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The scattering of surface waves by structures intersecting liquid surfaces is fundamental in
fluid mechanics, with prior studies exploring gravity, capillary and capillary–gravity wave
interactions. This paper develops a semi-analytical framework for capillary–gravity wave
scattering by a fixed, horizontally placed, semi-immersed cylindrical barrier. Assuming
linearised potential flow, the problem is formulated with differential equations, conformal
mapping and Fourier transforms, resulting in a compound integral equation framework
solved numerically via the Nyström method. An effective-slip dynamic contact line
model accounting for viscous dissipation links contact line velocity to deviations from
equilibrium contact angles, with fixed and free contact lines of no dissipation as limiting
cases. The framework computes transmission and reflection coefficients as functions
of the Bond number, slip coefficient and barrier radius, validating energy conservation
and confirming a 90◦ phase difference between transmission and reflection in specific
limits. A closed-form solution for scattering by an infinitesimal barrier, derived using
Fourier transforms, reveals spatial symmetry in the diffracted field, reduced transmission
transitioning from gravity to capillary waves and peak contact line dissipation when
the slip coefficient matches the capillary wave phase speed. This dissipation, linked
to impedance matching at the contact lines, persists across a range of barrier sizes.
These results advance theoretical insights into surface-tension-dominated fluid mechanics,
offering a robust theoretical framework for analysing wave scattering and comparison with
future experimental and numerical studies.
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1. Introduction
The scattering of surface waves by barriers on liquid surfaces is a classical problem in
fluid mechanics, with applications in coastal engineering, fluid containment and wave
energy systems. While scattering of gravity waves is typically observed in large-scale
systems, scattering of capillary waves can occur in small-scale fluid systems. These
systems often involve minimal surface-intersecting structures and have applications in
laboratory set-ups, and in the control and containment of capillary liquids, such as the
stabilisation of liquid globes by a wire loop (Pettit 2005), helical-wire-stabilised liquid
cylinders (Lowry & Thiessen 2007), microstructured surfaces with pillars (Rothstein 2010)
and open capillary channels in biotechnology (Berthier et al. 2019). Capillary–gravity
surface waves arise where both gravity and surface tension influence wave dynamics.
While extensive studies have investigated gravity wave scattering, studies of capillary–
gravity wave scattering remain limited, either experimental measurements (Park, Liu &
Chan 2012; Michel et al. 2016; Wang, Liu & Zhang 2025) or theoretical analysis (Packham
1968; Rhodes-Robinson 1982, 1996; Hocking 1987b; Mahdmina & Hocking 1990; Zhang
& Thiessen 2013). In this paper, we develop a semi-analytical solution for the scattering
of capillary–gravity waves by a fixed, semi-immersed cylindrical barrier (figure 1).

Theoretical analysis of capillary–gravity wave scattering is challenging due to the effect
of surface tension, which raises the order of the surface boundary conditions (Hocking
1987a; Henderson & Miles 1994) and requires an additional boundary condition at the
contact lines – the three-phase junction where solid, liquid and gas meet (Jiang, Perlin
& Schultz 2004; Nicolas 2005; Kidambi 2007; Huang et al. 2020; Kim et al. 2020).
Accounting for contact line motion is crucial for accurately modelling the scattering and
other capillary phenomena in various fluid configurations, such as sessile drops (Noblin,
Buguin & Brochard-Wyart 2004; Vukasinovic, Smith & Glezer 2007; Fayzrakhmanova
& Straube 2009; Sharp 2012), bubbles (Harazi et al. 2019), liquid bridges (Morse,
Thiessen & Marston 1996; Marr-Lyon, Thiessen & Marston 2001) and rivulets (Davis
1980). Prior experimental studies have shown that both fixed and mobile contact lines
influence the dynamics, such as selectively exciting standing wave patterns in Faraday
wave resonances (Zhang et al. 2024), shifting the dispersion relation of travelling waves
(Monsalve et al. 2022) and significantly altering surface wave scattering by modifying
the contact line conditions (Park et al. 2012; Michel et al. 2016; Wang et al. 2025). The
few previous theoretical analyses of capillary–gravity wave scattering with contact line
conditions focused primarily on scattering from vertical cliffs (Rhodes-Robinson 1982),
infinitesimally thin barriers (Hocking 1987b; Rhodes-Robinson 1996; Zhang & Thiessen
2013), vertical cylinders (Mahdmina & Hocking 1990) and porous plates (Gorgui, Faltas
& Ahmed 1993; Rhodes-Robinson 1997; Chakrabarti & Sahoo 1998).

In the absence of surface tension, the scattering of gravity waves by barriers has
been a cornerstone of hydrodynamic research, with foundational studies by Dean (1945)
and Ursell (1947) providing critical insights into wave interactions with submerged
and surface-piercing structures. Dean analysed the reflection of surface waves by a
submerged plane barrier, while Ursell focused on the effect of a fixed vertical barrier
on wave transmission and reflection in deep water, laying the groundwork for subsequent
advancements. Built upon these seminal works, several studies were conducted between
1950 and 2000 to deepen the understanding of gravity wave scattering (Mei 1989).
Wehausen et al. (1960) provided a comprehensive review of surface waves, synthesising
earlier findings, including those of Dean and Ursell. Classic work such as Newman (1965)
analysed the propagation of gravity waves past a step bottom, providing foundational
insights that continue to inform modern studies of wave scattering. Further studies, such as
Liu & Abbaspour (1982), employed the boundary integral equation method to investigate
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Figure 1. Schematic for capillary–gravity surface waves scattered by a fixed, semi-immersed, horizontal
cylindrical barrier on a flat surface with a dynamic contact line given in (2.4).

the scattering characteristics of gravity waves by vertical and inclined thin breakwaters,
focusing on numerical solutions for reflection and transmission coefficients. Similarly,
Sahoo, Lee & Chwang (2000) examined wave trapping and generation by submerged
vertical porous barriers, employing eigenfunction expansion and least-squares methods
to analyse reflection coefficients, dynamic pressure distributions and wave amplitudes for
various porous-effect parameters.

Recent research has extended these insights to more complex barrier designs,
including porous, submerged and resonator-based configurations, with applications in
wave energy dissipation and coastal protection. For instance, Chanda & Nandan Bora
(2022) investigated flexural–gravity wave interaction with submerged porous barriers
under an ice-sheet modelled as a thin elastic plate, highlighting the influence of structural
parameters on energy loss and wave forces. Chanda et al. (2024) explored flexural–gravity
wave scattering by porous barriers in various configurations, introducing a scattering
matrix to analyse mode conversion, Bragg resonance and energy dissipation. Manam &
Kaligatla (2014) used integral equations to compute reflection coefficients for membrane-
coupled wave scattering by barriers with gaps, demonstrating the role of structural
parameters in wave reflection. Lorenzo et al. (2023) reported on a metamaterial-inspired
wave attenuation device using submerged cylindrical pendula, showcasing resonance
effects and Bragg scattering as mechanisms for significant energy dissipation and
reflection. This evolving body of knowledge continues to inform the design of efficient
and environmentally sustainable wave mitigation structures.

