we deal with 𝑦 = −𝑒1 or 𝑦 = ±𝑒2.
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Illuminating certain 1-unconditional convex bodies 11��Z𝑦

�� = 1. We consider subcases based on which coordinate is equal to zero, and also based
on how large (in absolute value) the remaining two coordinates are.
• Suppose first that 𝑦 = (𝑦1, 𝑦2, 0). Thenwe choose the direction 𝑑𝑦 inF16,17, 𝛿
which has 1st and 2nd entries non-zero and with opposite signs to the cor-
responding entries of 𝑦. Clearly 𝑦 + 𝜖𝑑𝑦 ∈ intB for 𝜖 ∈ (0,min( |𝑦1 |, |𝑦2 |))
(recall Corollary 8).

• If 𝑦 = (𝑦1, 0,±1) or 𝑦 = (0, 𝑦2,±1), we use the directions ∓𝑒3 (since by our
assumptions we must have |𝑦1 | < 1 or |𝑦2 | < 1 in these cases). We can use
the same directions if 𝑦 = (𝑦1, 0, 𝑦3) or 𝑦 = (0, 𝑦2, 𝑦3) with 𝑦𝑖 representing
numbers in (−1, 1) \ {0} here.

• Finally, suppose that 𝑦 is a boundary point of the form (1, 0, 𝑦3). Then

(1, 0, 𝑦3) + (−1,−𝛿, 0) = (0,−𝛿, 𝑦3).

Based on our notation, and because of the 1-unconditionality, we have |𝑦3 | ≤
𝑎1,3 ≤ 𝑎𝑖0 , 𝑗0 < 1. By convexity the vector

1−𝑎𝑖0 , 𝑗0
2 𝑒2 + 1+𝑎𝑖0 , 𝑗0

2 𝑒3

is in B. Moreover, it has strictly larger 2nd and 3rd entries in absolute value
compared to (1, 0, 𝑦3) + (−1,−𝛿, 0), thus, by Lemma 7, the latter vector is in
intB.

• Analogously to the last subcase, we deal with points of the form (−1, 0, 𝑦3)
and (0,±1, 𝑦3).��Z𝑦

�� = 0. Here we distinguish subcases based on the magnitude of |𝑦3 |.
• If |𝑦3 | < 1, we can choose the direction 𝑑𝑦 in F16,17, 𝛿 which has 1st and 2nd
entries non-zero and with opposite signs to the corresponding entries of 𝑦,
and then employ Corollaries 8 and 11.

• In the opposite case we have 𝑦 = (𝑦1, 𝑦2,±1); say, for illustration pur-
poses, 𝑦3 = 1. Note that, by the 1-unconditionality, the points ( |𝑦1 |, 0, 1) and
(0, |𝑦2 |, 1) are in B, thus |𝑦1 | ≤ 𝑎3,1 ≤ 𝑎𝑖0 , 𝑗0 and |𝑦2 | ≤ 𝑎3,2 ≤ 𝑎𝑖0 , 𝑗0 . Hence,
(𝑦1, 𝑦2, 1) + (0, 0,−1) = (𝑦1, 𝑦2, 0) and at least one of the following holds:
|𝑦1 | < 1 and |𝑦2 | ≤ 𝑎1,2 < 1, or |𝑦2 | < 1 and |𝑦1 | ≤ 𝑎2,1 < 1. Thus, regard-
less of whether (𝑖0, 𝑗0) = (1, 2) or (2, 1), we can use Lemmas 7 and 10 (with
B ∩ {𝜉 ∈ R3 : 𝜉2 = 𝑦2} or B ∩ {𝜉 ∈ R3 : 𝜉1 = 𝑦1}, respectively) to conclude
that (𝑦1, 𝑦2, 0) = 𝑦 + (0, 0,−1) ∈ intB.

In cases where {𝑖0, 𝑗0} ≠ {1, 2} (that is, if neither 𝑎1,2 nor 𝑎2,1 is the maximum of
the numbers we defined above), we set 𝑡0 for the remaining element of [3] and consider
the linear map/coordinate permutation

𝜄 : R3 → R3, 𝑥𝑖0𝑒𝑖0 + 𝑥 𝑗0𝑒 𝑗0 + 𝑥𝑡0𝑒𝑡0 ↦→ (𝑥𝑖0 , 𝑥 𝑗0 , 𝑥𝑡0 ).

Then 𝜄(B) is illuminated by F16,17, 𝛿 as above, and B is illuminated by 𝜄−1 (F16,17, 𝛿). �

Note that in the previous proposition we did not have to add the assumption that B
is not an affine image of the cube: this is in fact implied from the other assumptions,
namely that B is in U3 and does not contain any unit squares, which were enough to
verify that B can be illuminated by (at most) 6 directions.
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12 W. R. Sun and B.-H. Vritsiou

The same happens in the next proposition.

Proposition 17 Let B ∈ U3 and suppose that there is exactly one pair of indices 𝑖1, 𝑖2 ∈ [3]
such that



𝑒𝑖1 + 𝑒𝑖2

B = 1. Then there exists 𝛿 > 0 so that B can be illuminated by some
coordinate permutation of the set

F16,17, 𝛿 :=
{
±(1, 𝛿, 0), ±(−𝛿, 1, 0), ±(0, 0, 1)

}
.

Proof Let us assume without loss of generality that (1, 1, 0) ∈ B. Moreover, let
𝑎1, 𝑎2 ≥ 0 be maximum possible such that (1, 0, 𝑎1) and (0, 1, 𝑎2) ∈ B (by our main
assumption we have that 𝑎1, 𝑎2 ∈ [0, 1)). Without loss of generality as well, we can
assume that 𝑎1 ≥ 𝑎2.

Here we will distinguish three main cases for boundary points 𝑦 = (𝑦1, 𝑦2, 𝑦3) of B:
(i)
��Z𝑦

�� ≥ 1 and |𝑦3 | < 1, (ii)
��Z𝑦

�� = 0 and |𝑦3 | < 1, and (iii) |𝑦3 | = 1. We start with the
following key observation.

� Wecan choose 𝛿1 > 0 small enough so that the directions±(1, 𝛿, 0)will illuminate
both the point (1, 0, 𝑎1) and all its coordinate reflectionswhenever 𝛿 ≤ 𝛿1. Indeed,
we have e.g. that (1, 0, 𝑎1) + (−1,−𝛿, 0) = (0,−𝛿, 𝑎1) = −𝛿𝑒2 + 𝑎1𝑒3 ∈ intB, as
long as 0 < 𝛿 < 1 − 𝑎1, so we can set 𝛿1 = (1 − 𝑎1)/2.

� At the same time, as long as 𝛿 ∈ (0, 1), the directions ±(−𝛿, 1, 0) will illuminate
(0, 1, 𝑎2) and its coordinate reflections: this is because e.g. (0, 1, 𝑎2) + (𝛿,−1, 0) =
(𝛿, 0, 𝑎2), which has strictly smaller 1st coordinate compared to (1, 0, 𝑎1) and at
most as large 3rd coordinate, while 𝑎1 < 1 too (so we can either use Lemma 7
alone, or combine it with Lemma 10).

Now, suppose that 𝑦 = (𝑦1, 0, 𝑦3) with 0 < |𝑦3 | < 1.

• If |𝑦1 | = 1, then necessarily (by themaximality of 𝑎1) we have that |𝑦3 | ≤ 𝑎1. Thus:
– if |𝑦3 | = 𝑎1, we have already seen that the directions ±(1, 𝛿, 0) illuminate 𝑦

(as long as 𝛿 ≤ 𝛿1);
– if |𝑦3 | < 𝑎1, then 𝑦 is in the convex hull of the point (1, 0, 𝑎1) and its coor-

dinate reflections, and hence it is also illuminated by the directions ±(1, 𝛿, 0)
(refer to Fact A and its justification).

• If |𝑦1 | < 1, then the direction (0, 0,− sign(𝑦3)) illuminates 𝑦 (since (𝑦1, 0, 0) ∈
intB).

In an analogous way, we see that the directions ±(−𝛿, 1, 0),±(0, 0, 1) illuminate
boundary points of the form 𝑦 = (0, 𝑦2, 𝑦3) with 0 < |𝑦3 | < 1.

Furthermore, the directions ±(1, 𝛿, 0), ±(−𝛿, 1, 0), 𝛿 ≤ 𝛿1 < 1, also illuminate:

• the point (1, 1, 0) and its coordinate reflections (and thus also any boundary point
𝑦 which satisfies 𝑦3 = 0, since this will be in the convex hull of the former points);

• any boundary point 𝑦 of B which satisfies
��Z𝑦

�� = 0 and |𝑦3 | < 1.

This takes care of the first two cases of boundary points in our breakdown. It remains
to explain how to illuminate boundary points 𝑦 satisfying |𝑦3 | = 1. In such a case, by
our main assumption we will have that |𝑦1 | < 1 and |𝑦2 | < 1, and hence the point
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Illuminating certain 1-unconditional convex bodies 13

(𝑦1, 𝑦2, 0) ∈ intB (we see this if we compare with the point (1, 1, 0) ∈ B). Thus the
direction (0, 0,− sign(𝑦3)) illuminates 𝑦. �

In contrast with the previous two propositions, the main assumption in the next one
can also be satisfied by certain affine images of the cube [−1, 1]3. In fact, in all bodies
in U3 which satisfy the main assumption we can inscribe such an affine image of the
cube, one that is also inU3. Therefore, we have to explicitly rule out the cases where we
do not have proper inclusion, and in the remaining cases we have to make crucial use of
‘special’ boundary points which verify the proper inclusion.

Proposition 18 Suppose that B ∈ U3 is not an affine image of the cube but has the prop-
erty that, for some permutation (𝑖1, 𝑖2, 𝑖3) of [3] ,



𝑒𝑖1 + 𝑒𝑖2

B =


𝑒𝑖1 + 𝑒𝑖3

B = 1, while

𝑒𝑖2 + 𝑒𝑖3

B > 1. Then there exist 𝛿1 > 0 or 𝜖2, 𝛿𝜖2 > 0 such that B can be illuminated by a

coordinate permutation of one of the following sets:

F 1
18, 𝛿1 = I3

𝑒𝑥2,1 (𝛿1) :=
{
±(𝛿1, 𝛿1,±1),±(−𝛿1, 1, 0)

}
or

F 2
18, 𝜖2 , 𝛿𝜖2

= I3
𝑒𝑥2,2 (𝜖2, 𝛿𝜖2 ) :=

{
± (𝜖2, 1, 1),±(−𝛿𝜖2 , 1, 𝛿𝜖2 ),±(−𝛿𝜖2 ,−𝛿𝜖2 , 1)

}
.

As before, we can check that, after applying some coordinate permutation on B
(something which would not ruin our main assumptions), we would be able to use one
of the above sets exactly. We can thus assume without loss of generality that B contains
the points (1, 1, 0) and (1, 0, 1) but not the point (0, 1, 1). We first need the following

Lemma 19 Suppose that B ∈ U3 satisfies:

� ‖(1, 1, 0)‖B = ‖(1, 0, 1)‖B = 1, while ‖(0, 1, 1)‖B > 1;
� B is not an affine image of the cube.

Then, for any 𝜖 ∈ (0, 1] , the point (
1 − 𝜖, 1

2 ,
1
2
)

is an interior point of B.

Proof Since B contains the points (1, 1, 0) and (1, 0, 1) and all their coordinate
reflections, it will contain their convex hull too, which is the set{

(𝑥1, 𝑥2, 𝑥3) ∈ R3 : |𝑥1 | ≤ 1, |𝑥2 | + |𝑥3 | ≤ 1
}
= [−1, 1] × 𝐶𝑃2

1 .

This is an affine image of the cube, therefore, by our last assumption forB, wemust have
that B \

(
[−1, 1] × 𝐶𝑃2

1
)
≠ ∅.

Combined with the assumption that B ∈ U3, this implies that B contains a point of
the form (0, 𝑧2, 𝑧3) where 𝑧2, 𝑧3 ∈ (0, 1] and 𝑧2 + 𝑧3 > 1. From this we can obtain that(

0, 12 ,
1
2
)
∈ intB (3)

as follows. Without loss of generality we can assume that 𝑧2 ≥ 𝑧3.
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14 W. R. Sun and B.-H. Vritsiou

• If 𝑧3 > 1
2 , then (3) follows immediately by Lemma 7.

• If 𝑧3 ≤ 1
2 , thenwe can observe the following: 𝑧2+𝑧3 > 1 implies that 𝑧2 > 1−𝑧3 ≥

1
2 , and hence 𝑧2 + (1− 𝑧3) > 2(1− 𝑧3) ≥ 1. Therefore, we can find 𝜆 ∈ (0, 1) such
that

𝜆 ·
(
𝑧2 + (1 − 𝑧3)

)
= 1 ⇒ 𝜆𝑧2 = 𝜆𝑧3 + (1 − 𝜆).

From this we obtain that the point (0, 𝑦2, 𝑦3) = 𝜆(0, 𝑧2, 𝑧3) + (1−𝜆) (0, 0, 1) ∈ B
has equal 2nd and 3rd coordinates, and moreover that

𝑦2 + 𝑦3 = 𝜆𝑧2 + 𝜆𝑧3 + (1 − 𝜆) = 𝜆(𝑧2 + 𝑧3) + (1 − 𝜆) > 1.

In other words, 𝑦2 = 𝑦3 > 1
2 , whence (3) follows as in the previous case.

Finally, we note that
(
1, 12 ,

1
2
)
= 1

2 (1, 1, 0) +
1
2 (1, 0, 1) ∈ B. Thus, for any 𝜖 ∈ (0, 1),

the point (
1 − 𝜀, 1

2 ,
1
2
)
= (1 − 𝜖)

(
1, 12 ,

1
2
)
+ 𝜖

(
0, 12 ,

1
2
)

is an interior point of B as a (non-trivial) convex combination of two points of B with
one of them being interior. �

Comment on the proof of Proposition 18. As mentioned above, we can assume that B
contains the points (1, 1, 0) and (1, 0, 1) but not the point (0, 1, 1).

We will distinguish two main cases:

� either both (1, 1, 0) and (1, 0, 1) are extreme points of B,
� or at least one of them is not an extreme point of B.

In the former case, we will see that the set F 2
18, 𝜖2 , 𝛿𝜖2

(which coincides with the set
I𝑛
𝑒𝑥2,2 (𝜖2, 𝛿𝜖2 ) of Proposition 28 when 𝑛 = 3) illuminates B for some explicit 𝜖2, 𝛿𝜖2
depending on B.

On the other hand, if e.g. (1, 1, 0) is not an extreme point of B, then necessarily we
can find 𝑎 ∈ (0, 1) such that (1, 1, 𝑎) ∈ B. In such a case we can show that the set F 1

18, 𝛿1
illuminates B for some explicit 𝛿1.

Similarly, if (1, 1, 0) is an extreme point of B, but (1, 0, 1) is not, then (assuming
what is claimed in the previous paragraph) it is not hard to conclude that a coordinate
permutation of F 1

18, 𝛿1 illuminates B: indeed, it suffices to consider the transformation
that swaps the 2nd and the 3rd coordinate.

Full details can be found in the proof of Proposition 28, which is the generalisation
of Proposition 18 to all dimensions 𝑛 ≥ 3. �

The proof of Theorem 15 will be completed with the proofs of Propositions 28 and
20 in the next section.

4 Bodies with maximal unit subcubes

In this section we deal with 1-unconditional convex bodies B in arbitrary dimensions 𝑛
which:

� have been normalised to be inU𝑛, thus are contained in the unit cube [−1, 1]𝑛;
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Illuminating certain 1-unconditional convex bodies 15

� are not affine images of the cube, and thus certainly satisfy B ( [−1, 1]𝑛;
� and have at least one coordinate hyperplane projection (equivalently, coordinate

hyperplane section) equal to [−1, 1]𝑛−1 (this is equivalent to saying thatB contains
the point 1 − 𝑒𝑖 for at least one 𝑖 ∈ [𝑛]). As mentioned before, we will also say in
this case that B contains a maximal unit subcube.

Classifying 1-unconditional convex bodies in this way, by whether points of the form
𝑒𝑖1+𝑒𝑖2+· · ·+𝑒𝑖𝑚 are contained in 𝜕B or not, for different𝑚 ∈ {1, . . . , 𝑛−1}, is inspired
by recent approaches to settle the Illumination Conjecture for bodies with many sym-
metries (starting with Tikhomirov’s work [38], and also adopted in the precursor [37] to
this paper).

Of course, we could also describe the instances that we are focusing on here with-
out/before employing the ‘special’ normalisation that we use. We are considering 1-
unconditional convex bodies B which satisfy the following: if RB is the circumscribing
rectangular box given by

RB =
{
𝑥 ∈ R𝑛 : |𝑥𝑖 | ≤ ‖𝑒𝑖 ‖−1B for all 𝑖 ∈ [𝑛]

}
,

then at least one coordinate hyperplane projection of B and the corresponding one of
RB coincide. We will show that, for such bodies B, ℑ(B) ≤ 2𝑛 − 2 unless B is an affine
image of the cube.

The results of this section will also help us obtain the main result of the next section.
We consider cases based on how many of the coordinate hyperplane projections of B
coincide with the corresponding ones of [−1, 1]𝑛 (or, before normalisation, with those
of the circumscribing rectangular box); equivalently, based on how many maximal unit
subcubes B contains.

Proposition 20 Let 𝑛 ≥ 3 and let B ∈ U𝑛 with the property that, for all 𝑖 ∈ [𝑛] ,

∑
𝑗≠𝑖 𝑒 𝑗




B = ‖1 − 𝑒𝑖 ‖B = 1 but B ≠ [−1, 1]𝑛. Then there is 𝛿 = 𝛿B > 0 such that

B can be illuminated by the set

I𝑛−2 (𝛿) = I𝑛 (𝛿)\
{
±(+𝛿, +𝛿, . . . , +𝛿, +𝛿,−− 𝛿, +1)

}
.

In other words, ℑ(B) ≤ 2𝑛 − 2.

Proof Set 𝛾 = ‖1‖−1B ; then 𝛾1 ∈ 𝜕B (clearly 𝛾 < 1 since B ( [−1, 1]𝑛). We will see
that B is illuminated by the set in the statement as long as 𝛿 < 1 − 𝛾.

Observe that, for every boundary point 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛−1, 𝑦𝑛) of B, we can pick
two different indices 𝑖𝑦 , 𝑗𝑦 ∈ [𝑛] such that |𝑦𝑖𝑦 | ≤ 𝛾 ≤ |𝑦 𝑗𝑦 |. This is because, if we had
|𝑦𝑖 | > 𝛾 for all 𝑖 ∈ [𝑛] , then by Lemma 7 we would get that 𝛾1 ∈ intB, which would
contradict our choice of 𝛾.Moreover, if the first of the desired inequalities were satisfied
by every coordinate of 𝑦, that is, if we had |𝑦𝑖 | ≤ 𝛾 for all 𝑖 ∈ [𝑛] , then for at least one
index 𝑗 we should have |𝑦 𝑗 | = 𝛾, otherwise 𝑦 would not be a boundary point of B.

Fix now some 𝑦 ∈ 𝜕B, and pick the smallest, say, index 𝑖0 such that |𝑦𝑖0 | ≤ 𝛾. As
recalled in Subsection 2.1, Fact B, we can find a direction 𝑑 = 𝑑𝑦,𝑖0 ∈ I𝑛−2 (𝛿) which
deep illuminates Proj𝑒⊥

𝑖0
(𝑦) (since the latter vector is non-zero and has at most 𝑛 − 1

non-zero coordinates).
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16 W. R. Sun and B.-H. Vritsiou

Note that the direction 𝑑 = 𝑑𝑦,𝑖0 that we just considered illuminates the point 𝑦.
Indeed, if 𝑡0 is the index atwhich ‖𝑑‖∞ is attained (by the definition of deep illumination,
this also ensures that 𝑦𝑡0 ≠ 0), then

• (𝑦 + |𝑦𝑡0 |𝑑)𝑡0 = 0,
• and at the same time | (𝑦 + |𝑦𝑡0 |𝑑)𝑖 | ≤ max

(
|𝑦𝑖 | − |𝑦𝑡0 |𝛿, |𝑦𝑡0 |𝛿

)
< 1 for all 𝑖 ∈

[𝑛]\{𝑡0, 𝑖0} (here this is satisfied as long as 𝛿 < 1).
• Finally, | (𝑦 + |𝑦𝑡0 |𝑑)𝑖0 | ≤ |𝑦𝑖0 | + |𝑦𝑡0 |𝛿 ≤ |𝑦𝑖0 | + 𝛿 < 1, as long as we choose
𝛿 < 1 − 𝛾.

We can now invoke Lemma 10 for the affine subspace {𝜉 ∈ R𝑛 : 𝜉𝑡0 = 0}: we compare
𝑦 + |𝑦𝑡0 |𝑑 with 1 − 𝑒𝑡0 (both points of B ∩ {𝜉 ∈ R𝑛 : 𝜉𝑡0 = 0}) to conclude that the
former point is in the interior of B. �

Proposition 21 Let n ≥ 4 and let B ∈ U𝑛 with the property that there is 𝑠0 ∈ [𝑛] such
that ‖1 − 𝑒𝑖 ‖B = 1 for all 𝑖 ≠ 𝑠0, while



1 − 𝑒𝑠0



B > 1. Then there is 𝛿 = 𝛿B > 0 such that

B can be illuminated by coordinate permutations of the set

I𝑛−1−2 (𝛿) × {−𝛿, +𝛿}.

In other words, ℑ(B) ≤ 2 · (2𝑛−1 − 2) = 2𝑛 − 4.

Note. Given our notation,

I𝑛−1−2 (𝛿) = I𝑛−1 (𝛿)\
± ©­«𝑒𝑛−1 − 𝛿𝑒𝑛−2 + 𝛿

∑︁
𝑗∈[𝑛−3]

𝑒 𝑗
ª®¬


(where the standard basis vectors here are considered in R𝑛−1).

Proof Without loss of generality, suppose that 𝑠0 = 𝑛. Set 𝜃𝑛 = ‖1 − 𝑒𝑛‖−1B . Then
𝜃𝑛 (1− 𝑒𝑛) ∈ 𝜕B, and we have 0 < 𝜃𝑛 < 1.Wewill see that B is illuminated by the set in
the statement as long as 𝛿 < 1−𝜃𝑛 (and by coordinate permutations of this set if 𝑠0 ≠ 𝑛).

Consider a boundary point 𝑦 ofB, andmoreover suppose that 𝑦 is an extreme bound-
ary point (recall Fact A from Section 2, namely that it suffices to show how to illuminate
these boundary points). Because 𝑛 ≥ 4, because 𝑦 is an extreme boundary point, and
given that, by our assumptions, 1 − 𝑒𝑖 ∈ 𝜕B for all 𝑖 ∈ [𝑛 − 1] , we can find two distinct
indices 𝑖𝑦 , 𝑗𝑦 ∈ [𝑛 − 1] such that 𝑦𝑖𝑦 · 𝑦 𝑗𝑦 ≠ 0. Moreover, since 𝜃𝑛 (1 − 𝑒𝑛) ∈ 𝜕B, and
by the 1-unconditionality of B, we can find an index 𝑖0 ∈ [𝑛 − 1] such that 𝑦𝑖0 ≤ 𝜃𝑛.

Note that at least one of the two indices 𝑖𝑦 , 𝑗𝑦 is different from 𝑖0, and thus the vector
Proj[𝑒𝑖0 ,𝑒𝑛 ]⊥ (𝑦) is non-zero. At the same time, it has at most 𝑛−2 non-zero coordinates
among its first 𝑛 − 1. Therefore, looking initially at these coordinates, we can find a
direction 𝑑 ′ = 𝑑 ′

𝑦,𝑖0
∈ I𝑛−1−2 (𝛿) which deep illuminates the subvector of the first 𝑛 − 1

coordinates of Proj𝑒⊥
𝑖0
(𝑦) (recall Fact B from Subsection 2.1), and then we can naturally

rely on this to pick a direction 𝑑 = 𝑑𝑦,𝑖0 ∈ I𝑛−1−2 (𝛿) × {−𝛿, +𝛿} which deep illuminates
Proj𝑒⊥

𝑖0
(𝑦).

Given the way we selected 𝑑 = 𝑑𝑦,𝑖0 , if 𝑡0 is the index at which ‖𝑑‖∞ is attained,
then 𝑡0 ∈ [𝑛 − 1] \ {𝑖0}. Moreover, 𝑦𝑡0 ≠ 0. We can now check, just as in the previous
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Illuminating certain 1-unconditional convex bodies 17

proposition, that 𝑦 + |𝑦𝑡0 |𝑑 ∈ intB (by comparing coordinate-wise the displaced vector
𝑦 + |𝑦𝑡0 |𝑑 with the boundary point 1 − 𝑒𝑡0 ). �

Remark 22 The above proposition cannot be restated as simply as above when 𝑛 = 3
because inR3 there are𝑄 ∈ U3 which are affine images of the cube and satisfy themain
assumption (namely that there exists 𝑠0 ∈ [𝑛] such that ‖1 − 𝑒𝑖 ‖𝑄 = 1 for all 𝑖 ≠ 𝑠0,
while



1 − 𝑒𝑠0



𝑄
> 1; this is the case when e.g. 𝑄 = 𝐶𝑃2

1 × [−1, 1] , where 𝐶𝑃2
1 is the

standard cross-polytope in R2). Therefore, when 𝑛 = 3, we need to further assume that
B is not an affine image of the cube, and we need to have extra steps in our proof which
essentially encode and capitalise on this additional, necessary assumption. This leads to
Proposition 18, which finds a better high-dimensional analogue in Proposition 28.

For the remaining cases, we need to introduce some further, combinatorially con-
structed, sets of directions in R𝑛 that will serve as building blocks for the illuminating
sets we will use.

4.1 Constructing other illuminating sets

Notation 23 Let us fix 𝑛 ≥ 2 and 𝛿 ∈ (0, 1), and consider the setI𝑛 (𝛿) fromReminder
13 (exactly as is described there).

Define a function 𝑚.𝑐. which maps each 𝑑 ∈ I𝑛 (𝛿) to the index of its maxi-
mum (in absolute value) coordinate; in other words 𝑚.𝑐. : I𝑛 (𝛿) → [𝑛] and e.g.
𝑚.𝑐.((−𝛿, 𝛿,−1,−𝛿, ...,−𝛿,−𝛿)) = 3. Note that the index of themaximum coordinate,
as well as its sign, will not change no matter what value of 𝛿 ∈ (0, 1) we pick. Thus, we
can also identify directions 𝑑1 ∈ I𝑛 (𝛿1) and 𝑑2 ∈ I𝑛 (𝛿2) if their respective coordi-
nates have the same signs and if their maximum coordinate is the same, and then we can
view 𝑚.𝑐. as a function from the set of these equivalence classes to [𝑛].
By abusing ournotation,we also consider the setI𝑛 (1), which is simply the set {−1, 1}𝑛.
For each 𝑑 ′ ∈ I𝑛 (1), there is a unique direction 𝑑𝑑′ ∈ I𝑛 (1/2) (say) which agrees in
sign in each coordinate. Thenwe can also define a function𝑚.𝑐. : I𝑛 (1) ≡ {−1, 1}𝑛 →
[𝑛] by setting 𝑚.𝑐.(𝑑 ′) = 𝑚.𝑐.(𝑑𝑑′).

Notation 24 Starting from the set I𝑛 (𝛿), we construct a new, similar set Î𝑛
𝑛−1,𝑛 (𝛿) in

the following way:

� if 𝑑 ∈ I𝑛 (𝛿) satisfies 𝑚.𝑐.(𝑑) ∈ {𝑛 − 1, 𝑛}, then we keep it in Î𝑛
𝑛−1,𝑛 (𝛿) as well

(there are 2𝑛−1 + 2𝑛−2 such directions).
� If 𝑑 ∈ I𝑛 (𝛿) satisfies 𝑚.𝑐.(𝑑) < 𝑛 − 1, then replace 𝑑 by a direction 𝑑 ′

which agrees in sign with 𝑑 in every coordinate, but has maximum (in abso-
lute value) coordinate the (𝑛 − 1)-th one, and place 𝑑 ′ in Î𝑛

𝑛−1,𝑛 (𝛿). Thus e.g.
the direction (−1,−𝛿,−𝛿, . . . ,−𝛿,−𝛿,−𝛿) from I𝑛 (𝛿) will give the direction
(−𝛿,−𝛿,−𝛿, . . . ,−𝛿,−1,−𝛿) in Î𝑛

𝑛−1,𝑛 (𝛿).

Similarly, we construct a new set Î𝑛
𝑛−2,𝑛−1,𝑛 (𝛿) in the following way:
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18 W. R. Sun and B.-H. Vritsiou

� if 𝑑 ∈ I𝑛 (𝛿) satisfies𝑚.𝑐.(𝑑) ∈ {𝑛−2, 𝑛−1, 𝑛}, then we keep it in Î𝑛
𝑛−2,𝑛−1,𝑛 (𝛿)

as well (there are 2𝑛−1 + 2𝑛−2 + 2𝑛−3 such directions).
� If 𝑑 ∈ I𝑛 (𝛿) satisfies 𝑚.𝑐.(𝑑) < 𝑛 − 2, then replace 𝑑 by a direction 𝑑 ′

which agrees in sign with 𝑑 in every coordinate, but has maximum (in absolute
value) coordinate the (𝑛 − 2)-th one, and place 𝑑 ′ in Î𝑛

𝑛−2,𝑛−1,𝑛 (𝛿). Thus e.g.
the direction (−1,−𝛿,−𝛿, . . . ,−𝛿,−𝛿,−𝛿) from I𝑛 (𝛿) will give the direction
(−𝛿,−𝛿,−𝛿, . . . ,−1,−𝛿,−𝛿) in Î𝑛

𝑛−2,𝑛−1,𝑛 (𝛿).

Definition 1 Let 𝑛 ≥ 3 be an integer. If 𝑛 is even, we set

J𝑛 :=
{
𝑑 ∈ I𝑛 (1) : #{𝑖 ∈ [𝑛] : 𝑑𝑖 = +1} ∈ {2, 4, 6 . . . , 𝑛 − 2}

}
.

If 𝑛 is odd, we distinguish cases.

� If 𝑛 = 3, we set J3 = {(1, 1, 1), (−1,−1,−1)}.
� If 𝑛 > 3 and (𝑛 − 1)/2 is odd, we first define

J 1
𝑛 :=

{
𝑑 ∈ I𝑛 (1) : #{𝑖 ∈ [𝑛] : 𝑑𝑖 = +1} ∈ {2, 4, . . . , 𝑛−12 − 1}

}
and then

J𝑛 := J 1
𝑛 ∪ (−J 1

𝑛 ).
� Finally, if 𝑛 ≥ 3 is odd and (𝑛 − 1)/2 is even, then we set

J 1
𝑛 :=

{
𝑑 ∈ I𝑛 (1) : #{𝑖 ∈ [𝑛] : 𝑑𝑖 = +1} ∈ {1, 3, . . . , 𝑛−12 − 1}

}
and afterwards we set

J𝑛 := J 1
𝑛 ∪ (−J 1

𝑛 ).

Remarks 25 (I) With the above definition, we have ensured that the sets J𝑛 are
symmetric (that is, J𝑛 = −J𝑛).

(II) We also need some ‘efficient’ bounds on the cardinalities of J𝑛. Note that |J3 | =
2 = 2𝑛−1 − 2. We will check that, for all 𝑛 ≥ 3, |J𝑛 | ≤ 2𝑛−1 − 2.

