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Scalar dissipation rate (SDR) evolution in a stopping turbulent jet was analysed using
direct numerical simulations and a theoretical approach. After the jet is stopped, a
deceleration wave for the SDR propagates downstream with a speed similar to that for axial
velocity. Upstream of the deceleration wave, mean centreline SDR becomes proportional
to axial distance, and inversely proportional to the square of time. After passing of the
deceleration wave, normalised radial profiles of SDR and its axial, radial and azimuthal
components reach self-similar states, denoted decelerating self-similar profiles, which are
different from their steady-state counterparts. Production and destruction terms in the
mean SDR transport equation remain dominant in the decelerating self-similar state. The
theoretical approach provides an explicit prediction for the radial profile of a turbulent
fluctuation term of the mean SDR transport equation. Three turbulent SDR models are
validated, and modifications suitable for the decelerating jet are proposed, based on a
self-similarity analysis.
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1. Introduction
In combustion applications, transient fuel jet injection controls ignition event timing.
Flame ignition and subsequent stabilisation do not occur unless the right amounts of
fuel and oxidiser are available at a given location. For example, in compression ignition
engines, the ignition event occurs during the decelerating phase of fuel injection, as seen
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Figure 1. Single cylinder optical engine transient fuel injection consisting, from left to right in chronological
order, of a starting jet, a steady-state jet and a stopping jet, during which the ignition event happens
(Gill et al. 2005).

in figure 1. Controlling ignition timing is essential, considering that the time-dependent
behaviour of the jet flow can lead to increased/decreased air entrainment (Hill & Greene
1977; Bremhorst & Hollis 1990). An improved mixing of fuel and oxidiser is sought,
as this leads to enhanced heat conversion and reduced pollutant emissions (O’Connor &
Musculus 2013). However, insufficient mixing causes incomplete combustion. It follows
that optimising the injection process requires a solid understanding of unsteady mixing
dynamics. This motivates the present investigation to tackle, using direct numerical
simulations (DNS), the less investigated topic of turbulent mixing in unsteady jets,
particularly decelerating ones.

In compression ignition engines, the combustion mode takes the form of a turbulent non-
premixed flame. This configuration is often modelled by two variables: mixture fraction
(denoted as ξ ) and scalar dissipation rate (SDR, denoted as χ ). Mixture fraction is defined
as the mass fraction that originates from one stream in a two-stream set-up. Typically,
the two streams are fuel and oxidiser, such that ξ is considered unity at the inlet of the
fuel stream, and zero at the oxidiser stream inlet. As fuel and oxidiser mix inside the
combustion chamber, there will be a mixture fraction distribution. The flame can exist
where the mixture fraction equals the stoichiometric mixture fraction value.

The second variable, SDR, indicates the mixedness of the flow field and is defined as

χ = 2D(∇ξ · ∇ξ). (1.1)

For industry-based applications, where Reynolds-averaged Navier–Stokes (RANS)
simulations are the norm, the mean SDR is of particular interest. The SDR arises naturally
from the scalar variance (ξ ′2) transport equation:

ρ
∂ξ ′2
∂t

+ ρ u j
∂ξ ′2
∂x j

= −∂ρ u′
jξ

′2

∂x j
+ ∂

∂x j

(
ρD

∂ξ ′2
∂x j

)
− 2ρ u′

jξ
′ ∂ξ

∂x j
− 2Dρ

∂ξ ′
∂x j

∂ξ ′
∂x j

.

(1.2)

For an incompressible, passive scalar flow in the high Reynolds number limit, the mean
SDR is approximated as the mean dissipation rate of scalar turbulent fluctuations, χ ≈
2D(∇ξ ′ · ∇ξ ′) (Poinsot & Veynante 2005). As a consequence, χ is an omnipresent and
essential quantity in describing the turbulent scalar field.

In the context of compression ignition engines, the SDR is directly correlated with local
flame ignition/extinction as well as with reaction rates (Mastorakos et al. 1997). During the
injection process, turbulence acts to stretch and fold the diffusive scalar interface between
the two fluid streams. This increases scalar gradients. Repeated stretching and folding
increases gradients exponentially, until the scalar characteristic length scale is reduced to
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a viscous limit such as the Kolmogorov or Batchelor scales (Batchelor 1953; Kolmogorov
1962). At the viscous limit, smoothing of scalar fluctuations by molecular mixing occurs.
The destruction rate of scalar variance is quantified by the SDR. Figure 1 shows a sequence
of fuel injections inside an engine chamber. There, ignition occurs during the decelerating
phase of fuel injection, when SDR values are lower.

A widely used model for SDR in flows involving turbulent mixing is based on the
similarity between the velocity and scalar fields (LaRue & Libby 1981; Ma & Warhaft
1986; Danaila et al. 2012), relating the SDR to an algebraic relation (Bray et al. 1994).
This similarity exists in the context of the widely accepted Kolmogrov–Obukhov–Corrsin
(KOC) theory of scalar turbulent mixing. The KOC theory hypothesises the isotropy and
independence of small scales from the large scales of the scalar field. However, the KOC
phenomenology has been questioned, as small scales showed departure from isotropy
when the large scales were anisotropic (Warhaft 2000). Scalar field local isotropy and
its violations have been reported in the literature quite often (Sreenivasan 1991). Still, a
significant amount of these investigations considered scalar injection into an isotropic and
homogeneous flow field, which allows us to draw a similarity between velocity and scalar
fields (LaRue & Libby 1981; Ma & Warhaft 1986; Danaila et al. 2012).

In real configurations, turbulent flows are inhomogeneous and can exhibit time
dependency or chemical reactions. This leads to discrepancies between characteristic
scales of velocity and scalar fields. In such situations, algebraic-type models would require
a more complex formulation (see e.g. (12) of Swaminathan & Bray 2005) or would need to
be replaced with an exact transport equation for the SDR (Lumley & Khajeh-Nouri 1975;
Swaminathan & Bray 2005). Individual terms of this equation consist in the time variation
of χ , advective transport, the diffusive flux of χ , turbulent diffusion, the scalar field local
curvature effects and local stretch, respectively.

For spatio-temporal characterisation of the SDR in the turbulent jet, the concept of
self-similarity is pivotal (Pope 2000). When self-similarity holds, all normalised flow
quantities can be described by a reduced number of variables. In a steady-state jet, for
example, velocity statistics, scaled by the centreline axial velocity, become a function
of the scaled radius, defined as the radius divided by an axial location. Experimental
measurements of Hussein et al. (1994) show that after a given transition region, close
to the jet inlet, velocity radial profiles become self-similar. The same applies for passive
scalar profiles up to fourth-order moments, reported by Mi et al. (2001).