The study of surface wave scattering by cylindrical structures has been another
cornerstone of hydrodynamic research, with applications in offshore engineering and
wave energy management. A foundational work by Martin & Dixon (1983) introduced
a rigorous analytical framework to investigate gravity wave scattering by a semi-immersed
fixed circular cylinder, highlighting the significance of diffraction effects and providing
insights into reflection, transmission and hydrodynamic forces. Numerous studies have
explored more complex systems, including floating cylinders (Porter & Evans 2009),
porous media (Zhuang, Zhao & Wan 2023) and metamaterial-based wave manipulation
(Zheng, Liang & Greaves 2024; Zhu et al. 2024). Recent advancements in computational
methods, including high-fidelity numerical models, have provided insights into nonlinear
wave–structure interactions, such as wave attenuation by floating breakwaters (Peng et al.
2023). Complementary numerical investigations have further explored novel structural
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configurations for enhanced wave energy dissipation, analysing performance over a broad
range of parameters (Panduranga & Koley 2021).

The introduction of surface tension into wave scattering problems has been examined
under diverse conditions including capillary–gravity wave scattering by surface tension
gradient (Gou, Messiter & Schultz 1993; Chou, Lucas & Stone 1995), by a non-uniform
current (Trulsen & Mei 1993), by surface convection zones (Kistovich & Chashechkin
2005), by a completely submerged porous elastic plate (Singh & Gayen 2022) and by
bottom modulations (Mohapatra 2016; Meylan & Stepanyants 2024). In these contexts,
no structure intersects the free surface, so contact line effects do not arise. Scattering
of capillary–gravity waves by surface-intersecting barriers with contact line effects was
foundationally explored by Evans (1968), Packham (1968), Rhodes-Robinson (1982,
1996), Hocking (1987b) and, more recently, Zhang & Thiessen (2013). Evans and
Packham examined the impact of surface tension on wave reflection by a vertical barrier,
establishing critical edge conditions that have influenced subsequent studies. Rhodes-
Robinson and Hocking independently investigated wave reflection using a linear dynamic
contact line model following different approaches. Zhang & Thiessen (2013) introduced
dissipation models for capillary waves scattered through thin barriers, advancing the
field’s understanding of capillary wave energy dissipation mechanisms at dynamic contact
lines. Another related work by Mahdmina & Hocking (1990) analytically examined
capillary–gravity wave scattering by a vertical cylinder using the same linear dynamic
contact line model adopted here.

There are a few experimental investigations relevant to capillary–gravity wave scattering
from barriers, particularly regarding the role of dynamic contact lines. Park et al. (2012)
investigated solitary wave reflection off vertical walls, using particle tracking velocimetry
(PTV) to analyse the velocity field near the moving contact line. Their findings revealed
complex flow phenomena, including surface rolling, boundary layer flow reversal, and
the formation of jets and eddies near the meniscus. Michel et al. (2016) investigated the
reflection of capillary–gravity surface waves by a plane vertical barrier, demonstrating that
meniscus size significantly affects wave reflection – with a pinned contact line yielding
nearly double the reflected energy compared with a fully developed meniscus – and
introduced an acousto-optic-inspired acoustic measurement system to accurately measure
wave amplitude, frequency and propagation direction. Wang et al. (2025) performed
experiments using acoustic measurements to quantify the effects of barrier depth, width
and wave frequency on scattering, validating theoretical predictions of contact line
dynamics in realistic fluid configurations and revealing the significant meniscus effect in
capillary–gravity wave scattering.

Classical no-slip conditions lead to singular stresses, necessitating modified boundary
conditions that better represent microscopic physics. Foundational works by Dussan
(1979) and others (Voinov 1976; Tanner 1979; De Gennes 1985; Cox 1986a,b) clarified
that dynamic contact lines cannot be handled by classical slip-free models. Dynamics
of contact lines can be modelled by the interplay between the apparent contact angle
and contact-line velocity in the macroscopic regime, governing behaviours independent
of microscopic complexities. We adopt a linearised dynamic contact line condition
by Hocking (1987b) that bridges microscopic considerations with macroscopic wave
behaviour by introducing an ‘effective-slip’ model. Hocking’s effective-slip model links
the contact line velocity to the deviation of the contact angle from its equilibrium value,
scaled by a slip coefficient with units of velocity. This slip coefficient encapsulates
the interfacial properties of the solid–liquid boundary. At limiting extremes, a zero slip
coefficient enforces ‘fixed’ contact lines, while an infinite slip coefficient ensures ‘free’
contact lines that maintain the contact angle with no energy dissipation. Between these
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extremes, finite slip coefficients produce boundary work as the contact line moves,
converting a portion of wave energy into dissipation (Hocking 1987a,b). The linear
dynamic contact line model has been extensively used in analyses of various surface
tension phenomena, such as behaviour of surface-wave damping in closed basins (Miles
1967; Kidambi 2009), oscillating droplets on solid plates (Lyubimov, Lyubimova &
Shklyaev 2006) and forced oscillations of a cylindrical droplet bounded in the axial
direction by rigid planes (Alabuzhev 2016).

Our work aims to establish a milestone theoretical framework for surface wave scattering
in fluid mechanics, by incorporating surface tension and a linear dynamic contact line
condition into scattering of the waves by a cylindrical barrier with a non-zero cross-
sectional dimension. While Hocking (1987b) included surface tension in the scattering but
assumed an infinitesimal thin barrier, and Martin & Dixon (1983) considered cylindrical
barrier geometry but for gravity waves, the integration of both surface tension and
cylindrical barrier geometry in our study has constituted a challenging problem in fluid
mechanics. In the scattering problem considered by Mahdmina & Hocking (1990), a
vertical cylinder geometry allows the wave field to be decomposed into an incident
field plus a localised scattered field that vanishes at infinity. In our problem, however,
a horizontally placed cylindrical barrier extends to infinity, rendering the scattered
wave field (both transmitted and reflected components) unbounded, thus posing a more
demanding analytical challenge.

Under the assumption of a linearised problem for an inviscid, incompressible and
irrotational fluid, we employ techniques such as differential equations, conformal mapping
and Fourier transforms to solve the coupled boundary value problems and formulate the
entire problem as a compound integral equation problem. The resulting integral equations
are simplified using integral equation techniques and numerically discretised via the
Nyström method, enabling the computation of transmission and reflection coefficients of
the scattered waves.

The paper is organised as follows. The linearised problem is formulated and divided
into two boundary value problems (BVPs) in § 2. The two BVPs are solved and converted
to coupled integral equations using conformal mapping and Fourier transform in § 3.
The integral equations are combined and solved using even-odd separation in § 4. The
validation of the model by comparing results with previous work in gravity waves is
presented in § 5. The wave phase and spatial symmetry when no dissipation for capillary–
gravity waves is addressed in § 6. The capillary–gravity wave scattering by an infinitesimal
barrier is solved analytically using Fourier cosine and sine transform (FCT, FST) in § 7.
The calculated results for fixed and free contact lines are presented in § 8 for barriers
ranging from infinitesimal to having a finite cross-sectional dimension. The contact-line
dissipation is addressed in § 9. All results are summarised and discussed in § 10.