When 𝑛 is even, observe that, to determine a direction inJ𝑛, we simply need to know
which coordinates are equal to+1, and the subset of the corresponding indiceswill range
over all subsets of [𝑛] of even cardinality ≥ 2 and ≤ 𝑛 − 2. Thus

|J𝑛 | =
(𝑛−2)/2∑︁
𝑠=1

(
𝑛

2𝑠

)
=
2𝑛

2
−
(
𝑛

0

)
−
(
𝑛

𝑛

)
= 2𝑛−1 − 2

(the fact that
b𝑚/2c∑︁
𝑠=0

(
𝑚

2𝑠

)
=

∑︁
𝑢 even ≤𝑚

(
𝑚

𝑢

)
=
2𝑚

2
, regardless of whether𝑚 is even or odd,

can be checked using induction in 𝑚).
To estimate the cardinality of J𝑛 when both 𝑛 > 3 and (𝑛 − 1)/2 are odd, we first

observe that
(𝑛−1)/2∑︁
𝑢=0

(
𝑛

𝑢

)
= 2𝑛−1
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and also that, for 𝑢 < (𝑛 − 1)/2, we have that
(𝑛
𝑢

)
<

( 𝑛
𝑢+1

)
. Therefore,

2𝑛−1 =
(
𝑛

0

)
+
(
𝑛

1

)
+

(𝑛−1)/2∑︁
𝑢=2

(
𝑛

𝑢

)
≥ 𝑛 + 1 + 𝑛 − 3

4
+ 2

(𝑛−3)/4∑︁
𝑠=1

(
𝑛

2𝑠

)
,

which shows that ��J 1
𝑛

�� = (𝑛−3)/4∑︁
𝑠=1

(
𝑛

2𝑠

)
≤ 2𝑛−2 − 5𝑛 + 1

8
.

This gives that

|J𝑛 | =
(𝑛−3)/4∑︁
𝑠=1

[(
𝑛

2𝑠

)
+
(

𝑛

𝑛 − 2𝑠

)]
= 2

(𝑛−3)/4∑︁
𝑠=1

(
𝑛

2𝑠

)
≤ 2𝑛−1 − 5𝑛 + 1

4
.

Finally, when 𝑛 > 3 is odd and (𝑛 − 1)/2 is even, we similarly observe that

2𝑛−1 =
(
𝑛

0

)
+

(𝑛−1)/2∑︁
𝑢=1

(
𝑛

𝑢

)
≥ 1 + 𝑛 − 1

4
+ 2

(𝑛−1)/4∑︁
𝑠=1

(
𝑛

2𝑠 − 1

)
which shows that ��J 1

𝑛

�� = (𝑛−1)/4∑︁
𝑠=1

(
𝑛

2𝑠 − 1

)
≤ 2𝑛−2 − 𝑛 + 3

8
.

Thus, in this case

|J𝑛 | ≤ 2𝑛−1 − 𝑛 + 3
4

.

As claimed, in all cases we have that |J𝑛 | ≤ 2𝑛−1 − 2.

(III) The last key property of the sets J𝑛 which we use in the sequel is the following:
consider any direction 𝑑 ′ ∈ {0, 1,−1}𝑛 such that exactly two coordinates of 𝑑 ′ are equal
to 0; then we can find a direction 𝑑 ∈ J𝑛 such that 𝑑𝑖 = 𝑑 ′𝑖 whenever 𝑑 ′𝑖 ≠ 0.

Indeed, let 𝑖1, 𝑖2 ∈ [𝑛] be the two indices for which 𝑑 ′
𝑖1

= 𝑑 ′
𝑖2

= 0 (suppose that
𝑖1 < 𝑖2). In all the cases that we have to examine, we will automatically assume that we
work with directions 𝑑 ∈ I𝑛 (1) which agree with 𝑑 ′ in each non-zero entry of 𝑑 ′, so
we will only have to explain how we define 𝑑𝑖1 and 𝑑𝑖2 so that 𝑑 ∈ J𝑛.

Assume first that 𝑛 is even. The subset of indices 𝑖 for which 𝑑 ′
𝑖
= +1 is a subset P𝑑′

of [𝑛]\{𝑖1, 𝑖2}. If |P𝑑′ | = 0, set 𝑑𝑖1 = 𝑑𝑖2 = +1 (and 𝑑𝑖 = −1 = 𝑑 ′
𝑖
for all other indices

𝑖), and then the corresponding subset P𝑑 for 𝑑 will have cardinality 2, so 𝑑 ∈ J𝑛. If
instead |P𝑑′ | is a positive even integer, then we can set 𝑑𝑖1 = 𝑑𝑖2 = −1; we will have that
0 < |P𝑑 | ≤ 𝑛 − 2, thus 𝑑 ∈ J𝑛 again. Finally, if |P𝑑′ | is odd, then it must be an odd
integer between 1 and 𝑛 − 3, thus we can set 𝑑𝑖1 = +1, 𝑑𝑖2 = −1.

Assume now that 𝑛 is odd. We first deal with the case 𝑛 = 3. In this case, |P𝑑′ | = 0
or |P𝑑′ | = 1. If the former holds, set 𝑑 = (−1,−1,−1), while, if the latter holds, set
𝑑 = (+1, +1, +1). In both cases, 𝑑 will agree with 𝑑 ′ in the unique entry of 𝑑 ′ that is
non-zero.

If 𝑛 > 3 and (𝑛 − 1)/2 is odd, observe again that P𝑑′ is a subset of [𝑛]\{𝑖1, 𝑖2}. If
|P𝑑′ | = 0, set 𝑑𝑖1 = 𝑑𝑖2 = +1 (and 𝑑𝑖 = 𝑑 ′

𝑖
for all other indices 𝑖), and it will hold that

2025/07/29 21:18

https://doi.org/10.4153/S0008414X25101260 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101260


20 W. R. Sun and B.-H. Vritsiou

|P𝑑 | = 2, thus 𝑑 ∈ J𝑛. If instead |P𝑑′ | is a positive even integer less than (𝑛−1)/2, then
we set 𝑑𝑖1 = 𝑑𝑖2 = −1. On the other hand, if |P𝑑′ | is even and greater than (𝑛 − 1)/2,
it must also be less than 𝑛 − 2 (since 𝑛 − 2 is odd in this case), so we can set 𝑑𝑖1 = +1,
𝑑𝑖2 = −1; then |P𝑑 | will be an odd integer between 𝑛+3

2 = 𝑛 − ( 𝑛−12 − 1) and 𝑛 − 2,
thus 𝑑 ∈ J𝑛. Next, if |P𝑑′ | is odd and less than (𝑛 − 1)/2, then set 𝑑𝑖1 = +1, 𝑑𝑖2 = −1,
in which case |P𝑑 | will be an even integer between 2 and 𝑛−3

2 = 𝑛−1
2 − 1. If |P𝑑′ | is odd

and 𝑛−1
2 ≤ |P𝑑′ | < 𝑛 − 2, set 𝑑𝑖1 = 𝑑𝑖2 = +1, in which case |P𝑑 | will be an odd integer

between 𝑛+3
2 and 𝑛 − 2. Finally, if |P𝑑′ | = 𝑛 − 2, set 𝑑𝑖1 = 𝑑𝑖2 = −1.

Similarly we deal with the last case, where 𝑛 > 3 is odd and (𝑛 − 1)/2 is even. If
|P𝑑′ | is an even integer less than (𝑛 − 1)/2, then set 𝑑𝑖1 = +1, 𝑑𝑖2 = −1. If |P𝑑′ | is
even and greater than or equal to (𝑛 − 1)/2, then it will also be less than 𝑛 − 2 (since
𝑛 − 2 is odd), and thus we can set 𝑑𝑖1 = 𝑑𝑖2 = +1 to ensure that |P𝑑 | will be an even
integer between 𝑛+3

2 = 𝑛 − ( 𝑛−12 − 1) and 𝑛 − 1. If |P𝑑′ | is odd and less than (𝑛 − 1)/2,
then set 𝑑𝑖1 = 𝑑𝑖2 = −1. If |P𝑑′ | is odd and greater than (𝑛 − 1)/2 (and obviously
less than or equal to 𝑛 − 2 since P𝑑′ ⊆ [𝑛]\{𝑖1, 𝑖2}), then set 𝑑𝑖1 = +1 and 𝑑𝑖2 = −1.

We thus see that, in all cases, it is possible to pick 𝑑 ∈ J𝑛 such that 𝑑𝑖 = 𝑑 ′𝑖 whenever
𝑑 ′
𝑖
≠ 0.

With these properties at hand, we are now ready to illuminate the remaining cases of
bodies inU𝑛 which contain a maximal unit subcube.

4.2 Remaining cases with maximal unit subcubes

Proposition 26 Let 𝑘 ≥ 2 and 𝑛 ≥ 𝑘 + 3, and consider B ∈ U𝑛 such that we can find 𝑘
indices 𝑗1 < 𝑗2 < · · · < 𝑗𝑘 in [𝑛] with the property that

1 − 𝑒 𝑗 ∈ B

for all 𝑗 ∈ [𝑛]\{ 𝑗1, 𝑗2, . . . , 𝑗𝑘 }, while, if 𝑗𝑠 ∈ { 𝑗1, 𝑗2, . . . , 𝑗𝑘 },

1 − 𝑒 𝑗𝑠 ∉ B.

There is 𝛿 = 𝛿B such that:

� if 𝑘 = 2, then B can be illuminated by a coordinate permutation of the set[
[I𝑛−2 (𝛿)\{± (𝛿, 𝛿, . . . , 𝛿,−𝛿, 1)︸                 ︷︷                 ︸

𝑛−2

}] × {𝛿,−𝛿}2
] ⋃ {

±(𝛿, 𝛿, . . . , 𝛿,−𝛿, 1, 0, 0)
}
,

(4)

� and if 𝑘 ≥ 3, then B can be illuminated by a coordinate permutation of the set[
[I𝑛−𝑘 (𝛿)\{± (𝛿, 𝛿, . . . , 𝛿,−𝛿, 1)︸                 ︷︷                 ︸

𝑛−𝑘

}] × {𝛿,−𝛿}𝑘
] ⋃ [

{± (𝛿, 𝛿, . . . , 𝛿,−𝛿, 1)︸                 ︷︷                 ︸
𝑛−𝑘

} × 𝛿 · J𝑘
]
.

(5)

Thus ℑ(B) ≤ (2𝑛−2 − 2) · 4 + 2 = 2𝑛 − 6 if 𝑘 = 2, while ℑ(𝐵) ≤ (2𝑛−𝑘 − 2) · 2𝑘 + 2 ·
(2𝑘−1 − 2) = 2𝑛 − 2𝑘 − 4 if 𝑘 ≥ 3.
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Proof Case 𝑘 = 2. Without loss of generality, suppose that { 𝑗1, 𝑗2} = {𝑛 − 1, 𝑛}. In
other words, 1 − 𝑒𝑛−1 and 1 − 𝑒𝑛 are not in B, while 1 − 𝑒 𝑗 ∈ 𝜕B for all 𝑗 ∈ [𝑛 − 2].

Set 𝜃𝑛−1 = ‖1−𝑒𝑛−1‖−1B and 𝜃𝑛 = ‖1−𝑒𝑛‖−1B ; by our assumptions 𝜃𝑛−1, 𝜃𝑛 ∈ (0, 1).
Set alsoΘ0 = max{𝜃𝑛−1, 𝜃𝑛}. We will show that B is illuminated by the set in (4) as long
as 𝛿 < 1 − Θ0.

Consider a boundary point 𝑦 ofB, andmoreover suppose that 𝑦 is an extreme bound-
ary point. Because 𝑛 ≥ 𝑘 + 3 = 5, because 𝑦 is an extreme boundary point, and given
that, by our assumptions, 1−𝑒𝑖 ∈ 𝜕B for all 𝑖 ∈ [𝑛−2] , we can find two distinct indices
𝑖𝑦 , 𝑗𝑦 ∈ [𝑛 − 2] such that 𝑦𝑖𝑦 · 𝑦 𝑗𝑦 ≠ 0. Moreover, since 𝜃𝑛 (1 − 𝑒𝑛) ∈ 𝜕B, and by the
1-unconditionality of B, we can find an index 𝑖𝑛 ∈ [𝑛 − 1] such that |𝑦𝑖𝑛 | ≤ 𝜃𝑛 ≤ Θ0.
Similarly, because 𝜃𝑛−1 (1− 𝑒𝑛−1) ∈ 𝜕B, we can find an index 𝑖𝑛−1 ∈ [𝑛] \ {𝑛− 1} such
that |𝑦𝑖𝑛−1 | ≤ 𝜃𝑛−1 ≤ Θ0 (note that it is possible that 𝑖𝑛−1 = 𝑖𝑛).

Assume first that either 𝑖𝑛 or 𝑖𝑛−1 can be picked from [𝑛−2] , and denote the smallest
such index by 𝑖0. Note that at least one of the two indices 𝑖𝑦 , 𝑗𝑦 is different from 𝑖0,
and thus the vector Proj[𝑒𝑖0 ,𝑒𝑛−1 ,𝑒𝑛 ]⊥ (𝑦) is non-zero. At the same time, it has at most
𝑛 − 3 non-zero coordinates among its first 𝑛 − 2. Therefore, looking initially at these
coordinates, we can find a direction

𝑑 ′ = 𝑑 ′𝑦,𝑖0 ∈ I𝑛−2−2 (𝛿) = I𝑛−2 (𝛿)\{± (𝛿, 𝛿, . . . , 𝛿,−𝛿, 1)︸                 ︷︷                 ︸
𝑛−2

}

which deep illuminates the subvector of the first 𝑛 − 2 coordinates of Proj𝑒⊥
𝑖0
(𝑦) (recall

Fact B), and thenwe can rely on this to pick a direction 𝑑 = 𝑑𝑦,𝑖0 ∈ I𝑛−2−2 (𝛿)×{−𝛿, +𝛿}2
which deep illuminates Proj𝑒⊥

𝑖0
(𝑦).

Given the way we selected 𝑑 = 𝑑𝑦,𝑖0 , if 𝑡0 is the index at which ‖𝑑‖∞ is attained,
in other words, if 𝑡0 = 𝑚.𝑐.(𝑑), then 𝑡0 ∈ [𝑛 − 2] \ {𝑖0}. Moreover, 𝑦𝑡0 ≠ 0. We can
now check that 𝑦 + |𝑦𝑡0 |𝑑 ∈ intB (by comparing coordinate-wise the displaced vector
𝑦 + |𝑦𝑡0 |𝑑 with the boundary point 1 − 𝑒𝑡0 ).

Next assume that |𝑦𝑖 | > Θ0 for all 𝑖 ∈ [𝑛 − 2]. Then necessarily 𝑖𝑛 = 𝑛 − 1 and
𝑖𝑛−1 = 𝑛. In other words, max{|𝑦𝑛−1 |, |𝑦𝑛 |} ≤ Θ0 < 1. We can then pick a direction 𝑑
from the set in (4) such that 𝑑𝑖 · 𝑦𝑖 < 0 for all 𝑖 ∈ [𝑛 − 2] , and, as before, we can check
that 𝑦 + |𝑦𝑡0 |𝑑 ∈ intB (where 𝑡0 = 𝑚.𝑐.(𝑑)).

Cases where 𝑘 ≥ 3. Without loss of generality, we suppose that { 𝑗1, 𝑗2, . . . , 𝑗𝑘 } =

{𝑛 − 𝑘 + 1, 𝑛 − 𝑘 + 2, . . . , 𝑛}, and for each 𝑗 ∈ {𝑛 − 𝑘 + 1, 𝑛 − 𝑘 + 2, . . . , 𝑛} we set
𝜃 𝑗 =



1 − 𝑒 𝑗


−1
B . We also set Θ0 = max{𝜃 𝑗 : 𝑛 − 𝑘 + 1 ≤ 𝑗 ≤ 𝑛}; by our assumptions

Θ0 ∈ (0, 1). We will show that B is illuminated by the set in (5) as long as 𝛿 < 1 − Θ0.
Again consider an extreme boundary point 𝑦 of B (and recall that 𝑛 ≥ 𝑘 + 3 ≥ 5). As

before, we can find two distinct indices 𝑖𝑦 , 𝑗𝑦 ∈ [𝑛 − 𝑘] such that 𝑦𝑖𝑦 · 𝑦 𝑗𝑦 ≠ 0. If we
can also find an index 𝑖0 ∈ [𝑛 − 𝑘] such that |𝑦𝑖0 | ≤ Θ0, then we can pick a direction

𝑑 ∈ [I𝑛−𝑘 (𝛿)\{± (𝛿, 𝛿, . . . , 𝛿,−𝛿, 1)︸                 ︷︷                 ︸
𝑛−𝑘

}] × {𝛿,−𝛿}𝑘

which will deep illuminate Proj𝑒⊥
𝑖0
(𝑦), and we can check that 𝑦 + |𝑦𝑡0 |𝑑 ∈ intB (where

𝑡0 = 𝑚.𝑐.(𝑑)).
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Assume now that |𝑦𝑖 | > Θ0 for all 𝑖 ∈ [𝑛 − 𝑘]. Since 𝜃𝑛 (1 − 𝑒𝑛) ∈ 𝜕B, there is an
index 𝑖𝑛 ∈ [𝑛−1] such that |𝑦𝑖𝑛 | ≤ 𝜃𝑛 ≤ Θ0. Given our prior assumption, we also have
that 𝑖𝑛 ∈ {𝑛− 𝑘 +1, . . . , 𝑛−1}. Next we also use the assumption that 𝜃𝑖𝑛 (1−𝑒𝑖𝑛 ) ∈ 𝜕B,
which implies that there is an index

𝑠𝑛 ∈ {𝑛 − 𝑘 + 1, 𝑛 − 𝑘 + 2, . . . , 𝑛} \ {𝑖𝑛}

such that |𝑦𝑠𝑛 | ≤ 𝜃𝑖𝑛 ≤ Θ0.
We can find a (unique) direction 𝑑 ′ ∈ I𝑛−𝑘 (𝛿) such that 𝑑 ′

𝑖
· 𝑦𝑖 < 0 for all 𝑖 ∈ [𝑛−𝑘].

• If

𝑑 ′ ∉ {±(𝛿, 𝛿, . . . , 𝛿,−𝛿, 1)},
then we can extend 𝑑 ′ to a direction

𝑑 ∈ [I𝑛−𝑘 (𝛿)\{± (𝛿, 𝛿, . . . , 𝛿,−𝛿, 1)︸                 ︷︷                 ︸
𝑛−𝑘

}] × {𝛿,−𝛿}𝑘

which deep illuminates 𝑦.
• On the other hand, if 𝑑 ′ ∈ {±(𝛿, 𝛿, . . . , 𝛿,−𝛿, 1)}, then, given the third main
property of the set J𝑘 (see Remark 25-(III)), we can find a direction

𝑑 ∈ {±(𝛿, 𝛿, . . . , 𝛿,−𝛿, 1)} × 𝛿 · J𝑘

which deep illuminates the vector Proj[𝑒𝑖𝑛 ,𝑒𝑠𝑛 ]⊥ (𝑦).

In both subcases, we can check that, for the direction 𝑑 that we ended up picking, 𝑦 +
|𝑦𝑡0 |𝑑 ∈ intB (where 𝑡0 = 𝑚.𝑐.(𝑑) ∈ [𝑛 − 𝑘]). The proof is complete. �

It is clear from the above proof that the assumption that 𝑛−𝑘 ≥ 3 (that is, the number
ofmaximal unit subcubes contained inB is at least 3) was crucially used (so that, given an
extreme boundary point 𝑦, we could find two distinct indices 𝑖𝑦 , 𝑗𝑦 ∈ [𝑛− 𝑘] such that
𝑦𝑖𝑦 · 𝑦 𝑗𝑦 ≠ 0). This is not an artefact of the proof though. As we will see, if the number of
maximal unit subcubes contained in B is exactly 2, then B could also be an affine image
of the cube (e.g. B = 𝐶𝑃2

1 × [−1, 1]𝑛−2). Thus we need to argue more carefully about
how to illuminate such B which are not parallelepipeds.

Albeit not for the same reason, we also have to arguemore carefully when B contains
only one maximal unit subcube; this is the case that we deal with now.

Proposition 27 Let 𝑛 ≥ 4, and let B ∈ U𝑛 with the property that there exists exactly one
index 𝑖0 ∈ [𝑛] such that 1 − 𝑒𝑖0 ∈ B. Then there are 𝛿, 𝜂𝛿 and 𝛿̃ > 0 such that B can be
illuminated by a coordinate permutation of the set

I
𝛿,𝜂, 𝛿

= I𝛿,𝜂 ∪
[ (
𝛿̃ · J𝑛−1

)
× {1,−1}

]
where J𝑛−1 is defined as in the previous subsection (note that 𝑛 − 1 ≥ 3 here), and where

I𝛿,𝜂 :=
{(
±(1, 𝜂𝛿),±𝛿,±𝛿, . . . ,±𝛿, 0

)
,
(
±(−𝜂𝛿 , 1),±𝛿,±𝛿, . . . ,±𝛿, 0

)}
.

Note. Recall that |J𝑛−1 | ≤ 2𝑛−2 − 2 and thus
���I𝛿,𝜂, 𝛿 ��� ≤ 2𝑛−1 + 2(2𝑛−2 − 2) = 2𝑛 − 4.
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Recall also that, since J𝑛−1 is symmetric, the set
(
𝛿̃ · J𝑛−1

)
× {1,−1} is formed from pairs

of opposite directions, and so is I
𝛿,𝜂, 𝛿

.

Proof Without loss of generality, we can assume that 𝑖0 = 𝑛, and thus 1 − 𝑒𝑛 ∈ B,
while 1 − 𝑒 𝑗 ∉ B for 𝑗 ∈ [𝑛 − 1]. For each such 𝑗 , we set 𝛼 𝑗 to be the supremum of
non-negative numbers 𝑥𝑛 such that

𝑥𝑛𝑒𝑛 +
∑︁

𝑖∈[𝑛−1]\{ 𝑗 }
𝑒𝑖 ∈ B.

By compactness the point 𝑤 𝑗 := 𝛼 𝑗𝑒𝑛 + ∑
𝑖∈[𝑛−1]\{ 𝑗 } 𝑒𝑖 ∈ B (in fact, it is found in

𝜕B), and 𝛼 𝑗 ∈ [0, 1) by our assumptions. Without loss of generality, we assume that
𝛼1 ≥ 𝛼2 ≥ 𝛼 𝑗 for each 𝑗 ∈ [𝑛 − 1]\{1, 2}.

Given any 𝛿 ∈ (0, 1), the directions (±1, 0,±𝛿,±𝛿, . . . ,±𝛿, 0) will illuminate the
point 𝑤2 = 𝛼2𝑒𝑛 +

∑
𝑖∈[𝑛−1]\{2} 𝑒𝑖 and all its coordinate reflections (we can use Corol-

lary 11 here). Furthermore, by Lemma 12, we can find 𝜂0, 𝛿 > 0 sufficiently small so that
the directions (

±(1, 𝜂),±𝛿,±𝛿, . . . ,±𝛿, 0
)

will illuminate the same points if 0 < 𝜂 ≤ 𝜂0, 𝛿 (note that, in the latter subset of
(perturbed) directions, we have sign(𝑑1) = sign(𝑑2) for each direction 𝑑).

Similarly, the directions (0,±1,±𝛿,±𝛿, . . . ,±𝛿, 0) will illuminate 𝑤1 = 𝛼1𝑒𝑛 +∑
𝑖∈[𝑛−1]\{1} 𝑒𝑖 and all its coordinate reflections, and if we pick 𝜂0, 𝛿 even smaller if

needed, so will the directions(
±(−𝜂0, 𝛿 , 1),±𝛿,±𝛿, . . . ,±𝛿, 0

)
(note that, in the latter subset of directions, sign(𝑑 ′1) = − sign(𝑑 ′2) for each direction 𝑑 ′;
this shows that the set I𝛿, 𝜂0, 𝛿 we just formed contains any combination of signs for the
first 𝑛 − 1 coordinates).

Consider now 𝑗 ∈ [𝑛 − 1]\{1, 2}, and suppose 𝑥 is one of the coordinate reflections
of the point

𝑤 𝑗 = 𝛼 𝑗𝑒𝑛 +
∑︁

𝑖∈[𝑛−1]\{ 𝑗 }
𝑒𝑖 .

Based on whether sign(𝑥1) = sign(𝑥2) or not, choose a direction 𝑑𝑥 from I𝛿, 𝜂0, 𝛿 such
that 𝑑𝑥,𝑖 · 𝑥𝑖 ≤ 0 for all 𝑖 (to avoid any ambiguity later, we can agree to set 𝑑𝑥, 𝑗 = +𝛿). Then
the coordinates of 𝑥 + 𝑑𝑥 satisfy the following:

• one of (𝑥 + 𝑑𝑥)1, (𝑥 + 𝑑𝑥)2 is equal to 0,
• while the other one is less than 1 in absolute value (in fact, it is equal to 1− 𝜂0, 𝛿 in
absolute value).

• In addition,
��(𝑥 + 𝑑𝑥) 𝑗 �� = 𝛿,

• and for all 𝑖 ∈ [𝑛 − 1]\{1, 2, 𝑗}, | (𝑥 + 𝑑𝑥)𝑖 | = 1 − 𝛿.
• Finally | (𝑥 + 𝑑𝑥)𝑛 | = |𝑥𝑛 | = 𝛼 𝑗 ≤ 𝛼2 ≤ 𝛼1 < 1.

Hence we can use Lemma 10 (combined with Lemma 7), and compare with one of the
points𝛼1𝑒𝑛+

∑
𝑖∈[𝑛−1]\{1} 𝑒𝑖 and𝛼2𝑒𝑛+

∑
𝑖∈[𝑛−1]\{2} 𝑒𝑖 to conclude that 𝑥+𝑑𝑥 ∈ intB.
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24 W. R. Sun and B.-H. Vritsiou

For the rest of the proof we fix 𝛿0 ∈ (0, 1) and 𝜂0 ≡ 𝜂0, 𝛿0 such that the set I𝛿0 ,𝜂0
illuminates all the points𝑤 𝑗 and their coordinate reflections.Moreover, for each of these
points 𝑥 we fix a direction 𝑑𝑥 fromI𝛿0 ,𝜂0 which illuminates 𝑥 (we pick it as before, when
it is not unique), and then, recalling Lemma 12(b), we also find 𝜏𝑥 > 0 with the property
that, if 𝑧 ∈ 𝜕B and ‖𝑥 − 𝑧‖∞ ≤ 𝜏𝑥 , then 𝑧 is also illuminated by 𝑑𝑥 . Given that the points
𝛼 𝑗𝑒𝑛 +

∑
𝑖∈[𝑛−1]\{ 𝑗 } 𝑒𝑖 and their coordinate reflections are finitely many, we can set

𝜏0 = min
(
1 − 𝛼1

2
, min

{
𝜏𝑥 : 𝑥 is a coordinate reflection of one of the points 𝑤 𝑗

})
.

Next, for each 𝑗 ∈ [𝑛 − 1] , set 𝛽 𝑗 = 𝛽 𝑗 (𝛼 𝑗 , 𝜏0) to be the supremum of positive
numbers 𝑢 such that

(𝛼 𝑗 + 𝜏0)𝑒𝑛 + 𝑢
∑︁

𝑖∈[𝑛−1]\{ 𝑗 }
𝑒𝑖 ∈ B

(such positive numbers exist since we can consider convex combinations of the point 𝑒𝑛
and the point

∑𝑛−1
𝑖=1 𝑒𝑖 , and focus on those convex combinations which are closer to 𝑒𝑛).

By compactness we have that the point (𝛼 𝑗 + 𝜏0)𝑒𝑛 + 𝛽 𝑗 ·
∑
𝑖∈[𝑛−1]\{ 𝑗 } 𝑒𝑖 ∈ B (in fact, it

is found in 𝜕B); moreover 𝛽 𝑗 < 1 since (𝛼 𝑗 + 𝜏0)𝑒𝑛 +
∑
𝑖∈[𝑛−1]\{ 𝑗 } 𝑒𝑖 ∉ B (by how we

chose 𝛼 𝑗 previously).
Finally, as before, for each 𝑗 ∈ [𝑛−1] set 𝜃 𝑗 :=



1 − 𝑒 𝑗


−1
B ; by ourmain assumption,

we have thatΘ0 := max{𝜃 𝑗 : 𝑗 ∈ [𝑛 − 1]} ∈ (0, 1). We can finally choose

𝛿̃0 < min
{
𝜏0, min{1 − 𝛽 𝑗 : 𝑗 ∈ [𝑛 − 1]}, 1 − Θ0

}
.

We are now ready to illuminate all boundary points of B using the set I
𝛿0 , 𝜂0 , 𝛿0

. Let
𝑦 ∈ 𝜕B.

• If 𝑦 = 1 − 𝑒𝑛 or one of its coordinate reflections, then 𝑦 is illuminated by some
direction in I𝛿0 , 𝜂0 (since we can find any combination of signs for the first 𝑛 − 1
coordinates).

• If 𝑛 ∈ Z𝑦 , then 𝑦 is contained in the convex hull of 1 − 𝑒𝑛 and its coordinate
reflections, and thus it is also illuminated by some direction in I𝛿0 , 𝜂0 .

• Assume now that 𝑛 ∉ Z𝑦 .
• Suppose also that 𝑦 has the property that:

for two distinct indices 𝑠1, 𝑠2 ∈ [𝑛 − 1] , max{|𝑦𝑠1 |, |𝑦𝑠2 |} < 1 − 𝛿̃0. (∗)

By the third main property of the set J𝑛−1, we can find a direction 𝑑 ∈(
𝛿̃0 · J𝑛−1

)
× {1,−1} which deep illuminates the vector Proj[𝑒𝑠1 ,𝑒𝑠2 ]⊥ (𝑦). We

can then check that the displaced vector 𝑦 + |𝑦𝑛 |𝑑 is in intB (by comparing
coordinate-wise with the vector 1 − 𝑒𝑛).
Note that property (∗) is satisfied in several instances, including the follow-

ing:
– when

��Z𝑦

�� ≥ 2, given also our previous assumption that 𝑛 ∉ Z𝑦 .
– When |𝑦𝑛 | > Θ0. Indeed, in this case, since 𝜃𝑛−1 (1 − 𝑒𝑛−1) ∈ 𝜕B, we

must be able to find an index 𝑠1 ∈ [𝑛 − 2] such that |𝑦𝑠1 | ≤ 𝜃𝑛−1 ≤
Θ0 < 1 − 𝛿̃0.
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Similarly, because 𝜃𝑠1 (1 − 𝑒𝑠1 ) ∈ 𝜕B, we should be able to find an
index 𝑠2 ∈ [𝑛 − 1] \ {𝑠1} such that |𝑦𝑠2 | ≤ 𝜃𝑠1 ≤ Θ0.

– WhenZ𝑦 = {𝑡0} ⊂ [𝑛 − 1] , and |𝑦𝑛 | > 𝛼𝑡0 + 𝜏0. Indeed, by our choice
of 𝛽𝑡0 , we have that 𝑣𝑡0 := (𝛼𝑡0 + 𝜏0)𝑒𝑛 + 𝛽𝑡0

∑
𝑖∈[𝑛−1]\{𝑡0 } 𝑒𝑖 ∈ 𝜕B.

Given that the 𝑛-th coordinate of Proj𝑒⊥𝑡0 (𝑦) is strictly bigger in absolute
value than the 𝑛-th coordinate of 𝑣𝑡0 , while their 𝑡0-th coordinates are
both zero, we must have that some other coordinate of 𝑣𝑡0 exceeds the
respective one of Proj𝑒⊥𝑡0 (𝑦) in absolute value. Thus, we can find some

𝑡1 ∈ [𝑛 − 1] \ {𝑡0} such that |𝑦𝑡1 | ≤ 𝛽𝑡0 < 1 − 𝛿̃0.
• Suppose now that, for at least 𝑛−2 indices 𝑖 ∈ [𝑛−1] , |𝑦𝑖 | ≥ 1− 𝛿̃0 > 1− 𝜏0.