Although self-similarity and mixing characteristics in the steady-state jet have been
widely studied (Feikema et al. 1996; Buch & Dahm 1998; Su & Clemens 1999; Mi et al.
2001; Karpetis & Barlow 2002; Fuest et al. 2018; Aparece-Scutariu & Shin 2022), the
stopping jet has received less attention, despite its importance. Borée et al. (1996) reduced
the velocity by half and identified a spatio-temporal similarity behaviour with a time shift.
Musculus (2009) theoretically derived the entrainment wave after which the entrainment
increases by three times. Shin et al. (2023) investigated the evolution of the mixture
fraction during the decelerating stage, using the same DNS database as for the present
study. Both the numerical simulation (see figure 2a) and a theoretical analysis showed that
the mean mixture fraction (ξ c) scales with axial distance (x) and time (t) as

ξ c = Cξ

x − x0

t − t0
, (1.3)

where Cξ is a flow-dependent constant, while x0 and t0 represent spatial and temporal
virtual origins, respectively. Furthermore, second-order statistics (v′ξ ′) also remain self-
similar, as shown in figure 2(b), whose radial profile was predicted by a theoretical
derivation, assuming self-similarity (see (18) in Shin et al. 2023). The assumption of
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Figure 2. (a) Scaled centreline mixture fraction over time, at downstream locations over x/D = 7−20 (Shin
et al. 2017). (b) Self-similar radial profiles for a stopping jet v′ξ ′ obtained over 12.5 < x < 20 and 50 < t < 69
(Shin et al. 2023), along with centreline slope prediction (see equation (2.10) of Shin et al. 2023).

self-similarity allows us to obtain radial profiles, while an integral method does not
(Musculus 2009).

This paper aims to characterise the spatial and temporal evolution of the SDR of
a stopping jet. First, a theoretical development is made under the assumption of self-
similarity. Second, using the DNS dataset, a series of rigorous investigations is conducted
to verify self-similarity of the SDR and its directional components. Third, a validation
study is conducted to see if the theoretical analysis can predict a transport term.
Finally, existing turbulence algebraic models are compared with the DNS dataset, and
modifications are proposed.

1.1. Literature review on SDR characteristics and modelling
Experimental SDR measurements in turbulent flows have been the subject of significant
efforts. Advancements in optical instrumentation have recently facilitated more accurate
three-dimensional measurements. Karpetis & Barlow (2002) looked at SDR evolution in
the case of piloted methane–air jet flames. Geyer et al. (2005) performed measurements of
SDR in reacting and non-reacting turbulent opposing jets. Kaiser & Frank (2007) obtained
two-dimensional images of near-field dissipation structures in hydrogen–methane non-
premixed flames. Soulopoulos et al. (2014, 2015) conducted spatial SDR measurements
in non-reactive starting turbulent round jets (figure 3). McManus & Sutton (2023)
investigated the SDR field in non-premixed turbulent jet flames, focusing on the use of a
set of conditional statistics to characterise small-scale structures, including the correlation
between dissipation layer widths and temperature, the Reynolds number or dissipation
magnitude. Mulla & Hardalupas (2022) carried out instantaneous three-dimensional SDR
measurements in a turbulent swirling flow, validating the azimuthal component through
the assumption of isotropy with the axial component.

Recent progress in computational power has allowed for an examination of turbulent
mixing and SDR from a numerical perspective at Reynolds numbers significantly closer to
real-world applications than in the past. Still, resolution requirements remain essential, as
pointed out by Schumacher et al. (2005) in a DNS investigation of fine scalar mixing. The
two main advantages when investigating the SDR numerically are the ability to compute
the SDR in every region of the turbulent flow, and the possibility to compute all of the three
directional gradients of mixture fraction without any underlying assumptions. Hawkes
et al. (2009) used planar jet flames DNS data to obtain relationships between measured
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Figure 3. Snapshots of instantaneous SDR at different times after the point of starting. The snapshots are
taken at non-dimensional times t/T = 3.4, 5, 7.15, 9.65 from top to bottom and left to right.

three-dimensional SDR values and lower-dimension estimations. These relationships were
beneficial for subsequent experimental efforts targeting the SDR in jet flames (Fuest
et al. 2018; Mulla & Hardalupas 2022), where measurement of the azimuthal component
remained a complex task.

Such SDR modelling has been of continuous interest in the area of turbulent
combustion, as it plays an essential role in modelling chemical reaction rates. A robust
SDR model should accurately capture turbulent mixing, molecular diffusion and chemical
reactions, as well as their interaction. Swaminathan & Bray (2005) proposed a model for
the SDR that includes a chemical time scale besides the scalar–turbulence time scales
of the model in (1.1). This was done by analysing the dominant terms of the SDR exact
transport equation. The model was validated with DNS data of a premixed flame. Kolla
et al. (2009) improved the model of Swaminathan & Bray (2005) by including the effect of
dilatation rate and its influence on scalar–turbulence interaction, chemistry and molecular
diffusion. The new model showed good agreement with DNS data over a range of flame
conditions. Langella et al. (2015) used the extended algebraic model of Dunstan et al.
(2013), which is based on the work of Kolla et al. (2009), for closure of filtered reaction
rate in large eddy simulations (LES) of turbulent piloted methane–air Bunsen flames. The
same model of Dunstan et al. (2013) was used by Langella & Swaminathan (2016) in
unstrained and strained closures for the filtered reaction rate in LES of premixed flames.
Comparison with experimental data showed good agreement for the unstrained flamelet
closure and an underestimation of the burn rate in the case of the strained flamelet closure.

A transport equation for the SDR was initially derived by Lumley & Khajeh-Nouri
(1975) by presuming a close to unity Prandtl number in the context of isotropic turbulence.
Lumley (1976) analysed the equation for a passive scalar in buoyancy driven mixed layers.
Later, its applicability was extended to chemically reacting turbulent flows (Borghi 1990;
Mantel & Borghi 1994; Mura & Borghi 2003) with constant-density approximations,
and also to inhomogeneous turbulence (Jones & Musonge 1988). Thermal expansion
effects due to combustion were included by Swaminathan & Bray (2005) in the context of
premixed flames. Derivation of a χ equation is described by Swaminathan & Bray (2005),
with Chakraborty et al. (2011) providing a comprehensive analysis of the SDR budget
terms. The same derivation procedure of Swaminathan & Bray (2005) can be applied for
a passive scalar in a constant-density turbulent jet, leading to (3.1).
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The mean SDR equation has been of particular interest to the combustion community.
Providing reliable models for χ in the context of RANS simulations has been the focus of
considerable research effort. Tennekes & Lumley (1972) proposed an order-of-magnitude
analysis that indicates that only two of the budget are dominant and scale with the turbulent
Reynolds number (3.24). The first relates to scalar–turbulence interaction, representing the
tensor scalar product of scalar gradient, and the other accounts for the turbulent strain rate.
Using eigenvalue decomposition, the term denoting scalar–turbulence interaction can be
written as (Kolla et al. 2009)

scalar−turbulence interaction = −2 χ(eα cos2 α + eβ cos2 β + eγ cos2 γ ), (1.4)

with eα , eβ and eγ being the turbulent strain tensor ∂u′
j/∂xk eigenvalues. The three values

satisfy the condition eα > eβ > eγ , with eα as the most extensive principal strain rate, and
eγ as the most compressive one. Relative orientation of the eigenvector corresponding
to the eα strain rate is given by α. It follows that the scalar–turbulence interaction acts
as a source or sink, depending on predominant alignment of eigenvectors with the scalar
gradient. Ashurst et al. (1987) pointed out that in turbulent flows, the scalar gradient has
a preference to align with the most compressive principal strain rate, giving this term as
a source. As for the other dominant term, which represents the stretching of the scalar
field due to its local curvature, this has been related with the characteristic radius of iso-ξ
surfaces (Mantel & Borghi 1994).