2. Formulation: linearised problem and contact line model
The analysis begins by considering an equilibrium configuration where a horizontally
placed cylindrical barrier of radius r ′ is fixed and semi-immersed in an infinitely deep
liquid (see figure 1). The infinitely deep liquid refers to the case when the liquid depth
is much larger than the wavelength. A Cartesian coordinate system (x ′, y′) is defined,
with the origin located at the centre of the cylindrical barrier. The cylinder is uniformly
extended along the third dimension z′, corresponding to the scenario that the cylinder
length is much larger than the wavelength. The liquid, characterised by density ρ, surface
tension σ and unperturbed pressure p′

0 = P ′
0 − ρgy′ (P ′

0 is the atmospheric pressure),
forms a static contact angle of 90◦ with the barrier. This set-up is used to investigate
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the scattering of time-harmonic capillary–gravity waves – defined by angular frequency ω
and wavenumber k – incident from x ′ → −∞.

For an inviscid, incompressible and irrotational fluid, the fluid motion is governed by
the continuity equation, the Navier–Stokes equation, alongside the kinematic and dynamic
conditions at the free surface:

∇′ · v′ = 0, ∀(x ′, y′) ∈Ω ′, (2.1a)

∂t ′v
′ + (v′ · ∇′)v′ = −ρ−1∇′ p′, ∀(x ′, y′) ∈Ω ′, (2.1b)

∂t ′η
′ + v′ · ∇′η′ = n̂′ · v′, at |x ′|> r ′, y′ = η′, (2.1c)

p′
0 + p′ = P ′

0 + σ∇′ · n̂′
, at |x ′|> r ′, y′ = η′, (2.1d)

where v′ = v′(x ′, y′, t ′) is the velocity field, p′ = p′(x ′, y′, t ′) is the perturbed pressure
of the wave field, η′ = η′(x ′, t ′) is the surface elevation with respect to its equilibrium
position and Ω ′ = {(x ′, y′) ∈R

2 | y′ < 0 and x ′2 + y′2 > r ′2} defines the liquid domain.
Here, n̂′ = ∇′(y′ − η′)/|∇′(y′ − η′)| is the normal vector of the free surface pointing
outward of the liquid domain and ∇′ · n̂′ represents the curvature of the free surface.

Introducing the velocity potential with v′ = ∇′φ′ and considering a linearised problem,
(2.1) simplifies to

∇′2φ′ = 0, ∀(x ′, y′) ∈Ω ′, (2.2a)

∂t ′φ
′ = −p′/ρ, ∀(x ′, y′) ∈Ω ′, (2.2b)

∂y′φ′ = ∂t ′η
′, at |x ′|> r ′, y′ = 0, (2.2c)

p′ = −σ∂2
x ′η′ + ρgη′, at |x ′|> r ′, y′ = 0. (2.2d)

To ensure the validity of the linearisation, we assume that the perturbation from the
equilibrium configuration is small. Specifically, the surface elevation η′ must satisfy
kη′ 	 1.

In addition, the problem has to be solved subject to the non-penetration condition at the
barrier:

n̂′ · ∇′φ′ = 0, at |x ′|< r ′, y′ = −
√

r ′2 − x ′2, (2.3)

where n̂′ represents the normal vector at the cylindrical barrier surface.
The edge conditions imposed on η′ at the three-phase junction are given by the linear

dynamic contact line condition from Hocking (1987b):

∂t ′η
′ = ±Λ′∂x ′η′, at x ′ = ±r ′, (2.4)

where the slip coefficient Λ′ has dimensions of velocity and is taken to be a non-negative
real-valued constant. The plus and minus signs correspond to the right and left sides of the
barrier, respectively.

The imposed edge condition given in (2.4) governs the contact line’s behaviour via
the slip coefficient Λ′. The condition includes two special cases as its extremes: When
Λ′ = 0, the contact line is effectively fixed (i.e. ∂t ′η′ = 0), termed as ‘fixed’ contact
lines; conversely, as Λ′ → ∞, the contact line becomes completely free to slide while
maintaining a constant contact angle which is 90◦ here (i.e. ∂x ′η′ = 0), termed as ‘free’
contact lines. There is no energy dissipation in these two extremes. Intermediate values of
Λ′ between 0 and ∞ represent dynamic contact lines involving energy dissipation.

Additionally, the free surface elevation at the contact line is assumed to be small
compared with the barrier radius, specifically, η′ 	 r ′, ensuring the motion of the contact
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line along the x-axis remains negligible and preserving the validity of the linear dynamic
contact line model.

At the free surface of the liquid of infinite depth, the incident surface wave of angular
frequency ω and wavenumber k has the form of

φ′
I (x

′, y′, t ′)= φAeky′
ei(kx ′−ωt ′), (2.5a)

η′
I (x

′, t ′)= ηAei(kx ′−ωt ′), (2.5b)

where amplitude φA and ηA has the linear relation

φA = −i
ω

k
ηA, (2.5c)

satisfying the kinematic boundary condition (2.2c), and ω and k have the dispersion
relation

ω2 = σ

ρ
k3 + gk = σ

ρ
k3(1 + B), (2.5d)

satisfying the dynamic boundary conditions (2.2b) and (2.2d), where

B = ρg

σk2 (2.6)

is the Bond number, characterising the relative effect between gravity and surface tension.
At large distances from the barrier, the surface elevation takes the far-field form:

η′ = η′
I + η′

R, at x ′ → −∞, (2.7a)
η′ = η′

T , at x ′ → +∞, (2.7b)

where

η′
R = Rη′

I (−x ′, t ′)= RηAei(−kx ′−ωt ′), (2.7c)

η′
T = Tη′

I (+x ′, t ′)= TηAei(kx ′−ωt ′). (2.7d)
Here, T and R are the complex transmission and reflection coefficients, respectively,
which will be determined for their dependence on slip coefficient Λ′, Bond number B,
wavenumber k and barrier radius r ′.

For the linearised problem, where the incident wave (2.5) has the form of time
harmonic oscillations e−iωt ′ and all governing equations including the dynamic contact
line condition (2.4) are homogeneous, the wave fields φ′ and η′ naturally adopt the same
form of time harmonic oscillations:

φ′(x ′, y′, t ′)= φ′(x ′, y′)e−iωt ′, (2.8a)

η′(x ′, t ′)= η′(x ′)e−iωt ′ . (2.8b)
The original spatiotemporal problem reduces to a purely spatial one for φ′(x ′, y′) and
η′(x ′).

The problem is transformed into a dimensionless form by introducing a new set of
variables devoid of units:

t =ωt ′, (x, y, r)= k(x ′, y′, r ′), η= η′/ηA, φ = φ′/φA, p = p′/(σk2). (2.9)

This rescaling simplifies the mathematical expressions and highlights the fundamental
dynamics independent of specific scales of time and space. Furthermore, we redefine the
slip coefficient Λ′ in dimensionless terms as

Λ= Λ′

cp
= 1√

1 + B

√
ρ

σk
Λ′, (2.10)
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where cp =ω/k = √
(1 + B)σk/ρ is the phase speed of the capillary–gravity wave.