First of all, this implies that |𝑦𝑛 | ≤ Θ0 < 1. Therefore,
– ifZ𝑦 = ∅, then, since |𝑦𝑛 | ∈ (0, 1), we can use Corollary 11 to conclude

that a direction 𝑑 fromI𝛿0 ,𝜂0 illuminates 𝑦 (it suffices to pick the unique
direction from I𝛿0 ,𝜂0 which satisfies 𝑑𝑖 · 𝑦𝑖 < 0 for all 𝑖 ∈ [𝑛 − 1]).

– If instead Z𝑦 ≠ ∅, then necessarily, given our main assumptions here,
we will have thatZ𝑦 = {𝑡1} ⊂ [𝑛 − 1]. From the previous remarks, we
know that this implies that |𝑦𝑛 | ≤ 𝛼𝑡1 + 𝜏0.
If |𝑦𝑛 | ≤ 𝛼𝑡1 , then 𝑦 is in the convex hull of the point

𝑤𝑡1 = 𝛼𝑡1𝑒𝑛 +
∑︁

𝑖∈[𝑛−1]\{𝑡1 }
𝑒𝑖

and its coordinate reflections, and thus it is illuminated by some direc-
tion in I𝛿0 ,𝜂0 .
If instead |𝑦𝑛 | ∈ (𝛼𝑡1 , 𝛼𝑡1 + 𝜏0] , then we will have that ‖𝑥 − 𝑦‖∞ ≤

𝜏0 ≤ 𝜏𝑥 with 𝑥 some coordinate reflection of 𝑤𝑡1 . Thus, 𝑦 will again be
illuminated by some direction 𝑑 ∈ I𝛿0 ,𝜂0 (in fact, the selected direction
𝑑𝑥 which illuminates 𝑥).

In this way, we have illuminated all boundary points of B. �

We now turn to the case where a convex bodyB ∈ U𝑛 contains exactly twomaximal
unit subcubes. The proof of the following proposition will also encompass the full proof
of Proposition 18, that is, the relevant result in R3.

Proposition 28 Let 𝑛 ≥ 3, and suppose B ∈ U𝑛 is not an affine image of the cube but has
the property that there are exactly two distinct indices 𝑖1, 𝑖2 ∈ [𝑛] such that 1 − 𝑒𝑖𝑠 ∈ B for
𝑠 = 1, 2, while 1 − 𝑒 𝑗 ∉ B for any 𝑗 ∈ [𝑛]\{𝑖1, 𝑖2}. Then, up to coordinate permutations,
one of the following sets illuminates B.

1. The set I𝑛
𝑒𝑥2,1 (𝛿), for some 𝛿 = 𝛿B ∈ (0, 1), which consists of the following directions:

� the directions
{
𝛿 ·

(
𝑑, sign(𝑑𝑚.𝑐.(𝑑) )

)
: 𝑑 ∈ I𝑛−2 (1)

}
× {±1} for some 𝛿 > 0

which depends only on B (these are 2𝑛−2 · 2 = 2𝑛−1 directions);
� the directions

{(
𝛿 · 𝑑, − sign(𝑑𝑚.𝑐.(𝑑) ), 0

)
: 𝑑 ∈ I𝑛−2 (1)

}
for the same 𝛿 > 0

as above (these are 2𝑛−2 directions);
� if 𝑛 > 4, the directions

{
𝛿 ·

(
𝑑, − sign(𝑑𝑚.𝑐.(𝑑) )

)
: 𝑑 ∈ J𝑛−2

}
× {±1} for the

same 𝛿 > 0 as above (these are ≤ (2𝑛−3 − 2) · 2 = 2𝑛−2 − 4 directions).
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Important Clarification. Note that, in the cases of 𝑛 = 3 and 𝑛 = 4, we have not
defined a set J𝑛−2. In these cases, as we will see, we do not need a third subfamily of
directions, and we can quickly list all the elements of the sets I3

𝑒𝑥2,1 (𝛿) and I4
𝑒𝑥2,1 (𝛿):

I3
𝑒𝑥2,1 (𝛿) :=

{
±(𝛿, 𝛿, +1),±(𝛿, 𝛿,−1), ±(𝛿,−1, 0)

}
and

I4
𝑒𝑥2,1 (𝛿) :=

{
± (𝛿, 𝛿, 𝛿, 1),±(𝛿, 𝛿, 𝛿,−1),±(−𝛿, 𝛿, 𝛿, 1),±(−𝛿, 𝛿, 𝛿,−1),
± (𝛿, 𝛿,−1, 0),±(−𝛿, 𝛿,−1, 0)

}
.

2. The set I𝑛
𝑒𝑥2,2 (𝜖, 𝛿𝜖 ), for some 𝜖 > 0 and 𝛿𝜖 > 0 which depend only on B, which is

defined as below:

I𝑛𝑒𝑥2,2 (𝜖, 𝛿𝜖 ) := {±(𝜖, 𝜖 , . . . , 𝜖 , 1, 1)}⋃[
Î𝑛𝑛−1,𝑛 (𝛿𝜖 )\{±(𝛿𝜖 , 𝛿𝜖 , . . . , 𝛿𝜖 , 1, 𝛿𝜖 ), ±(𝛿𝜖 , 𝛿𝜖 , . . . , 𝛿𝜖 ,−𝛿𝜖 , 1)}

]
.

We then see that in both cases ℑ(B) ≤ 2𝑛 − 2.

Proof Without loss of generality, assume that 𝑖1 = 𝑛 − 1 and 𝑖2 = 𝑛. In other words,
B contains the points (1, 1, 1, . . . , 1, 0, 1) and (1, 1, 1, . . . , 1, 1, 0), but does not contain
other similar points, that is, points of the form 1 − 𝑒 𝑗 for 𝑗 ∈ [𝑛 − 2]. We distinguish
two cases.

Case 1. At least one of the points 1− 𝑒𝑛−1 and 1− 𝑒𝑛 is not an extreme point of B. In other
words, there is 𝑎 > 0 such that 𝑎𝑒𝑛−1+

∑
𝑖∈[𝑛]\{𝑛−1} 𝑒𝑖 ∈ B or 𝑎𝑒𝑛+

∑
𝑖∈[𝑛−1] 𝑒𝑖 ∈

B. Without loss of generality, assume that B contains at least points of the form
𝑎𝑒𝑛 +

∑
𝑖∈[𝑛−1] 𝑒𝑖 with 𝑎 positive.

Let 𝛼𝑛−1 be the supremum of all 𝑦𝑛−1 ≥ 0 such that

𝑦𝑛−1𝑒𝑛−1 +
∑︁

𝑖∈[𝑛]\{𝑛−1}
𝑒𝑖 ∈ B.

By compactnesswehave that𝛼𝑛−1𝑒𝑛−1+
∑
𝑖∈[𝑛]\{𝑛−1} 𝑒𝑖 ∈ B, and thus 0 ≤ 𝛼𝑛−1 <

1. Similarly, set 𝛼𝑛 to be the supremum of all 𝑦𝑛 ≥ 0 such that

𝑦𝑛𝑒𝑛 +
∑︁

𝑖∈[𝑛−1]
𝑒𝑖 ∈ B.

By compactness we have that 𝛼𝑛𝑒𝑛 +
∑
𝑖∈[𝑛−1] 𝑒𝑖 ∈ B, and by our assumptions it

follows that 1 > 𝛼𝑛 > 0.

As in the previous propositions, for every 𝑗 ∈ [𝑛 − 2] , set 𝜃 𝑗 =


1 − 𝑒 𝑗



−1
B ,

and Θ0 = max 𝑗∈[𝑛−2] 𝜃 𝑗 . Also, set 𝛾 = ‖1‖−1B . Clearly, for all 𝑗 ∈ [𝑛 − 2] , 0 <
𝛾 ≤ 𝜃 𝑗 ≤ Θ0 < 1. On the other hand, max(𝛼𝑛−1, 𝛼𝑛) ≤ 𝛾 (because otherwise
𝛾1 would not be a boundary point of B). We will show that, in the setting here,
I𝑛
𝑒𝑥2,1 (𝛿) illuminates B as long as 𝛿 < 1 − Θ0.
Consider a boundary point 𝑥 of B.
• Assume first that 𝑥 = 𝛼𝑛−1𝑒𝑛−1 + ∑

𝑖∈[𝑛]\{𝑛−1} 𝑒𝑖 or one of its coordi-
nate reflections. Then we find the unique direction 𝑑𝑥 in I𝑛−2 (1) which
has opposite signs to 𝑥 in each of the first 𝑛 − 2 coordinates. Observe that
𝑑 ′𝑥 =

(
𝛿 · 𝑑𝑥 , 𝛿 sign(𝑑𝑥,𝑚.𝑐.(𝑑𝑥 ) ),− sign(𝑥𝑛)

)
illuminates 𝑥 (we can compare
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the displaced vector 𝑥+𝑑 ′𝑥 with the point1−𝑒𝑛 to confirm this; this is because
𝛼𝑛−1 + 𝛿 ≤ 𝛾 + 𝛿 ≤ Θ0 + 𝛿 < 1).

• Similarly, the first two types of directions inI𝑛
𝑒𝑥2,1 (𝛿) illuminate all the coor-

dinate reflections of𝛼𝑛𝑒𝑛+
∑
𝑖∈[𝑛−1] 𝑒𝑖 (here is where we use the assumption that

1− 𝑒𝑛 is not an extreme point of B, and thus that 𝛼𝑛 > 0; indeed, this allows us to
have access to all of the 2𝑛−1 combinations of signs for the first 𝑛 − 1 coordinates,
that are all needed, without having to include 2𝑛−1 all new directions, which would
otherwise lead to an illuminating set of larger than desired size).
Inmore detail now, if 𝑥 is one of these coordinate reflections, again we pick

the unique direction 𝑑𝑥 in I𝑛−2 (1) which has opposite signs to 𝑥 in each of
the first 𝑛 − 2 coordinates. In the case that sign(𝑑𝑥,𝑚.𝑐.(𝑑𝑥 ) ) = sign(𝑥𝑛−1),
then the direction 𝑑 ′ =

(
𝛿 · 𝑑𝑦 ,− sign(𝑑𝑦,𝑚.𝑐.(𝑑𝑦 ) ), 0

)
(of the second type

that we included) illuminates 𝑥 (this is because |𝑥𝑛 | = 𝛼𝑛 ∈ (0, 1), and thus
we can use Corollary 11).
Otherwise, the direction 𝑑 ′′ =

(
𝛿 · 𝑑𝑥 , 𝛿 sign(𝑑𝑥,𝑚.𝑐.(𝑑𝑥 ) ),− sign(𝑥𝑛)

)
(of

the first type) will work instead.

• Next, assume that either |𝑥𝑛−1 | ≤ 𝛼𝑛−1 or |𝑥𝑛 | ≤ 𝛼𝑛 (or both). Then 𝑥 is in the
convex hull of the points 𝛼𝑛−1𝑒𝑛−1 +

∑
𝑖∈[𝑛]\{𝑛−1} 𝑒𝑖 and 𝛼𝑛𝑒𝑛 +

∑
𝑖∈[𝑛−1] 𝑒𝑖

and their coordinate reflections, and thus it is illuminated by some of the
directions we have already used.

• We now suppose that |𝑥𝑛−1 | > 𝛼𝑛−1 ≥ 0 and |𝑥𝑛 | > 𝛼𝑛 > 0.
• Assume first that min{|𝑥𝑛−1 |, |𝑥𝑛 |} ≤ Θ0.

– In this case, if |𝑥𝑛 | > Θ0, then necessarily |𝑥𝑛−1 | ≤ Θ0. Thus,
just as for the point 𝛼𝑛−1𝑒𝑛−1 +

∑
𝑖∈[𝑛]\{𝑛−1} 𝑒𝑖 and its coordinate

reflections, we can use a direction of the first type in I𝑛
𝑒𝑥2,1 (𝛿) to

illuminate the boundary point 𝑥 that we are considering now (it
suffices to pick 𝑑𝑥 such that 𝑑𝑥,𝑖 · 𝑥𝑖 ≤ 0 for all 𝑖 ∈ [𝑛 − 2] ∪ {𝑛},
and then compare the displaced vector 𝑥 + |𝑥𝑛 |𝑑𝑥 with the point
1 − 𝑒𝑛).

– If |𝑥𝑛 | ≤ Θ0 < 1, then, sincewe also have |𝑥𝑛−1 | > 0, we can pick a
direction 𝑑𝑥 from the first two types inI𝑛

𝑒𝑥2,1 (𝛿) so that 𝑑𝑥,𝑖 ·𝑥𝑖 ≤
0 for all 𝑖 ∈ [𝑛]. Depending on whether 𝑚.𝑐.(𝑑𝑥) = 𝑛 − 1 or
not, we consider the displaced vector 𝑥 + |𝑥𝑛−1 |𝑑𝑥 or the displaced
vector 𝑥 + |𝑥𝑛 |𝑑𝑥 , and we compare with the points 1 − 𝑒𝑛−1 or
1 − 𝑒𝑛 respectively.

• We finally consider the cases where min{|𝑥𝑛−1 |, |𝑥𝑛 |} > Θ0 ≥ 𝛾. Then
we can find 𝑠1 ∈ [𝑛 − 2] such that |𝑥𝑠1 | ≤ 𝛾 < 1 − 𝛿.

– In the case where 𝑛 = 3, we can quickly confirm that 𝑥 is
illuminated by one of the directions ±(𝛿, 𝛿,±1).

– If instead 𝑛 ≥ 4, then we can find one more index 𝑠2 ∈ [𝑛 − 2] \
{𝑠1} such that |𝑥𝑠2 | ≤ Θ0. Indeed, since 𝜃𝑠1 (1 − 𝑒𝑠1 ) ∈ 𝜕B, we
should be able to find an index 𝑠2 ∈ [𝑛] \ {𝑠1} such that |𝑥𝑠2 | ≤
𝜃𝑠1 ≤ Θ0. Since both |𝑥𝑛−1 | and |𝑥𝑛 | are larger than Θ0, we must
have 𝑠2 ∈ [𝑛 − 2] \ {𝑠1}.
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28 W. R. Sun and B.-H. Vritsiou

We can now conclude the following: if 𝑛 = 4, then {𝑠1, 𝑠2} =

{1, 2}, and we have that 𝑥 is illuminated by one of the directions
±(𝛿, 𝛿, 𝛿, 1), ±(𝛿, 𝛿, 𝛿,−1) (indeed, set 𝑑𝑥 to be the unique direc-
tion among these that satisfies 𝑑𝑥,𝑖 · 𝑥𝑖 < 0 for 𝑖 ∈ {𝑛 − 1, 𝑛}, and
then compare 𝑥+ |𝑥𝑛 |𝑑𝑥 with the point 1−𝑒𝑛 to conclude that the
former is in intB).

If instead 𝑛 > 4, then we have access to the set J𝑛−2 that we
defined earlier, and hence we can find a direction 𝑑 ′ ∈ J𝑛−2 such
that 𝑑 ′

𝑗
· 𝑥 𝑗 ≤ 0 for all 𝑗 ∈ [𝑛−2] \ {𝑠1, 𝑠2}. Clearly 𝑑 ′ ∈ I𝑛−2 (1)

as well, and thus both vectors(
𝛿 · 𝑑 ′, 𝛿 sign(𝑑 ′

𝑚.𝑐.(𝑑′) ), − sign(𝑥𝑛)
)

and
(
𝛿 · 𝑑 ′, −𝛿 sign(𝑑 ′

𝑚.𝑐.(𝑑′) ), − sign(𝑥𝑛)
)

are in I𝑛
𝑒𝑥2,1 (𝛿). The one which has (𝑛 − 1)-th coordinate of

opposite sign to 𝑥𝑛−1 will illuminate 𝑥 (and we can compare the
displaced vector to the point 1 − 𝑒𝑛 to confirm this).

We have thus illuminated all boundary points of B (regardless of what the dimen-
sion 𝑛 ≥ 3 is), when Case 1 holds.

Case 2. Both of the points 1− 𝑒𝑛−1 and 1− 𝑒𝑛 are extreme points of B. Recall that we have
assumed thatB is not an affine image of the cube, however the convex hull of these
two points and of their coordinate reflections is an affine image of the cube, the
convex body [−1, 1]𝑛−2×𝐶𝑃2

1 . Thus there must exist a point 𝑥 ∈ B outside of this
convex hull, which in particular implies that |𝑥𝑛−1 | + |𝑥𝑛 | > 1. Just as in Lemma
19, we can show that this entails that

1
2 (𝑒𝑛−1 + 𝑒𝑛) ∈ intB, or equivalently ‖𝑒𝑛−1 + 𝑒𝑛‖−1B >

1
2
,

which further implies that

for every 𝜖 ∈ (0, 1), the point (1 − 𝜖, 1 − 𝜖, 1 − 𝜖, . . . , 1 − 𝜖, 1
2 ,

1
2 ) ∈ intB.

Fix some 𝜖0 ∈ (0, 1), and note that, because the point

(1 − 𝜖0
2 , 1 −

𝜖0
2 , 1 −

𝜖0
2 , . . . , 1 −

𝜖0
2 ,

1
2 ,

1
2 ) ∈ intB,

we can find 𝜁0 ∈ (0, 12 ) such that

(1 − 𝜖0
2 , 1 −

𝜖0
2 , 1 −

𝜖0
2 , . . . , 1 −

𝜖0
2 ,

1
2 + 𝜁0,

1
2 + 𝜁0)

is also an interior point of B.

Next, we set 𝛽𝑛−1 to be the supremum of positive constants 𝑐 such that

𝜁0𝑒𝑛−1 + 𝑐
∑︁

𝑖∈[𝑛]\{𝑛−1}
𝑒𝑖 ∈ B.

By compactness 𝜁0𝑒𝑛−1+𝛽𝑛−1
∑
𝑖∈[𝑛]\{𝑛−1} 𝑒𝑖 ∈ B, and by themain assumption of

Case 2, 𝛽𝑛−1 ∈ (0, 1). Similarly,we set 𝛽𝑛 to be the supremumof positive constants
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Illuminating certain 1-unconditional convex bodies 29

𝑐′ such that
𝜁0𝑒𝑛 + 𝑐′

∑︁
𝑖∈[𝑛−1]

𝑒𝑖 ∈ B.

Again, we have 𝜁0𝑒𝑛 + 𝛽𝑛
∑
𝑖∈[𝑛−1] 𝑒𝑖 ∈ B and 𝛽𝑛 ∈ (0, 1).

Now we pick
𝛿0 < min(1 − 𝜁0, 1 − 𝛽𝑛−1, 1 − 𝛽𝑛)

and consider the corresponding set I𝑛
𝑒𝑥2,2 (𝜖0, 𝛿0). We will show that this illumi-

nates B.
Consider a boundary point 𝑥 of B.
• If 𝑥 is the point 1 − 𝑒𝑛−1 or one of its coordinate reflections, then we find
a direction 𝑑𝑥 ∈ I𝑛

𝑒𝑥2,2 (𝜖0, 𝛿0) which has opposite signs to 𝑥 in all the first
𝑛−2 entries, as well as the 𝑛-th entry, and has maximum entry the 𝑛-th entry.
Unless sign(𝑥1) = sign(𝑥2) = sign(𝑥3) = · · · = sign(𝑥𝑛−2) = sign(𝑥𝑛), we
take 𝑑𝑥 from the set

Î𝑛𝑛−1,𝑛 (𝛿0)\{±(𝛿0, 𝛿0, . . . , 𝛿0, 1, 𝛿0),±(𝛿0, 𝛿0, . . . , 𝛿0,−𝛿0, 1)}

and it is clear that 𝑥 + 𝑑𝑥 ∈ intB if we compare to the point 1 − 𝑒𝑛. In the
remaining case, 𝑑𝑥 will be one of the directions ±(𝜖0, 𝜖0, . . . , 𝜖0, 1, 1), and
again we can see that

𝑥 + 1
2𝑑𝑥 ∈ intB

since 𝑥+ 1
2𝑑𝑥 will be a coordinate reflection of the point (1−

𝜖0
2 , 1−

𝜖0
2 , . . . , 1−

𝜖0
2 ,

1
2 ,

1
2 ).

• Analogously we illuminate the point 1 − 𝑒𝑛 and its coordinate reflections.
• Given the above, we have now also illuminated all boundary points 𝑥 of B
which fall in the convex hull of the points1−𝑒𝑛−1, 1−𝑒𝑛 and their coordinate
reflections; thus all boundary points 𝑥 which satisfy |𝑥𝑛−1 | + |𝑥𝑛 | ≤ 1.

• Suppose now that |𝑥𝑛−1 | + |𝑥𝑛 | > 1.
• Assume first that |𝑥𝑛−1 | ≤ 𝜁0. Again, we find a direction 𝑑𝑥 which has
opposite signs to 𝑥 in all the first 𝑛 − 2 entries, as well as the 𝑛-th entry,
and has maximum entry the 𝑛-th entry. Unless sign(𝑥1) = sign(𝑥2) =

sign(𝑥3) = · · · = sign(𝑥𝑛−2) = sign(𝑥𝑛), we take 𝑑𝑥 from the set

Î𝑛𝑛−1,𝑛 (𝛿0)\{±(𝛿0, 𝛿0, . . . , 𝛿0, 1, 𝛿0),±(𝛿0, 𝛿0, . . . , 𝛿0,−𝛿0, 1)}

and then compare 𝑥 + |𝑥𝑛 |𝑑𝑥 to the point 1 − 𝑒𝑛 (since in particular
| (𝑥 + |𝑥𝑛 |𝑑𝑥)𝑛−1 | ≤ |𝑥𝑛−1 | + |𝑥𝑛 |𝛿0 ≤ 𝜁0 + 𝛿0 < 1).
In the remaining case, we choose 𝑑𝑥 from ±(𝜖0, 𝜖0, . . . , 𝜖0, 1, 1). We

can see that
𝑥 + 1

2𝑑𝑥 ∈ intB
because we will have

–
��(𝑥 + 1

2𝑑𝑥)𝑖
�� ≤ max(1 − 𝜖0

2 ,
𝜖0
2 ) = 1 − 𝜖0

2 for all 𝑖 ∈ [𝑛 − 2] ,
–

��(𝑥 + 1
2𝑑𝑥)𝑛

�� ≤ max(1 − 1
2 ,

1
2 ) =

1
2 ,

– and finally
��(𝑥 + 1

2𝑑𝑥)𝑛−1
�� ≤ |𝑥𝑛−1 | + 1

2 ≤ 1
2 + 𝜁0,
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while the point

(1 − 𝜖0
2 , 1 −

𝜖0
2 , 1 −

𝜖0
2 , . . . , 1 −

𝜖0
2 ,

1
2 + 𝜁0,

1
2 + 𝜁0)

is an interior point of B, given our choice of 𝜁0.
• We argue analogously if |𝑥𝑛 | ≤ 𝜁0.

• Finally, let us assume that min( |𝑥𝑛−1 |, |𝑥𝑛 |) > 𝜁0.
– Suppose also that max( |𝑥𝑛−1 |, |𝑥𝑛 |) ≤ max(𝛽𝑛−1, 𝛽𝑛) < 1 − 𝛿0.

If 𝑥𝑛−1 · 𝑥𝑛 < 0, then we can pick a direction 𝑑𝑥 from the set

Î𝑛𝑛−1,𝑛 (𝛿0)\{±(𝛿0, 𝛿0, . . . , 𝛿0, 1, 𝛿0),±(𝛿0, 𝛿0, . . . , 𝛿0,−𝛿0, 1)}

to illuminate 𝑥. In fact, in most cases we can take 𝑑𝑥 from the sec-
ond half of this set, which contains directions with maximum (in
absolute value) coordinate the 𝑛-th one (and consider the vector
𝑥 + |𝑥𝑛 |𝑑𝑥 , comparing it to 1 − 𝑒𝑛). This will work in all cases
except when all entries of 𝑥 are non-zero and

sign(𝑥1) = sign(𝑥2) = sign(𝑥3) = · · ·
= sign(𝑥𝑛−2) = sign(𝑥𝑛) = − sign(𝑥𝑛−1).

In this last subcase, we instead choose 𝑑𝑥 from
±(𝛿0, 𝛿0, 𝛿0, . . . , 𝛿0,−1,−𝛿0) (and consider the vector
𝑥 + |𝑥𝑛−1 |𝑑𝑥 , comparing it to 1 − 𝑒𝑛−1, given that we have��(𝑥 + |𝑥𝑛−1 |𝑑𝑥)𝑛

�� = |𝑥𝑛 | + |𝑥𝑛−1 |𝛿0 ≤ |𝑥𝑛 | + 𝛿0 < 1 by our last
assumption above).
Similarly, if 𝑥𝑛−1 · 𝑥 > 0, we choose 𝑑𝑥 from the

first half of the set Î𝑛
𝑛−1,𝑛 (𝛿0), except in the case where

all entries of 𝑥 are non-zero and

sign(𝑥1) = sign(𝑥2) = sign(𝑥3) = · · ·
= sign(𝑥𝑛−2) = sign(𝑥𝑛−1) = sign(𝑥𝑛).

In this last subcasewe can instead choose 𝑑𝑥 to be one of the direc-
tions±(𝜖0, 𝜖0, . . . , 𝜖0, 1, 1) and consider the vector 𝑥+𝜀𝑥𝑑𝑥 where
𝜀𝑥 = min𝑖∈[𝑛] |𝑥𝑖 |.

– Now, suppose that max( |𝑥𝑛−1 |, |𝑥𝑛 |) > max(𝛽𝑛−1, 𝛽𝑛). Given
also our ‘parent’ assumption that min( |𝑥𝑛−1 |, |𝑥𝑛 |) > 𝜁0, by the
choice of the constants 𝛽𝑛−1 and 𝛽𝑛 we can find 𝑗0 ∈ [𝑛− 2] such
that |𝑥 𝑗0 | ≤ max(𝛽𝑛−1, 𝛽𝑛) < 1− 𝛿0. But then it is possible to find
a direction 𝑑𝑥 from

Î𝑛𝑛−1,𝑛 (𝛿0)\{±(𝛿0, 𝛿0, . . . , 𝛿0, 1, 𝛿0),±(𝛿0, 𝛿0, . . . , 𝛿0,−𝛿0, 1)}

such that 𝑑𝑥,𝑖 · 𝑥𝑖 ≤ 0 for all 𝑖 ∈ [𝑛]\{ 𝑗0}, and we can check that
this 𝑑𝑥 illuminates 𝑥.

We have completed the proof in both Case 1 and Case 2. �
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Remark 29 (I) Combining Propositions 20, 21 and 26, Proposition 27 (and its 3-
dimensional version, Proposition 17) and Proposition 28, we reach the following con-
clusion: for any dimension 𝑛 ≥ 3, if B ∈ U𝑛 is not an affine image of the cube, but
has the property that there is at least one index 𝑖0 ∈ [𝑛] such that 1 − 𝑒𝑖0 ∈ B, then
ℑ(B) ≤ 2𝑛−2. In otherwords, ifB contains at least onemaximal unit subcube (according
to our terminology) but is not a parallelepiped, then ℑ(B) ≤ 2𝑛 − 2.

(II) Moreover, Proposition 20 and the proof of Proposition 28 allow us to complete
the discussion of Section 3: we can conclude that, for all 1-unconditional bodiesB inR3,
ℑ(𝐵) ≤ 6, unless B is a parallelepiped.

(III) As a ‘bonus’, we have also confirmed all the above results while using illuminating
sets which consist of pairs of opposite directions.

4.3 Bodies with all unit subcubes of dimension 𝑛 − 2

We finish this section by proving a similar result to the above, namely Proposition 3
of the Introduction, since a similar argument can work here as well. To keep the proof
simpler, we assume that the convex bodies that we will consider are not already handled
by any of the previous propositions, or in other words by Theorem 2.

Proposition 30 Let 𝑛 ≥ 4 and let B ∈ U𝑛 with the property that B contains

𝑒1 + 𝑒2 + · · · + 𝑒𝑛−2

and all its coordinate permutations, but it does not contain any coordinate permutation of

𝑒1 + 𝑒2 + · · · + 𝑒𝑛−2 + 𝑒𝑛−1.

For 𝛿 ∈ (0, 1) and 𝜁 = 𝜁𝛿 ∈ (0, 𝛿), let Ĩ𝛿,𝜁 be the following set of directions:

� we will include most of the directions in Î𝑛
𝑛−2,𝑛−1,𝑛 (𝛿) except

(i′) the directions 𝑑+ = (𝛿, 𝛿, . . . , 𝛿,−𝛿, 1) and 𝑑− = −(𝛿, 𝛿, . . . , 𝛿,−𝛿, 1), and
(ii′) all the other directions 𝑑 ∈ Î𝑛

𝑛−2,𝑛−1,𝑛 (𝛿) whose sequence of coordinate signs differs
from that of either 𝑑+ or 𝑑− in exactly one place (e.g. ±(𝛿, 𝛿, . . . , 𝛿, 1, 𝛿, 𝛿) or
±(𝛿, 𝛿, . . . , 𝛿,−𝛿,−𝛿, 1)); note that, for each of these directions 𝑑, the place where
its sequence of signs differs from that of 𝑑+ or 𝑑− is not the place where 𝑑 has its
maximum in absolute value coordinate.

� For each of the directions 𝑑 in (ii′) we introduce a ‘replacement’ direction 𝑑 ′ as follows:
we first distinguish whether 𝑑 has an almost identical sequence of signs to that of 𝑑+ or
to that of 𝑑− (suppose for illustration purposes that it is 𝑑+ here). We then set 𝑑 ′ to be the
directionwhich has the same respective entries as 𝑑, except for the one entry 𝑑𝑖𝑑 of 𝑑 which
differs in sign from the respective entry of 𝑑+, in which case we set 𝑑 ′

𝑖𝑑
= sign(𝑑𝑖𝑑 )𝜁

(e.g. if 𝑑 = (𝛿, 𝛿, . . . , 𝛿,−𝛿,−𝛿, 1), then 𝑑 ′ = (𝛿, 𝛿, . . . , 𝛿,−𝜁,−𝛿, 1)).

Then there are 𝛿 = 𝛿B > 0 and 𝜁 = 𝜁B > 0 such that B can be illuminated by the
corresponding set Ĩ𝛿,𝜁 .
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32 W. R. Sun and B.-H. Vritsiou

Remark 31 For illustration purposes, let us write down what the sets Ĩ𝛿,𝜁 are in R4:
we get the set of directions{

± (𝛿, 1, 𝜁 , 𝛿), ±(𝛿,−1,−𝛿,−𝛿), ±(𝛿, 𝛿,−1,−𝜁), ±(𝛿,−𝛿, 1, 𝛿),
± (𝛿, 𝛿, 𝛿,−1), ±(𝛿,−𝜁,−𝛿, 1), ±(−𝜁, 𝛿,−𝛿, 1)

}
.

Proof We first verify the following
Claim. Let 𝑦 ∈ R𝑛 \ {®0} such that

��Z𝑦

�� = 2. Then we can find 𝑑 ∈ Ĩ𝛿,𝜁 which deep
illuminates 𝑦, and which in addition satisfies the following: if 𝑑𝑖 = 𝜁 for some 𝑖 ∈ [𝑛]
(unique in our setting), then 𝑦𝑖 = 0 (in other words, if 𝑑 is one of themodified directions
in Ĩ𝛿,𝜁 , and 𝑑𝑖 is the modified coordinate, then this corresponds to one of the two zero
coordinates of 𝑦).

Proof of Claim. Note that, due to the way we construct Ĩ𝛿,𝜁 from Î𝑛
𝑛−2,𝑛−1,𝑛 (𝛿) (and

ultimately from I𝑛 (𝛿)), all sequences of signs whose last 3 terms take one of the forms
±(1, 1, 1) or ±(−1, 1, 1) or ±(1, 1,−1) are still there (there are 2𝑛−2 sequences of signs
of each such form). Moreover, there is exactly one pair of opposite directions in each of
these subgroups which comes from the modified directions: in fact,

• in the first subgroup the coordinate which may be equal to 𝜁 is the (𝑛− 1)-th one,
• in the second subgroup the coordinate which may be equal to 𝜁 is the 𝑛-th one,
• and in the third subgroup the coordinate which may be equal to 𝜁 is the (𝑛− 2)-th
one.