2. Numerical approach and set-up
The compressible solver HiPSTAR (Sandberg 2013) is used for the present DNS.
HiPSTAR is a highly optimised hybrid MPI/OpenMP solver, used in numerous studies,
covering turbulence (Sandberg et al. 2012; Bechlars & Sandberg 2017; Shin et al. 2017 ;
Saini & Sandberg 2020), turbulent mixing (Shin et al. 2017b; Zhao & Sandberg 2021) and
turbulent flow acoustics (Deuse & Sandberg 2020).

The code uses a structured, multi-block, curvilinear configuration, solving for the
governing equations in cylindrical coordinates, thus allowing for an efficient distribution
of grid points. Numerical schemes include a fourth-order finite-difference scheme in
the streamwise and radial directions, along with a spectral method, based on Fourier
decomposition in the azimuthal direction. Coordinate mapping is done in only two
dimensions, allowing for a reduced number of metric terms. An axis treatment is applied,
using parity conditions (Sandberg 2011). For improved numerical stability, skew-splitting
of convective terms is applied (Kennedy & Gruber 2008). An explicit 11-points filter
is applied in all flow directions, with filter weight 0.2, to dampen spurious oscillations
(Bogey et al. 2009). An explicit, low-memory, fourth-order, five stages, explicit Runge–
Kutta scheme is used for time marching (Kennedy et al. 2000). In addition to the flow
governing equations, the conservation equation for a passive scalar is also solved for (see
(1) in Aparece-Scutariu & Shin 2022).

The present DNS consist of a round turbulent air jet, issued into ambient air, without
coflow, from a flat plate at Reynolds number Re = 7290). We define Re = U0 D/ν, where
U0 is the inlet velocity, D is the inlet diameter, and ν represents kinematic viscosity. The
flow Mach number is subsonic at 0.304. The flow domain is stretched in the axial direction,
spanning 55D, with 30D in the radial direction. At the jet nozzle, the inflow condition
is imposed with a top-hat mean velocity profile and weak turbulent fluctuations using a
digital filter (Klein et al. 2003). A Navier–Stokes non-reflecting characteristic boundary
condition (Kim & Lee 2000) is used at the streamwise outflow, with a zonal boundary
(Sandberg & Sandham 2006) of 15 points, applied in the outlet vicinity, to dampen any
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Figure 4. Non-dimensional instantaneous SDR in (a) the steady-state jet, and the stopping jet at times after
stopping (b) 10τ , (c) 25τ , (d) 50τ .

unphysical reflections going back into the domain. In the azimuthal direction, a periodic
boundary condition is used. Note that the domain of interest in the present study has length
only 30D in the axial direction (figure 4). The remaining 25D serves as a safety distance,
to reduce the possibility of the outlet exerting an influence on the flow field. The grid
independence of the flow solution for the present DNS was previously demonstrated (see
figure 1 of Shin et al. 2017b), with evidence of well-resolved SDR (see figure 3 of Aparece-
Scutariu & Shin 2022).

Initially, the simulation runs from the quiescent flow field until a statistically stationary
flow is established. Stationarity is demonstrated by the evolution of flow quantities, as
shown by Shin et al. (2017b) and Aparece-Scutariu & Shin (2022). Then the inlet velocity
is suddenly set to zero, resetting the time to t = 0. From the stopping point, one realisation
is simulated until t = 69τ , where τ is the characteristic jet time, defined as τ = D/U0.
Note that 10 statistically independent realisations are produced for ensemble averaging.
Due to the limited number of only 10 stopping jet instances, data were filtered for any noise
using a one-dimensional Savitzky–Golay filter, based on local second-order polynomial
fits over sets of points with fixed width (Guest 2012). Figure 4(a–d) show the instantaneous
non-dimensional SDR field from one realisation, at different times after the point of
stopping (t/τ = 0).

3. Results
This section is structured as follows. First, a theoretical analysis assuming self-similarity is
presented. The theoretical analysis provides relationships between self-similar variables,
including an explicit relationship for v′χ ′, which serves as a validation of the theoretical
development. Subsequently, self-similarity characteristics of the stopping jet are presented
through subsections covering evolution of the centreline profiles, radial profiles of
individual terms of the transport equation, and the budget terms. Then the radial profile of
v′χ ′ is compared against the derived relationship in the theoretical subsection. Finally,
existing algebraic models of the SDR-related terms are compared with DNS data,
proposing suitable model coefficients and modifications.
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3.1. Theoretical analysis assuming self-similarity
In this subsection, a theoretical analysis on the mean SDR is developed, using the
assumption that flow variables remain self-similar in the unsteady jet. The assumptions
of self-similarity will be thoroughly checked by DNS data in §§ 3.3 and 3.4. Furthermore,
obtained theoretical predictions will be validated in § 3.5.

The analysis starts from the transport equation for the mean SDR in the case of an
incompressible jet with constant mass diffusivity D:

∂ χ

∂t
+ ∂u j χ

∂x j
=D

∂2χ

∂x j∂x j
− ∂u′

jχ
′

∂x j
− 4D

∂ξ

∂x j

∂u j

∂xi

∂ξ

∂xi
− 4D2 ∂2ξ

∂x j∂xi

∂2ξ

∂x j∂xi
. (3.1)

Next, assuming that all involved variables are self-similar, the scaled ensemble-averaged
statistics can be represented by a scaled radius η = r/(x − x0), where x0 represents the jet
virtual origin. Flow variables can be normalised by centreline values as