The smallness conditions kηA 	 1 and kηA 	 r remain central to the dimensionless
formulation. They ensure that the problem is governed by linearised dynamics, simplifying
the analysis while maintaining accuracy for small perturbations.

The problem then reduces to solving two coupled BVPs for the velocity potential φ(x, y)
and the surface elevation η(x). For φ, following (2.2a), (2.3) and (2.2c), we solve:⎧⎪⎨

⎪⎩
∇2φ = 0, ∀(x, y) ∈Ω,
n̂ · ∇φ = 0, at |x |< r, y = −√

r2 − x2,

n̂ · ∇φ = η, at |x |> r, y = 0,
(2.11)

where the domain Ω = {(x, y) ∈R
2 | y < 0 and x2 + y2 > r2} and n̂ represents the

outward normal vector of the domain boundary. For η, following (2.2b), (2.2d), (2.4) and
(2.7), we solve, on the surface of the incident side (x <−r ):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d2η

dx2 − Bη= −(1 + B)φ
∣∣
y=0, ∀x <−r,

dη
dx

= iΛ−1η, at x = −r,

η→ eix + Re−ix , as x → −∞,

(2.12a)

and on the surface of the transmitted side (x > r ):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d2η

dx2 − Bη= −(1 + B)φ
∣∣
y=0, ∀x > r,

dη
dx

= −iΛ−1η, at x = r,

η→ T eix , as x → +∞.

(2.12b)

Solving these BVPs allows us to determine the complex transmission (T ) and reflection
(R) coefficients. These coefficients are dependent on three key dimensionless parameters:
the Bond number B, the dimensionless radius of the barrier r and the dimensionless slip
coefficient Λ. This formulation highlights the interplay between fluid dynamics and the
physical geometry of the barrier.

3. Solving boundary value problems

3.1. Expressing η in terms of φ
To solve the BVPs for η, as specified in (2.12a) and (2.12b), we express η in terms of
the boundary condition φ|y=0 = φ(x, 0). These BVPs are modelled as inhomogeneous
second-order linear differential equations (ISOLDEs), which are solved using the
method of variation of constants (Hassani 2013). With detailed derivations provided in
Appendix A, the solution for η is given by

η=

⎧⎪⎪⎨
⎪⎪⎩

∫ −r

−∞
K (x, x ′)φ(x ′, 0) dx ′, ∀x <−r,∫ +∞

r
K (x, x ′)φ(x ′, 0) dx ′, ∀x > r,

(3.1)

where the dynamic kernel K (x, x ′) is defined as

K (x, x ′)= 1 + B

2
√

B

(
−e−2iζ e

√
B(2r−|x+x ′|) + e−√

B|x−x ′|) , (3.2)
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x −2 2 u
v

w = z/r + r/z

r
−r y r

Figure 2. Schematic for the conformal mapping.

in which the parameter ζ is defined as

ζ = tan−1
(√

BΛ
)

= tan−1

(√
B

1 + B

√
ρ

σk
Λ′
)
. (3.3)

This formulation captures the spatial dependencies within the problem, allowing η to be
directly related to the boundary values of φ.

The parameter ζ in (3.3) is introduced for mathematical convenience, simplifying the
exponential expressions in the dynamic kernel K in (3.2). This parameter ζ eventually
encodes the dependence of the problem on the slip coefficient Λ′. It ranges from 0 to
π/2 as the slip coefficient Λ′ varies from 0 to ∞, unless the Bond number B = 0. From
now on, ζ replacesΛ to act as the dimensionless slip parameter in the dynamic contact line
conditions. It is worth pointing out that, with the inverse trigonometric function arctangent
in (3.3), this slip parameter ζ may be interpreted as an ‘angle’. However, it should not be
confused with the contact angle at the edges, whose deviation from the static contact angle
is given by tan−1(∂x ′η′).

3.2. Expressing φ in terms of η

3.2.1. Conformal mapping
In addressing the BVP for φ(x, y) as defined in (2.11), we employ a conformal mapping
technique. This method transforms the liquid domain Ω into the lower half-space H =
{(u, v) ∈R

2 | v < 0}. Specifically, the free surface and the lower half of the cylindrical
barrier surface are mapped onto the real axis, as depicted in figure 2. Defining z = x + iy
and w= u + iv, the mapping from the z-plane to the w-plane is prescribed by

w= z

r
+ r

z
, (3.4)

or, in component form,

u = (x2 + y2 + r2)x

(x2 + y2)r
, v = (x2 + y2 − r2)y

(x2 + y2)r
. (3.5)

This conformal mapping, known as the Joukowsky transform and historically used for
applications like aerofoil design (Joukowsky 1910), is extended here to analyse capillary–
gravity wave scattering.

In this transformed coordinate system, the free surface is defined by v = 0, |u|> 2 and
the barrier surface by v = 0, |u|< 2. The transformation preserves the Laplace equation;
thus, the transformed BVP for ψ , related to φ by ψ(u, v)= φ(x, y), is expressed as{

∇2ψ = 0, ∀(u, v) ∈ H,
n̂ · ∇ψ = g(u), at v = 0.

(3.6)

The boundary function g(u) is defined by
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g(u)=
{

0, ∀|u|< 2,
η/∂x u(x, 0), ∀|u|> 2.

(3.7)

3.2.2. Fourier transform
Under normal circumstances, the BVP for ψ(u, v) as outlined in (3.6), being a Laplace
equation with Neumann boundary conditions in the lower half-space, should be solvable
using the Green’s function approach. However, our situation presents a unique challenge
due to the behaviour of the field at infinity (u → ±∞), where it does not vanish. This non-
vanishing at infinity is mirrored by the corresponding Green’s function for the Neumann
boundary condition in the lower half-space, which similarly does not vanish as u → ±∞.
Consequently, the integral involving the Green’s function multiplied by ∇ψ at infinity
does not converge, rendering this approach infeasible.

We opted for a different approach, using the Fourier transform method. This elegant
technique circumvents the difficulties associated with the traditional Green’s function
method and provides a robust solution to the problem.

We apply the following Fourier transform to (3.6):

f̂ (λ)=
∫ +∞

−∞
f (u)e−iλu du, (3.8)

we obtain ⎧⎪⎨
⎪⎩
∂2

∂v2 ψ̂(λ, v)− λ2ψ̂(λ, v)= 0, ∀v < 0,

∂

∂v
ψ̂(λ, v)= ĝ(λ), at v = 0,

(3.9)

where ψ̂ and ĝ are the Fourier transform of ψ and g. This simplifies the problem to a
homogeneous ordinary differential equation (ODE) with respect to v, allowing ψ̂(λ, v) to
be expressed as

ψ̂(λ, v)= ĝ(λ)

|λ| e|λ|v, ∀v < 0. (3.10)

An inverse Fourier transform yields the solution to (3.6):

ψ(u, v)= 1
2π

∫ +∞

−∞
g(u′)

(∫ +∞

−∞
1
|λ|e|λ|veiλ(u−u′)dλ

)
du′. (3.11)

By evaluating at v= 0, with detailed derivations provided in Appendix B, we derive the
expression for φ(x, 0)=ψ(u, 0), giving

φ(x, 0)=
(∫ −r

−∞
+
∫ +∞

r

)
S(x, x ′)η(x ′) dx ′, ∀|x |> r, (3.12)

where the geometric kernel S(x, x ′) is defined as

S(x, x ′)= −π−1
(

ln
∣∣∣∣ xr + r

x
− x ′

r
− r

x ′

∣∣∣∣+ γ

)
, (3.13)

where γ is the Euler–Mascheroni constant (= 0.57722 · · · ).
We have now solved the BVPs referred to in (2.11)–(2.12b). Specifically, the solutions

for η in terms of φ(x, 0) are presented in (3.1), while the solution for φ(x, 0) in terms
of η is provided in (3.12). By combining (3.1) and (3.12), we can derive a single integral
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equation for φ(x, 0). Solving this integral equation will allow us to determine the complex
transmission (T ) and reflection (R) coefficients.