At the same time, we observe that (because of the specific, combinatorial construction of
I𝑛 (𝛿) that we rely on in this paper, and then the construction of Î𝑛

𝑛−2,𝑛−1,𝑛 (𝛿) from that)

• the maximum (in absolute value) coordinate of all directions in the first subgroup
is the (𝑛 − 2)-th one,

• the maximum coordinate of all directions in the second subgroup is the (𝑛− 1)-th
one,

• and themaximumcoordinate of all directions in the third subgroup is the 𝑛-th one.

We can now analyse what 𝑑 should be, based on where the zero coordinates of 𝑦 are
found.

Case 1. The two zero coordinates of 𝑦 are among the last three ones. Then the remaining
coordinate from these, say coordinate 𝑖0 ∈ {𝑛 − 2, 𝑛 − 1, 𝑛}, is non-zero, and so
are all the coordinates with index < 𝑛 − 2. Thus we can focus on one of the first
three subgroups of directions in Ĩ𝛿,𝜁 , which contains directions with maximum
(in absolute value) coordinate the 𝑖0-th one, and pick the unique direction 𝑑 whose
signs on the non-zero coordinates of 𝑦 are opposite to the corresponding signs of
𝑦 (in such a case, even if 𝑑 has a coordinate equal to ±𝜁 , this will have index in
{𝑛 − 2, 𝑛 − 1, 𝑛} \ {𝑖0}).

Case 2. Only one of the zero coordinates of 𝑦 is among the last three ones, say the coor-
dinate with index 𝑖1 ∈ {𝑛 − 2, 𝑛 − 1, 𝑛}. Let us also write 𝑖2 for the index of the
other zero coordinate of 𝑦: 𝑖2 < 𝑛− 2. For illustration purposes, let us assume that
𝑖1 = 𝑛 (the other cases can be treated completely analogously). Then we can use
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directions either from the first subgroup (if the (𝑛 − 2)-th and (𝑛 − 1)-th coordi-
nates of 𝑦 have the same sign), or from the second subgroup (if these coordinates
of 𝑦 have opposite signs). To avoid the one pair of directions in these subgroups
which has an (𝑛 − 1)-th coordinate equal to 𝜁 (in absolute value), we can focus on
directions 𝑑 which satisfy sign(𝑑𝑖2 ) ≠ sign(𝑑𝑛−1) (since 𝑑𝑖2 will correspond to a
zero coordinate of 𝑦, so it can have either positive or negative sign without issue).

Case 3. Both of the zero coordinates of 𝑦 have indices < 𝑛− 2, say indices 𝑖3 and 𝑖4 (where
1 ≤ 𝑖3 < 𝑖4 ≤ 𝑛 − 3). Clearly this case can occur only when 𝑛 ≥ 5. We first
focus on the subgroup of directions in Ĩ𝛿,𝜁 whose sequences of signs in the last
three coordinates match or are exactly opposite to the respective sequence for 𝑦.
From within this subgroup, it suffices to consider those directions 𝑑 which satisfy
sign(𝑑𝑖3 ) ≠ sign(𝑑𝑖4 ) (because in this way we both avoid the one pair of opposite
directions/sign-sequences missing from Ĩ𝛿,𝜁 compared to Î𝑛

𝑛−2,𝑛−1,𝑛 (𝛿), which
we would not have been able to pick anyway, and also we make sure that, even if a
suitable direction 𝑑 has a coordinate equal to ±𝜁 , this will be its 𝑖3-th or its 𝑖4-th
one, as desired).

The proof of the claim is complete.

Since B does not contain any of the coordinate permutations of 1− 𝑒𝑛, as previously
we can set, for each 𝑗 ∈ [𝑛] , 𝜃 𝑗 :=



1 − 𝑒 𝑗


−1
B ; we will have 𝜃 𝑗 ∈ (0, 1). We also set

Θ0 := max 𝑗∈[𝑛] 𝜃 𝑗 , and pick

0 < 𝛿 < min
{
1
6
,
1 − Θ0

2

}
.

Furthermore, set 𝛾 := ‖1‖−1B . A suitable value for 𝜁 will become clear towards the end
of the proof, but for now we just make sure that 𝜁 < 𝛿.

Let 𝑥 be an extreme point of B. We distinguish two main cases.

|Z𝑥 | ≥ 1. Suppose 𝑥𝑖0 = 0 for some 𝑖0 ∈ [𝑛]. Because 𝜃𝑖0
(
1 − 𝑒𝑖0

)
∈ 𝜕B, for at least one

index 𝑖1 ∈ [𝑛] \ {𝑖0} we must have
��𝑥𝑖1 �� ≤ 𝜃𝑖0 ≤ Θ0 < 1. Moreover, for every

𝑗 ∈ [𝑛] \ {𝑖0, 𝑖1}, we must have 𝑥 𝑗 ≠ 0, because otherwise 𝑥 would not be an
extreme point ofB (it would be in the convex hull of a point of the form1−𝑒𝑖0 −𝑒 𝑗
for some 𝑗 ∈ [𝑛] \ {𝑖0, 𝑖1}, and of its coordinate reflections, without being any of
those points). Thus the point

𝑦𝑥 := 𝑥 − 𝑥𝑖0𝑒𝑖0 − 𝑥𝑖1𝑒𝑖1 = 𝑥 − 𝑥𝑖1𝑒𝑖1

has exactly two zero coordinates, and hence, by the above claim, we can find a
direction 𝑑 ∈ Ĩ𝛿,𝜁 which deep illuminates 𝑦𝑥 . Moreover, we can make sure that,
if 𝑑𝑠 = ±𝜁 for some 𝑠 ∈ [𝑛] , then 𝑦𝑥,𝑠 = 0 (or, in other words, |𝑑𝑠 | = 𝜁 ⇒ 𝑠 ∈
{𝑖0, 𝑖1}).
Let 𝑗0 = 𝑚.𝑐.(𝑑). Then 𝑥 +

��𝑥 𝑗0 �� 𝑑 satisfies the following:
• its 𝑗0-th coordinate is zero,
• while

��(𝑥 + ��𝑥 𝑗0 �� 𝑑)𝑖0 �� ≤ ��𝑥 𝑗0 �� 𝛿,
• and

��(𝑥 + ��𝑥 𝑗0 �� 𝑑)𝑖1 �� ≤ Θ0 +
��𝑥 𝑗0 �� 𝛿. Moreover, by our assumptions on 𝛿, we

haveΘ0 +
��𝑥 𝑗0 �� 𝛿 < 1 −

��𝑥 𝑗0 �� 𝛿.
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• Finally, for any 𝑗 ∈ [𝑛] \ { 𝑗0, 𝑖0, 𝑖1}, we will have that��(𝑥 + ��𝑥 𝑗0 �� 𝑑) 𝑗 �� ≤ max
{��𝑥 𝑗 �� − ��𝑥 𝑗0 �� 𝛿, ��𝑥 𝑗0 �� 𝛿} ≤ 1 −

��𝑥 𝑗0 �� 𝛿.
We now compare this point to the convex combinations

𝑐1 (𝑥) := (1 −
��𝑥 𝑗0 �� 𝛿) (1 − 𝑒𝑖0 − 𝑒 𝑗0

)
+
��𝑥 𝑗0 �� 𝛿 · 𝑒𝑖0

and 𝑐2 (𝑥) := (1−
��𝑥 𝑗0 �� 𝛿) (1−𝑒𝑖0 −𝑒 𝑗0 −𝑒𝑖1 ) + ��𝑥 𝑗0 �� 𝛿 ·𝑒𝑖0 + ��(𝑥 + ��𝑥 𝑗0 �� 𝑑)𝑖1 �� ·𝑒𝑖1

which are contained in B. All the respective coordinates of 𝑐1 (𝑥) and 𝑐2 (𝑥) are
equal, except for the 𝑖1-th coordinate: in that case, 𝑐2 (𝑥) has a strictly smaller
coordinate than 𝑐1 (𝑥). Moreover, the coordinates of 𝑥 +

��𝑥 𝑗0 �� 𝑑 do not exceed
the corresponding ones of 𝑐2 (𝑥) in absolute value. Thus it suffices to show that
𝑐2 (𝑥) ∈ intB to also obtain that 𝑥 +

��𝑥 𝑗0 �� 𝑑 ∈ intB. To do this, we will use the fact
that

𝑐3 (𝑥) := (1 −
��𝑥 𝑗0 �� 𝛿) (1 − 𝑒𝑖0 − 𝑒 𝑗0 − 𝑒𝑖1

)
+
��𝑥 𝑗0 �� 𝛿 · 𝑒𝑖0

is an interior point of B (which is verified if we compare with the point 1 − 𝑒 𝑗0 −
𝑒𝑖1 ∈ B). Thus the desired conclusions follow by applying Lemma10 on the section{
𝑧 ∈ B : 𝑧𝑠 = (1 −

��𝑥 𝑗0 �� 𝛿) for all 𝑠 ∈ [𝑛] \ {𝑖0, 𝑖1, 𝑗0}, 𝑧 𝑗0 = 0, 𝑧𝑖0 =
��𝑥 𝑗0 �� 𝛿},

which contains all three points 𝑐1 (𝑥), 𝑐2 (𝑥), 𝑐3 (𝑥).
|Z𝑥 | = 0. Here, it suffices to pick a direction 𝑑 from Ĩ𝛿,𝜁 which deep illuminates 𝑥 (which,

in this case, simply means that sign(𝑑𝑖) = − sign(𝑥𝑖) for all 𝑖 ∈ [𝑛]). This will
not be possible only in the case that sign(𝑥𝑖) = sign(𝑥𝑛) for all 𝑖 ∈ [𝑛 − 2] and
sign(𝑥𝑛−1) = − sign(𝑥𝑛) (since we removed without any replacement the only
two directions in Î𝑛

𝑛−2,𝑛−1,𝑛 (𝛿) which had exactly this property). To deal with this
remaining case, we distinguish two subcases.
• At least two coordinates of 𝑥 are ≤ 1

3 in absolute value. Saymax(
��𝑥𝑖1 �� , ��𝑥𝑖2 ��) ≤

1
3 with 1 ≤ 𝑖1 < 𝑖2 ≤ 𝑛. Recall that we have also assumed that 𝑥 has no zero
coordinates. For the point

𝑦𝑥 = 𝑥 − 𝑥𝑖1𝑒𝑖1 − 𝑥𝑖2𝑒𝑖2

we again use our initial claim, and find a direction 𝑑 ∈ Ĩ𝛿,𝜁 which deep illu-
minates 𝑦𝑥 , and is such that, if 𝑑𝑠 = ±𝜁 for some 𝑠 ∈ [𝑛] , then 𝑦𝑥,𝑠 = 0 (in
other words, |𝑑𝑠 | = 𝜁 ⇒ 𝑠 ∈ {𝑖1, 𝑖2}).
Let 𝑗0 = 𝑚.𝑐.(𝑑). Then 𝑥 +

��𝑥 𝑗0 �� 𝑑 satisfies the following:
– its 𝑗0-th coordinate is zero,
– while ��(𝑥 + ��𝑥 𝑗0 �� 𝑑)𝑖𝑠 �� ≤ ��𝑥𝑖𝑠 �� + ��𝑥 𝑗0 �� 𝛿 ≤ 1

3
+ 𝛿 < 1

2
for both 𝑠 = 1 or 𝑠 = 2 (the last inequality holds because of our
assumptions on 𝛿).

– Finally, for any 𝑗 ∈ [𝑛] \ { 𝑗0, 𝑖1, 𝑖2}, we will have that��(𝑥 + ��𝑥 𝑗0 �� 𝑑) 𝑗 �� ≤ max
{��𝑥 𝑗 �� − ��𝑥 𝑗0 �� 𝛿, ��𝑥 𝑗0 �� 𝛿} ≤ 1 −

��𝑥 𝑗0 �� 𝛿.
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We can now compare to the convex combination

1
2
(
1 − 𝑒 𝑗0 − 𝑒𝑖1

)
+ 1

2
(
1 − 𝑒 𝑗0 − 𝑒𝑖2

)
in B, to conclude that 𝑥 +

��𝑥 𝑗0 �� 𝑑 ∈ intB.
• At most one of the coordinates of 𝑥 is ≤ 1

3 in absolute value. Let 𝑖0 be the
(smallest) index of min𝑖∈[𝑛] |𝑥𝑖 |. We must have

��𝑥𝑖0 �� ≤ 𝛾 (otherwise the point
𝛾1would not be a boundary point ofB).Moreover, recall that the only subcase
that we have to still consider here is the one satisfying the following:
(i) for all 𝑗 ∈ [𝑛] \ {𝑖0} we have

��𝑥 𝑗 �� > 1
3 > 𝛿;

(ii) sign(𝑥𝑖) = sign(𝑥𝑛) for all 𝑖 ∈ [𝑛 − 2] and sign(𝑥𝑛−1) = − sign(𝑥𝑛).
We now pick the unique direction 𝑑 ∈ Ĩ𝛿,𝜁 which satisfies

��𝑑𝑖0 �� = 𝜁 and
sign(𝑑𝑖0 ) = sign(𝑥𝑖0 ), while sign(𝑑 𝑗 ) = − sign(𝑥 𝑗 ) for all 𝑗 ∈ [𝑛] \ {𝑖0}. Let
𝑗0 = 𝑚.𝑐.(𝑑). Then 𝑥 +

��𝑥 𝑗0 �� 𝑑 satisfies the following: for all 𝑗 ∈ [𝑛] \ {𝑖0},��(𝑥 + ��𝑥 𝑗0 �� 𝑑) 𝑗 �� ≤ ��𝑥 𝑗 �� − ��𝑥 𝑗0 �� 𝛿,
while ��(𝑥 + ��𝑥 𝑗0 �� 𝑑)𝑖0 �� = ��𝑥𝑖0 �� + ��𝑥 𝑗0 �� 𝜁 ≤

��𝑥𝑖0 �� + 𝜁 .
Fix some 𝜆0 ∈ (0, 𝛿3 ); then, for all 𝑗 ∈ [𝑛] \ {𝑖0}, we can write

𝜆0
��𝑥 𝑗 �� ≤ 𝜆0 < 𝛿

3
<
��𝑥 𝑗0 �� 𝛿,

and thus
��𝑥 𝑗 �� − ��𝑥 𝑗0 �� 𝛿 < (1 − 𝜆0)

��𝑥 𝑗 ��. Based on this, we consider the convex
combination

𝑐0 (𝑥) := (1 − 𝜆0)
∑︁
𝑖∈[𝑛]

|𝑥𝑖 | 𝑒𝑖 + 𝜆0 · 𝑒𝑖0 = (1 − 𝜆0) ®|𝑥 | + 𝜆0 · 𝑒𝑖0

which is contained in B, and we observe that:
– each of its coordinateswith index 𝑗 ∈ [𝑛]\{𝑖0} is equal to (1−𝜆0)

��𝑥 𝑗 �� >��(𝑥 + ��𝑥 𝑗0 �� 𝑑) 𝑗 ��,
– while the coordinate with index 𝑖0 is equal to

(1 − 𝜆0)
��𝑥𝑖0 �� + 𝜆0 = ��𝑥𝑖0 �� + 𝜆0 (1 − ��𝑥𝑖0 ��) ≥ ��𝑥𝑖0 �� + 𝜆0 (1 − 𝛾).

Hence, if we fix some 𝜁 < 𝜆0 (1−𝛾) (e.g. fix𝜆0 = 𝛿
4 and 𝜁 = 𝛿

5 (1−𝛾); note that
none of these quantities has to depend on the point 𝑥 that we are considering), we can
also ensure that

��(𝑥 + ��𝑥 𝑗0 �� 𝑑)𝑖0 �� is strictly smaller than the 𝑖0-th coordinate of
the convex combination 𝑐0 (𝑥). This will imply that 𝑥 +

��𝑥 𝑗0 �� 𝑑 ∈ intB.

We have addressed all possibilities for the arbitrary extreme point of B, and we have
shown how to illuminate it in each case using some direction from Ĩ𝛿,𝜁 (with 𝛿 and
𝜁 suitably chosen with respect to B). Therefore Ĩ𝛿,𝜁 is an illuminating set for B, and
ℑ(B) ≤ 2𝑛 − 2. �
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5 Cubelike 1-unconditional convex bodies

Here we prove Theorem 5, namely we settle the Illumination Conjecture for 1-
unconditional convex bodies 𝐾 which have the following property:

if 𝑥 is an extreme point of 𝐾 , then 𝑥𝑖 ≠ 0 for all 𝑖 ∈ [𝑛] (†)

(we called these cubelike bodies).
Recall that, because of standard results such as Fact A and Corollary 8, it is well-

known that such convex bodies can be illuminated by 2dim(𝐾 ) directions. Therefore,
the novelty in Theorem 5 is that we also verify the conjectured equality cases of the
Illumination Conjecture.

The proof of Theorem 5 could be summarised as follows: wewill use induction in the
dimension, and in the inductive step we will rely on combining two key lemmas, which
we present first.

The first of these lemmas could be of independent interest as well, since it applies in
a broader setting than that of ‘cubelike’ 1-unconditional convex bodies.

Lemma 32 Let 𝑛 ≥ 3, and let 𝐾 be a convex body in R𝑛 and 𝐻 a(n) (affine) hyperplane of
R𝑛. Suppose that: (i) Proj𝐻 (𝐾) = 𝐾 ∩ 𝐻 (where projection of any given vector here means
translating the vector parallel to a normal vector to𝐻 until we hit𝐻), and (ii)𝐾 has no extreme
points in 𝐻, that is, ext𝐾 ∩ 𝐻 = ∅.

Thenℑ(𝐾) ≤ 2 ·ℑ(𝐾∩𝐻) = 2 ·ℑ(Proj𝐻 (𝐾)) (note thatℑ(𝐾∩𝐻) is the illumination
number of an (𝑛 − 1)-dimensional convex body, found by illuminating 𝐾 ∩ 𝐻 = Proj𝐻 (𝐾)
within 𝐻).

Proof Without loss of generality, we can assume that 𝐻 = 𝑒⊥𝑛 + 𝑎𝑒𝑛 for some 𝑎 ∈ R,
and then, by translating both 𝐻 and 𝐾 by −𝑎𝑒𝑛, we can assume (for simplicity) that
𝐻 = 𝑒⊥𝑛 . From now on, we will write 𝐾𝑒𝑛 instead of 𝐾 ∩ 𝐻 = 𝐾 ∩ 𝑒⊥𝑛 .

Note also that, because 𝐾 ∩ 𝐻 = Proj𝐻 (𝐾), we have that aff(𝐾 ∩ 𝐻) = 𝐻.
Next we observe that 𝐾 contains points 𝑥 with 𝑥𝑛 = 〈𝑥, 𝑒𝑛〉 > 0, as well as points 𝑦

with 𝑦𝑛 < 0. This is because, if this were not true, we would have that 𝐾𝑒𝑛 is a support
set of 𝐾 , and thus it would have to contain some extreme points of 𝐾 , contrary to our
second main assumption. As a consequence of this, we also get that int𝐾 ∩ 𝑒⊥𝑛 ≠ ∅.

Set now 𝑁0 = ℑ(𝐾𝑒𝑛 ) (where we initially view 𝐾𝑒𝑛 as a subset of R𝑛−1 instead of
𝑒⊥𝑛 ). We can find a set D = {𝑑1, 𝑑2, . . . , 𝑑𝑁0 } of directions in R𝑛−1 which illuminates
𝐾𝑒𝑛 . Let us also restate this as a statement about subsets and directions of R𝑛: D can
be viewed as a (minimum-size) subset of 𝑒⊥𝑛 which has the property that, for every 𝑝 ∈
relbd𝐾𝑒𝑛 , we can find 𝑑𝑖 ∈ D and 𝜀 > 0 such that 𝑝 + 𝜀𝑑𝑖 ∈ relint𝐾𝑒𝑛 .

Claim.Wecan find a common 𝜀0 > 0with the property that, for every 𝑝 contained in
𝐾𝑒𝑛 (andnot just in relbd𝐾𝑒𝑛 ), therewill be some 𝑑𝑖 ∈ D such that 𝑝+𝜀0𝑑𝑖 ∈ relint𝐾𝑒𝑛 .
By convexity, this will also imply that, for 𝑝 and 𝑑𝑖 as before, 𝑝 + 𝜀′𝑑𝑖 ∈ relint𝐾𝑒𝑛 for
every 𝜀′ ∈ (0, 𝜀0).

Proof of the claim.We will use compactness (working with relatively open sets in the
subspace topology on 𝑒⊥𝑛 , so as not to further complicate our notation). The following is
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essentially the (core of the) standard argument that shows that the illumination number
and the covering number of a convex body coincide.

For every 𝑝 ∈ 𝐾𝑒𝑛 we can find 𝑑𝑖𝑝 ∈ D and some 𝜀𝑝 > 0 such that 𝑝 + 𝜀𝑝𝑑𝑖𝑝 ∈
relint𝐾𝑒𝑛 . For points on the relative boundary of 𝐾𝑒𝑛 , this is already guaranteed by our
choice of the setD. On the other hand, if 𝑝 ∈ relint𝐾𝑒𝑛 , then, nomatterwhich direction
𝑑 we choose from aff𝐾𝑒𝑛 = 𝑒⊥𝑛 (more accurately, from aff𝐾𝑒𝑛 − 𝑝, which just happens to
coincide with aff𝐾𝑒𝑛 here), we can get the desired conclusion as long aswe pick 𝜀𝑝 = 𝜀𝑝,𝑑
small enough.

We can rewrite this as 𝑝 ∈ −𝜀𝑝𝑑𝑖𝑝 + relint𝐾𝑒𝑛 , and thus

𝐾𝑒𝑛 ⊂
⋃
𝑝∈𝐾𝑒𝑛

(
−𝜀𝑝𝑑𝑖𝑝 + relint𝐾𝑒𝑛

)
.

Therefore, by compactness, we can find finitely many positive numbers 𝜀1, 𝜀2, . . . , 𝜀𝑀 ,
𝑀 ≥ 1, such that, for every 𝑝 ∈ 𝐾𝑒𝑛 , it will be possible to write

𝑝 ∈ −𝜀 𝑗𝑑𝑖 + relint𝐾𝑒𝑛 ⇔ 𝑝 + 𝜀 𝑗𝑑𝑖 ∈ relint𝐾𝑒𝑛
for some 𝑗 ∈ {1, 2, . . . , 𝑀} and 𝑖 ∈ {1, 2, . . . , 𝑁0}. Finally, if we set 𝜀0 = min{𝜀 𝑗 : 1 ≤
𝑗 ≤ 𝑀}, by convexity we will have that 𝑝 + 𝜀0𝑑𝑖 ∈ relint𝐾𝑒𝑛 as well, while 𝜀0 will not
depend on the point 𝑝 anymore. The proof of the claim is complete.

We can finally define an illuminating set for the convex body 𝐾 . Set

𝑎0 = max{|𝑥𝑛 | : 𝑥 ∈ 𝐾}.

Simply because 𝐾 has non-empty interior, we have that 𝑎0 > 0. Set 𝜂0 =
𝜀0
𝑎0
. We claim

that the set
𝜂0D × {±1} =

{
(𝜂0𝑑𝑖 , 1), (𝜂0𝑑𝑖 ,−1) : 1 ≤ 𝑖 ≤ 𝑁0

}
illuminates 𝐾 (where we abuse our notation a bit again, and viewD as a subset of (𝑛 −
1)-dimensional vectors now).

Indeed, let 𝑥 be an extreme point of 𝐾 . Then, by our assumptions 𝑥𝑛 ≠ 0, and also

Proj𝑒⊥𝑛 (𝑥) ∈ Proj𝑒⊥𝑛 (𝐾) = 𝐾 ∩ 𝑒⊥𝑛 = 𝐾𝑒𝑛 .

Hence, we can find 𝑑𝑖 ∈ D such that Proj𝑒⊥𝑛 (𝑥) + 𝜀
′𝑑𝑖 ∈ relint𝐾𝑒𝑛 for any 𝜀′ ∈ (0, 𝜀0].

We will show that 𝑥 is illuminated by the direction
(
𝜂0𝑑𝑖 ,− sign(𝑥𝑛)

)
:

𝑥 + |𝑥𝑛 |
(
𝜂0𝑑𝑖 ,− sign(𝑥𝑛)

)
=
(
Proj𝑒⊥𝑛 (𝑥) + |𝑥𝑛 | 𝜀0𝑎0 𝑑𝑖 , 0

)
∈ relint𝐾𝑒𝑛

given that |𝑥𝑛 | 𝜀0𝑎0 ≤ 𝜀0 (again, we abuse our notation and viewProj𝑒⊥𝑛 (𝑥) as a vectorwith
𝑛−1 coordinates). It remains to recall that, since int𝐾 ∩ 𝑒⊥𝑛 ≠ ∅ due to our assumptions
on 𝑒⊥𝑛 = 𝐻, Lemma 10 gives us that relint𝐾𝑒𝑛 = relint(𝐾 ∩ 𝑒⊥𝑛 ) ⊂ int𝐾 . �

Remark 33 Let 𝐾 be a 1-unconditional convex body in R𝑛 which has Property (†). It
is not hard to see that we can find at least one affine image 𝐾 of 𝐾 which belongs to the
subclassU𝑛 and still has Property (†).

Indeed, as mentioned in Section 2, an obvious choice for an affine image of
𝐾 from U𝑛 is the convex body we get if we multiply 𝐾 by the diagonal matrix

2025/07/29 21:18

https://doi.org/10.4153/S0008414X25101260 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101260


38 W. R. Sun and B.-H. Vritsiou

diag
(
‖𝑒1‖−1𝐾 , ‖𝑒2‖−1𝐾 , . . . , ‖𝑒𝑛‖−1𝐾

)
. Let us write 𝑇0 for the linear transformation of R𝑛

which corresponds to this matrix. It is clear that

𝑥 ∈ ext𝐾 ⇔ 𝑇0 (𝑥) ∈ ext𝑇0 (𝐾),

while this transformation 𝑇0 is such that, for all 𝑦 ∈ R𝑛 and 𝑖 ∈ [𝑛] , 𝑦𝑖 ≠ 0 ⇔
(𝑇0 (𝑦))𝑖 ≠ 0.

Lemma 34 Let B be a cubelike 1-unconditional convex body inU𝑛 (in other words, assume
that B has Property (†), and that ‖𝑒𝑖 ‖B = 1 for all 𝑖 ∈ [𝑛]).

Suppose that for some 𝑖0 ∈ [𝑛] we have that Proj𝑒⊥
𝑖0
(B) is a(n) ((𝑛 − 1)-dimensional)

parallelepiped. Then we will have that Proj𝑒⊥
𝑖0
(B) coincides with Proj𝑒⊥

𝑖0
( [−1, 1]𝑛) (and not

only that they are affinely equivalent). Equivalently, B must contain the point 1 − 𝑒𝑖0 .

Proof Without loss of generality, we can assume that 𝑖0 = 𝑛. By the linearity of
projections, we can observe that

ext Proj𝑒⊥𝑛 (B) ⊆
{
Proj𝑒⊥𝑛 (𝑥) : 𝑥 ∈ extB

}
.

Moreover, since we have assumed that Proj𝑒⊥𝑛 (B) is an (𝑛 − 1)-dimensional paral-
lelepiped, we know that it has exactly 2𝑛−1 extreme points. Let 𝑣1 be one of them; as
already observed, we can find an extreme point 𝑥1 of B such that 𝑣1 = Proj𝑒⊥𝑛 (𝑥1).

Nownote that, because of Property (†), all coordinates of 𝑥1 are non-zero, and hence
the first 𝑛 − 1 coordinates of 𝑣1 will be non-zero. Moreover, by the 1-unconditionality,
we know that all coordinate reflections of 𝑣1 must also be extreme points of Proj𝑒⊥𝑛 (B),
and given what we just remarked, we have that there are 2𝑛−1 different such coordinate
reflections (including 𝑣1 itself).

We conclude that the extreme points of Proj𝑒⊥𝑛 (B) are precisely 𝑣1 = Proj𝑒⊥𝑛 (𝑥1) and
its coordinate reflections. Without loss of generality, we can assume that 𝑣1 has only
positive coordinates (except for its last one).

We finally observe that, for all 𝑗 ∈ [𝑛 − 1] , 𝑒 𝑗 ∈ Proj𝑒⊥𝑛 (B), and thus it must be
possible to write it as a convex combination of 𝑣1 and its coordinate reflections. This
implies that |𝑣1, 𝑗 | = 𝑣1, 𝑗 ≥ 1 (and since B ∈ U𝑛, we also have 𝑣1, 𝑗 = 𝑥1, 𝑗 ≤ 1). We
conclude that 𝑣1 = Proj𝑒⊥𝑛 (𝑥1) = 1 − 𝑒𝑛, and by the 1-unconditionality we know that
this is contained in B. �

We are now ready to give the
Proof of Theorem 5 Let 𝑛 ≥ 3, and consider a cubelike 1-unconditional convex
body B in R𝑛 which is not a parallelepiped. Because of Remark 33, we can also assume
that B ∈ U𝑛 without ruining any of the other assumptions. We will show that ℑ(B) ≤
2𝑛 − 2 by using induction in the dimension 𝑛.

Base of induction. If 𝑛 = 3, thenTheorem15 gives us thatℑ(B) ≤ 6 (without even hav-
ing to use the assumption thatB is cubelike), and it also guarantees thatwe can illuminate
(any affine image of) B using 3 pairs of opposite directions.

Induction Step. Let us now assume that the theorem holds in dimension 𝑛−1 for some
𝑛 > 3, and consider B ∈ U𝑛 as above.
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Because of the 1-unconditionality, we have that Proj𝑒⊥𝑛 (B) = B ∩ 𝑒⊥𝑛 . Moreover, as
we also observed in the proof of Lemma 34, it holds that

ext Proj𝑒⊥𝑛 (B) ⊆
{
Proj𝑒⊥𝑛 (𝑥) : 𝑥 ∈ extB

}
,

and thus Proj𝑒⊥𝑛 (B) (viewed as a convex body in R
𝑛−1) is 1-unconditional and cubelike.

• If Proj𝑒⊥𝑛 (B) is a parallelepiped of R𝑛−1, then Lemma 34 gives us that B contains
the point 1− 𝑒𝑛. Recall thatB is assumed not to be a parallelepiped ofR𝑛, and thus
Theorem 2 applies in this case, allowing us to illuminate B using 1

2 (2
𝑛 − 2) pairs

of opposite directions.
• If instead Proj𝑒⊥𝑛 (B) is not a parallelepiped ofR

𝑛−1, then we can invoke the induc-
tive hypothesis and conclude thatℑ(Proj𝑒⊥𝑛 (B)) ≤ 2𝑛−1−2. In fact, we obtain that
Proj𝑒⊥𝑛 (B) can be illuminated using 2𝑛−2 − 1 pairs of opposite directions.
We can then combine this with Lemma 32 (given our assumptions, which imply

the conditions of that lemma), and this gives thatℑ(B) ≤ 2·ℑ(Proj𝑒⊥𝑛 (B)) ≤ 2𝑛−4.
In addition, by looking at the proof of Lemma 32 as well, we can check that, if

we start with an illuminating set of Proj𝑒⊥𝑛 (B) which consists of pairs of opposite
directions, then we pass to an illuminating set for Bwhich also consists of pairs of
opposite directions (and has double cardinality).