χ = χcgχ(η), u = ucgu(η), v = ucgv(η),

u′χ ′ = uc χc gu′χ ′(η), v′χ ′ = uc χc gv′χ ′(η),

4D2 ∂2ξ

∂x j ∂xk

∂2ξ

∂x j ∂xk
= uc χc

r1/2
h(η),

4D
∂ξ

∂x j

∂u j

∂xk

∂ξ

∂xk
= uc χc

r1/2
l(η),

(3.2)

where gχ , gu , gv , gu′χ ′ , gv′χ ′ , h and l are dimensionless shape functions characterising the
self-similar profiles, respectively. Note that r1/2 is the so-called half-radius, i.e. the radial
location where axial velocity is half of the centreline axial velocity. Centreline variables
uc and χc are functions of η and t . In previous studies of the stopping jet, uc and r1/2 are
characterised as (Shin et al. 2017; Pope 2000)

uc = Cu
x − x0

t − t0
,

r1/2 = S(x − x0), (3.3)

where t0 is a time shift, and Cu and S are some constants.
Substituting the relations in (3.2) and (3.3) into (3.1) results in

gχ

Cu

t − t0
χc

∂χc

∂t
+ (

gugχ + gu′χ ′
) x − x0

χc

∂χc

∂x
= ηgu

dgχ

dη
− gv

dgχ

dη
− 1

η

d
(
ηgv′χ ′

)
dη

+ η
dgu′χ ′

dη
− gu′χ ′ − 1

S
(h + l). (3.4)

The terms on the right-hand side of (3.4) are functions of η only, while the terms on
the left-hand side are functions of x and t . In order for equality to hold, χc only accepts a
power-law form as

χc(x, t) = CX (x − x0)
a(t − t0)

b, (3.5)

where CX is a constant. The power-law exponents a and b cannot be determined any
further in this analysis. In Shin et al. (2017), power-law exponents of uc for a stopping
jet were determined explicitly using a similar approach. However, the difference is that
velocity is nonlinear in its governing equation (momentum equation), while χ is linear in
its governing equation (see (3.1)).
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It will be shown in § 3.2 that present DNS data indicate a = 1 and b = −2 as a good fit
for χc evolution, giving

χc(x, t) = Cχc

U0

x − x0

(t − t0)2 , (3.6)

where a division by U0 is included to match dimensions. Then substitution of (3.6) into
(3.4) gives

− 2
Cu

gχ + gugχ − ηgu
dgχ

dη
+ gv

dgχ

dη
= −

[
gv′χ ′

η
+ dgv′χ ′

dη

]
−
[

2gu′χ ′ − η
dgu′χ ′

dη

]

− 1
S
(h + l). (3.7)

Note that Cχc does not appear in (3.7), due to linear dependency of χ in the SDR
transport equation (see (3.1)). At η = 0, the following relationships hold due to definitions
and symmetry:

gu(0) = 1, gv(0) = 0, gχ (0) = 1, gv′χ ′ = 0. (3.8)

With the above relationships, evaluating (3.7) at η = 0 gives[
dgv′χ ′

dη

]
η=0

= 1
Cu

− 1
2

− gu′χ ′(0) − 1
2S

[
h(0) + l(0)

]
. (3.9)

Next, (3.7) can be integrated to obtain an explicit expression for gv′χ ′ as

gv′χ ′ = 2
ηCu

∫ η

0
η′gχ dη′ − 4

η

∫ η

0
η′gugχ dη′ + 3gχ

η

∫ η

0
η′gu dη′

+ ηgu′χ ′ − 4
η

∫ η

0
η′gu′χ ′ dη′ − 1

ηS

∫ η

0
η′(h + l) dη′. (3.10)

The two explicit expressions of (3.9) and (3.10) are compared with simulation data in
§ 3.5.

3.2. Centreline SDR
In this subsection, centreline SDR (χc) of the stopping jet is characterised using DNS. As
shown in (3.2), centreline characteristics are the starting point of the self-similar analysis.
The theoretical analysis in § 3.1 has not reached a conclusion on spatial and temporal
dependencies. This will be solved in this subsection (see the paragraph after (3.5)).

Figure 5 shows the spatial and temporal evolution of χc after stopping. Thin coloured
lines represent ensemble-averaged χc – note that ensemble averaging was done over 10
realisations. Profiles are normalised by the characteristic jet time τ = D/U0, with D and
U0 as the source diameter and velocity, respectively. The jet virtual origin x0 = 2.39D
remains the same as for the steady-state jet (Shin et al. 2017b). For reference, the steady-
state χc is added as a thick black line. Overall, χc decreases from its steady-state profile
after stopping.

In the inlet vicinity (x/D ≈ 0), centreline SDR momentarily increases immediately after
stopping, then slowly decreases again to zero. The region corresponds to the potential core
so that χc is zero in the steady-state jet (see figure 4a). After the jet is stopped, the potential
core collapses inwards, and SDR in the nozzle vicinity is no longer zero (see figure 4b).
As time advances, SDR approaches to zero, as seen in figure 4(c,d).

Further downstream, after a peak, χc evolves in the same way as for the steady-
state profile. Behaviour is also similar to the observations of decelerating diesel jets
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Figure 5. Centreline SDR variation with axial distance at multiple time instances.
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Figure 6. (a) The parabolic regime and (b) the inverse of χc slope behaviour near the nozzle.

(Musculus 2009). After stopping, the decelerating wave propagates downstream with a
certain speed. At locations where the decelerating wave has not arrived, χc remains the
same as in the steady-state jet. Similarity with the steady-state profile can also be seen
in the instantaneous images of figure 4 – the instantaneous SDR characteristics after
x/D > 25 remain similar for t/τ = 0−50.

Long-term behaviour of the intermediate region between the nozzle inlet and the peak
of χc (e.g. 1 < (x − x0)/D < 7 at t/τ = 5) will be analysed further.

Figures 6(a) and 6(b) replotted centreline SDR in two different ways to investigate
spatial and temporal dependencies on the intermediate region. Figure 6(a) shows χc in
the log-log scale, with the x-axis being the axial distance with 1 < (x − x0)/D < 12. For
reference, y = x is added as a thick black line. As time advances, χc becomes parallel to
the black line, indicating that χc becomes linear in x . Similarly, figure 6(b) shows χc in
the log-log scale with the x-axis being the time with 5 < (t − τ0)/τ < 56. For reference,
y = x−1 and y = x−2 are added as thick blue and black lines. In the long time and in
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Figure 8. (a) False colours of χcU0(t − t0)2/(x − x0), and (b) deceleration wave speed (uwave) for χc, along
with evolution of centreline axial velocity uc.

the far field, χc becomes parallel to the black line, meaning that χc asymptotes to a
[(t − t0)/τ ]−2 dependency. The analysis indicates that exponents in (3.5) are a = 1 and
b = −2, respectively. The long term behaviour of χc in the intermediate regime can be
expressed as

χc = Cχc

U0

x − x0

(t − t0)2 , (3.11)

where Cχc is a dimensionless coefficient whose value will be evaluated, and U0 is included
to match the dimension.

Figure 7 shows scaled χc over time to reconfirm spatial and temporal dependencies –
the centreline SDR is scaled by (x − x0)/U0(t − t0)2. Again, the scaled χc asymptotes to
a constant in the long term. Scatter around the asymptotic value remains low, compared to
the magnitude of early (t/τ < 14) scaled profiles. The asymptotic constant Cχc is 0.00105,
as shown by the dashed line.