4. Solving integral equations
Let us denote f (x)= φ(x, 0) for simplicity. By combining (3.1) and (3.12), we arrive at
the following integral equation for f (x), which must also satisfy specific far-field forms
as x → ±∞:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (x)=
(∫ −r

−∞

∫ −r

−∞
+
∫ +∞

r

∫ +∞

r

)
S(x, x ′)K (x ′, x ′′) f (x ′′) dx ′ dx ′′, ∀|x |> r,

f (x)→ eix + Re−ix , as x → −∞,

f (x)→ T eix , as x → +∞.

(4.1)

4.1. Even-odd separation
To solve this problem, we consider two cases where f is either an even or odd function
of x . Denoting these as fe and fo respectively, we can express f as f = fe + fo. The
equations for the even solution fe and the odd solution fo then become⎧⎪⎪⎨
⎪⎪⎩

fe(x)=
∫ +∞

r
Le(x, x ′)

(∫ +∞

r
K (x ′, x ′′) fe(x

′′)dx ′′
)

dx ′, ∀x > r,

fe(x)→ 1
2
(T + R)eix + 1

2
e−ix , as x → ∞,

(4.2a)

⎧⎪⎪⎨
⎪⎪⎩

fo(x)=
∫ +∞

r
Lo(x, x ′)

(∫ +∞

r
K (x ′, x ′′) fo(x

′′) dx ′′
)

dx ′, ∀x > r,

fo(x)→ 1
2
(T − R)eix − 1

2
e−ix , as x → ∞,

(4.2b)

where dynamic kernel K is defined in (3.2), and geometric kernel Le, Lo are defined by
S, given in (3.13):

Le(x, x ′)= S(x, x ′)+ S(x,−x ′)

= −π−1
(

ln
∣∣∣∣ xr + r

x
− x ′

r
− r

x ′

∣∣∣∣+ ln
∣∣∣∣ xr + r

x
+ x ′

r
+ r

x ′

∣∣∣∣+ 2γ
)
, (4.3a)

Lo(x, x ′)= S(x, x ′)− S(x,−x ′)

= −π−1
(

ln
∣∣∣∣ xr + r

x
− x ′

r
− r

x ′

∣∣∣∣− ln
∣∣∣∣ xr + r

x
+ x ′

r
+ r

x ′

∣∣∣∣
)
. (4.3b)

In the abstract operator language, (4.2a) can be written as⎧⎨
⎩

fe =LeK fe, ∀x > r,

fe(x)→ 1
2
(T + R)eix + 1

2
e−ix , as x → ∞,

(4.4)

where Le and K are the integral operators integrate from r to ∞ with even geometric ker-
nel Le given in (4.3) and dynamic kernel K given in (3.2). Then, (4.2b) can be written as
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⎩

fo =LoK fo, ∀x > r,

fo(x)→ 1
2
(T − R)eix − 1

2
e−ix , as x → ∞,

(4.5)

where Lo is the integral operator with odd geometric kernel Lo given in (4.3).

4.2. Deviation from far-field behaviour
If we define fe and fo in terms of their deviations from far fields by he(x) and ho(x):

fe = 1
2
(T + R)eix + 1

2
e−ix + he(x), (4.6a)

fo = 1
2
(T − R)eix − 1

2
e−ix + ho(x). (4.6b)

We then derive equations for the near fields he and ho:⎧⎨
⎩he =LeKhe + 1

2
(T + R)(LeK − I)eix + 1

2
(LeK − I)e−ix , ∀x > r,

he(x)→ 0, as x → ∞,

(4.7a)

⎧⎨
⎩ho =LoKho + 1

2
(T − R)(LoK − I)eix − 1

2
(LoK − I)e−ix , ∀x > r,

ho(x)→ 0, as x → ∞,

(4.7b)

where I is the identity operator, which takes a function to the same function. Based on the
symmetry of (4.7), we seek solutions of he and ho in the form:

he = 1
2
(T + R)he,+ + 1

2
he,−, (4.8a)

ho = 1
2
(T − R)ho,+ − 1

2
ho,−, (4.8b)

where he,± and ho,± are to be determined. Substituting (4.8) into (4.7) yields

(T + R){he,+ −LeKhe,+ − (LeK − I)eix } = −{he,− −LeKhe,− − (LeK − I)e−ix },
(4.9a)

(T − R){ho,+ −LoKho,+ − (LoK − I)eix } = {ho,− −LoKho,− − (LoK − I)e−ix }.
(4.9b)

A possible solution for he,± and ho,± that satisfies (4.9) would be letting both sides equal
to 0:

hχ,± =LχKhχ,± + (LχK − I)e±ix , (4.10)

where χ takes the values ‘e’ for even and ‘o’ for odd. Then, (LχK − I)e±ix can be
calculated analytically:

(LχK − I)e±ix =
∫ +∞

r
Lχ(x, x ′)

(∫ +∞

r
K (x ′, x ′′)e±ix ′′

dx ′′
)

dx ′ − e±ix , (4.11)

= −e±ix + 1

2
√

B

[
−(√B ± i)e−2iζ + (−√

B ± i)
]

e(
√

B±i)r I1,χ + I2,χ,±, (4.12)

where the expressions for I1 and I2 are given in Appendix C.
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4.3. Calculating T and R

Finally, to ensure that the near fields he and ho given in (4.7) approach to 0 as x → ∞, we
have

1
2
(T + R)he,+ + 1

2
he,− → 0, as x → ∞, (4.13a)

1
2
(T − R)ho,+ − 1

2
ho,− → 0, as x → ∞, (4.13b)

from which we can infer the coefficients T and R:

T = −1
2
(Ce − Co) , (4.14a)

R = −1
2
(Ce + Co) , (4.14b)

where

Ce = lim
x→∞

he,−
he,+

, Co = lim
x→∞

ho,−
ho,+

. (4.14c)

Therefore, we have reduced the integral equation problem for f (x)= φ(x, 0) given in
(4.1) to solve the simpler integral equations in (4.10), and substitute into (4.14) to obtain
the transmission coefficient T and reflection coefficient R. This approach guarantees that
the solutions converge to the desired far-field behaviour, ensuring the physical relevance
and mathematical consistency of the results.