This completes the proof. �

It is worth remarking that we only looked at the particular hyperplane projection
Proj𝑒⊥𝑛 (B) of B for simplicity. By the 1-unconditionality assumption (which is a rather
strong symmetry assumption from certain points of view), we have that Proj𝑒⊥

𝑗
(B) =

B ∩ 𝑒⊥
𝑗
for all 𝑗 ∈ [𝑛]. Therefore, we could have applied the inductive hypothesis and

Lemma 32, exactly as we did above, for any index 𝑗0 ∈ [𝑛] for which we would know
that Proj𝑒⊥

𝑗0
(B) is not a parallelepiped. Moreover, if it turned out that no such index

exists, then (by also recalling Lemma 34) we would deduce that we are in the setting of
Proposition 20,which is just a special case of Theorem2 (in fact, the casewith the easiest,
most direct proof). Thus, the proof of Theorem 5 only truly requires Proposition 20.

Still, in this paper we sought to give a full proof of Theorem 2, because this allows
us to settle more high-dimensional cases of the Illumination Conjecture in the class of
1-unconditional bodies.

6 1-unconditional convex bodies in R4

It remains to complete the proof of Theorem 1: note that we have already fully settled
the part of the theorem that concerns R3. Recall also that Propositions 20, 21, 27 and
28 apply with 𝑛 = 4 too, and cover all cases where we have at least one coordinate
permutation of 𝑒1 + 𝑒2 + 𝑒3 contained in a 1-unconditional convex body B ∈ U4. Anal-
ogously, Proposition 30 corresponds to, and settles, the case of 1-unconditional convex
bodies inU4 which contain all coordinate permutations of 𝑒1 + 𝑒2 and no coordinate
permutations of 𝑒1 + 𝑒2 + 𝑒3.

Therefore, to also fully confirm the Illumination Conjecture for 1-unconditional
convex bodies inR4, it remains to address the caseswhereB ∈ U4 contains only someof
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the coordinate permutations of 𝑒1 + 𝑒2 or none of them. We summarise the conclusions
that we reach in this section in the following

Theorem 35 Let B ∈ U4 which is not a parallelepiped.

� If B contains at least one coordinate permutation of 𝑒1+𝑒2+𝑒3, then, as we have already
seen, there exist 𝛿 ∈ (0, 1), or 𝛿1 ∈ (0, 1), or 𝜖2 and 𝛿𝜖2 ∈ (0, 1), or 𝛿3, 𝛿̃3 ∈ (0, 1)
and 𝜂3 ∈ (0, 𝛿3), which depend only onB, so thatB is illuminated by one of the following
sets:

F 4
20, 𝛿 = I4

−2 (𝛿) =
{
±(1, 𝛿, 𝛿, 𝛿), ±(𝛿,−1,−𝛿,−𝛿), ±(𝛿, 𝛿,−1,−𝛿), ±(𝛿,−𝛿, 1, 𝛿),

± (𝛿, 𝛿, 𝛿,−1), ±(𝛿,−𝛿,−𝛿, 1), ±(𝛿,−𝛿, 𝛿,−1)
}
,

or F 4
21, 𝛿 = I3

−2 (𝛿) × {±𝛿} =
{
±(1, 𝛿, 𝛿), ±(𝛿,−1,−𝛿), ±(𝛿, 𝛿,−1)

}
× {±𝛿},

or F 4,1
28, 𝛿1 = I4

𝑒𝑥2,1 (𝛿1) =
{
±(𝛿1, 𝛿1, 𝛿1, 1), ±(𝛿1, 𝛿1, 𝛿1,−1), ±(𝛿1,−𝛿1,−𝛿1, 1),

±(𝛿1,−𝛿1,−𝛿1,−1), ±(𝛿1, 𝛿1,−1, 0), ±(𝛿1,−𝛿1, 1, 0)
}
,

or F 4,2
28, 𝜖2 , 𝛿𝜖2

= I4
𝑒𝑥2,2 (𝜖2, 𝛿𝜖2 ) =

{
±(𝜖2, 𝜖2, 1, 1), ±(𝛿𝜖2 ,−𝛿𝜖2 ,−1,−𝛿𝜖2 ), ±(𝛿𝜖2 , 𝛿𝜖2 ,−1,−𝛿𝜖2 ),

±(𝛿𝜖2 ,−𝛿𝜖2 , 1, 𝛿𝜖2 ), ±(𝛿𝜖2 , 𝛿𝜖2 , 𝛿𝜖2 ,−1), ±(𝛿𝜖2 ,−𝛿𝜖2 ,−𝛿𝜖2 , 1), ±(𝛿𝜖2 ,−𝛿𝜖2 , 𝛿𝜖2 ,−1)
}
,

or F 4
27, 𝛿3 ,𝜂3 , 𝛿3

=
{(
±(1, 𝜂3),±𝛿3, 0

)
,
(
±(−𝜂3, 1),±𝛿3, 0

)}
∪

[{
±(𝛿̃3, 𝛿̃3, 𝛿̃3)

}
× {±1}

]
,

or by some coordinate permutation of one of these sets.

� Again, as we have seen, if B contains all coordinate permutations of 𝑒1 + 𝑒2 (and none of
the coordinate permutations of 𝑒1 + 𝑒2 + 𝑒3), then B can be illuminated by the set

F 4
30, 𝛿,𝜁 = Ĩ4

𝛿,𝜁 =
{
± (𝛿, 1, 𝜁 , 𝛿), ±(𝛿,−1,−𝛿,−𝛿), ±(𝛿, 𝛿,−1,−𝜁), ±(𝛿,−𝛿, 1, 𝛿),
± (𝛿, 𝛿, 𝛿,−1), ±(𝛿,−𝜁,−𝛿, 1), ±(−𝜁, 𝛿,−𝛿, 1)

}
for some 𝛿 ∈ (0, 1) and 𝜁 ∈ (0, 𝛿) which depend only on B. Note that an equivalent
description for B here is that it contains all possible unit squares.

� In the remaining 4-dimensional cases, where B may contain only some unit squares, or
none at all, we can use a coordinate permutation of one of the following illuminating sets:

F36,41, 𝛿,𝜂,𝜁 :=
{
± (1, 𝛿, 𝜂, 0), ±(𝛿,−1,−𝜂, 0), ±(𝛿,−𝜂, 1, 𝜁), ±(−𝛿,−𝜂, 1, 𝜁),

± (0,±(𝜂, 𝛿), 1), ±(0, 1,−𝛿, 𝜂)
}
,

F37,38, 𝛿,𝜂 :=
{
± (1, 𝛿, 𝜂, 0), ±(𝛿,−1, 𝜂, 0), ±(−𝜂, 𝛿, 1, 0), ±(𝜂, 𝛿,−1, 0),
± (−𝜂, 0, 𝛿, 1), ±(−𝜂, 0, 𝛿,−1), ±(1, 0, 1, 0)

}
,

F38,alt, 𝛿1 :=
{
±(1, 𝛿1, 0, 0),±(−𝛿1, 1, 0, 0),±(0, 0, 1, 𝛿1),±(0, 0,−𝛿1, 1)

}
,

F39,42, 𝛿,𝜂 :=
{
± (1, 𝛿, 𝜂, 0), ±(𝛿,−1,−𝜂, 0), ±(𝛿,−𝜂, 1, 0), ±(𝛿, 𝜂,−1, 0),
± (0,±(𝜂, 𝛿), 1), ±(0, 1,−1, 0)

}
,
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F39,alt, 𝛿2 ,𝜂2 :=
{
±(𝜂2, 1, 𝛿2, 0), ±(−𝜂2, 1, 𝛿2, 0), ±(−𝜂2, 1,−𝛿2, 0),

±(𝜂2, 𝜂2, 1, 𝛿2), ±(−𝜂2,−𝜂2, 1, 𝛿2), ±(𝜂2, 𝜂2,−𝛿2, 1), ±(−𝜂2,−𝜂2,−𝛿2, 1)
}
,

or F42,alt, 𝛿3 ,𝜂3 :=
{
± (1,−𝜂3,−𝛿3,−𝛿3), ±(−𝜂3, 1,−𝛿3,−𝛿3),
± (𝛿3, 0, 1,−𝜂3), ±(𝛿3, 0,−𝜂3, 1), ±(0, 𝛿3, 1,−𝜂3), ±(0, 𝛿3,−𝜂3, 1)

}
.

Note that the order in which we include the parameters/‘small’ constants that we use
as subscripts should indicate how they (potentially) depend on each other: parameters
appearing earlier do not depend on later ones, but how small one may need to choose
the later one(s) depends on the values of the earlier parameters.

In the same manner as in earlier sections, we divide the remaining cases into the
following propositions (according to how many unit squares the given 1-unconditional
body contains).

Proposition 36 Suppose that B ∈ U4 satisfies


𝑒𝑖 + 𝑒 𝑗

B > 1 for every 𝑖, 𝑗 ∈ [4]. Then

there exist 𝛿 > 0, 𝜂 = 𝜂𝛿 > 0 and 𝜁 = 𝜁𝛿,𝜂 > 0 so that B can be illuminated by some
coordinate permutation of the set

F36,41, 𝛿,𝜂,𝜁 :=
{
± (1, 𝛿, 𝜂, 0), ±(𝛿,−1,−𝜂, 0), ±(𝛿,−𝜂, 1, 𝜁), ±(−𝛿,−𝜂, 1, 𝜁),
± (0,±(𝜂, 𝛿), 1), ±(0, 1,−𝛿, 𝜂)

}
.

Observe that
��F36,41, 𝛿,𝜂,𝜁

�� = 14.

Proof For all 𝑖, 𝑗 ∈ [4], 𝑖 ≠ 𝑗 , set 𝜃𝑖, 𝑗 =


𝑒𝑖 + 𝑒 𝑗

−1B ; this is equivalent to 𝜃𝑖, 𝑗 (𝑒𝑖 +

𝑒 𝑗 ) ∈ 𝜕B, and thus 𝜃𝑖, 𝑗 < 1 for all 𝑖 ≠ 𝑗 by our main assumption. SetΘ0 = max𝑖< 𝑗 𝜃𝑖, 𝑗 .
Next, similarly to the proof of Proposition 16, for each 𝑖 ∈ [4] and for each 𝑗 ∈

[4]\{𝑖}, set 𝛼𝑖, 𝑗 to be the supremum of non-negative numbers 𝑥 𝑗 such that

1 + Θ0

2
𝑒𝑖 + 𝑥 𝑗𝑒 𝑗 ∈ B.

Then 1+Θ0
2 𝑒𝑖 + 𝛼𝑖, 𝑗𝑒 𝑗 ∈ B, and we must have 𝛼𝑖, 𝑗 < 1 (in fact, 𝛼𝑖, 𝑗 must be strictly less

than 𝜃𝑖, 𝑗 , since otherwise the point 𝜃𝑖, 𝑗 (𝑒𝑖 + 𝑒 𝑗 ) would not be a boundary point of B; indeed,
since 𝜃𝑖, 𝑗 < 1, if we had that 1+Θ0

2 𝑒𝑖 + 𝜃𝑖, 𝑗𝑒 𝑗 ∈ B, we could use Lemma 10 to conclude that
𝑦𝑖𝑒𝑖 + 𝜃𝑖, 𝑗𝑒 𝑗 ∈ intB for any 𝑦𝑖 ∈ (0, 1+Θ0

2 )).
Set 𝛼0 = max1≤𝑖≠ 𝑗≤4 𝛼𝑖, 𝑗 and without loss of generality assume that (at least) one

of 𝛼1,2, 𝛼2,1 is equal to 𝛼0. We will now show that F36,41, 𝛿,𝜂,𝜁 (with suitably chosen
𝛿, 𝜂, 𝜁 ) illuminates B. Let 𝑥 ∈ 𝜕B. Consider the following cases for the index setZ𝑥 of
zero coordinates of 𝑥.

|Z𝑥 | ≥ 2. First of all, if 𝑥 = 𝑥𝑖𝑒𝑖 for some 𝑖 ∈ [4] , where 𝑥𝑖 = ±1, then we find a direction
𝑑 ∈ F36,41, 𝛿,𝜂,𝜁 satisfying𝑚.𝑐.(𝑑) = 𝑖 and 𝑑𝑖 ·𝑥𝑖 < 0.Observe that ‖𝑑−𝑑𝑖𝑒𝑖 ‖∞ =

𝛿, and thus, as long as we choose 𝜁 < 𝜂 < 𝛿 < 1
4 , we will have that 𝑥 + 𝑑 ∈ intB.

Similarly, if 𝑥 = 𝑥𝑖𝑒𝑖+𝑥 𝑗𝑒 𝑗 , andwe assumewithout loss of generality that |𝑥𝑖 | ≥
|𝑥 𝑗 | > 0, we will have that |𝑥 𝑗 | ≤ 𝜃𝑖, 𝑗 ≤ Θ0. Again we choose 𝑑 ∈ F36,41, 𝛿,𝜂,𝜁
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which satisfies𝑚.𝑐.(𝑑) = 𝑖 and 𝑑𝑖 ·𝑥𝑖 < 0. Then, for the displaced vector 𝑥+ |𝑥𝑖 |𝑑,
we will have that
• | (𝑥 + |𝑥𝑖 |𝑑)𝑖 | = 0,
• | (𝑥 + |𝑥𝑖 |𝑑) 𝑗 | ≤ |𝑥 𝑗 | + |𝑥𝑖 |𝛿 ≤ |𝑥 𝑗 | + 𝛿 ≤ Θ0 + 𝛿,
• and for 𝑠 ∈ [4] \ {𝑖, 𝑗}, | (𝑥 + |𝑥𝑖 |𝑑)𝑠 | ≤ 𝛿.

Thus, if we also choose 𝜁 < 𝜂 < 𝛿 < 1−Θ0
3 , we will have that 𝑥 + |𝑥𝑖 |𝑑 ∈ intB (note

that these restrictions on 𝛿, 𝜂 and 𝜁 do not depend on what the coordinates of 𝑥 are).

|Z𝑥 | = 0. We consider two subcases here.
• First, assume that |𝑥1 | ≤ 1+Θ0

2 . Then |𝑥1 | < 1, and we can invoke Corollary
11 to conclude that a direction 𝑑 from

±(0,±(𝜂, 𝛿), 1), ±(0, 1,−𝛿, 𝜂)

will illuminate 𝑥 if it holds that 𝑑𝑠 · 𝑥𝑠 < 0 for all 𝑠 ∈ [4] \ {1}. Other-
wise, if none of these directions can satisfy this requirement, it will mean that
sign(𝑥2) = − sign(𝑥3) = − sign(𝑥4), in which case one of the directions

±(𝛿,−𝜂, 1, 𝜁), ±(−𝛿,−𝜂, 1, 𝜁)

will illuminate 𝑥 (the one direction 𝑑 which also satisfies 𝑑1 · 𝑥1 < 0).

• Now we assume that |𝑥1 | > 1+Θ0
2 . Then, by our choice of the numbers 𝛼𝑖, 𝑗 ,

we will have that |𝑥4 | ≤ 𝛼1,4 ≤ 𝛼0 < 1.
If sign(𝑥1) = sign(𝑥2) = sign(𝑥3) or sign(𝑥1) = − sign(𝑥2) = − sign(𝑥3),

then one of ±(1, 𝛿, 𝜂, 0), ±(𝛿,−1,−𝜂, 0) will illuminate 𝑥 (by Corollary 11).
Thus, assume for the remainder of this case that 𝑥 does not satisfy either of
these sign assumptions. We consider further subcases here.

– If max( |𝑥2 |, |𝑥3 |) < 1−𝛼0
8 ≤ 1−𝛼1,4

8 , then, as long as we also make sure
that 𝜁 < 𝜂 < 𝛿 <

1−𝛼0
8 , we can choose a direction 𝑑 ∈

{
±(1, 𝛿, 𝜂, 0)

}
which satisfies 𝑑1 · 𝑥1 < 0 (and we can check that 𝑥 + |𝑥1 |𝑑 ∈ intB by
comparing to the point 1+𝛼0

2 𝑒4 + 1−𝛼0
4 (𝑒2 + 𝑒3) ∈ B).

– Assume now that max( |𝑥2 |, |𝑥3 |) ≥ 1−𝛼0
8 ≥ min( |𝑥2 |, |𝑥3 |). Also

assume first that max( |𝑥2 |, |𝑥3 |) = |𝑥2 |. Then we choose the unique
direction 𝑑 from

{
±(1, 𝛿, 𝜂, 0), ±(𝛿,−1,−𝜂, 0)

}
which satisfies 𝑑𝑠 ·

𝑥𝑠 < 0 for 𝑠 ∈ [2] (recall that, by our last assumption on the signs of 𝑥,
wewill also have here that 𝑑3 ·𝑥3 > 0). For the displaced vector 𝑥+ 1−𝛼0

8 𝑑

we observe that�� (𝑥 + 1−𝛼0
8 𝑑

)
𝑠

�� < (1 − 𝜆0) |𝑥𝑠 | for 𝑠 ∈ {1, 2},

as long as 𝜆0 < 1−𝛼0
8 𝛿.

(6)

Based on this, we can compare with the vector

𝑢𝛼0 := (1 − 𝜆0) ®|𝑥 | + 𝜆0
(
3 + 𝛼0

4
𝑒4 +

1 − 𝛼0
4

𝑒3

)
∈ B.
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We have that
�� (𝑥 + 1−𝛼0

8 𝑑
)
𝑠

�� < 𝑢𝛼0 ,𝑠 for 𝑠 ∈ {1, 2, 4}, and also that

𝑢𝛼0 ,3 = |𝑥3 | + 𝜆0
(
1 − 𝛼0

4
− |𝑥3 |

)
≥ |𝑥3 | + 𝜆0

1 − 𝛼0
8

.

Thus, if we also choose

𝜂 < 𝜆0 <
1 − 𝛼0

8
𝛿,

we will have that
�� (𝑥 + 1−𝛼0

8 𝑑
)
3

�� ≤ |𝑥3 | + 1−𝛼0
8 𝜂 < 𝑢𝛼0 ,3, which finally

shows that 𝑥 + 1−𝛼0
8 𝑑 ∈ intB.

On the other hand, if max( |𝑥2 |, |𝑥3 |) = |𝑥3 |, then we pick the unique
direction 𝑑 ′ from

{
±(𝛿,−𝜂, 1, 𝜁), ±(−𝛿,−𝜂, 1, 𝜁)

}
which satisfies 𝑑 ′𝑠 ·

𝑥𝑠 < 0 for 𝑠 ∈ {1, 3}. Similarly, we compare the displaced vector 𝑥 +
1−𝛼0
8 𝑑 ′ with the vector

𝑢′𝛼0 = (1 − 𝜆1) ®|𝑥 | + 𝜆1
(
7 + 𝛼0

8
𝑒4 +

1 − 𝛼0
8

𝑒2

)
∈ B,

where 𝜆1 needs to be < 1−𝛼0
8 𝛿. Observe that, as long as 𝜁 < 7𝜆1 <

7(1−𝛼0)
8 𝛿, we will have that 𝑥 + 1−𝛼0

8 𝑑 ′ ∈ intB.

– Finally, assume that min( |𝑥2 |, |𝑥3 |) > 1−𝛼0
8 . Then we pick the unique

direction 𝑑 ∈
{
±(𝛿,−𝜂, 1, 𝜁), ±(−𝛿,−𝜂, 1, 𝜁)

}
which satisfies 𝑑𝑠 ·𝑥𝑠 <

0 for 𝑠 ∈ [3]. Again, we can check that 𝑥 + 1−𝛼0
8 𝑑 ∈ intB as long as

𝜁 < (1 − 𝛼0)𝜂.

We now turn to the cases where:

|Z𝑥 | = 1. We will argue similarly to the previous case, but will now rely on the existence of
the points

𝑣𝑖;Θ0 :=
3 + Θ0

4
𝑒𝑖 +

1 − Θ0

12

∑︁
𝑗≠𝑖

𝑒 𝑗

in B.
• Assume first of all that 𝑥4 = 0.

– If |𝑥3 | ≤ 1+Θ0
2 , then we cannot have max( |𝑥1 |, |𝑥2 |) < 1−Θ0

24 (because
otherwise we could compare the entries of 𝑥 with those of 𝑣3;Θ0 and we would
obtain that 𝑥 is not a boundary point). If |𝑥2 | = min( |𝑥1 |, |𝑥2 |) and it is less
than 1−Θ0

24 , thenwe simply choose a direction from±(1, 𝛿, 𝜂, 0) such that
𝑑1 · 𝑥1 < 0. Then 𝑥 + |𝑥1 |𝑑 ∈ intB as long as

𝜁 < 𝜂 < 𝛿 <
1 − Θ0

24
(this can be seen by comparing with the corresponding coordinates of
the point 𝑣3;Θ0 again).
Similarly, if |𝑥1 | = min( |𝑥1 |, |𝑥2 |) < 1−Θ0

24 , then we illuminate 𝑥 with
a direction from ±(𝛿,−1,−𝜂, 0).
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Finally, if min( |𝑥1 |, |𝑥2 |) ≥ 1−Θ0
24 , then we choose 𝑑 from the same

directions as previously,±(1, 𝛿, 𝜂, 0), ±(𝛿,−1,−𝜂, 0), so that 𝑑𝑠 ·𝑥𝑠 < 0
for 𝑠 ∈ [2]. We compare the coordinates of the displaced vector 𝑥 +
1−Θ0
24 𝑑 with those of a convex combination of the form

𝜆𝑒3 + (1− 𝜆) ®|𝑥 | =
(
(1− 𝜆) |𝑥1 |, (1− 𝜆) |𝑥2 |, |𝑥3 | + 𝜆(1− |𝑥3 |), 0

)
(7)

where 𝜆 < 1−Θ0
24 𝛿. But then, as long as 1−Θ0

24 𝜂 < 𝜆
1−Θ0
2 ≤ 𝜆(1 − |𝑥3 |)

(which can be achieved, with the choice of some suitable positive 𝜆 <
1−Θ0
24 𝛿, if 𝜂 < 1−Θ0

2 𝛿), we will have that 𝑥 + 1−Θ0
24 𝑑 ∈ intB.

– If instead |𝑥3 | > 1+|Θ0
2 , then we make the following observations: by

1-unconditionality, we will have that |𝑥1 |𝑒1 + |𝑥3 |𝑒3 ∈ B ⇒ |𝑥1 | ≤
𝛼3,1 ≤ 𝛼0 = max(𝛼1,2, 𝛼2,1). Similarly |𝑥2 | ≤ 𝛼3,2 ≤ max(𝛼1,2, 𝛼2,1).
Therefore, we can pick the unique direction 𝑑 ∈ {±(𝛿,−𝜂, 1, 𝜁)}which
satisfies 𝑑3 · 𝑥3 < 0, and we will have that 𝑥 + |𝑥3 |𝑑 ∈ intB as long as

𝜂 < 𝛿 <
𝜃1,2 − 𝛼0

2
=
𝜃1,2 −max(𝛼1,2, 𝛼2,1)

2
and 𝜁 <

1
2

(
1 − 𝛼0

𝜃1,2

)
(we can confirm this by comparing to the point

𝜃1,2 + 𝛼0
2

(𝑒1 + 𝑒2) +
(
1
2
− 𝛼0

2𝜃1,2

)
𝑒4

which is a convex combination of 𝜃1,2 (𝑒1 + 𝑒2) and of 𝑒4).
• Now we assume that 𝑥3 = 0.

– If |𝑥4 | ≤ 1+Θ0
2 , we argue exactly as before, and we illuminate 𝑥 using one

of the directions±(1, 𝛿, 𝜂, 0), ±(𝛿,−1,−𝜂, 0). The only change that we
make is that, in the subcases where min( |𝑥1 |, |𝑥2 |) ≥ 1−Θ0

24 , instead of
comparing the displaced vector 𝑥 + 1−Θ0

24 𝑑 with a vector analogous to
the one in (7), we compare with a vector of the form

𝜆′𝑣4;Θ0 + (1 − 𝜆′) ®|𝑥 |.

– If |𝑥4 | > 1+Θ0
2 , again we argue similarly to the previous case, while illu-

minating 𝑥 with the unique direction 𝑑 ∈ {±(0, 𝜂, 𝛿, 1)} which satisfies
𝑑4 · 𝑥4 < 0.

• Next, assume that 𝑥2 = 0. In this case we illuminate 𝑥 with a direction 𝑑 from

±(1, 𝛿, 𝜂, 0), ±(𝛿,−𝜂, 1, 𝜁), ±(−𝛿,−𝜂, 1, 𝜁), ±(0,±(𝜂, 𝛿), 1)

and we distinguish subcases based on whether |𝑥4 | ≤ 1+Θ0
2 or not (in

fact, in the latter subcase we illuminate 𝑥 with one of the directions from
±(0,±(𝜂, 𝛿), 1), relying on the fact that |𝑥1 | ≤ 𝛼4,1 ≤ 𝛼0 < 1+Θ0

2 ).
• Finally assume that 𝑥1 = 0. Then we illuminate 𝑥 with one of the directions
from

±(0,±(𝜂, 𝛿), 1), ±(0, 1,−𝛿, 𝜂), ±(𝛿,−𝜂, 1, 𝜁).
If sign(𝑥2) = sign(𝑥3), then we use one of the first 4 directions. We also use
one of these directions in the cases where sign(𝑥2) = − sign(𝑥3), but at the
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same time |𝑥2 | ≤ 1+Θ0
2 and |𝑥4 | ≥ 1−Θ0

24 , whereas we use the last pair of direc-
tions here if, instead of the last assumption, we have min( |𝑥3 |, |𝑥4 |) = |𝑥4 | <
1−Θ0
24 .

Finally, if sign(𝑥2) = − sign(𝑥3) and |𝑥2 | > 1+Θ0
2 , then we will have that

|𝑥4 | ≤ 𝛼2,4 ≤ 𝛼0. Thus, regardless of whether min( |𝑥2 |, |𝑥3 |) = |𝑥3 | < 1−Θ0
24

or not, we will illuminate 𝑥 by a direction 𝑑 ∈ {±(0, 1,−𝛿, 𝜂)} (it is just that
in the former subcase we will compare the displaced vector 𝑥 + |𝑥2 |𝑑 with the
vector 𝑣4;Θ0 , whereas in the latter subcase wewill compare the same displaced
vector with a convex combination of the form 𝜆𝑒4 + (1 − 𝜆) ®|𝑥 |; note that
in the latter subcase we again consider the displacement 𝑥 + |𝑥2 |𝑑 because
|𝑥3 | ≥ 1−Θ0

24 > 𝛿 byour restrictions so far, and thus | (𝑥+|𝑥2 |𝑑)3 | = |𝑥3 |−|𝑥2 |𝛿,
which we can make sure is less than the 3rd coordinate (1 − 𝜆) |𝑥3 | of a point
of the form 𝜆𝑒4 + (1 − 𝜆) ®|𝑥 | for a suitably chosen 𝜆 ∈ (0, 1); compare with
how we found suitable 𝜆0 and 𝜆 in (6) and (7)).

We have thus illuminated all boundary points of B. We finally remark that, if B does
not satisfy the assumption that max1≤𝑖≠ 𝑗≤4 𝛼𝑖, 𝑗 = max(𝛼1,2, 𝛼2,1), then clearly a coor-
dinate permutation 𝜄 of R4 suffices to give an affine image 𝜄(B) of B which does. This
completes the proof. �

Proposition 37 Suppose that for a given B ∈ U4 there is exactly one pair of indices 𝑖1, 𝑖2 ∈
[4] such that



𝑒𝑖1 + 𝑒𝑖2

B = 1. Then there exist 𝛿 > 0 and 𝜂 = 𝜂𝛿 > 0 so that B can be
illuminated by some coordinate permutation of the set

F37,38, 𝛿,𝜂 :=
{
± (1, 𝛿, 𝜂, 0), ±(𝛿,−1, 𝜂, 0), ±(−𝜂, 𝛿, 1, 0), ±(𝜂, 𝛿,−1, 0),
± (−𝜂, 0, 𝛿, 1), ±(−𝜂, 0, 𝛿,−1), ±(1, 0, 1, 0)

}
.

Proof Without loss of generality, we can assume that 𝑒1 + 𝑒2 ∈ B. For any 1 ≤ 𝑖 ≠

𝑗 ≤ 4 with {𝑖, 𝑗} ≠ {1, 2}, we set

𝜃𝑖, 𝑗 := ‖𝑒𝑖 + 𝑒 𝑗 ‖−1B ,

which by our assumption will be strictly less than 1. Set Θ0 = max
{
𝜃𝑖, 𝑗 : 1 ≤ 𝑖 ≠ 𝑗 ≤

4, {𝑖, 𝑗} ≠ {1, 2}
}
and fix some 𝛿 ∈

(
0, 1−Θ0

4
)
and some 𝜂𝛿 ∈ (0, 𝛿/2) (we will further

restrict 𝜂𝛿 by the end of the proof). Let 𝑥 be a boundary point of B, and consider the
following cases.

|Z𝑥 | = 3. Since 𝜂 < 𝛿 < 1
4 , to illuminate a boundary point 𝑥 = 𝑥𝑖𝑒𝑖 with 𝑥𝑖 = ±1, it suffices

to pick a direction 𝑑𝑥 from the first 12 in F37,38, 𝛿,𝜂 which satisfies 𝑚.𝑐.(𝑑𝑥) =

𝑚.𝑐.(𝑥) = 𝑖 and 𝑑𝑥,𝑖 · 𝑥𝑖 < 0.
|Z𝑥 | = 2. We first deal with the subcase where

• Z𝑥 = {3, 4}. Here we will pick the unique direction 𝑑 ∈ ±(1, 𝛿, 𝜂, 0),
±(𝛿,−1, 𝜂, 0) which satisfies 𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ [2]. Then the non-zero
coordinates of 𝑥 + 𝑑 do not exceed in absolute value the non-zero coordinates
of either (1− 𝛿, 0, 𝜂, 0) or (0, 1− 𝛿, 𝜂, 0). The latter points are interior points
of B since 1 − 𝛿 + 𝜂 < 1, and thus 𝑥 + 𝑑 ∈ intB too.
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• Z𝑥 ≠ {3, 4}. If we write 𝑥 = 𝑥𝑖1𝑒𝑖1 + 𝑥𝑖2𝑒𝑖2 with {𝑖1, 𝑖2} = [4] \ Z𝑥 , and
we assume without loss of generality that |𝑥𝑖1 | ≥ |𝑥𝑖2 |, then we will have that
|𝑥𝑖2 | ≤ 𝜃𝑖1 ,𝑖2 ≤ Θ0. Thus, we can pick a direction 𝑑𝑥 from the first 12 in
F37,38, 𝛿,𝜂 so that 𝑚.𝑐.(𝑑𝑥) = 𝑖1 and 𝑑𝑥,𝑖1 · 𝑥𝑖1 < 0. We can compare the
displaced vector 𝑥 + |𝑥𝑖1 |𝑑𝑥 to either (Θ0 + 𝛿)𝑒𝑖2 + 𝛿𝑒𝑖3 orΘ0𝑒𝑖2 + 𝛿(𝑒𝑖3 + 𝑒𝑖4 ),
where {𝑖3, 𝑖4} = Z𝑥 . Given that Θ0 + 2𝛿 < 1, the latter points are in intB,
and thus the same is true for 𝑥 + |𝑥𝑖1 |𝑑𝑥 .

|Z𝑥 | = 0. Here we distinguish subcases based on the magnitude of |𝑥4 |.
• If |𝑥4 | ≤ Θ0 < 1, then, by employing Corollary 11 (combined with Corollary
8), we can illuminate 𝑥 using one of the first 8 directions in F37,38, 𝛿,𝜂 (we
choose the unique direction 𝑑 among these which satisfies 𝑑𝑠 · 𝑥𝑠 < 0 for
𝑠 ∈ [3]).

• Assume now that |𝑥4 | > Θ0. Then |𝑥1 | ≤ 𝜃1,4 ≤ Θ0 and |𝑥2 | ≤ 𝜃2,4 ≤ Θ0.
– If |𝑥3 | < 1−Θ0

4 , we use the unique direction 𝑑 ∈ {±(−𝜂, 0, 𝛿, 1)} which
satisfies 𝑑4 · 𝑥4 < 0. We compare the displaced vector 𝑥 + |𝑥4 |𝑑 with the
convex combination

𝑢3;Θ0 :=
1 + Θ0

2
(𝑒1 + 𝑒2) +

1 − Θ0

2
𝑒3 ∈ B.