Next, the decelerating wave for the SDR is analysed. To quantify the decelerating wave,
figure 8(a) shows the false colour of χcU0(t − t0)2/(x − x0), using log scales. The false
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colour displays a boundary separating two regions, one in red and the other in white. The
boundary is not distinctive, but rather smooth with some width. Still, the boundary is
clearly parallel to y = x2. Hence this is treated as a characteristic line and drawn on the
figure with a functional form as

t − t0
τ

= 1
2Cwave,SDR

(
x − x0

D

)2

. (3.12)

As the boundary is not very distinctive, three candidates for 1/(2Cwave,SDR) are
selected, representing high, medium and low bounds with values 0.061, 0.053 and 0.046,
respectively. Hence Cwave,SDR takes values 8.2, 9.43 and 10.87, respectively. By the
method of characteristics, the characteristic line in (3.12) should be a solution of the
characteristic equation

dx

dt
= uwave,SDR . (3.13)

With (3.12), uwave,SDR satisfies

uwave,SDR

U0
= Cwave,SDR

(x − x0)/D
. (3.14)

The 1/x dependency of uwave,SDR indicates that the SDR deceleration wave has a
behaviour similar to that of the deceleration wave for axial velocity (uc) in the stopping jet
(Shin et al. 2017), which is

uwave,veloci ty

U0
= 7.71

(x − x0)/D
. (3.15)

For comparison, figure 8(b) shows the decelerating wave speeds for centreline SDR and
axial velocity. This indicates that overall, the deceleration wave speed for SDR is slightly
higher than for axial velocity. A quantitative comparison between the SDR wave speed and
centreline axial velocity indicates that the former is between 1.06 and 1.41 times higher for
the high and low bounds in figure 8(b), respectively.

Figure 8(a) can also be used to set the ranges, where the long-term asymptotic behaviour
is observed. The horizontal black dashed line is the line (t − τ0)/τ = 36, which crosses
the decelerating wave line (black solid line) at (x − x0)/D = 26. Considering x0 = 2.39D
and t0 = 14τ , the ranges 14 < x/D < 28 and 50 < t/τ < 69 can be used to obtain statistics
for long-term behaviour analysis.

3.3. Self-similarity of the mean SDR in a stopping jet
This subsection analyses radial profiles of the mean SDR and its axial, radial and
azimuthal components. As shown in § 3.2, scaled centreline SDR χcU0(t − t0)2/(x − x0)
asymptotes to a constant value, after some transient time. Based on this behaviour, the
current subsection focuses on identifying new self-similar states in the stopping jet. In
the first subsubsection, stationarity and homogeneity of normalised radial profiles of the
SDR are investigated. The second subsubsection presents new self-similar states, which
are different from their steady-state counterparts.

3.3.1. Stationarity and homogeneity of the SDR radial profiles
Stationarity of SDR and its components is first checked at selected axial locations
(x − x0)/D = 14 and 28. Figure 9 shows radial profiles of axial, radial, azimuthal and the
total SDR components, at different times after the jet is stopped. Profiles are normalised
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Figure 9. Normalised radial profiles of transient axial SDR component at (a) (x − x0)/D = 14 and
(e) (x − x0)/D = 28, radial SDR component at (b) (x − x0)/D = 14 and (f) (x − x0)/D = 28, azimuthal
SDR component at (c) (x − x0)/D = 14 and (g) (x − x0)/D = 28, total SDR at (d) (x − x0)/D = 14 and
(h) (x − x0)/D = 28.

by centreline SDR (χc). On each plot, the blue thick line represents averaged profile
over t/τ = 50−69 to be termed hereafter ‘long-term profiles’. As seen in figure 8(a), the
decelerating wave passes by at approximately t/τ = 24 and 35 for (x − x0)/D = 14 and
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28, respectively. Hence the time range t/τ = 50−69 falls into the interval where long-term
behaviour can be observed at both locations.

Overall, transient profiles increase over time. As time advances, profiles start near the
steady-state profiles (black lines), and slowly move to long-term profiles (blue lines), then
settle down at the long-term profiles.

Figures 9(a) and 9(e) show the normalised axial SDR components. The long-term
profiles are higher than their steady-state counterparts. At both axial locations, long-term
profiles slightly increase with η, from the centreline towards a peak, and then decay
to zero further away from the centreline. Figures 9(b) and 9( f ) show the normalised
radial SDR components. The long-term profiles show the highest increase in magnitude,
compared to the steady-state profiles. The increase is mostly visible at (x − x0)/D = 28,
which also shows the highest peak dissipation at η ≈ 0.09, approximately 2.5 times higher
than the centreline value. Figures 9(c) and 9(g) show the azimuthal SDR component.
Long-term profiles resemble those of the axial component, which is also the case for the
steady-state jet. At (x − x0)/D = 14, the long-term profile is relatively flat, whereas at
(x − x0)/D = 28, there is a distinct peak in dissipation at η ≈ 0.07.

Finally, figures 9(d) and 9(h) show the total SDR long-term profiles. Again, the long-
term profiles are higher than the steady-state profiles, with the largest contribution from
the radial component. Also, on all figures, the instantaneous profiles of t/τ = 50, 60, 69
are all around the long-term profiles, which confirms stationarity in the inspected time
range. Furthermore, total SDR goes to zero at the same η location for both steady-state
and long-term profiles. This indicates that the jet spreading angle does not change while
the jet is decelerating.

3.3.2. Homogeneity of the SDR radial profiles
Next, homogeneity of profiles is investigated. Figures 10(a–d) show long-term radial
profiles (i.e. averaged over t/τ = 50−69) of the SDR and its components at axial locations
(x − x0)/D = 14−28. At each axial location of the given range, stationarity is observed at
the inspected times, as shown in figure 9. Overall, there is some degree of scatter among
the lines in all figures. The scatter would be attributed to limited simulation data – the
ensemble averaging uses 10 azimuthally averaged realisations. Still, the small scatter indi-
cates that long-term profiles are homogeneous after the passage of the decelerating wave.

Among the SDR components, overall shapes and magnitudes are similar to each other.
Similarity indicates that the mean SDR is isotropic, hence the total SDR can be inferred
from one component of the SDR. The χ/χc radial profile increases approximately 1.5
times the centreline value, until η ≈ 0.1, followed by a decay to zero until η = 0.25.

So far, stationarity and homogeneity were evaluated for the time interval t/τ = 50−69
and over the axial distance (x − x0)/D = 14−28. The choices of the ranges for x and t
are imposed by nozzle proximity, available simulation time and speed of the deceleration
wave. The ranges fall inside the regime in which the centreline SDR reaches an asymptotic
state (figure 6). Hence chosen ranges of x and t intervals are wide enough to highlight
universality of radial profiles, with a ratio for axial locations calculated based on x − x0 =
15 and time span 19τ .