4.4. Nyström method: numerically solving integral equations
The integral equations in (4.10) share the same form of

h =LKh + g, (4.15)

which can be effectively solved numerically using the Nyström method. This approach
discretises the integral operators L and K into matrices, transforming the integral
equations into matrix equations. Specifically, the discretisation is defined as

hi = h(xi ), gi = g(xi ), Lχ,i j = Lχ(xi , x j )�x, Ki j = K (xi , x j )�x, (4.16)

where xi = r + i�x , the step size �x = l/N and the integral range l is truncated to ten
times the wavelength, 20π . The number of representative points, N , is selected as 2000 to
ensure sufficient accuracy.

A convergence test was performed by halving and doubling N for the relevant ranges
of Bond number B (0.01 � B � 100) and dimensionless radius r (0.01 � r � 10), together
with the range of slip parameter ζ (0 � ζ � π/2). Among the tested combinations, the
largest discrepancy of the calculated T and R arose at small values of B = 0.01 and
r = 0.01, while ζ has a negligible influence on the overall error. The largest difference
of the calculated |T | between N = 1000 and N = 2000 reached approximately 3.6 %.
Increasing to N = 4000 reduced the discrepancy of the calculated |T | to approximately
0.8 %. These results confirm that N = 2000 is sufficiently accurate even under the most
challenging scenario.

Special attention is given to the diagonal elements of Lχ,i j due to the weak singularity
at x = x ′, arising from the logarithmic term ln |x/r + r/x − x ′/r − r/x ′|. To address this,
the singularity is mitigated using the following approximation:

1013 A27-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
15

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10158


G. Liu and L. Zhang

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

|T | Our results

|R| Our results

|T | Martin & Dixon

|R| Martin & Dixon

r
10−2 10−1 100 101

|T
|, 

|R
|

Figure 3. Comparison of results for gravity wave scattering between our semi-analytical results and results
from Martin & Dixon (1983) for the transmission |T | and reflection |R| as a function of the dimensionless
barrier radius r (the dimensional radius r ′ multiplied by the wavenumber k).

∫ xi +�x

xi

ln
∣∣∣∣ xr + r

x
− xi

r
− r

xi

∣∣∣∣ dx ≈ ln

((
1
r

− r

x2
i

)
�x

)
− 1. (4.17)

This procedure allows the integral equation (4.15) to be converted into the matrix equation:

h = LKh + g, (4.18)

which can be solved explicitly as

h = (I − LK)−1 g, (4.19)

where I denotes the identity matrix.

5. Gravity waves: comparison with previous work
For pure gravity waves (B = ∞), the second-order derivative term d2η/dx2 in (2.12)
becomes negligible. As a result, the BVPs for η specified in these equations become
self-contained solutions:{

η= φ
∣∣
y=0, ∀x <−r,

η→ eix + Re−ix , as x → −∞,
and

{
η= φ

∣∣
y=0, ∀x > r,

η→ T eix , as x → +∞.
(5.1)

In conjunction with the solution to (2.11) provided in (3.12), we formulate the integral
equation problem for f (x)= φ(x, 0):
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⎪⎪⎪⎩

f (x)=
(∫ −r

−∞
+
∫ +∞

r

)
S(x, x ′) f (x ′) dx ′, ∀|x |> r,

f (x)→ eix + Re−ix , as x → −∞,

f (x)→ T eix , as x → +∞,

(5.2)

where S is defined in (3.13). Following the analyses in §§ 4.1 and 4.2, we derive the
equations for hχ,± (where χ represents either even he,± or odd ho,± solutions):

hχ,± =Lχhχ,± + (Lχ − I)e±ix , (5.3)

where Lχ (either Le or Lo) shares the kernel definition detailed in (4.3). Equation (5.3)
requires numerical resolution, typically using the method outlined in § 4.4. The resulting
solutions he,± and ho,± are then used to compute the transmission T and reflection R
coefficients, as defined in (4.14). The term (Lχ − I)e±ix can be expressed analytically as

(Lχ − I)e±ix = I2,χ,± − e±ix , (5.4)

where I2 is evaluated in Appendix C. The semi-analytical results are compared with
the multipole method results from Martin & Dixon (1983) in figure 3 and table 3 in
Appendix F, demonstrating their agreement on the reduction of transmission as the barrier
size increases.

6. Capillary–gravity waves: phase difference and energy conservation at contact line
limits

In this section, we analyse the phase difference between the transmission and reflection
coefficients, as well as the energy conservation of wave fields in two limiting cases of the
contact line conditions: the fixed contact line (Λ′ = 0) and the free contact line (Λ′ = π/2).

Recall (4.14a) and (4.14b):

T = −1
2
(Ce − Co) , R = −1

2
(Ce + Co) , (6.1)

where Cχ (χ takes the values ‘e’ for even and ‘o’ for odd) is given in (4.14c) as

Cχ = lim
x→∞

hχ,−
hχ,+

, (6.2)

and hχ,± satisfies (4.10):

hχ,± =LχKhχ,± + (LχK − I)e±ix , (6.3)

with the dynamic kernel K given in (3.2) and (3.3).
For the two limiting cases of contact lines, the dynamic kernel K in (3.2) and (3.3)

reduces to

Fixed contact lines (Λ= 0) : K (x, x ′)= 1 + B

2
√

B

(
−e

√
B(2r−|x+x ′|) + e−√

B|x−x ′|) ,
(6.4a)

Free contact lines (Λ→ ∞) : K (x, x ′)= 1 + B

2
√

B

(
e
√

B(2r−|x+x ′|) + e−√
B|x−x ′|) .

(6.4b)
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As such, K is real values in both cases. Since the geometric kernels Lχ in (4.3) are also
real from the outset, it follows that the complex conjugate of (6.3) is

h∗
χ,± =LχKh∗

χ,± + (LχK − I)e∓ix . (6.5)

By comparing (6.3) with its complex conjugate (6.5), we find the symmetry:

h∗
χ,± = hχ,∓. (6.6)

Using the symmetry h∗
χ,− = hχ,+, (6.2) reduces to

Cχ = lim
x→∞

hχ,−
h∗
χ,−

, (6.7)

which implies an unitary modular, |Cχ | = 1. We introduce a phase φχ to rewrite Cχ as

Cχ = e2iφχ , (6.8a)

and define the sum and difference between the phases of Ce and Co:

φs = φe + φo, φd = φe − φo. (6.8b)

Substituting (6.8) into (6.1) yields the transmission coefficient T and reflection coefficient
R expressed as

T = −e2iφe − e2iφo

2
= −eiφs

eiφd − e−iφd

2
= −ieiφs sin φd, (6.9a)

R = −e2iφe + e2iφo

2
= −eiφs

eiφd + e−iφd

2
= −eiφs cos φd, (6.9b)

in which φd determines the magnitudes of T and R, and φs determines the phases of T
and R. Recall that φd and φs are associated with the near fields he and ho.