– If |𝑥3 | ≥ 1−Θ0
4 , then we use the unique direction 𝑑 ∈ {±(−𝜂, 0, 𝛿, 1),

±(−𝜂, 0, 𝛿,−1)} which satisfies 𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {3, 4}. For the same
indices 𝑠, we have that��(𝑥 + |𝑥4 |𝑑)𝑠

�� < (1 − 𝜆0) |𝑥𝑠 |

as long as𝜆0 ∈ (0, 𝛿) (since (𝑥+|𝑥4 |𝑑)4 = 0, and since𝜆0 |𝑥3 | ≤ 𝜆0𝜃3,4 ≤
𝜆0Θ0 and |𝑥4 |𝛿 ≥ Θ0𝛿). But then we compare 𝑥 + |𝑥4 |𝑑 with the vector

(1 − 𝜆0) ®|𝑥 | + 𝜆0 (𝑒1 + 𝑒2) ∈ B,

and we can conclude that 𝑥 + |𝑥4 |𝑑 ∈ intB as long as 𝜂 < 𝜆0 (1−Θ0) <
𝛿(1 − Θ0) (so that

��(𝑥 + |𝑥4 |𝑑)1
�� ≤ |𝑥1 | + |𝑥4 |𝜂 < |𝑥1 | + 𝜆0 (1 − Θ0) ≤

|𝑥1 | + 𝜆0 (1 − |𝑥1 |) ).
|Z𝑥 | = 1. First of all, ifZ𝑥 = {4}, then we argue as in the cases where |Z𝑥 | = 0 and |𝑥4 | ≤

Θ0: the first 8 directions of F37,38, 𝛿,𝜂 illuminate 𝑥.
The remaining subcases are the following.
• Assume that 𝑥3 = 0. Then, if |𝑥4 | ≤ Θ0, while min( |𝑥1 |, |𝑥2 |) ≤ 1−Θ0

4 ≤
max( |𝑥1 |, |𝑥2 |), we use a direction 𝑑 from ±(1, 𝛿, 𝜂, 0), ±(𝛿,−1, 𝜂, 0) so that
𝑚.𝑐.(𝑑) is the same index where max( |𝑥1 |, |𝑥2 |) is attained, and so that
𝑑𝑚.𝑐.(𝑑) · 𝑥𝑚.𝑐.(𝑑) < 0. We will have that 𝑥 + |𝑥𝑚.𝑐.(𝑑) |𝑑 ∈ intB based on
our restrictions on 𝛿 and 𝜂.
If instead |𝑥4 | ≤ Θ0 and min( |𝑥1 |, |𝑥2 |) ≥ 1−Θ0

4 , then we choose from the
same directions a direction 𝑑 such that 𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ [2]. We compare
the displaced vector 𝑥 + 1−Θ0

4 𝑑 with a convex combination of the form

(1 − 𝜆) ®|𝑥 | + 𝜆
(
1 + Θ0

2
𝑒4 +

1 − Θ0

2
𝑒3

)
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where 𝜆 < 1−Θ0
4 𝛿; we can then conclude that 𝑥 + 1−Θ0

4 𝑑 ∈ intB as long as
𝜂 <

1−Θ0
2 𝛿 (which also ensures thatwe canpick a suitable positive𝜆 < 1−Θ0

4 𝛿).
Finally, if |𝑥4 | > Θ0, then we use a direction 𝑑 ∈ {±(−𝜂, 0, 𝛿, 1)} and

compare 𝑥 + |𝑥4 |𝑑 with 𝑢3;Θ0 =
1+Θ0
2 (𝑒1 + 𝑒2) + 1−Θ0

2 𝑒3 again.
• Assume now that 𝑥1 = 0. Thenwewill illuminate 𝑥 using one of the directions

±(𝛿,−1, 𝜂, 0), ±(−𝜂, 𝛿, 1, 0), ±(𝜂, 𝛿,−1, 0), ±(−𝜂, 0, 𝛿, 1), ±(−𝜂, 0, 𝛿,−1)

while distinguishing subcases based on whether |𝑥4 | ≤ Θ0 or not, and
whether in the former case min( |𝑥2 |, |𝑥3 |) ≤ 1−Θ0

4 or not, or whether in the
latter case |𝑥3 | ≤ 1−Θ0

4 or not.
• Finally, we assume that 𝑥2 = 0. If |𝑥4 | > Θ0, then we will have that |𝑥1 | ≤ Θ0,
and thus we can use a direction 𝑑 from±(−𝜂, 0, 𝛿, 1), ±(−𝜂, 0, 𝛿,−1) so that
𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {3, 4}: we can conclude that 𝑥 + |𝑥4 |𝑑 ∈ intB (while
distinguishing subcases in our analysis based on whether |𝑥3 | ≤ 1−Θ0

4 or not).
If instead |𝑥4 | ≤ Θ0 < 1, then we can also rely on Corollary 11. We distin-

guish cases based onwhether sign(𝑥1) = − sign(𝑥3) or not. In the former case,
we use again one of the directions ±(−𝜂, 0, 𝛿, 1), ±(−𝜂, 0, 𝛿,−1) to illumi-
nate 𝑥 (herewe can find a direction 𝑑 such that 𝑑𝑠 ·𝑥𝑠 < 0 for all 𝑠 ∈ {1, 3, 4}).
If instead sign(𝑥1) = sign(𝑥3), then Corollary 11 guarantees that one of the
directions ±(1, 0, 1, 0) illuminates 𝑥.

In the end, by examining our analysis more carefully, we can see that the restrictions
𝛿 ∈

(
0, 1−Θ0

4
)
and 𝜂 < 1−Θ0

2 𝛿 are sufficient to complete the proof. �

Proposition 38 Suppose that for a given B ∈ U4 there are exactly two pairs of indices
𝑖1, 𝑖2 ∈ [4] such that



𝑒𝑖1 + 𝑒𝑖2

B = 1. Then at least one of the following two statements
holds:
(i) there exist 𝛿1 > 0 and 𝜂1 = 𝜂𝛿1 > 0 so that B can be illuminated by some coordinate
permutation of the set

F37,38, 𝛿1 ,𝜂1 =
{
± (1, 𝛿1, 𝜂1, 0), ±(𝛿1,−1, 𝜂1, 0), ±(−𝜂1, 𝛿1, 1, 0), ±(𝜂1, 𝛿1,−1, 0),
± (−𝜂1, 0, 𝛿1, 1), ±(−𝜂1, 0, 𝛿1,−1), ±(1, 0, 1, 0)

}
;

(ii) there exists 𝛿2 > 0 so that B can be illuminated by some coordinate permutation of the set

F38,alt, 𝛿2 :=
{
±(1, 𝛿2, 0, 0),±(−𝛿2, 1, 0, 0),±(0, 0, 1, 𝛿2),±(0, 0,−𝛿2, 1)

}
.

Proof We first deal with the cases where statement (ii) definitely applies. These are
the cases where the two pairs of indices 𝑖1 ≠ 𝑖2 and 𝑗1 ≠ 𝑗2 ∈ [4] for which we have

𝑒𝑖1 + 𝑒𝑖2

B =



𝑒 𝑗1 + 𝑒 𝑗2

B = 1 satisfy {𝑖1, 𝑖2} ∩ { 𝑗1, 𝑗2} = ∅.
Without loss of generality, we can assume that {𝑖1, 𝑖2} = {1, 2} and { 𝑗1, 𝑗2} = {3, 4}.

For any other pair (𝑖, 𝑗) of (distinct) indices, we set 𝜃𝑖, 𝑗 = ‖𝑒𝑖+𝑒 𝑗 ‖−1B , andweknow from
our assumptions that 𝜃𝑖, 𝑗 < 1. Let us setΘ0 = max{𝜃𝑖, 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 4, 𝑒𝑖 + 𝑒 𝑗 ∉ B},
and let us fix 𝛿2 < 1 − Θ0.

Consider now a boundary point 𝑥 of B, and suppose |𝑥1 | is its maximum coor-
dinate (in absolute value); note that this does not have to be unique. Necessarily
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max{|𝑥3 |, |𝑥4 |} ≤ max{𝜃1,3, 𝜃1,4} ≤ Θ0, and thus (0, 0, 𝑥3, 𝑥4) is an interior point of B
(since 𝑒3 + 𝑒4 ∈ B).

If 𝑥2 = 0, then we illuminate 𝑥 using the direction 𝑑𝑥 = − sign(𝑥1) (1, 𝛿2, 0, 0): we
will have 𝑥 + |𝑥1 |𝑑𝑥 = (0,−𝑥1𝛿2, 𝑥3, 𝑥4), which by our assumptions is an interior point
of B (this can be seen by comparing with the point (1 − Θ0)𝑒2 + Θ0 (𝑒3 + 𝑒4) ∈ B).

If 𝑥2 ≠ 0, then we pick instead a direction 𝑑𝑥 from ±(1, 𝛿2, 0, 0),±(−𝛿2, 1, 0, 0)
which satisfies 𝑑𝑥,𝑠 · 𝑥𝑠 < 0 for both 𝑠 = 1 and 𝑠 = 2. Then, using Corollary 11, we see
that 𝑑𝑥 illuminates 𝑥.

We argue analogously if the maximum (in absolute value) coordinate of 𝑥 is its 2nd
or 3rd or 4th one.

Consider now the cases where {𝑖1, 𝑖2} ∩ { 𝑗1, 𝑗2} ≠ ∅. Without loss of generality, let
𝑒1 + 𝑒2, 𝑒2 + 𝑒3 ∈ B. Again let us set Θ0 = max{𝜃𝑖, 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 4, 𝑒𝑖 + 𝑒 𝑗 ∉ B},
where 𝜃𝑖, 𝑗 = ‖𝑒𝑖 + 𝑒 𝑗 ‖−1B , and observe thatΘ0 < 1. Fix now some

𝛿1 <
1 − Θ0

4

and suppose also that we have chosen some 𝜂1 < 𝛿1/2 (we will soon see that we need to
restrict 𝜂1 further, but this will be done in an unambiguous manner).

The argument thatF37,38, 𝛿1 ,𝜂1 illuminatesB is very analogous to that of the previous
proposition: let us fix an extreme point 𝑥 ∈ 𝜕B, and consider the following (possible)
cases.

|Z𝑥 | = 3. By our assumptions here, 𝑥 is an extreme point only if 𝑥 = ±𝑒4. But then 𝑥 is
illuminated by the directions ∓(−𝜂1, 0, 𝛿1, 1), as long as 𝜂1, 𝛿1 < 1.

|Z𝑥 | = 2. If 𝑥 = ±𝑒1 + ±𝑒2 or ±𝑒2 + ±𝑒3, then one of the first 8 directions of F37,38, 𝛿1 ,𝜂1
illuminates 𝑥. The ‘trickiest’ case here is if 𝑥 = ±(𝑒1− 𝑒2). Then we have to use the
directions ∓(𝛿1,−1, 𝜂1, 0): e.g. (𝑒1 − 𝑒2) + (−𝛿1, 1,−𝜂1, 0) = (1 − 𝛿1, 0,−𝜂1, 0),
which is found in intB since 1 − 𝛿1 + 𝜂1 < 1.
Note that all other points 𝑥 ∈ 𝜕B with Z𝑥 = {3, 4} or Z𝑥 = {1, 4} are not

extreme, but in the convex hull of ±𝑒1 + ±𝑒2 and ±𝑒2 + ±𝑒3 (so they are also illu-
minated by the same 8 directions). Other subcases that we need to consider here
are the following.
• If 𝑥 = (𝑥1, 0, 𝑥3, 0), then by our assumptions we have that min( |𝑥1 |, |𝑥3 |) ≤
Θ0. If |𝑥1 | ≤ |𝑥3 |, then we illuminate 𝑥 using the directions ±(−𝜂1, 𝛿1, 1, 0):

𝑥 + (− sign(𝑥3) |𝑥3 |) (−𝜂1, 𝛿1, 1, 0) = (𝑥1 + 𝑥3𝜂1,−𝑥3𝛿1, 0, 0) ∈ intB

since |𝑥1 + 𝑥3𝜂1 | ≤ Θ0 + 1−Θ0
8 < 1 − 1−Θ0

2 , while |𝑥3𝛿1 | ≤ 𝛿1 < 1−Θ0
2 .

Similarly, if we have that |𝑥3 | ≤ |𝑥1 |, we illuminate 𝑥 with the directions
±(1, 𝛿1, 𝜂1, 0).

• Assume now that 𝑥 = 𝑥 𝑗𝑒 𝑗 +𝑥4𝑒4 for some 𝑗 ∈ [3]. One of the ‘trickiest’ cases
here is if 𝑗 = 2. Again, we distinguish the subcases |𝑥4 | ≤ |𝑥2 | and |𝑥2 | ≤ |𝑥4 |
(with min( |𝑥2 |, |𝑥4 |) ≤ Θ0 by our assumptions). In the former one we have

𝑥 + (− sign(𝑥2) |𝑥2 |) (−𝛿1, 1,−𝜂1, 0) = (𝑥2𝛿1, 0, 𝑥2𝜂1, 𝑥4) ∈ intB
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since |𝑥2𝜂1 | < |𝑥2𝛿1 | < 1−Θ0
4 and |𝑥4 | ≤ Θ0, and thus we can compare the

abovedisplaced vectorwith the convex combinationΘ0𝑒4+ 1−Θ0
2 (𝑒1+𝑒3) ∈ B.

On the other hand, in the subcase where |𝑥2 | ≤ |𝑥4 |, we will have

𝑥 + (− sign(𝑥4) |𝑥4 |) (−𝜂1, 0, 𝛿1, 1) = (𝑥4𝜂1, 𝑥2,−𝑥4𝛿1, 0)

which is in intB by completely analogous reasoning.

The remaining cases, where 𝑥 = 𝑥 𝑗𝑒 𝑗 + 𝑥4𝑒4 with 𝑗 = 1 or 𝑗 = 3, are
handled very similarly (andwe illuminate 𝑥 using one of the first 12 directions
of F37,38, 𝛿1 ,𝜂1 ).

|Z𝑥 | = 1. If we have that Z𝑥 = {4}, then we can use one of the first 8 directions to illu-
minate 𝑥 (since they contain all possible combinations of signs for the first three
coordinates).
• Assume now that Z𝑥 = {3}. If |𝑥4 | ≤ Θ0, then max( |𝑥1 |, |𝑥2 |) ≥ 1 − Θ0
(because otherwise 𝑥 would not be a boundary point, since B contains (1 −
Θ0) (𝑒1 + 𝑒2) + Θ0𝑒4 and we could apply Lemma 10 with the section {𝜉 ∈
B : 𝜉4 = Θ0}). If in addition min( |𝑥1 |, |𝑥2 |) < 1−Θ0

4 , and we write 𝑠1 for the
index where the maximum is attained, then we can pick a direction 𝑑 from
±(1, 𝛿1, 𝜂1, 0), ±(𝛿1,−1, 𝜂1, 0) so that𝑚.𝑐.(𝑑) = 𝑠1 ∈ {1, 2} and 𝑑𝑠1 · 𝑥𝑠1 <
0. We will have that 𝑥 + |𝑥𝑠1 |𝑑 ∈ intB by our assumptions on 𝛿1 and 𝜂1.

If instead |𝑥4 | ≤ Θ0 and min( |𝑥1 |, |𝑥2 |) ≥ 1−Θ0
4 , then we pick 𝑑 from the

same directions so that 𝑑𝑠 · 𝑥𝑠 < 0 for both 𝑠 = 1 and 𝑠 = 2. We compare
𝑥 + 1−Θ0

4 𝑑 with a convex combination of the form

(1 − 𝜆) ®|𝑥 | + 𝜆
(
1 + Θ0

2
𝑒4 +

1 − Θ0

2
𝑒3

)
where 𝜆 <

1−Θ0
4 𝛿1. As long as 𝜂1 < 2𝜆 <

1−Θ0
2 𝛿1, we will have that 𝑥 +

1−Θ0
4 𝑑 ∈ intB.

Finally, if |𝑥4 | > Θ0, thenmax( |𝑥1 |, |𝑥2 |) ≤ Θ0. Therefore, we pick a direc-
tion 𝑑 ∈ {±(−𝜂1, 0, 𝛿1, 1)} such that 𝑑4 · 𝑥4 < 0, and we can check that
𝑥 + |𝑥4 |𝑑 ∈ intB by comparing to the point 1+Θ0

2 (𝑒1 + 𝑒2) + 1−Θ0
2 𝑒3 ∈ B.

• We argue completely analogously whenZ𝑥 = {1}, and we use the directions

±(𝛿1,−1, 𝜂1, 0), ±(−𝜂1, 𝛿1, 1, 0), ±(𝜂1, 𝛿1,−1, 0), ±(−𝜂1, 0, 𝛿1, 1)

to illuminate 𝑥.
• Let us finally assume that Z𝑥 = {2}. If we have that |𝑥4 | ≤ Θ0, and at
the same time sign(𝑥1) = − sign(𝑥3), then we use one of the directions
±(−𝜂1, 0, 𝛿1, 1), ±(−𝜂1, 0, 𝛿1,−1) to illuminate 𝑥.
If instead |𝑥4 | ≤ Θ0 < 1 and sign(𝑥1) = sign(𝑥3), then one of the

directions ±(1, 0, 1, 0) illuminates 𝑥 because of Corollary 11.

On the other hand, if |𝑥4 | > Θ0, then |𝑥1 | ≤ Θ0. Then we choose 𝑑 ∈{
±(−𝜂1, 0, 𝛿1, 1),±(−𝜂1, 0, 𝛿1,−1)

}
so that 𝑑𝑠 ·𝑥𝑠 < 0 for 𝑠 ∈ {3, 4}.Wewill

have that 𝑥+|𝑥4 |𝑑 ∈ intB (wherewedistinguish subcases in our analysis based
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onwhether |𝑥3 | < 1−Θ0
4 or not; in the latter subcasewe compare 𝑥+|𝑥4 |𝑑 with

a convex combination of the form (1−𝜆) ®|𝑥 | +𝜆𝑒1 where 𝜆 < Θ0𝛿1 < |𝑥4 |𝛿1,
and observe that, as long as 𝜂1 < 𝜆(1 − Θ0) < (1 − Θ0)Θ0𝛿1, the desired
conclusion will follow).

|Z𝑥 | = 0. Here we can argue as in the very last subcase when we have that |𝑥4 | > Θ0:
indeed, it will then hold that max( |𝑥1 |, |𝑥2 |) ≤ Θ0, and thus we can pick 𝑑 ∈{
±(−𝜂1, 0, 𝛿1, 1), ±(−𝜂1, 0, 𝛿1,−1)

}
so that 𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {3, 4} to illumi-

nate 𝑥 (considering again the displaced vector 𝑥+|𝑥4 |𝑑 and distinguishing subcases
based on whether |𝑥3 | < 1−Θ0

4 or not; the only change we have to make is that,
in the latter subcase, we compare 𝑥 + |𝑥4 |𝑑 to a convex combination of the form
(1 − 𝜆) ®|𝑥 | + 𝜆(𝑒1 + 𝑒2) ).

On the other hand, if |𝑥4 | ≤ Θ0 < 1, then one of the first 8 directions in
F37,38, 𝛿1 ,𝜂1 will illuminate 𝑥 by Corollary 11.

Gathering all the restrictions on 𝜂1, we see that, as long as

𝜂1 <
1 − Θ0

2
𝛿1

(which also implies that 𝜂1 < (1 − Θ0)Θ0𝛿1 given that Θ0 ≥ 1/2), the set F37,38, 𝛿1 ,𝜂1
will illuminate B under the assumptions of our second main case here. �

Proposition 39 Suppose that for a given B ∈ U4 there are exactly three pairs of indices
𝑖1, 𝑖2 ∈ [4] such that



𝑒𝑖1 + 𝑒𝑖2

B = 1 (and at the same time there are no triples of indices
𝑗1, 𝑗2, 𝑗3 ∈ [4] such that 𝑒 𝑗1+𝑒 𝑗2+𝑒 𝑗3 ∈ B). Then at least one of the following two statements
holds:
(i) there exist 𝛿1 > 0 and 𝜂1 = 𝜂𝛿1 > 0 so that B can be illuminated by some coordinate
permutation of the set

F39,42, 𝛿1 ,𝜂1 :=
{
± (1, 𝛿1, 𝜂1, 0), ±(𝛿1,−1,−𝜂1, 0), ±(𝛿1,−𝜂1, 1, 0), ±(𝛿1, 𝜂1,−1, 0),
± (0,±(𝜂1, 𝛿1), 1), ±(0, 1,−1, 0)

}
;

(ii) there exist 𝛿2 > 0 and 𝜂2 = 𝜂𝛿2 > 0 so that B can be illuminated by some coordinate
permutation of the set

F39,alt, 𝛿2 ,𝜂2 :=
{
±(𝜂2, 1, 𝛿2, 0), ±(−𝜂2, 1, 𝛿2, 0), ±(−𝜂2, 1,−𝛿2, 0),

± (𝜂2, 𝜂2, 1, 𝛿2), ±(−𝜂2,−𝜂2, 1, 𝛿2), ±(𝜂2, 𝜂2,−𝛿2, 1), ±(−𝜂2,−𝜂2,−𝛿2, 1)
}
.

Proof We single out three non-equivalent cases, and observe that any other case here
can be reduced to one of these three after a coordinate permutation:

Case 1. B contains the points 𝑒1 + 𝑒2, 𝑒1 + 𝑒3 and 𝑒2 + 𝑒3 (but does not contain the point
𝑒1 + 𝑒2 + 𝑒3).

Case 2. B contains the points 𝑒1 + 𝑒2, 𝑒1 + 𝑒3 and 𝑒3 + 𝑒4.
Case 3. B contains the points 𝑒1 + 𝑒2, 𝑒1 + 𝑒3 and 𝑒1 + 𝑒4.

Wewill see that if either Case 1 or Case 2 holds, thenF39,42, 𝛿1 ,𝜂1 illuminatesB (for some
suitably chosen 𝛿1, 𝜂1), while, if Case 3 holds, we may use F39,alt, 𝛿2 ,𝜂2 to illuminate B.
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Proof for Case 1. For every 𝑖 ∈ [3] , set 𝜃𝑖,4 = ‖𝑒𝑖 + 𝑒4‖−1B . By our assumptions for this
main case,Θ0 := max{𝜃𝑖,4 : 𝑖 ∈ [3]} ∈ (0, 1).

We pick 𝛿1 < 1−Θ0
4 , and 𝜂1 < 𝛿1

2 (which we will restrict further by the end of the
proof).

Note that the only extreme points 𝑥 of B with |Z𝑥 | = 3 are ±𝑒4. To illuminate
such a point 𝑥, we use the directions ∓(0, 𝜂1, 𝛿1, 1): e.g. 𝑒4 + (0,−𝜂1,−𝛿1,−1) =

(0,−𝜂1,−𝛿1, 0) ∈ intB if we compare with the point 𝑒2 + 𝑒3.
We now consider the other possibilities for |Z𝑥 |.

|Z𝑥 | = 2. Consider first the (potentially extreme) points ±𝑒𝑖 + ±𝑒 𝑗 with 𝑖, 𝑗 ∈ [3]. The
“trickiest” case here are the points ±𝑒2 + ±𝑒3, for which we can pick a direction
𝑑 from ±(𝛿1,−1,−𝜂1, 0), ±(𝛿1,−𝜂1, 1, 0) so that 𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {2, 3}. E.g.
𝑒2 − 𝑒3 + (𝛿1,−𝜂1, 1, 0) = (𝛿1, 1 − 𝜂1, 0, 0) ∈ intB, and this can be confirmed if
we compare with the point 𝑒1 + 𝑒2.
Note also that there are no other extreme points ofBwith |Z𝑥 | = 2 and 4 ∈ Z𝑥 .

Consider now a (potentially extreme) point 𝑥 ∈ 𝜕B of the form 𝑥𝑖1𝑒𝑖1 +
𝑥4𝑒4, where 𝑖1 ∈ [3] (write also {𝑖2, 𝑖3} = [3] \ {𝑖1}). By our assumptions,
min( |𝑥𝑖1 |, |𝑥4 |) ≤ Θ0.
• If |𝑥𝑖1 | ≤ Θ0, then we choose 𝑑 ∈ {±(0, 𝜂1, 𝛿1, 1)} so that 𝑑4 · 𝑥4 < 0. Then
𝑥 + |𝑥4 |𝑑 ∈ intB, which can be seen if we compare with one of the points

( |𝑥𝑖1 | + |𝑥4 |𝛿1)𝑒𝑖1 + |𝑥4 |𝛿1𝑒𝑖2 or |𝑥𝑖1 |𝑒𝑖1 + |𝑥4 |𝛿1 (𝑒𝑖2 + 𝑒𝑖3 )

(where the values of 𝑖2, 𝑖3 from [3] \{𝑖1} are suitably chosen based on 𝑥). Note
that both the above points are interior points ofB by our restriction on 𝛿1, and
at least one of them has larger in absolute value corresponding coordinates to
those of 𝑥 + |𝑥4 |𝑑.

• If instead |𝑥4 | ≤ Θ0, then we pick a direction 𝑑 from the first 8 in F39,42, 𝛿1 ,𝜂1
so that 𝑑𝑖1 · 𝑥𝑖1 < 0. In a similar manner to above, we can compare the point
𝑥 + |𝑥𝑖1 |𝑑 to the point |𝑥4 |𝑒4 + |𝑥𝑖1 |𝛿1 (𝑒𝑖2 + 𝑒𝑖3 ) to see that the former point
(as well as the latter) is in intB.

|Z𝑥 | = 1. IfZ𝑥 = {4}, the first 8 directions of F39,42, 𝛿1 ,𝜂1 illuminate 𝑥.
• If instead Z𝑥 = {1}, and we assume first that |𝑥4 | ≤ Θ0, then one of the
directions from

{
±(0,±(𝜂1, 𝛿1), 1), ±(0, 1,−1, 0)

}
illuminates 𝑥 (we use one

of the first 4 if sign(𝑥2) = sign(𝑥3), and we use one of the last 2 if sign(𝑥2) =
− sign(𝑥3) while relying on Corollary 11 as well).
When |𝑥4 | > Θ0, we will instead have that |𝑥2 | ≤ Θ0, and thus we can pick

a direction 𝑑 ′ from ±(0,±(𝜂1, 𝛿1), 1) so that 𝑑 ′𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {3, 4}. Then
𝑥+|𝑥4 |𝑑 ′ ∈ intB, sincewe can compare it to the point (Θ0+𝜂1)𝑒2+(1−𝛿1)𝑒3
which is also an interior point of B.

• If Z𝑥 = {2}, and we assume first that |𝑥4 | ≤ Θ0, then we use the direc-
tions ±(1, 𝛿1, 𝜂1, 0), ±(𝛿1,−𝜂1, 1, 0), ±(𝛿1, 𝜂1,−1, 0) to illuminate 𝑥 (and
we consider subcases based on whether min( |𝑥1 |, |𝑥3 |) <

1−Θ0
4 or not; in

the latter subcase, we pick 𝑑 ∈
{
±(𝛿1,−𝜂1, 1, 0), ±(𝛿1, 𝜂1,−1, 0)

}
so that

𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {1, 3}, and we compare 𝑥 + 1−Θ0
4 𝑑 with a convex
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combination of the form

(1 − 𝜆) ®|𝑥 | + 𝜆
(
1 − Θ0

2
𝑒2 +

1 + Θ0

2
𝑒4

)
where 𝜆 < 1−Θ0

4 𝛿1; as long as 𝜂1 < 1−Θ0
2 𝛿1 (which ensures that we can find 𝜆

so that 𝜂1 < 2𝜆 < 1−Θ0
2 𝛿1), we can conclude that 𝑥 + 1−Θ0

4 𝑑 ∈ intB).

If instead |𝑥4 | > Θ0, then we have that max( |𝑥1 |, |𝑥3 |) ≤ Θ0. We thus
pick 𝑑 ′ ∈

{
±(0,±(𝜂1, 𝛿1), 1)

}
so that 𝑑 ′𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {3, 4}, and we

check that 𝑥 + |𝑥4 |𝑑 ′ ∈ intB by comparing this point to a point of the form
Θ0 (𝑒1+𝑒3) + 1−Θ0

2 𝑒2, which is also an interior point ofB (here we also use the
fact that Θ0 ≥ 1/2, and thus | (𝑥 + |𝑥4 |𝑑 ′)3 | ≤ max

(
|𝑥3 | − |𝑥4 |𝛿1, |𝑥4 |𝛿1

)
≤

max( |𝑥3 |, 𝛿1) ≤ Θ0).
• Finally, ifZ𝑥 = {3}, then we argue similarly to the previous subcase, and we
illuminate 𝑥 using one of the directions

±(1, 𝛿1, 𝜂1, 0), ±(𝛿1,−1,−𝜂1, 0), ±(0,±(𝜂1, 𝛿1), 1)

(while distinguishing subcases based on whether |𝑥4 | > Θ0 or not, and in the
latter case, based on whether min( |𝑥1 |, |𝑥2 |) < 1−Θ0

4 or not).
|Z𝑥 | = 0. If |𝑥4 | ≤ Θ0 < 1, then we use the first 8 directions in F39,42, 𝛿1 ,𝜂1 to illuminate 𝑥.

If instead |𝑥4 | > Θ0, then, as before,we observe thatmax( |𝑥1 |, |𝑥2 |) ≤ Θ0. Thus,
we can illuminate 𝑥 using a direction 𝑑 from±(0,±(𝜂1, 𝛿1), 1) which satisfies 𝑑𝑠 ·
𝑥𝑠 < 0 for 𝑠 ∈ {3, 4} (to show that the point 𝑥 + |𝑥4 |𝑑 ∈ intB, we distinguish
subcases based on whether |𝑥3 | ≥ 1−Θ0

4 or not; in those cases that |𝑥3 | is ‘not too
small’, we compare the point 𝑥 + |𝑥4 |𝑑 with a convex combination of the form
(1 − 𝜆) ®|𝑥 | + 𝜆(𝑒1 + 𝑒2) where 𝜆 < Θ0𝛿1 < |𝑥4 |𝛿1, and note that, as long as
𝜂1 < 𝜆(1 − Θ0) < (1 − Θ0)Θ0𝛿1, the desired conclusion holds).

We can conclude that, as long as 𝛿1 < 1−Θ0
4 and 𝜂1 < 1−Θ0

2 𝛿1 ≤ (1 − Θ0)Θ0𝛿1, the
set F39,42, 𝛿1 ,𝜂1 will illuminate the body Bwhich contains the points 𝑒1 + 𝑒2, 𝑒1 + 𝑒3 and
𝑒2 + 𝑒3, but not the points 𝑒𝑖 + 𝑒4, 𝑖 ∈ [3] , or the point 𝑒1 + 𝑒2 + 𝑒3.

Proof for Case 2. Analogously to the proof of Case 1, we set 𝜃𝑖, 𝑗 =


𝑒𝑖 + 𝑒 𝑗

−1B for all

1 ≤ 𝑖 < 𝑗 ≤ 4 such that (𝑖, 𝑗) ∉
{
(1, 2), (1, 3), (3, 4)

}
, and then set

Θ0 := max
{
𝜃𝑖, 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 4, (𝑖, 𝑗) ∉ {(1, 2), (1, 3), (3, 4)}

}
.