Figures 10(e–h) show spatially averaged long-term profiles of the total SDR and its three
components, to be termed hereafter ‘decelerating self-similar profiles’. Decelerating self-
similar profiles in the blue thick lines are obtained by averaging the long-term profiles over
t/τ = 50−69 and (x − x0)/D = 14−28. Black thick lines are the steady-state self-similar
profiles. The shaded region represents an error bound of one standard deviation (S.D.).
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Figure 10. Temporally averaged profiles of normalised SDR components (a) axial, (b) radial and (c) azimuthal
as well as (d) total SDR at (x − x0)/D = 14−28; and self-similar profiles averaged over t/τ = 50−69 and
(x − x0)/D = 14−28 for SDR components (e) axial, (f ) radial and (g) azimuthal as well as (h) total SDR.

For the axial SDR component (figure 10e), the profile is momentarily lower than
its steady-state equivalent in the centreline vicinity. However, away from the centreline
it increases, peaking at η ≈ 0.10 with approximately 1.5 times the centreline value.
The radial SDR component (figure 10f ) remains more intense than its steady-state
counterpart along the entire radial direction, showing the steepest increase among the
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SDR components. The peak occurs at η ≈ 0.08, whose value is approximately 1.6 times
the centreline value. The azimuthal SDR component (figure 10g) is again higher than
its steady-state equivalent. The peak occurs at η ≈ 0.08, with a value approximately 1.3
times higher than the magnitude at the centreline. The decelerating self-similar profile of
the total SDR (figure 10h) remains higher than its steady-state counterpart along the entire
scaled radius. Monotonic increase of the decelerating self-similar profile peaks at η ≈ 0.08
and is approximately 1.5 times higher than the centreline value.

3.4. Self-similarity of the mean SDR transport equation in a stopping jet
In previous subsections, the mean SDR in the stopping jet reaches new self-similar states
after a transient time. These profiles are termed decelerating self-similar profiles. In this
subsection, analysis is extended to the terms in the mean SDR transport equation (3.1). For
ease of reading, this equation is rearranged so that all the terms are moved to the right-hand
side, as follows:

0 = − ∂χ

∂t︸︷︷︸
I

− ∂u j χ

∂x j︸ ︷︷ ︸
II

+D
∂2χ

∂x j ∂x j︸ ︷︷ ︸
III

− ∂u′
jχ

′

∂x j︸ ︷︷ ︸
IV

− 4D
∂ξ

∂x j

∂u j

∂xi

∂ξ

∂xi︸ ︷︷ ︸
V

− 4D2 ∂2ξ

∂x j ∂xi

∂2ξ

∂x j ∂xi︸ ︷︷ ︸
VI

.

(3.16)

In addition, all the terms are defined by Roman numerals, which are used hereafter. Note
that some definitions contain a minus sign and some do not. The inclusion or exclusion of
a minus sign is consistent with previous studies (Mantel & Borghi 1994; Mura & Borghi
2003; Chakraborty et al. 2011).

A previous analysis of the mean SDR equation shows that as for the steady-state
case (Aparece-Scutariu & Shin 2022), mean SDR convection (term II), mean SDR
diffusion (term III) and turbulent transport (term IV) remain negligible. Hence the analysis
focuses on the remaining significant terms (I, V, VI). Significance will be reconfirmed
by evaluating balance in the last subsection. The analysis will be conducted in the same
manner as the SDR analysis in the previous subsection. Stationarity and homogeneity for
radial profiles are first analysed. Then decelerating self-similar profiles are presented.

Figure 11 shows normalised radial profiles of significant terms in (3.16) at axial locations
(x − x0)/D = 19 and 28. Terms are normalised by (uc χc)/r1/2, as in § 3.1. In each plot,
profiles are shown in time increments of 10τ after stopping. Blue thick lines represent
averaged profiles over t/τ = 50−69. The time interval is considered based on the scaled
χc, which displays an asymptotic trend, beyond t/τ > 40, at both axial locations (see
figure 6c).

Figures 11(a) and 11(d) show the normalised temporal term of SDR (term I in (3.16)).
At all times, the value remains negative, indicating that the mean SDR decreases over
time. At t/τ > 50, radial profiles remain close to the long-term profiles. While profiles of
x/D = 19 and 28 are not identical, both show the same trend. Long-term profiles start
at approximately −0.8 at the centreline, remain on a plateau, except for any spurious
oscillations, and then, at approximately η = 0.09, the value goes to zero. As term I includes
a derivative of SDR (i.e. higher-order statistics), spurious oscillations are unavoidable.

Figures 11(b) and 11(e) show terms associated with construction by the stretch of scalar
field due to local curvature (term V in (3.16)) at the two axial locations (x − x0)/D = 19
and 28. Again, the profiles are not exactly identical at the two locations, but they show
similar trends. Over time, profiles transition from the steady-state profile to the long-term
profile. After t/τ = 50, the profile remains close to the long-term profile. The long-term
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Figure 11. Transient behaviour of radial profiles for dominant budget terms in the mean SDR transport
equation: term I at (a) (x − x0)/D = 19 and (d) (x − x0)/D = 28; term V at (b) (x − x0)/D = 19 and
(e) (x − x0)/D = 28; and term VI at (c) (x − x0)/D = 19 and (f ) (x − x0)/D = 28.

profile starts from approximately 6.5 at the centreline, and increases with η. Then it peaks
at η ≈ 0.05, followed by a decay to zero.

Figures 11(c) and 11(f ) show the destruction term (term VI in (3.16)) at the two axial
locations. At both locations, profiles transition again from the steady-state profile to the
long-term profile, until t/τ = 50. The long-term profile starts from 6.3 at the centreline,
and decreases with η, reaching a negative peak at approximately η = 0.07, and then goes
to zero. Overall, figure 11 illustrates that all dominant terms reach the long-term profiles
at the two inspected locations after stopping, especially after t/τ > 50.
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Figure 12. Temporally averaged dominant terms of the mean SDR transport equation for (a) term I, (b) term
V and (c) term VI; and normalised radial profiles of (d) term I, (e) term V and (f ) term VI, self-similar over
t/τ = 50−69 and x/D = 19−28.

Next, homogeneity of the long-term profiles is inspected. Figure 12(a–c) show the
normalised radial profiles for the dominant terms in the axial range (x − x0)/D = 19−28.
Profiles are first averaged over the time interval t/τ = 50−69 and then are normalised
by (uc χc)/r1/2. These centreline variables are also averaged over the time interval
t/τ = 50−69. Overall, variations among locations are small.

Then figure 12(d–f ) show spatially averaged long-term profiles for the three dominant
terms, denoted hereafter as decelerating self-similar profiles. The blue shaded region
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Figure 13. Balance of temporally and spatially averaged budget terms of the mean
SDR transport equation (3.16).

indicates one standard deviation of the averaged profile, and the black line indicates its
corresponding radially averaged steady-state profile.