It then follows from (6.9) that

|T |2 + |R|2 = 1, (6.10)

as no energy dissipation occurs in either the fixed or free contact line conditions.
It also follows from (6.9) that, although the phases of T and R individually depend

on φs associated with the near fields, the phase difference between T and R does not
rely on the near-field behaviours. The imaginary unit in (6.9a) reveals that the phase of
the transmission coefficient T has a π/2 phase difference compared with the reflection
coefficient R in (6.9b):

|arg T − arg R| = π

2
. (6.11)

7. Capillary–gravity waves: analytical solution for an infinitesimal barrier
For the infinitesimal barrier case, the radius of the cylindrical barrier is assumed to satisfy
r → 0, implying that the barrier is much smaller than the characteristic wavelength of the
incident waves. To maintain consistency with the linearised theory, this further requires
that the surface displacement is sufficiently small, such that kηA 	 r 	 1. Under these
assumptions, the liquid domain simplifies to the lower half-space H . Consequently, the
BVP for φ, initially defined in (2.11), now transforms into
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∇2φ = 0, ∀(x, y) ∈ H,
n̂ · ∇φ = η, at y = 0.

(7.1)

Similarly, the BVPs for η (2.12) modify as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d2η

dx2 − Bη= −(1 + B)φ
∣∣
y=0, ∀x < 0,

dη
dx

= iΛ−1η, at x = 0,

η→ eix + Re−ix , as x → −∞,

(7.2a)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d2η

dx2 − Bη= −(1 + B)φ
∣∣
y=0, ∀x > 0,

dη
dx

= −iΛ−1η, at x = 0,

η→ T eix , as x → +∞.

(7.2b)

Given that H itself is the liquid domain, no transformation into a lower half-space is
required. Thus, the conformal mapping w= z/r + r/z in § 3.2.1 simplifies to the identity
w= z. Employing a similar approach as in § 3.2.2, we formulate the integral equation
problem for f (x)= φ(x, 0):⎧⎪⎪⎪⎨

⎪⎪⎪⎩
f (x)=

∫ +∞

−∞
S(x, x ′)η(x ′) dx ′, ∀x ∈R,

f (x)→ eix + Re−ix , as x → −∞,

f (x)→ T eix , as x → +∞,

(7.3)

where S is defined by

S(x, x ′)= −π−1 (ln ∣∣x − x ′∣∣+ γ
)
. (7.4)

Following the analysis in §§ 4.1 and 4.2, we derive the equations for hχ,±:

hχ,± =LχKhχ,± + (LχK − I)e±ix , (7.5)

where the kernels for Lχ are redefined as follows:

Le(x, x ′)= S(x, x ′)+ S(x,−x ′)
= −π−1 (ln ∣∣x − x ′∣∣+ ln

∣∣x + x ′∣∣+ 2γ
)
, (7.6a)

Lo(x, x ′)= S(x, x ′)− S(x,−x ′)
= −π−1 (ln ∣∣x − x ′∣∣− ln

∣∣x + x ′∣∣) . (7.6b)

and the kernel for K updates to

K (x, x ′)= 1 + B

2
√

B

(
−e−2iζ e−√

B|x+x ′| + e−√
B|x−x ′|) . (7.7)

The solution to (7.5) can be obtained using Fourier cosine and sine transforms. The
detailed derivation and mathematical techniques are provided in Appendix D. The derived
solutions for he,± and ho,± facilitate the calculation of transmission T and reflection R

1013 A27-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
15

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10158


G. Liu and L. Zhang

coefficients, as delineated in (4.14). These coefficients are expressed as

T = 1
2

(
X − i
X + i

+ Y + i
Y − i

)
, (7.8a)

R = 1
2

(
X − i
X + i

− Y + i
Y − i

)
, (7.8b)

where

X = 1
π

(
3 + 2B√
3 + 4B

tan−1
(√

3 + 4B
)

+ 1
2

ln(1 + B)

)
+ i
(3 + B) tan ζ

2
√

B
, (7.8c)

Y = 1
π

(
3 + 6B + 2B2

√
3 + 4B

tan−1
(√

3 + 4B
)

− 1
2

ln(1 + B)

)
− i
(3 + B)

√
B

2 tan ζ
. (7.8d)

This solution expresses T and R as functions of the dimensionless Bond number B defined
in (2.6) and dimensionless slip parameter ζ defined in (3.3).

In Hocking’s work (Hocking 1987b) considering scattering from an infinitesimally thin
barrier of a finite immersed depth, an analytical solution arises in the limit of a zero
immersed depth d → 0. In contrast, our solution is derived from a cylindrical barrier
geometry, reducing to an infinitesimal barrier as the radius r → 0. In Appendix E, we show
that the two solutions are equivalent even though they approach an infinitesimal barrier in
different ways. Our theory underscores a generalisation from an idealised infinitesimally
thin barrier to a cylindrical barrier of practical applicability.

7.1. Fixed contact line
For the case of infinitesimal barrier (r → 0) with a fixed contact line (ζ = 0), (7.8) reduce
to

T = 1
2

(
X − i
X + i

+ 1
)

= X

X + i
, (7.9a)

R = 1
2

(
X − i
X + i

− 1
)

= − i
X + i

, (7.9b)

where

X = 1
π

(
3 + 2B√
3 + 4B

tan−1
(√

3 + 4B
)

+ 1
2

ln(1 + B)

)
. (7.9c)

Here, R and T satisfies the 90◦ phase difference revealed in the prior section.
It follows from (7.9) that

R = T − 1, (7.10)

implying that the diffracted field, φD = φ − φI , is symmetric about the barrier, that is,

φD(x, y)= φD(−x, y). (7.11)

7.2. Free contact line
For the case of infinitesimal barrier (r → 0) with a free contact line (ζ = π/2), (7.8) reduce
to

T = 1
2

(
1 + Y + i

Y − i

)
= Y

Y − i
, (7.12a)
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Figure 4. Transmission |T | and reflection |R| as functions of the Bond number B (defined in (2.6)) when
scattered by an infinitesimal barrier r = 0: (a) fixed and (b) free contact lines, following from (7.9) and (7.12),
respectively. The dimensionless slip parameter ζ is defined in (3.3).

R = 1
2

(
1 − Y + i

Y − i

)
= i

Y − i
, (7.12b)

where

Y = 1
π

(
3 + 6B + 2B2

√
3 + 4B

tan−1
(√

3 + 4B
)

− 1
2

ln(1 + B)

)
, (7.12c)

Again, R and T satisfies the 90◦ phase difference revealed in the prior section.
It follows from (7.12) that

− R = T − 1, (7.13)

implying that the diffracted field, φD = φ − φI , is anti-symmetric about the barrier,
that is,

φD(x, y)= −φD(−x, y). (7.14)

8. From an infinitesimal barrier to a barrier with a finite cross-section: no dissipation
The transmission properties of surface waves interacting with an infinitesimal barrier, as
calculated from the closed-form solution (7.9) and (7.12), are shown in figure 4, revealing
distinct behaviours depending on the Bond number. Figure 4(a) presents the magnitudes of
transmission |T | and reflection |R| as functions of the Bond number B with a fixed contact
line (ζ = 0). In the capillary limit (B 	 1), the transmission coefficient asymptotically
approaches |T | = 0.5, indicating that only 25 % of the capillary wave energy is transmitted,
while the remaining 75 % energy driven by surface tension is reflected by the fixed contact
lines. As the system transitions to the gravity-dominated regime (B � 1), the influence
of the contact line diminishes and the transmission approaches |T | = 1. In this regime,
the barrier no longer significantly affects the wave, allowing the full wave energy to pass
through.