We will again pick 𝛿1 < 1−Θ0
4 and 𝜂1 < 1−Θ0

2 𝛿1.
Let 𝑥 be an extreme boundary point ofB. In thismain case, the additional assumption

that 𝑥 is extreme implies that |Z𝑥 | ≤ 2.

|Z𝑥 | = 2. Consider first the (potentially extreme) points ±𝑒𝑖 ± 𝑒 𝑗 with (𝑖, 𝑗) ∈{
(1, 2), (1, 3), (3, 4)

}
. The “trickiest” cases here are the points ±(𝑒1 + 𝑒2) and

±𝑒3 ± 𝑒4. We have e.g. that −(𝑒1 + 𝑒2) + (1, 𝛿1, 𝜂1, 0) = (0,−1 + 𝛿1, 𝜂1, 0) ∈
intB because (1 − 𝛿1) + 𝜂1 < 1. Similarly, for ±𝑒3 ± 𝑒4 we use the directions
±(0,±(𝜂1, 𝛿1), 1), and we have e.g. that −𝑒3 + 𝑒4 + (0, 𝜂1, 𝛿1,−1) = (0, 𝜂1,−1 +
𝛿1, 0) ∈ intB for the same reason.
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If 𝑥 is a different extreme point of B with |Z𝑥 | = 2, then we must have
𝑥 = 𝑥𝑖𝑒𝑖 + 𝑥 𝑗𝑒 𝑗 with {𝑖, 𝑗} = ( [4] \ Z𝑥) ∉

{
{1, 2}, {1, 3}, {3, 4}

}
. But

then min( |𝑥𝑖 |, |𝑥 𝑗 |) ≤ Θ0. Without loss of generality, suppose that |𝑥𝑖 | =

max( |𝑥𝑖 |, |𝑥 𝑗 |), and pick a direction 𝑑 from the first 12 in F39,42, 𝛿1 ,𝜂1 so that
𝑑𝑖 · 𝑥𝑖 < 0. Then 𝑥 + |𝑥𝑖 |𝑑 ∈ intB, which can be seen in the same manner as in the
previous main case, by comparing to coordinate permutations of the points

(Θ0 + 𝛿1)𝑒1 + 𝛿1𝑒2 and Θ0𝑒1 + 𝛿1 (𝑒2 + 𝑒3)

(all coordinate permutations of these points are in B, and are interior points
because of our restriction on 𝛿1).

|Z𝑥 | = 1. We argue exactly as in the corresponding subcases in the proof of Case 1 when
Z𝑥 = {4} or whenZ𝑥 = {3}.
We also argue as in Case 1 whenZ𝑥 = {1} orZ𝑥 = {2}, and we additionally

have that |𝑥4 | ≤ Θ0.
• IfZ𝑥 = {1} and |𝑥4 | > Θ0, we have that |𝑥2 | ≤ Θ0. Just as we did in the proof
of Case 1, we pick a direction 𝑑 ′ from±(0,±(𝜂1, 𝛿1), 1) so that 𝑑 ′𝑠 ·𝑥𝑠 < 0 for
𝑠 ∈ {3, 4}, but nowwe distinguish cases according to whether |𝑥3 | < 1−Θ0

4 or
not. In both subcases, we consider the displaced vector 𝑥 + |𝑥4 |𝑑 ′. Moreover,
when |𝑥3 | ≥ 1−Θ0

4 , we compare 𝑥 + |𝑥4 |𝑑 ′ to a convex combination of the
form (1 − 𝜆) ®|𝑥 | + 𝜆𝑒2, where 𝜆 < Θ0𝛿1; similarly to before, as long as 𝜂1 <
(1 − Θ0)𝜆 < (1 − Θ0)Θ0𝛿1, we will obtain that 𝑥 + |𝑥4 |𝑑 ′ ∈ intB.

• If instead Z𝑥 = {2} and |𝑥4 | > Θ0, we similarly have that |𝑥1 | ≤ Θ0 (but
unlike the previousmain case, we cannot claim anymore that |𝑥3 | ≤ Θ0). Still,
as earlier, we pick a direction 𝑑 ′ ∈

{
±(0,±(𝜂1, 𝛿1), 1)

}
so that 𝑑 ′𝑠 ·𝑥𝑠 < 0 for

𝑠 ∈ {3, 4}, but now we distinguish cases based on whether |𝑥3 | ≤ Θ0 or not.
In the former case, we continue as we did before, while, in the cases where
|𝑥3 | > Θ0, we compare 𝑥 + |𝑥4 |𝑑 ′ with a convex combination of the form

(1 − 𝜆′) ®|𝑥 | + 𝜆′(𝑒1 + 𝑒2)

where 𝜆′ < Θ0𝛿1, and obtain the desired conclusion as long as 𝜂1 < 𝜆′ <
Θ0𝛿1.

|Z𝑥 | = 0. In this final subcase, we can argue exactly as in the proof of Case 1.

We are done with the proof of Case 2 as well.

Proof for Case 3. Just as in the proofs for Case 1 and Case 2, for any pair (𝑖, 𝑗) for
which 𝑒𝑖 + 𝑒 𝑗 ∉ B, we set 𝜃𝑖, 𝑗 :=



𝑒𝑖 + 𝑒 𝑗

−1B , and then we define

Θ0 := max{𝜃𝑖, 𝑗 : 2 ≤ 𝑖 < 𝑗 ≤ 4}.

We pick 𝛿2 < 1−Θ0
4 and 𝜂2 < (1 − Θ0)𝛿2, and, under these restrictions, we show that

F39,alt, 𝛿2 ,𝜂2 illuminates the convex bodyB of Case 3.Wewill be relying on the following

Key Observation for Case 3. Let 2 ≤ 𝑖 < 𝑗 ≤ 4, let 𝜇𝑖 , 𝜇 𝑗 ∈ (0, 1) be such that
𝜇𝑖 + 𝜇 𝑗 < 1, and let 𝜆0 ∈ (0, 1). Then the point

𝜆0𝑒1 + 𝜇𝑖𝑒𝑖 + 𝜇 𝑗𝑒 𝑗
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is an interior point of B, since it can be written as a (non-trivial) convex combination of
the points 𝜆0𝑒1 + 𝑒𝑖 , 𝜆0𝑒1 + 𝑒 𝑗 ∈ B and the interior point 𝜆0𝑒1:

𝜆0𝑒1 + 𝜇𝑖𝑒𝑖 + 𝜇 𝑗𝑒 𝑗 = 𝜇𝑖
(
𝜆0𝑒1 + 𝑒𝑖

)
+ 𝜇 𝑗

(
𝜆0𝑒1 + 𝑒 𝑗

)
+ (1 − 𝜇𝑖 − 𝜇 𝑗 )𝜆0𝑒1.

Consider nowan extremepoint 𝑥 ∈ 𝜕B. Observe that there are no such 𝑥with |Z𝑥 | =
3, thus we consider the remaining possibilities.

|Z𝑥 | = 2. Consider first the (potentially extreme) points ±𝑒1 ± 𝑒 𝑗 , where 𝑗 ∈ {2, 3, 4}. We
pick a direction 𝑑 such that 𝑚.𝑐(𝑑) = 𝑗 , and such that 𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {1, 𝑗}.
Then 𝑥 + |𝑥 𝑗 |𝑑 = 𝑥 + 𝑑 satisfies:
• (𝑥 + 𝑑) 𝑗 = 0,
• | (𝑥 + 𝑑)1 | = 1 − 𝜂2 < 1,
• and | (𝑥 +𝑑)𝑖1 | + |(𝑥 +𝑑)𝑖2 | ≤ 𝛿2 +𝜂2 < 2𝛿2 < 1, where {𝑖1, 𝑖2} = [4] \ {1, 𝑗}.

We obtain that 𝑥 + 𝑑 ∈ intB from the above “key observation”.
Next, note that there are no other extreme points in B with |Z𝑥 | = 2 and 1 ∉

Z𝑥 . Thus, assume now that 𝑥 = 𝑥𝑖𝑒𝑖 + 𝑥 𝑗𝑒 𝑗 with 𝑖, 𝑗 ∈ {2, 3, 4}, 𝑖 ≠ 𝑗 . Without
loss of generality, assume that max( |𝑥𝑖 |, |𝑥 𝑗 |) = |𝑥𝑖 |, which in turn implies that
|𝑥 𝑗 | ≤ Θ0. Thus, we pick a direction 𝑑 ′ such that𝑚.𝑐.(𝑑 ′) = 𝑖 and 𝑑 ′𝑖 · 𝑥𝑖 < 0. We
will have that 𝑥 + |𝑥𝑖 |𝑑 ′ satisfies:
• (𝑥 + |𝑥𝑖 |𝑑 ′)𝑖 = 0,
• | (𝑥 + |𝑥𝑖 |𝑑 ′)1 | = |𝑥𝑖 |𝜂2 ≤ 𝜂2,
• | (𝑥 + |𝑥𝑖 |𝑑 ′) 𝑗 | ≤ Θ0 + 𝛿2,
• and | (𝑥 + |𝑥𝑖 |𝑑 ′)𝑠 | ≤ 𝛿2, where {𝑠} = {2, 3, 4} \ {𝑖, 𝑗}.

Since | (𝑥 + |𝑥𝑖 |𝑑 ′) 𝑗 | + |(𝑥 + |𝑥𝑖 |𝑑 ′)𝑠 | ≤ Θ0 + 2𝛿2 < 1, we conclude from the “key
observation” that 𝑥 + |𝑥𝑖 |𝑑 ′ ∈ intB.

|Z𝑥 | = 0. Here we suppose first that |𝑥4 | ≤ Θ0. Except for the cases where sign(𝑥1) =

sign(𝑥2) = − sign(𝑥3), we can use the first 6 directions ofF39,alt, 𝛿2 ,𝜂2 to illuminate
𝑥.
On the other hand, if sign(𝑥1) = sign(𝑥2) = − sign(𝑥3), then one of the

directions ±(−𝜂2,−𝜂2, 1, 𝛿2), ±(𝜂2, 𝜂2,−𝛿2, 1) illuminates 𝑥 (based also on what
sign(𝑥4) is).

Next, suppose that |𝑥4 | > Θ0. In that case we must have |𝑥2 | ≤ Θ0. If we
first assume that |𝑥3 | < 1−Θ0

4 , then we pick a direction 𝑑 from ±(𝜂2, 𝜂2,−𝛿2, 1),
±(−𝜂2,−𝜂2,−𝛿2, 1) so that 𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {1, 4}. We will have that 𝑥 + |𝑥4 |𝑑
satisfies:
• (𝑥 + |𝑥4 |𝑑)4 = 0,
• | (𝑥 + |𝑥4 |𝑑)1 | ≤ 1 − |𝑥4 |𝜂2 < 1 − Θ0𝜂2,
• | (𝑥 + |𝑥4 |𝑑)2 | ≤ Θ0 + 𝜂2,
• and | (𝑥 + |𝑥4 |𝑑)3 | ≤ 1−Θ0

4 + 𝛿2.
Thus | (𝑥 + |𝑥4 |𝑑)2 | + |(𝑥 + |𝑥4 |𝑑)3 | ≤ Θ0 + 1−Θ0

4 + 2𝛿2 < Θ0 + 3
4 (1 − Θ0) < 1,

which implies that 𝑥 + |𝑥4 |𝑑 ∈ intB because of the “key observation”.
If instead |𝑥3 | ≥ 1−Θ0

4 , then we pick a direction 𝑑 ′ from the last 8 in F39,alt, 𝛿2 ,𝜂2
so that 𝑑 ′𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {1, 3, 4}. We can compare 𝑥 + 1−Θ0

4 𝑑 ′ with a convex
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combination of the form

(1 − 𝜆) ®|𝑥 | + 𝜆(𝑒1 + 𝑒2)

where 𝜆 < 1−Θ0
4 𝛿2. As long as 𝜂2 < (1 − Θ0)𝛿2, we can deduce that 𝑥 + 1−Θ0

4 𝑑 ′ ∈
intB.

|Z𝑥 | = 1. Assume first thatZ𝑥 = {𝑟}with 𝑟 ∈ {2, 3, 4}. Let uswrite {𝑖, 𝑗} = {2, 3, 4}\Z𝑥 =

{2, 3, 4} \ {𝑟}, and without loss of generality let us assume that max( |𝑥𝑖 |, |𝑥 𝑗 |) =
|𝑥𝑖 |. Then we will also have that |𝑥 𝑗 | = min( |𝑥𝑖 |, |𝑥 𝑗 |) ≤ Θ0.
We pick a direction 𝑑 so that𝑚.𝑐.(𝑑) = 𝑖, and so that 𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {1, 𝑖}.

Then 𝑥 + |𝑥𝑖 |𝑑 will satisfy:
• (𝑥 + |𝑥𝑖 |𝑑)𝑖 = 0,
• | (𝑥 + |𝑥𝑖 |𝑑)1 | ≤ 1 − |𝑥𝑖 |𝜂2 < 1,
• and | (𝑥 + |𝑥𝑖 |𝑑) 𝑗 | + |(𝑥 + |𝑥𝑖 |𝑑)𝑟 | ≤ Θ0 + |𝑥𝑖 |𝛿2 + |𝑥𝑖 |𝛿2 < 1, given our
restrictions on 𝛿2 and 𝜂2.

Thus, by the “key observation”, 𝑥 + |𝑥𝑖 |𝑑 ∈ intB.

It remains to deal with the cases where Z𝑥 = {1}. Here, we first consider the
subcases where |𝑥3 | < 1−Θ0

4 . Let {𝑖, 𝑗} = {2, 4}, and let us write 𝑖 for the index
where max( |𝑥2 |, |𝑥4 |) is attained (if |𝑥2 | = |𝑥4 |, then set 𝑖 = 2). We then know that
|𝑥 𝑗 | ≤ Θ0. Again, we pick a direction 𝑑 ′ so that𝑚.𝑐.(𝑑 ′) = 𝑖 and 𝑑 ′𝑖 ·𝑥𝑖 < 0. Then,
similarly to above, we can check that 𝑥 + |𝑥𝑖 |𝑑 ′ ∈ intB by the “key observation”
(given that | (𝑥 + |𝑥𝑖 |𝑑 ′)1 | ≤ 𝜂2, and | (𝑥 + |𝑥𝑖 |𝑑 ′) 𝑗 | + |(𝑥 + |𝑥𝑖 |𝑑 ′)3 | ≤ Θ0 + |𝑥𝑖 |𝛿2 +
1−Θ0
4 + |𝑥𝑖 |𝛿2 < 1).

We argue very similarly when |𝑥3 | ≥ 1−Θ0
4 while at the same time |𝑥𝑖 | =

max( |𝑥𝑖 |, |𝑥 𝑗 |) = max( |𝑥2 |, |𝑥4 |) < 1−Θ0
4 : in those subcases, we pick a direction

𝑑 ′ from ±(𝜂2, 𝜂2, 1, 𝛿2) so that 𝑑 ′3 · 𝑥3 < 0, and check in an analogous way that
𝑥 + |𝑥3 |𝑑 ′ ∈ intB.

The last subcase to consider is when min( |𝑥𝑖 |, |𝑥3 |) ≥ 1−Θ0
4 . Then we pick a

direction 𝑑 ′′ so that
{
|𝑑 ′′
𝑖
|, |𝑑 ′′3 |

}
= {1, 𝛿2}, and so that 𝑑 ′′𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {𝑖, 3}.

We compare the displaced vector 𝑥 + 1−Θ0
4 𝑑 ′′ with a convex combination of the

form
(1 − 𝜆′) ®|𝑥 | + 𝜆′(𝑒1 + 𝑒 𝑗 )

where 𝜆′ < 1−Θ0
4 𝛿2: the former vector is guaranteed to be in intB as long as

1−Θ0
4 𝜂2 < 𝜆

′(1 − Θ0) ≤ 𝜆′(1 − |𝑥 𝑗 |) ⇔ 𝜂2 < 4𝜆′ < (1 − Θ0)𝛿2.

This completes the proof in all main cases. �

Remark 40 Taking into account that parameters which appear as later subscripts
depend on previous parameters, and can be chosenmuch smaller if needed, we can now
also verify, through a minor adaptation of the above argument, that, for Cases 1 and 2
of Proposition 39, we can use the illuminating set

F36,41, 𝛿,𝜂,𝜁 :=
{
± (1, 𝛿, 𝜂, 0), ±(𝛿,−1,−𝜂, 0), ±(𝛿,−𝜂, 1, 𝜁), ±(−𝛿,−𝜂, 1, 𝜁),

± (0,±(𝜂, 𝛿), 1), ±(0, 1,−𝛿, 𝜂)
}
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instead of

F39,42, 𝛿1 ,𝜂1 :=
{
± (1, 𝛿1, 𝜂1, 0), ±(𝛿1,−1,−𝜂1, 0), ±(𝛿1,−𝜂1, 1, 0), ±(𝛿1, 𝜂1,−1, 0),
± (0,±(𝜂1, 𝛿1), 1), ±(0, 1,−1, 0)

}
.

This reduces further the number of non-equivalent illuminating sets that we need (we
still chose to work with the latter set to keep the proof a little more transparent).

Next we prove the case where B contains five 2-dimensional unit subcubes, because
it is much more similar to the previous settings compared to the case where B contains
four such subcubes (which we will handle last).

Proposition 41 Suppose that for a given B ∈ U4 there are exactly five pairs of indices
𝑖1, 𝑖2 ∈ [4] such that



𝑒𝑖1 + 𝑒𝑖2

B = 1 (and at the same time there are no triples of indices
𝑗1, 𝑗2, 𝑗3 ∈ [4] such that 𝑒 𝑗1 + 𝑒 𝑗2 + 𝑒 𝑗3 ∈ B). Then there exist 𝛿 > 0, 𝜂 = 𝜂𝛿 > 0 and
𝜁 = 𝜁𝛿,𝜂 > 0 such that B can be illuminated by a coordinate permutation of the set

F36,41, 𝛿,𝜂,𝜁 =
{
± (1, 𝛿, 𝜂, 0), ±(𝛿,−1,−𝜂, 0), ±(𝛿,−𝜂, 1, 𝜁), ±(−𝛿,−𝜂, 1, 𝜁),
± (0,±(𝜂, 𝛿), 1), ±(0, 1,−𝛿, 𝜂)

}
.

Proof Without loss of generality, we can assume that the only pair of distinct indices
𝑖1, 𝑖2 ∈ [4] for which 𝑒𝑖1 + 𝑒𝑖2 ∉ B satisfies {𝑖1, 𝑖2} = {1, 4}. SetΘ0 = ‖𝑒1 + 𝑒4‖−1B < 1.
Also, for each 𝑗 ∈ [4] set

𝛾 𝑗 = ‖1 − 𝑒 𝑗 ‖−1B .
By our assumptions, 𝛾0 := max 𝑗∈[4] 𝛾 𝑗 < 1. Fix now some

𝛿 <
min(1 − Θ0, 1 − 𝛾0)

4
and some 𝜁 < 𝜂/2 < 𝛿/4 (which we will further restrict shortly).

Clearly there are no extreme boundary points 𝑥 ∈ B with |Z𝑥 | = 3, thus we focus
on the remaining cases.

|Z𝑥 | = 2. Here most cases are similar, except for the case where Z𝑥 = {2, 3} (or in other
words, where 𝑥 = (𝑥1, 0, 0, 𝑥4) ). From the remaining cases the only potentially
extreme points are of the form ±𝑒𝑖 + ±𝑒 𝑗 where {𝑖, 𝑗} ≠ {1, 4}. We illuminate
these points using a direction 𝑑 as follows:

Boundary point Possible illuminating directions

± 𝑒1 + ±𝑒2 ±(1, 𝛿, 𝜂, 0), ±(𝛿,−1,−𝜂, 0)

± 𝑒1 + ±𝑒3 ±(𝛿,−𝜂, 1, 𝜁), ±(−𝛿,−𝜂, 1, 𝜁)

± 𝑒2 + ±𝑒3 ±(𝛿,−1,−𝜂, 0), ±(𝛿,−𝜂, 1, 𝜁)

± 𝑒2 + ±𝑒4, ±𝑒3 + ±𝑒4 ±(0, 𝜂, 𝛿, 1), ±(0,−𝜂,−𝛿, 1)

so that 𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {𝑖, 𝑗}. E.g.

(𝑒2 + 𝑒3) + (𝛿,−1,−𝜂, 0) = (𝛿, 0, 1 − 𝜂, 0) ∈ intB,
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which follows simply from the facts that 𝑒1+𝑒3 ∈ B and that 𝛿, 𝜂 ∈ (0, 1). Similarly

(−𝑒2 + 𝑒3) + (−𝛿, 𝜂,−1,−𝜁) =
(
−𝛿, −(1 − 𝜂), 0, −𝜁

)
∈ intB,

which can be seen by comparing to the point (1 − 𝜂) (𝑒1 + 𝑒2) + 𝜁𝑒4, that is also
an interior point of B since 1 − 𝜂 + 𝜁 < 1.

Now assume that 𝑥 = (𝑥1, 0, 0, 𝑥4). Then min( |𝑥1 |, |𝑥4 |) ≤ Θ0. Thus, if 𝑖 is the
(smallest) index at which max( |𝑥1 |, |𝑥4 |) is attained, we can illuminate 𝑥 choosing
a direction 𝑑 from ±(1, 𝛿, 𝜂, 0), ±(0, 𝜂, 𝛿, 1) so that 𝑚.𝑐.(𝑑) = 𝑖 and 𝑑𝑖 · 𝑥𝑖 < 0.
We will have that 𝑥 + |𝑥𝑖 |𝑑 ∈ intB, which can be seen by comparing with the point
1+Θ0
2 𝑒 𝑗 + 1−Θ0

2 (𝑒2 + 𝑒3) ∈ B, where 𝑗 is the remaining index in {1, 4} \ {𝑖}.

|Z𝑥 | = 1. Here we have to separately consider all four possibilities for the index of the zero
coordinate.
• IfZ𝑥 = {4}, then we illuminate 𝑥 choosing from the directions

±(1, 𝛿, 𝜂, 0), ±(𝛿,−1,−𝜂, 0), ±(𝛿,−𝜂, 1, 𝜁), ±(−𝛿,−𝜂, 1, 𝜁).

This is straightforward to do in the cases that sign(𝑥2) = sign(𝑥3), so we
examine how to handle the remaining subcases here.
Note that min( |𝑥1 |, |𝑥2 |, |𝑥3 |) ≤ 𝛾4 ≤ 𝛾0. If sign(𝑥2) = − sign(𝑥3), but

also |𝑥3 | ≤ 𝛾0, then we still pick a direction 𝑑 from the first 4 above so that
𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ [2]. Then, if 𝑖 = 𝑚.𝑐.(𝑑) ∈ [2] , we will have that
𝑥 + |𝑥𝑖 |𝑑 ∈ intB by comparing it to one of the points 𝑒1 + 𝑒3 or 𝑒2 + 𝑒3.

If instead |𝑥3 | > 𝛾0, then we pick a direction 𝑑 ′ from ±(𝛿,−𝜂, 1, 𝜁),
±(−𝛿,−𝜂, 1, 𝜁) so that 𝑑 ′𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ [3]. We then check that 𝑥 + |𝑥3 |𝑑 ′
satisfies:

– (𝑥 + |𝑥3 |𝑑 ′)3 = 0,
– | (𝑥 + |𝑥3 |𝑑 ′)4 | = |𝑥3 |𝜁 ,
– and | (𝑥+|𝑥3 |𝑑 ′)1 | ≤ 1−|𝑥3 |𝛿 ≤ 1−|𝑥3 |𝜂, and similarly | (𝑥+|𝑥3 |𝑑 ′)2 | ≤

1 − |𝑥3 |𝜂.
Thus we can compare 𝑥 + |𝑥3 |𝑑 ′with the point (1− |𝑥3 |𝜂) (𝑒1 + 𝑒2) + |𝑥3 |𝜁 𝑒4,
with the latter point being an interior point of B, since 1 − |𝑥3 |𝜂 + |𝑥3 |𝜁 < 1.

• IfZ𝑥 = {1}, we use the directions ±(0,±(𝜂, 𝛿), 1), ±(0, 1,−𝛿, 𝜂) to illumi-
nate 𝑥. Again, this will be straightforward when sign(𝑥2) = sign(𝑥3), so we
examine the remaining subcases.
Note that min( |𝑥2 |, |𝑥3 |, |𝑥4 |) ≤ 𝛾1 ≤ 𝛾0. If |𝑥4 | ≤ 𝛾0 and sign(𝑥2) =

− sign(𝑥3), then we pick the unique direction 𝑑 ∈ {±(0, 1,−𝛿, 𝜂)} which
satisfies 𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {2, 3}. We will have that 𝑥 + |𝑥2 |𝑑 ∈ intB, which
can be seen by comparing to the point 𝑒3 + 𝑒4.
If instead |𝑥4 | > 𝛾0, then min( |𝑥2 |, |𝑥3 |) ≤ 𝛾0. Let 𝑖 ∈ {2, 3} be the index

at which max( |𝑥2 |, |𝑥3 |) is attained, and pick 𝑑 ′ ∈ {±(0,±(𝜂, 𝛿), 1)} so that
𝑑 ′𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {𝑖, 4}. Then 𝑥 + |𝑥4 |𝑑 ′ ∈ intB, which can be seen by
comparing to the point 𝑒2 + 𝑒3.

• Now, assume thatZ𝑥 = {2}. Then min( |𝑥1 |, |𝑥4 |) ≤ Θ0. If we also have that
|𝑥3 | ≤ 1−Θ0

4 , and if 𝑖 is the (smallest) index at whichmax( |𝑥1 |, |𝑥4 |) is attained,
thenwe pick a direction 𝑑 from±(1, 𝛿, 𝜂, 0), ±(0, 𝜂, 𝛿, 1) so that𝑚.𝑐.(𝑑) = 𝑖
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and 𝑑𝑖 ·𝑥𝑖 < 0.We have that 𝑥+ |𝑥𝑖 |𝑑 ∈ intB, which can be seen by comparing
to the point 1+Θ0

2 𝑒 𝑗 + 1−Θ0
2 (𝑒2 + 𝑒3), 𝑗 ∈ {1, 4} \ {𝑖}.

Suppose now that |𝑥3 | > 1−Θ0
4 . Then we pick a direction 𝑑 ′ from

±(𝛿,−𝜂, 1, 𝜁), ±(−𝛿,−𝜂, 1, 𝜁), ±(0,±(𝜂, 𝛿), 1)

so that {|𝑑 ′
𝑖
|, |𝑑 ′3 |} = {1, 𝛿} and so that 𝑑 ′𝑠 ·𝑥𝑠 < 0 for 𝑠 ∈ {𝑖, 3}. We compare

𝑥+ 1−Θ0
4 𝑑 ′with a convex combination of the form (1−𝜆) ®|𝑥 |+𝜆(𝑒2+𝑒 𝑗 ), where

𝑗 ∈ {1, 4} \ {𝑖} and 𝜆 < 1−Θ0
4 𝛿. As long as 𝜂 < 𝛿 and 𝜁 < 4𝜆 < (1 − Θ0)𝛿,

we can conclude that 𝑥 + 1−Θ0
4 𝑑 ′ ∈ intB.

• Analogously we argue ifZ𝑥 = {3}, while picking a direction 𝑑 from

±(1, 𝛿, 𝜂, 0), ±(𝛿,−1,−𝜂, 0), ±(0,±(𝜂, 𝛿), 1)

to illuminate 𝑥. For most subcases we can simply rely on the restrictions 𝜂 <
𝛿 <

1−Θ0
4 .

In the subcases where it holds that |𝑥2 | > 1−Θ0
4 and |𝑥4 | > |𝑥1 |, we pick

𝑑 ∈
{
±(0,±(𝜂, 𝛿), 1)

}
so that 𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {2, 4}. We will have that

𝑥 + |𝑥4 |𝑑 ∈ intB because we can compare this displaced vector to the vector

(1 − |𝑥4 |𝜂)𝑒2 + 1 + Θ0

2
𝑒1 + 1 − Θ0

4
𝑒3

which we can show is an interior point of B as well, in a similar manner to
how we proved the “Key Observation for Case 3” of Proposition 39.

|Z𝑥 | = 0. If |𝑥1 | ≤ Θ0, then we can use the directions ±(0,±(𝜂, 𝛿), 1), ±(0, 1,−𝛿, 𝜂)
to illuminate 𝑥, except in the subcases where sign(𝑥2) = − sign(𝑥3) =

− sign(𝑥4). In these latter subcases, we can instead use one of the directions
±(𝛿,−𝜂, 1, 𝜁), ±(−𝛿,−𝜂, 1, 𝜁) (which we choose based also on what sign(𝑥1) is).

If instead |𝑥1 | > Θ0, then |𝑥4 | ≤ Θ0 < 1. Here we also consider subcases
according towhethermax( |𝑥2 |, |𝑥3 |) < 1−Θ0

4 or not. If thismaximum is “small”, we
simply pick 𝑑 ∈ {±(1, 𝛿, 𝜂, 0)} so that 𝑑1 · 𝑥1 < 0, and we compare the displaced
vector 𝑥 + |𝑥1 |𝑑 to the vector

1 − Θ0

2
(𝑒2 + 𝑒3) +

1 + Θ0

2
𝑒4 ∈ B.

If instead max( |𝑥2 |, |𝑥3 |) ≥ 1−Θ0
4 , then we pick a direction 𝑑 ′ from among all the

first 8 in F36,41, 𝛿,𝜂,𝜁 . We consider further subcases according to whether it also
holds thatmin( |𝑥2 |, |𝑥3 |) ≥ 1−Θ0

4 or not: if theminimum is “small”, and 𝑖 ∈ {2, 3} is
the index atwhichmax( |𝑥2 |, |𝑥3 |) is attained, thenwe pick 𝑑 ′ so that {|𝑑 ′1 |, |𝑑 ′𝑖 |} =
{1, 𝛿} and so that 𝑑 ′𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {1, 𝑖}; on the other hand, if the minimum is
“not too small”, we pick 𝑑 ′ so that 𝑑 ′𝑠 · 𝑥𝑠 < 0 for all 𝑠 ∈ [3]. Then, in all subcases
we can conclude that, as long as

𝜁 < 𝜂 < (1 − Θ0)𝛿, and also 𝜁 < (1 − Θ0)𝜂,

the displaced vector 𝑥+ 1−Θ0
4 𝑑 ′ (with 𝑥 being displaced in the appropriately chosen

direction 𝑑 ′, as explained above) will be an interior point of B.
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The proof is complete. �

Proposition 42 Suppose that for a given B ∈ U4, which is not an affine image of the cube,
there are exactly four pairs of indices 𝑖1, 𝑖2 ∈ [4] such that 𝑒𝑖1 + 𝑒𝑖2 ∈ B, and at the same time
there are no triples of indices 𝑗1, 𝑗2, 𝑗3 ∈ [4] such that 𝑒 𝑗1 + 𝑒 𝑗2 + 𝑒 𝑗3 ∈ B. Then at least one
of the following two statements holds:
(i) there exist 𝛿1 > 0 and 𝜂1 = 𝜂𝛿1 > 0 so that B can be illuminated by some coordinate
permutation of the set

F39,42, 𝛿1 ,𝜂1 =
{
± (1, 𝛿1, 𝜂1, 0), ±(𝛿1,−1,−𝜂1, 0), ±(𝛿1,−𝜂1, 1, 0), ±(𝛿1, 𝜂1,−1, 0),
± (0,±(𝜂1, 𝛿1), 1), ±(0, 1,−1, 0)

}
;

(ii) there exist 𝛿2 > 0 and 𝜂2 = 𝜂𝛿2 > 0 so that B can be illuminated by some coordinate
permutation of the set

F42,alt, 𝛿2 ,𝜂2 :=
{
± (1,−𝜂2,−𝛿2,−𝛿2), ±(−𝜂2, 1,−𝛿2,−𝛿2),
± (𝛿2, 0, 1,−𝜂2), ±(𝛿2, 0,−𝜂2, 1), ±(0, 𝛿2, 1,−𝜂2), ±(0, 𝛿2,−𝜂2, 1)

}
.

Proof Up to coordinate permutations, there are two main cases to consider:

Case 1. B contains the points 𝑒1 + 𝑒2, 𝑒1 + 𝑒3, 𝑒2 + 𝑒3 and 𝑒3 + 𝑒4 (and does not contain
the point 𝑒1 + 𝑒2 + 𝑒3).