Term I (the temporal term) starts from a negative value near the jet centreline, peaking
at η ≈ 0.07, followed by a monotonic increase to 0 until η ≈ 0.25. As for terms V and
VI (figure 12d–f ), radial profiles are homogeneous in the interval (x − x0)/D = 19−28.
Term V (production term) has an off-centreline peak, followed by a decrease at outer radii.
Term VI (destruction term) shows the same trend as the production term. In terms of order
of magnitude, terms V and VI are approximately 5 times larger than term I. Hence terms
V and VI balance the equation at leading order, although term I has a non-negligible
influence on this balance.

Finally, figure 13 shows the balance of the mean SDR transport equation. The balance
term considers all terms in (3.16), including the significant terms I, V and VI, as well
as the negligible ones, II, III and IV. Balance is zero at the centreline, but becomes
negative away from the jet axis. Note that the three significant terms still have a certain
amount of uncertainty, as shown in figure 12(d–f ). Hence variation of the balance term
would be attributed to statistical uncertainty of the dominant terms. Still, the relatively
small magnitude balance term validates the computation of the three significant terms, as
they are introduced in the first part of this subsection. Overall, the biggest contributions
are due to terms V and VI in (3.16). These are followed by the temporal term I, which
is approximately 20 % in magnitude of either term V or term VI. Equation (3.16) is
considered to be balanced, given the fact that the balance is overall smaller than relevant
budget terms (i.e. terms I, V and VI).

3.5. Prediction of the self-similar profile of v′χ ′ in a stopping jet

In § 3.1, the self-similar radial profile of v′χ ′ and its derivative at η = 0 are given in (3.9)
and (3.10). Derivation is based on the assumption of self-similarity of the other involved
terms. Hence agreement of the derivation with actual DNS profiles can serve as indirect
evidence of self-similarity occurring in the stopping jet.
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Figure 14. Normalised decelerating self-similar profiles over t/τ = 50−69 and (x − x0)/D = 14−28 for v′χ ′.

For ease of reading, (3.9) and (3.10) are rewritten below:[
dgv′χ ′

dη

]
η=0

= 1
Cu

− 1
2

− gu′χ ′(0) − 1
2S

[
h(0) + l(0)

]
, (3.17)

gv′χ ′ = 2
ηCu

∫ η

0
η′gχ dη′ − 4

η

∫ η

0
η′gugχ dη′ + 3gχ

η

∫ η

0
η′gu dη′

+ ηgu′χ ′ − 4
η

∫ η

0
η′gu′χ ′ dη′ − 1

ηS

∫ η

0
η′(h + l) dη′. (3.18)

The derivations require profiles of

u, χ, u′χ ′, 4D2 ∂2ξ

∂x j∂xi

∂2ξ

∂x j∂xi
, 4D

∂ξ

∂x j

∂u j

∂xi

∂ξ

∂xi
. (3.19)

The decelerating self-similar profile of u′χ ′ is presented in Appendix A, while all the other
profiles are presented in previous sections.

Figure 14 shows the decelerating self-similar profile of v′χ ′ along with various
predictions. Again, the shaded region indicates one standard deviation of the mean profile.
The light green dot-dashed straight line is the predicted slope, using (3.9). The values
Cu = 0.441 (Shin et al. 2017), S = 0.085 (i.e. jet spreading rate), gu′χ ′(0) = −0.092,
h(0) = −5.405 and l(0) = 5.642 are assigned to the equation. The predicted slope (0.468)
is close to the actual average slope of the averaged decelerating self-similar profile until
η ≈ 0.11 (0.353).

Predicted radial profiles based on (3.18) are plotted as dashed and dot-dashed lines. The
purple dashed line includes all terms in (3.18), while the green dot-dashed line includes
only the first three terms on the right-hand side. Prediction with only three terms shows
better agreement with the actual averaged profile. If all terms are included, the prediction
seems to be shifted rightwards to some extent. Note that the first three terms in (3.18) have
a high level of confidence, as these are related to first-order statistics, while the remaining
terms have a lower confidence level, due to their nature of higher-order statistics. Hence
including the remaining terms would lead to undesirable uncertainty, due to their lower
confidence level with regard to statistics.
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Overall, proximity of slope and radial profile predictions increases the validity of self-
similar behaviour of the SDR in the stopping jet.

3.6. Scaling of turbulent modelling for terms in the χ transport equation
In this subsection, the existing turbulence models for the SDR are compared with DNS
data, and additional modifications are proposed. For brevity, spatial and temporal virtual
origins (x0 and t0) are omitted in this subsection.

Three algebraic models are found in the literature for SDR modelling. Libby & Bray
(1980) proposed a model for mean SDR, relating turbulent energy dissipation (ε), turbulent
kinetic energy (k) and mixture fraction variance (ξ ′2), denoted the LB model:

χ = CL B
ε

k
ξ ′2. (3.20)

Mantel & Borghi (1994) proposed algebraic models for the two dominant terms in the
SDR transport equation (3.16). Mantel & Borghi (1994) argued that as every term in (3.1)
depends on the turbulent Reynolds number, in the large turbulent Reynolds number limit,
the following models for dominant terms associated with scalar–turbulence interaction
(term V in (3.16)) and effects of local curvature (term VI in (3.16)) can be developed. The
model for term V, denoted the MB5 model, is

−4D
∂ξ

∂x j

∂ξ

∂xi

∂u j

∂xi
= 2α

ε

k
χ, (3.21)

and the model for term VI, denoted the MB6 model, is

4D2 ∂2ξ

∂x j∂xi

∂2ξ

∂x j∂xi
= 2β

χ2

ξ ′2 , (3.22)

where α and β are dimensionless constants.
As shown in Aparece-Scutariu & Shin (2022) and in previous subsections, both steady-

state and stopping jets show self-similar characteristics. Henceforth, the three models in
(3.20)–(3.22) should be self-similar as well. At first glance, the models would seem to
be self-similar, as constituent variables (ε, k, ξ ′2, χ ) are self-similar. Still, caution is
necessary, as self-similarity requires normalisation by certain centreline values, which can
be different from case to case. An alternative way to check self-similarity is to check if the
x and t scalings of the models are the same as the targeted variables.

In the steady-state jet, χ scales as 1/x4 (Aparece-Scutariu & Shin 2022). The
constituent variables in the LB model are ε, k and ξ ′2, which scale as 1/x4, 1/x2 and
1/x2, respectively. Then the collective scaling of the LB model without CL B is 1/x4,
which agrees with the scaling of χ for the steady-state jet. The same analysis is done
for the other two models. Table 1 summarises x and t scalings for each variable for the
steady-state jet. The first two rows are the measured scaling from Aparece-Scutariu & Shin
(2022). The next two rows show the scalings of the three algebraic models, without the
modelling parameters. The three models agree with the x scalings of their target variables
in the steady-state jet, so comparisons can be made by self-similar variables.

Figure 15 shows self-similar profiles of χ , term V, and term VI over the scaled
radius. Note that the three profiles are normalised by χc, (uc χc)/r1/2 and (uc χc)/r1/2,
respectively. In addition, the three algebraic models with optimal parameters are included.
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Variable k ξ ′2 ε χ Term V Term VI

Scaling
1
x2

1
x2

1
x4

1
x4

1
x6

1
x6

Variable LB model
without CL B

MB5 model
without α

MB6 model
without β

Scaling
1
x4

1
x6

1
x6

Table 1. Spatial and temporal scalings of flow variables for the steady-state jet.

Variable k ξ ′2 ε χ Term V Term VI

Scaling
x2

t2
x2

t2
x2

t3
x

t2
x

t3
x

t3

Variable LB model
without CL B

MB5 model
without α

MB6 model
without β

Scaling
x2

t3
x

t3
1
t2

Table 2. Spatial and temporal scalings of flow variables for the stopping jet.
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Figure 15. Comparison between the actual data and the algebraic models in the steady-state jet corresponding
to (a) SDR and (b) terms V and VI from (3.1).

Radial profiles of the models agree well with actual data. The optimal parameters for the
steady-state jet are

CL B = 2, α = 9, β = 0.1. (3.23)

Note that previous works reported similar values of CL B : 1.0 from Jones (1994), 2.0
from Janicka & Peters (1982), 2.0 from Overholt & Pope (1996), and 3.0 from Juneja &
Pope (1996).

Next, the same scaling analysis is conducted for the stopping jet. Table 2 summarises
the scalings of flow variables and the models. Again, the first two rows are the measured
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Variable lt u′ Ret

Scaling for the steady-state jet x
1
x

1

Scaling for the stopping jet x
x

t

x2

t

Table 3. Spatial and temporal scaling of the turbulent Reynolds number and its related variables.

scalings from Shin et al. (2017, 2023) and this work, and the next two rows show scalings of
the three algebraic models without modelling parameters. The scaling of the MB5 model
agrees with that of term V. However, the LB model without CL B , and the MB6 model
without β, do not match the targeted scalings.

A plausible fix for the scaling mismatch is to impose scalings on the modelling
parameters. The necessary scalings are t/x for CL B , and x/t for β. Mantel & Borghi
(1994) applied a Re1/2

t scaling to β in the context of decaying homogeneous isotropic
turbulence flow in order to match with their order of magnitude analysis. Hence a scaling
with Ret is tested for the model parameters CL B and β.

Table 3 shows the scalings of the turbulent Reynolds number (Ret ) and its related
variables, which are based on (Pope 2000)

Ret = lt u′

ν
, where lt = k3/2

ε
and u′ = k1/2. (3.24)

Given table 3, two types of modifications are proposed, as follows. The first
modification, denoted Type 1, is

CL B = CL B,1

D

lt
Ret

, β = β1 D
Ret

lt
. (3.25)

The second modification, denoted Type 2, is

CL B = CL B,2

(
U0

D

lt
Ret u′

)1/2

, β = β2

(
D

U0

Ret u′

lt

)1/2

. (3.26)

Note that lt and u′ have dimensions of length and velocity, so additional length/velocity
scales (D and U0) are added to keep the new parameters dimensionless. Type 1 has simpler
expressions for CL B and β. Type 2 includes a Re1/2

t scaling, which appears in the scaling
of the two dominant terms in the SDR transport equation (Mantel & Borghi 1994; Mura
& Borghi 2003).

By using the two types of modification, radial profiles can be predicted with self-similar
variables. Figures 16 and 17 show a comparison of the normalised radial profiles for the
models, over the scaled radius. The resulting optimal parameters are

α = 42, (3.27)

parameters for Type 1

CL B,1 = 70, β1 = 0.1, (3.28)

and parameters for Type 2

CL B,2 = 3, β2 = 25. (3.29)
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Figure 16. Comparison between the actual data and the algebraic models using Type 1 modification (3.25) in
the stopping jet corresponding to (a) the SDR and (b) terms V and VI from (3.1).
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Figure 17. Comparison between the actual data and the algebraic models using Type 2 modification (3.26) in
the stopping jet corresponding to (a) the SDR and (b) terms V and VI from (3.1).

For LB models, Type 2 modification seems to fit better with actual data. For the MB5
model, which does not need a modification, there is very good agreement with the actual
data. For the MB6 model, both modifications produce results that fit within one standard
deviation.

4. Conclusions
Spatio-temporal characteristics of turbulent mixing have been investigated in a stopping
jet, using direct numerical simulations. Key investigated parameters are the ensemble-
averaged scalar dissipation rate (SDR) and dominant terms in the mean SDR transport
equation. After the point of stopping, a deceleration wave travels along the jet, upstream
of which new decelerating self-similar profiles are identified for SDR and its directional
components. Self-similarity also holds for dominant terms of the mean SDR transport
equation.

The deceleration wave characteristic for SDR seems to travel at a speed similar to that
corresponding to axial velocity, indicating that changes in turbulent mixing caused by jet
stopping propagate concurrently with the velocity field. Behind the decelerating wave, the
centreline SDR becomes proportional to the axial distance and inversely proportional to
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Figure 18. Normalised decelerating self-similar profile over t/τ = 50−69 and (x − x0)/D = 14−28 for u′χ ′.

the square of time. The presence of the decelerating self-similar profiles is analysed first
at two selected axial locations, then averaged over a wider range of axial locations. At
inspected axial locations, radial profiles transition from the steady-state profiles to new
decelerating self-similar ones. When profiles reach the decelerating self-similar state, they
remain in place.

Decelerating SDR self-similar profiles show increased dissipation during jet
deceleration, when compared to their steady-state counterparts. This suggests that
enhanced entrainment evidenced after stopping leads, on average, to an increase in
dissipation. For the mean SDR transport equation, budget terms associated with turbulent
stretching of the scalar field and curvature effects on the scalar field remain dominant
even when the jet is stopped. The temporal term, although not negligible, has a small
contribution to the equation balance. Increase in dissipation after stopping is also reflected
in the magnitude of terms V and VI, which are larger in magnitude when compared to
their steady-state counterparts.

The assumption of decelerating self-similarity is re-validated by comparing the
predicted turbulent transport term (v′χ ′) with its DNS equivalent. The predicted slope
and the v′χ ′ radial profile are close to DNS data.

Three algebraic models for the mean SDR and the two dominant terms of the mean
SDR transport equation are compared with actual DNS data. For the steady-state jet,
scaling of the models satisfies self-similarity, and the resulting model coefficients agree
with previous investigations. For the stopping jet, however, modification of the coefficients
is necessary. Two types of modifications are proposed, both introducing a Ret dependency.
These two types satisfy the scaling given by self-similarity.
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Appendix A. Decelerating self-similar profile of u′χ ′

Figure 18 shows the normalised decelerating self-similar profile that is averaged over t/τ =
50−69 and (x − x0)/D = 14−28 for u′χ ′.
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