Case 2. B contains the points 𝑒1 + 𝑒3, 𝑒1 + 𝑒4 and 𝑒2 + 𝑒3, 𝑒2 + 𝑒4. Here we need to
further observe that the convex hull of all coordinate reflections of these points
is 𝐶𝑃2

1 × 𝐶𝑃2
1 which is an affine image of the 4-dimensional cube, therefore

by our assumptions B must contain at least one more point 𝑧0 which satisfies
|𝑧0,1 | + |𝑧0,2 | > 1 or |𝑧0,3 | + |𝑧0,4 | > 1. We can check that this is equivalent to
having 𝛽0 := max

{
‖𝑒1 + 𝑒2‖−1B , ‖𝑒3 + 𝑒4‖−1B

}
> 1

2 . Without loss of generality, we
assume here that ‖𝑒3 + 𝑒4‖−1B = 𝛽0 >

1
2 .

Proof for Case 1.We set Θ0 := max
{
‖𝑒1 + 𝑒4‖−1B , ‖𝑒2 + 𝑒4‖−1B

}
, and note that Θ0 ∈

(0, 1). We pick 𝛿1 < 1−Θ0
4 and 𝜂1 < 1−Θ0

2 𝛿1, and we will show that F39,42, 𝛿1 ,𝜂1 illumi-
nates the convex body B that we consider here, which satisfies the assumptions of the
1st main case.

Let 𝑥 be a boundary point of B. As previously, we ignore boundary points which are
guaranteed to not be extreme, so we do not consider cases where |Z𝑥 | = 3.

|Z𝑥 | = 2. Here we first consider points of the form±𝑒𝑖 +±𝑒 𝑗 , with {𝑖, 𝑗} ∉
{
{1, 4}, {2, 4}

}
.

Given such a point, we pick a direction 𝑑 as follows:

Boundary point Possible illuminating directions

± 𝑒1 + ±𝑒2 ±(1, 𝛿1, 𝜂1, 0), ±(𝛿1,−1,−𝜂1, 0)

± 𝑒1 + ±𝑒3 ±(𝛿1,−𝜂1, 1, 0), ±(𝛿1, 𝜂1,−1, 0)

± 𝑒2 + ±𝑒3 ±(𝛿1,−1,−𝜂1, 0), ±(𝛿1,−𝜂1, 1, 0)

± 𝑒3 + ±𝑒4 ±(0, 𝜂1, 𝛿1, 1), ±(0,−𝜂1,−𝛿1, 1)
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so that 𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {𝑖, 𝑗}. We will have that 𝑥 + 𝑑 ∈ intB because it can be
compared to oneof these points again: if 1 ≤ 𝑖 < 𝑗 ≤ 3, then 𝑦𝑥 := (𝑥𝑖𝑒𝑖+𝑥 𝑗𝑒 𝑗 )+𝑑
(where |𝑥𝑖 | = |𝑥 𝑗 | = 1) will satisfy ‖𝑦𝑥 ‖∞ < 1,

��Z𝑦𝑥

�� = 2, and 4 ∈ Z𝑦𝑥 , thus we
can see that 𝑦𝑥 ∈ intB by comparing it to one of the points 𝑒1+𝑒2, 𝑒1+𝑒3, 𝑒2+𝑒3.

Similarly, if e.g. 𝑥 = 𝑒3−𝑒4, then 𝑥+(0,−𝜂1,−𝛿1, 1) = (0,−𝜂1, 1−𝛿1, 0) ∈ intB,
which can be seen by comparing with the point 𝑒2 + 𝑒3.

Note now that no other point of B with support the same as one of the above
points can be extreme, as they will be contained in the convex hull of the above
points, so all these other points can be illuminated by the same directions. This
leaves two more subcases to consider here.
• Suppose that 𝑥 = 𝑥1𝑒1 + 𝑥4𝑒4. Then min( |𝑥1 |, |𝑥4 |) ≤ Θ0. If |𝑥4 | ≤ Θ0, then
we illuminate 𝑥 using the unique direction 𝑑 ∈ {±(1, 𝛿1, 𝜂1, 0)} satisfying
𝑑1 · 𝑥1 < 0. We will have that 𝑥 + |𝑥1 |𝑑 ∈ intB, by comparing it to the point
1+Θ0
2 𝑒4 + 1−Θ0

2 (𝑒2 + 𝑒3).
Analogously, if |𝑥4 | > Θ0, we can use the unique direction 𝑑 ′ ∈

{±(0, 𝜂1, 𝛿1, 1)}which satisfies 𝑑 ′4 ·𝑥4 < 0:wewill have that 𝑥+|𝑥4 |𝑑 ′ ∈ intB,
as before.

• Finally, suppose that 𝑥 = 𝑥2𝑒2+𝑥4𝑒4. In this subcase, pick the unique direction
𝑑 ∈

{
±(0,±(𝜂1, 𝛿1), 1)

}
which satisfies 𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {2, 4}. Then

𝑥 + |𝑥4 |𝑑 ∈ intB, since (𝑥 + |𝑥4 |𝑑)4 = (𝑥 + |𝑥4 |𝑑)1 = 0, while | (𝑥 + |𝑥4 |𝑑)2 | ≤
1 − |𝑥4 |𝜂1 < 1, and | (𝑥 + |𝑥4 |𝑑)3 | = |𝑥4 |𝛿1 < 1.

|Z𝑥 | = 1. If Z𝑥 = {4}, then the first 8 directions of F39,42, 𝛿1 ,𝜂1 illuminate 𝑥. We now
examine the remaining subcases here.
• If Z𝑥 = {1}, then we illuminate 𝑥 using the directions ±(0,±(𝜂1, 𝛿1), 1),
±(0, 1,−1, 0). Indeed, if |𝑥2 | > Θ0, then necessarily |𝑥4 | ≤ Θ0, and thus we
can use the first 4 directions here if sign(𝑥2) = sign(𝑥3), otherwisewe can rely
on Corollary 11 and illuminate 𝑥 using one of the directions ±(0, 1,−1, 0).
If instead |𝑥2 | ≤ Θ0, thenwe pick 𝑑 from±(0,±(𝜂1, 𝛿1), 1) so that 𝑑𝑠 ·𝑥𝑠 <

0 for 𝑠 ∈ {3, 4}. We will have that 𝑥 + |𝑥4 |𝑑 ∈ intB, since (𝑥 + |𝑥4 |𝑑)4 =

(𝑥 + |𝑥4 |𝑑)1 = 0, while | (𝑥 + |𝑥4 |𝑑)3 | ≤ 1 − |𝑥4 |𝛿1 < 1, and | (𝑥 + |𝑥4 |𝑑)2 | ≤
Θ0 + |𝑥4 |𝜂1 < 1.

• Next assume thatZ𝑥 = {2}. Then we use the directions

±(1, 𝛿1, 𝜂1, 0), ±(𝛿1,−𝜂1, 1, 0), ±(𝛿1, 𝜂1,−1, 0), ±(0,±(𝜂1, 𝛿1), 1)

to illuminate 𝑥. If it holds that |𝑥1 | > Θ0 and |𝑥3 | < 1−Θ0
4 , we pick 𝑑 ∈

{±(1, 𝛿1, 𝜂1, 0)} so that 𝑑1 · 𝑥1 < 0: we have that 𝑥 + |𝑥1 |𝑑 ∈ intB, which can
be seen by comparing to the point 1+Θ0

2 𝑒4 + 1−Θ0
2 (𝑒2 + 𝑒3) again (recall that

|𝑥1 | > Θ0 implies that |𝑥4 | ≤ Θ0).
If instead |𝑥1 | > Θ0 and |𝑥3 | ≥ 1−Θ0

4 , we pick 𝑑 ′ from ±(𝛿1,−𝜂1, 1, 0),
±(𝛿1, 𝜂1,−1, 0) so that 𝑑 ′𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {1, 3}. We can then compare the
displaced vector 𝑥 + 1−Θ0

4 𝑑 ′ with a convex combination of the form

(1 − 𝜆) ®|𝑥 | + 𝜆
(
1 − Θ0

2
𝑒2 +

1 + Θ0

2
𝑒4

)
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where 𝜆 < 1−Θ0
4 𝛿1. Then, as long as 𝜂1 < 2𝜆 < 1−Θ0

2 𝛿1, we will obtain that
𝑥 + 1−Θ0

4 𝑑 ′ ∈ intB.

Finally, if |𝑥1 | ≤ Θ0, thenwe pick 𝑑 ∈ {±(0,±(𝜂1, 𝛿1), 1)} so that 𝑑𝑠 ·𝑥𝑠 <
0 for 𝑠 ∈ {3, 4}. We will have that 𝑥 + |𝑥4 |𝑑 ∈ intB, which can be seen by
comparing with the point

(1 − |𝑥4 |𝛿1) (𝑒1 + 𝑒3) + |𝑥4 |𝜂1 𝑒2
which is also an interior point of B since 1 − |𝑥4 |𝛿1 + |𝑥4 |𝜂1 < 1.

• It remains to consider the subcases whereZ𝑥 = {3}: we will now illuminate
𝑥 using the directions

±(1, 𝛿1, 𝜂1, 0), ±(𝛿1,−1,−𝜂1, 0), ±(0, 𝜂1, 𝛿1, 1).

Similarly to the previous subcase, we first assume that max( |𝑥1 |, |𝑥2 |) > Θ0.
Then we will have that |𝑥4 | ≤ Θ0. If we also have that min( |𝑥1 |, |𝑥2 |) < 1−Θ0

4 ,
and we write 𝑖 for the index at which max( |𝑥1 |, |𝑥2 |) is attained, then we sim-
ply pick 𝑑 from the first 4 directions above so that 𝑚.𝑐.(𝑑) = 𝑖 and so that
𝑑𝑖 · 𝑥𝑖 < 0.

If insteadmin( |𝑥1 |, |𝑥2 |) ≥ 1−Θ0
4 , thenwepick 𝑑 ′ from the first 4 directions

again, but this time so that 𝑑 ′𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ [2]. Similarly to above, we
consider the displaced vector 𝑥 + 1−Θ0

4 𝑑 ′, and conclude that it is in intB as
long as 𝜂1 < 1−Θ0

2 𝛿1.

Finally, if max( |𝑥1 |, |𝑥2 |) ≤ Θ0, then we pick 𝑑 ∈ {±(0, 𝜂1, 𝛿1, 1)} so that
𝑑4 ·𝑥4 < 0.Wewill have that 𝑥+|𝑥4 |𝑑 ∈ intB, which can be seen by comparing
with the point 1+Θ0

2 (𝑒1 + 𝑒2) + 1−Θ0
2 𝑒3.

|Z𝑥 | = 0. If |𝑥4 | ≤ Θ0, then, as in previous propositions and subcases, we illuminate 𝑥 using
the first 8 directions of F39,42, 𝛿1 ,𝜂1 (which capture all combinations of signs for
the first three coordinates).

Next assume that |𝑥4 | > Θ0. Then max( |𝑥1 |, |𝑥2 |) ≤ Θ0. Hence, we can pick
𝑑 ∈ {±(0,±(𝜂1, 𝛿1), 1)} so that 𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {3, 4}. If |𝑥3 | < 1−Θ0

4 , then
we simply compare the displaced vector 𝑥 + |𝑥4 |𝑑 with the vector 1+Θ0

2 (𝑒1 + 𝑒2) +
1−Θ0
2 𝑒3.

On the other hand, if |𝑥3 | ≥ 1−Θ0
4 , we consider the displaced vector 𝑥 + 1−Θ0

4 𝑑,
and compare it with a convex combination of the form

(1 − 𝜆) ®|𝑥 | + 𝜆(𝑒1 + 𝑒2)

where 𝜆 <
1−Θ0
4 𝛿1. We will have that 𝑥 + 1−Θ0

4 𝑑 ∈ intB, as long as 1−Θ0
4 𝜂1 <

𝜆(1 − Θ0) ≤ 𝜆(1 − |𝑥2 |) ⇔ 𝜂1 < 4𝜆 < (1 − Θ0)𝛿1, which is already guaranteed
(to hold for some suitable 𝜆) by the restrictions we imposed on 𝜂1.

This completes the proof of Case 1.

Proof for Case 2. Recall that we have set 𝛽0 := max
{
‖𝑒1 + 𝑒2‖−1B , ‖𝑒3 + 𝑒4‖−1B

}
, and we

know that 𝛽0 > 1
2 (since we assumed that B is not an affine image of the cube). Recall
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also that we supposed without loss of generality that 𝛽0 = ‖𝑒3 + 𝑒4‖−1B . We will then
show that F42,alt, 𝛿2 ,𝜂2 illuminates B for some suitably chosen 𝛿2, 𝜂2. In this main case,
we need some preparatory/key observations first.

Observation 1 for Case 2. Since 1
2 (𝑒3 + 𝑒4) ∈ intB, we get that, for every 𝜖 ∈

(0, 1) \ { 12 }, the point
(1 − 𝜖)𝑒3 + 𝜖𝑒4

is also an interior point of B. Indeed, assume first that 𝜖 < 1
2 , and set 𝜆 = 2𝜖 (in which

case 𝜆 ∈ (0, 1) ). Then

(1 − 𝜆)𝑒3 + 𝜆 1
2 (𝑒3 + 𝑒4) ∈ intB

because it is a non-trivial convex combination of points in B with one of them being
interior. But

(1 − 𝜆)𝑒3 + 𝜆 1
2 (𝑒3 + 𝑒4) =

(
1 − 𝜆

2
)
𝑒3 + 𝜆

2 𝑒4 = (1 − 𝜖)𝑒3 + 𝜖𝑒4.

Analogously we show the result if 𝜖 ∈ ( 12 , 1), by considering convex combinations of
1
2 (𝑒3 + 𝑒4) with 𝑒4.

Observation 2 for Case 2. For every 𝑎, 𝜖 ∈ (0, 1), we have that the points

(𝑎, 0, 1 − 𝜖, 𝜖) and (0, 𝑎, 1 − 𝜖, 𝜖)

are interior points of B. Indeed, by the previous key observation we know that the point
(0, 0, 1 − 𝜖, 𝜖) ∈ intB. At the same time B contains the point

(1, 0, 1 − 𝜖, 𝜖) = (1 − 𝜖) (𝑒1 + 𝑒3) + 𝜖 (𝑒1 + 𝑒4).

But then
(𝑎, 0, 1 − 𝜖, 𝜖) = 𝑎(1, 0, 1 − 𝜖, 𝜖) + (1 − 𝑎) (0, 0, 1 − 𝜖, 𝜖),

which shows that it is an interior point of B. Similarly we check that (0, 𝑎, 1 − 𝜖, 𝜖) ∈
intB.

For the rest of the proof we fix 𝛿2 < 1−𝛽0
4 , and 𝜂2 < (1 − 𝛽0)𝛿2. We are ready to

illuminate the boundary points ofB, and as before, we only focus on potentially extreme
points 𝑥 ∈ B. By our current assumptions for B, there are certainly no such points with
|Z𝑥 | = 3, so we move on with the remaining possibilities for |Z𝑥 |.

|Z𝑥 | = 2. If 𝑥 = ±𝑒1 + ±𝑒3, then we use the directions

±(1,−𝜂2,−𝛿2,−𝛿2) ± (𝛿2, 0, 1,−𝜂2)

to illuminate 𝑥. Indeed, e.g.

𝑒1 − 𝑒3 + (−1, 𝜂2, 𝛿2, 𝛿2) = (0, 𝜂2, −1 + 𝛿2, 𝛿2)

which is in intB by the 2nd key observation.
On the other hand, if e.g. 𝑥 = −𝑒1 − 𝑒3, then 𝑥 + (𝛿2, 0, 1,−𝜂2) = (−1 +

𝛿2, 0, 0,−𝜂2), which we can immediately confirm is an interior point of B by
comparing it to 𝑒1 + 𝑒4.
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In a very analogous manner, we can illuminate all the points ±𝑒1 + ±𝑒4, ±𝑒2 +
±𝑒3 and ±𝑒2 + ±𝑒4, and then we will have also illuminated every other point in
their convex hull.

Assume now that 𝑥 = 𝑥1𝑒1 + 𝑥2𝑒2. Then min( |𝑥1 |, |𝑥2 |) ≤ 𝛽0. If 𝑖 is the index at
whichmax( |𝑥1 |, |𝑥2 |) is attained, and { 𝑗} = {1, 2}\{𝑖}, thenwe pick a direction 𝑑
from±(1,−𝜂2,−𝛿2,−𝛿2), ±(−𝜂2, 1,−𝛿2,−𝛿2) so that𝑚.𝑐.(𝑑) = 𝑖 and 𝑑𝑖 ·𝑥𝑖 < 0.
We will have that 𝑥 + |𝑥𝑖 |𝑑 ∈ intB, which can be readily seen if we compare with
the point

(
𝛽0 + 1−𝛽0

4

)
𝑒 𝑗 + 1−𝛽0

4 (𝑒3 + 𝑒4) ∈ intB.

Similarly, if 𝑥 = 𝑥3𝑒3 +𝑥4𝑒4, thenmin( |𝑥3 |, |𝑥4 |) ≤ 𝛽0. If 𝑟 is the index at which
max( |𝑥3 |, |𝑥4 |) is attained, and {𝑡} = {3, 4} \ {𝑟}, then we pick a direction 𝑑 ′
from ±(𝛿2, 0, 1,−𝜂2), ±(𝛿2, 0,−𝜂2, 1) so that 𝑚.𝑐.(𝑑 ′) = 𝑟 and 𝑑 ′𝑟 · 𝑥𝑟 < 0. We
will have that 𝑥 + |𝑥𝑟 |𝑑 ′ ∈ intB, which can be seen by comparing with the point
1+𝛽0
2 (𝑒1 + 𝑒𝑡 ) ∈ intB.

|Z𝑥 | = 1. There are four possibilities to consider here, but, as we will see, there are enough
‘symmetries’ under the assumptions of Case 2 for these possibilities to form only
two types of truly different cases.
• IfZ𝑥 = {2}, then we consider the following subcases:

• sign(𝑥3) = − sign(𝑥4). Then one of the directions from±(𝛿2, 0, 1,−𝜂2),
±(𝛿2, 0,−𝜂2, 1) illuminates 𝑥.

• sign(𝑥3) = sign(𝑥4). We also recall that min( |𝑥3 |, |𝑥4 |) ≤ 𝛽0; write 𝑖 for
the index at which max( |𝑥3 |, |𝑥4 |) is attained, and 𝑗 for the other index.
If at the same time sign(𝑥1) = − sign(𝑥3) = − sign(𝑥4), then the

unique direction 𝑑 ∈ {±(1,−𝜂2,−𝛿2,−𝛿2)} satisfying 𝑑𝑠 · 𝑥𝑠 < 0 for
𝑠 ∈ {1, 3, 4} illuminates 𝑥. Indeed, if |𝑥 𝑗 | = min( |𝑥3 |, |𝑥4 |) < |𝑥1 |𝛿2,
then 𝑥 + |𝑥1 |𝑑 satisfies:

– (𝑥 + |𝑥1 |𝑑)1 = 0,
– | (𝑥 + |𝑥1 |𝑑)𝑖 | ≤ max

(
|𝑥𝑖 | − |𝑥1 |𝛿2, |𝑥1 |𝛿2 − |𝑥𝑖 |

)
≤ max

(
|𝑥𝑖 | −

|𝑥1 |𝛿2, |𝑥1 |𝛿2
)
≤ 1 − |𝑥1 |𝛿2,

– | (𝑥 + |𝑥1 |𝑑) 𝑗 | ≤ max
(
|𝑥 𝑗 | − |𝑥1 |𝛿2, |𝑥1 |𝛿2 − |𝑥 𝑗 |

)
≤ |𝑥1 |𝛿2,

– and | (𝑥 + |𝑥1 |𝑑)2 | ≤ |𝑥1 |𝜂2 < 1.
Thus 𝑥+ |𝑥1 |𝑑 has smaller (in absolute value) corresponding coordinates
compared to the vector

|𝑥1 |𝜂2𝑒2 + (1 − |𝑥1 |𝛿2)𝑒𝑖 + |𝑥1 |𝛿2𝑒 𝑗 . (8)

It remains to recall that the latter point is in intB because of the 2nd key
observation.

On the other hand, if |𝑥 𝑗 | = min( |𝑥3 |, |𝑥4 |) ≥ |𝑥1 |𝛿2, then we
compare 𝑥 + |𝑥1 |𝑑 with a point of the form

(1 − 𝜆) ®|𝑥 | + 𝜆𝑒2
where 𝜆 < |𝑥1 |𝛿2. Then, since we have assumed that 𝜂2 < (1− 𝛽0)𝛿2 <
𝛿2, we can choose 𝜆 so that |𝑥1 |𝜂2 < 𝜆 < |𝑥1 |𝛿2, which will then allow
us to confirm that 𝑥 + |𝑥1 |𝑑 ∈ intB.
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Next we consider the cases where sign(𝑥1) = sign(𝑥3) = sign(𝑥4).
Thenwe pick 𝑑 ′ from±(𝛿2, 0, 1,−𝜂2), ±(𝛿2, 0,−𝜂2, 1) so that 𝑑 ′𝑠 ·𝑥𝑠 <
0 for 𝑠 ∈ {1, 𝑖} (recall that we write 𝑖 ∈ {3, 4} for the (smallest) index at
which max( |𝑥3 |, |𝑥4 |) is attained, and 𝑗 for the remaining index). Then
𝑥 + |𝑥𝑖 |𝑑 ′ satisfies:

– (𝑥 + |𝑥𝑖 |𝑑 ′)𝑖 = 0 = (𝑥 + |𝑥𝑖 |𝑑 ′)2,
– | (𝑥 + |𝑥𝑖 |𝑑 ′)1 | ≤ 1 − |𝑥𝑖 |𝛿2 < 1,
– and | (𝑥 + |𝑥𝑖 |𝑑 ′) 𝑗 | ≤ 𝛽0 + |𝑥𝑖 |𝜂2 < 1.

It follows that 𝑥+|𝑥𝑖 |𝑑 ′ ∈ intB since its non-zero coordinates are strictly
smaller than the corresponding coordinates of 𝑒1 + 𝑒 𝑗 .

• IfZ𝑥 = {1}, then we illuminate 𝑥 in a completely symmetric way compared
to the previous subcase, by using one of the directions ±(−𝜂2, 1,−𝛿2,−𝛿2),
±(0, 𝛿2, 1,−𝜂2), ±(0, 𝛿2,−𝜂2, 1).

• IfZ𝑥 = {3}, then we illuminate 𝑥 using one of the directions

±(1,−𝜂2,−𝛿2,−𝛿2), ±(−𝜂2, 1,−𝛿2,−𝛿2), ±(𝛿2, 0,−𝜂2, 1), ±(0, 𝛿2,−𝜂2, 1).

We recall that min( |𝑥1 |, |𝑥2 |) ≤ 𝛽0; let us write 𝑖 for the index at which
max( |𝑥1 |, |𝑥2 |) is attained, and 𝑗 for the other index in [2].

Then, if we first assume that sign(𝑥𝑖) = − sign(𝑥4), we pick 𝑑 from
±(1,−𝜂2,−𝛿2,−𝛿2), ±(−𝜂2, 1,−𝛿2,−𝛿2) so that 𝑚.𝑐.(𝑑) = 𝑖 and so that
𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {𝑖, 4}. We can check that 𝑥 + |𝑥𝑖 |𝑑 will have smaller (in
absolute value) corresponding coordinates compared to the point

(𝛽0 + |𝑥𝑖 |𝜂2)𝑒 𝑗 + |𝑥𝑖 |𝛿2𝑒3 + (1 − |𝑥𝑖 |𝛿2)𝑒4, (9)

which is in intB by the 2nd key observation. Hence 𝑥 + |𝑥𝑖 |𝑑 ∈ intB too.

If instead it holds that sign(𝑥𝑖) = sign(𝑥4), then we pick 𝑑 ′ from
±(𝛿2, 0,−𝜂2, 1), ±(0, 𝛿2,−𝜂2, 1) so that |𝑑 ′

𝑖
| = 𝛿2 and so that 𝑑 ′𝑠 · 𝑥𝑠 < 0

for 𝑠 ∈ {𝑖, 4}. Assuming also that |𝑥𝑖 | < 1−𝛽0
4 , we will compare 𝑥 + |𝑥4 |𝑑 ′

with the vector
1 − 𝛽0

4
(
𝑒𝑖 + 𝑒 𝑗 + 𝑒3

)
∈ intB.

On the other hand, if |𝑥𝑖 | ≥ 1−𝛽0
4 , then we compare 𝑥 + |𝑥4 |𝑑 ′ with a convex

combination of the form (1 − 𝜆′) ®|𝑥 | + 𝜆′(𝑒 𝑗 + 𝑒3) where 𝜆′ < |𝑥4 |𝛿2. Our
assumption that 𝜂2 < 𝛿2 implies that we can choose such a 𝜆′ so that |𝑥4 |𝜂2 <
𝜆′ < |𝑥4 |𝛿2, which in turn implies that 𝑥 + |𝑥4 |𝑑 ′ ∈ intB.

• We illuminate 𝑥 in a symmetric fashion whenZ𝑥 = {4}, by using one of the
directions

±(1,−𝜂2,−𝛿2,−𝛿2), ±(−𝜂2, 1,−𝛿2,−𝛿2), ±(𝛿2, 0, 1,−𝜂2), ±(0, 𝛿2, 1,−𝜂2).

|Z𝑥 | = 0. We know that min( |𝑥1 |, |𝑥2 |) ≤ 𝛽0, and the same inequality holds true for
min( |𝑥3 |, |𝑥4 |). Let us write 𝑖 for the index at which max( |𝑥1 |, |𝑥2 |) is attained,
and 𝑗 for the other index in [2]. Similarly, let us write 𝑟 for the index at which
max( |𝑥3 |, |𝑥4 |) is attained, and 𝑡 for the other index in {3, 4}.
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• Assume first that sign(𝑥3) = − sign(𝑥4). Then, by Corollary 11, 𝑥 is illumi-
nated by the unique direction 𝑑 among the last 8 directions in F42,alt, 𝛿2 ,𝜂2
which satisfies 𝑑𝑖 ≠ 0 and 𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {𝑖, 3, 4}.

• Next, assume that sign(𝑥3) = sign(𝑥4).
• If sign(𝑥𝑖) = sign(𝑥3) = sign(𝑥4), then we pick 𝑑 ′ from the last 8 direc-
tions of F42,alt, 𝛿2 ,𝜂2 so that 𝑚.𝑐.(𝑑 ′) = 𝑟 , |𝑑 ′𝑖 | = 𝛿2 and 𝑑 ′𝑠 · 𝑥𝑠 < 0 for
𝑠 ∈ {𝑖, 𝑟}.

– If in addition |𝑥𝑖 | < 1−𝛽0
4 , then we simply compare the displaced

vector 𝑥 + |𝑥𝑟 |𝑑 ′ to the point

1 − 𝛽0
4

(𝑒𝑖 + 𝑒 𝑗 ) +
1 + 𝛽0
2

𝑒𝑡 =
1 − 𝛽0

4
(𝑒1 + 𝑒2) +

1 + 𝛽0
2

𝑒𝑡 ∈ B

to conclude that 𝑥 + |𝑥𝑟 |𝑑 ′ ∈ intB (we can do this because, by our
assumptions here, | (𝑥 + |𝑥𝑟 |𝑑 ′)𝑖 | ≤ max( |𝑥𝑖 | − |𝑥𝑟 |𝛿2, |𝑥𝑟 |𝛿2 −
|𝑥𝑖 |) ≤ max( |𝑥𝑖 |, 𝛿2) < 1−𝛽0

4 and |𝑥 𝑗 | ≤ |𝑥𝑖 | < 1−𝛽0
4 ).

– If instead |𝑥𝑖 | ≥ 1−𝛽0
4 , then we compare 𝑥 + |𝑥𝑟 |𝑑 ′ to a convex

combination of the form

(1 − 𝜆) ®|𝑥 | + 𝜆(𝑒 𝑗 + 𝑒𝑡 )

where 𝜆 < |𝑥𝑟 |𝛿2. As long as |𝑥𝑟 |𝜂2 < 𝜆(1 − 𝛽0) ≤ 𝜆(1 − |𝑥𝑡 |)
(which a suitably chosen 𝜆 can satisfy, given the restriction 𝜂2 <
(1 − 𝛽0)𝛿2), we will be able to obtain that 𝑥 + |𝑥𝑟 |𝑑 ′ ∈ intB.

• It remains to consider the cases where sign(𝑥𝑖) = − sign(𝑥3) =

− sign(𝑥4). Then we pick the unique direction 𝑑 from
±(1,−𝜂2,−𝛿2,−𝛿2), ±(−𝜂2, 1,−𝛿2,−𝛿2) so that 𝑚.𝑐.(𝑑) = 𝑖 and
so that 𝑑𝑠 · 𝑥𝑠 < 0 for 𝑠 ∈ {𝑖, 3, 4}.

– If |𝑥𝑡 | = min( |𝑥3 |, |𝑥4 |) < |𝑥𝑖 |𝛿2, then, similarly to a few of the
subcases analysed in the settingwhere |Z𝑥 | = 1 (compare e.g. with
the subcases where we use the points in (8) and (9)), we will have
that the displaced vector 𝑥 + |𝑥𝑖 |𝑑 has smaller (in absolute value)
corresponding coordinates compared to the vector(

𝛽0 + 1−𝛽0
4

)
𝑒 𝑗 + (1 − |𝑥𝑖 |𝛿2)𝑒𝑟 + |𝑥𝑖 |𝛿2𝑒𝑡

which is an interior point of B itself, by the 2nd key observation.
Thus 𝑥 + |𝑥𝑖 |𝑑 ∈ intB.

– If |𝑥𝑡 | = min( |𝑥3 |, |𝑥4 |) ≥ |𝑥𝑖 |𝛿2, then we compare 𝑥 + |𝑥𝑖 |𝑑 with
a convex combination of the form

(1 − 𝜆) ®|𝑥 | + 𝜆𝑒 𝑗

where 𝜆 < |𝑥𝑖 |𝛿2. As long as |𝑥𝑖 |𝜂2 < 𝜆(1 − 𝛽0) ≤ 𝜆(1 − |𝑥 𝑗 |),
which is again possible for some 𝜆 ∈ (0, |𝑥𝑖 |𝛿2) because of the
restriction 𝜂2 < (1 − 𝛽0)𝛿2, we can deduce that 𝑥 + |𝑥𝑖 |𝑑 ∈ intB.

This completes the proof of Case 2 as well. �
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We can also make a similar note to Remark 40.

Remark 43 By slightly adjusting the proof of Case 1 of this last proposition, we can
also confirm that any set B ∈ U4 which contains the points 𝑒1 + 𝑒2, 𝑒1 + 𝑒3, 𝑒2 + 𝑒3
and 𝑒3 + 𝑒4, but does not contain 𝑒1 + 𝑒4 and 𝑒2 + 𝑒4 (nor does it contain the ‘triple’
𝑒1 + 𝑒2 + 𝑒3) can be illuminated by the set

F36,41, 𝛿,𝜂,𝜁 :=
{
± (1, 𝛿, 𝜂, 0), ±(𝛿,−1,−𝜂, 0), ±(𝛿,−𝜂, 1, 𝜁), ±(−𝛿,−𝜂, 1, 𝜁),
± (0,±(𝜂, 𝛿), 1), ±(0, 1,−𝛿, 𝜂)

}
instead of the set

F39,42, 𝛿1 ,𝜂1 :=
{
± (1, 𝛿1, 𝜂1, 0), ±(𝛿1,−1,−𝜂1, 0), ±(𝛿1,−𝜂1, 1, 0), ±(𝛿1, 𝜂1,−1, 0),
± (0,±(𝜂1, 𝛿1), 1), ±(0, 1,−1, 0)

}
.
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