Figure 4(b) shows the results for a free contact line (ζ = π/2). The behaviour in
the capillary and gravity limits (B 	 1 and B � 1) are similar to the fixed contact
line case, with the transmission coefficient approaching |T | = 0.5 and 1, respectively.
However, in the intermediate Bond number range, the free contact lines allow for the
transmission greater than that of the fixed contact lines, as depicted by a comparison
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Figure 5. (a) and (b) Transmission coefficient |T | as a function of the dimensionless barrier radius r for
different Bond number values for fixed and free contact lines, ζ = 0 and π/2, respectively. Panels (c) and
(d) are the same as panels (a) and (b), respectively, but with the transmission coefficient |T | normalised by the
transmission in the infinitesimal barrier limit |T0|.

between figures 4(a) and 4(b). Such a transmission difference between the two cases
follows from different coupling of the energy from the incident side to the transmitted
side, as evident in the symmetry difference of the diffracted fields between the two cases,
as noted earlier in (7.11) versus (7.14).

As the barrier is increased from zero size to a finite cylindrical geometry, the
transmission depends on the Bond number and barrier size. For a range of Bond number
B values, the transmission coefficient is calculated from the semi-analytical method using
(4.14a) and illustrated in figures 5(a) and 5(b) for dependence on the dimensionless barrier
radius (r = kr ′). In the limit of small barrier sizes (r 	 1), the transmission |T | approaches
values ranging from 0.5 to 1 when varying the Bond number from the capillary-dominant
regime (B 	 1) to gravity-dominant regime (B � 1), as noted earlier in figure 4. As the
barrier radius becomes larger (r � 1), the transmission coefficient across different Bond
number values uniformly decreases due to the barrier’s finite cross-section. Compared
with the fixed contact line, the overall transmission |T | is higher for all B under the free
contact line.

There is an interplay of Bond number and barrier size. For the fixed contact lines
(figure 5a), the transmission showcases a contrast when the radius r crosses around 1: at
small r , higher B leads to higher transmission, but at large r , lower B results in higher
transmission. In contrast, for the free contact lines (figure 5b), the barrier size effect
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Condition/Parameter Key Observations

Infinitesimal barrier (r = 0) Fixed contact line (ζ = 0):
Analytical solution (7.9).
Symmetry of the diffracted field: T − 1 = R.
Capillary wave limit B 	 1: |T | → 0.5 (25 % of energy
transmitted).
Gravity wave limit B � 1: |T | → 1 (full transmission).

Free contact line (ζ = π/2):
Analytical solution (7.12).
Anti-symmetry of the diffracted field: T − 1 = −R.
Similar to fixed contact lines in the extreme B limits.
Intermediate B: higher |T | than for fixed contact lines.

Phase difference: |arg T − arg R| = π/2.
Results presented in Fig. 4.

Barrier with non-zero radius (r > 0) Small radius (r 	 1): behaviour matches the infinitesimal-barrier
limit (varying from 0.5 to 1, depending on B).
Intermediate radius (r ∼ 1): noticeable decrease in |T | due to
stronger wave–barrier interaction.
Large radius (r � 1): |T | can fall below 20 % of the
infinitesimal-barrier value.
Free contact line (ζ = π/2) generally yields higher |T | than fixed
contact line (ζ = 0).
Results presented in Fig. 5(a,b).

Normalised transmission |T0| = transmission for r = 0 (infinitesimal barrier).
For r < 0.1: |T | ≈ |T0| (less than 10 % difference).
For r > 1: |T | often < 20 % of |T0|.
Results presented in Fig. 5(c,d).

Table 1. Summary of transmission behaviours for various Bond numbers (B) and barrier radii (r ) at the cases
of fixed and free contact lines. The dimensionless slip parameter ζ is defined in (3.3).

appears uniform across different B: the higher the B, the higher the transmission. If we
normalise the transmission |T | by the infinitesimal-barrier limit |T0| (from the closed-
form solution (7.8a)), the ratio |T |/|T0| highlights the size effect across different Bond
numbers.

The influence of barrier size as examined by the normalised transmission |T |/|T0| is
now shown in figures 5(c) and 5(d). The results show that for small barrier radii (r < 0.1),
the effect of barrier size is minimal, reducing transmission by no more than 10 %. However,
as the barrier radius becomes comparable to the wavelength (0.1< r < 1), transmission
decreases substantially, pointing to a more significant interaction between the wave and
the barrier. For large barriers (r > 1), transmission is reduced to less than 20 %, indicating
a dramatic size effect. These findings demonstrate a clear size-dependent transmission
behaviour, regardless of the Bond number. All key observations in this section have been
summarised in table 1.

9. Dissipation due to dynamic contact lines
For general contact line dynamics with a finite slip coefficient Λ′, energy dissipation
occurs near the contact lines due to the slipping motion. In our model, which analyses the
scattering of capillary–gravity waves by a fixed, semi-immersed cylindrical barrier with
dynamic contact lines, this dissipation depends on the dimensionless barrier radius r , the
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Figure 6. Intensity plots of (a) energy dissipation 1 − |T |2 − |R|2, (b) phase difference arg T − arg R,
(c) transmission |T | and (d) reflection |R| in the parameter space of the Bond number B and the slip parameter
ζ (defined in (3.3)) for scattering in the infinitesimal barrier limit, following from (7.8). The black dashed line
represents the slip coefficient values where maximum dissipation occurs at given B, and is compared with the
white dash-dotted line and the white dotted line, representing the slip coefficient equal to the phase speed of
capillary waves from (9.1) and the phase speed of capillary–gravity waves from (9.2), respectively. The black
solid line indicates the ridge of dissipation, representing the path of the least descent for the dissipation in the
parameter space of B and ζ , and coincides with the white dashed line from (9.3).

Bond number B and the slip parameter ζ . We are interested in finding the slip coefficient
values where the dissipation is most effective.

For an infinitesimal barrier (r 	 1), the results are presented in the parameter space
of B and ζ (figure 6) in terms of partition of energy dissipation Es = 1 − |T |2 − |R|2,
phase relation arg T − arg R, transmission |T | and reflection |R|, calculated from (7.8). In
figure 6, the slip coefficient for maximum dissipation at a given Bond number B is shown
by the black dashed line. We also include two reference lines: the condition where the slip
coefficient Λ′ equals the phase speed of pure capillary waves (white dash-dotted line),

Λ′ = cc =√σk/ρ, (9.1a)

corresponding to

tan ζ =√B/(1 + B); (9.1b)
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and the condition where the slip coefficient Λ′ equals phase speed of capillary–gravity
waves (white dotted line),

Λ′ = cp =√σk/ρ · √1 + B, (9.2a)

corresponding to

tan ζ = √
B. (9.2b)

For small B, the two reference lines align closely with the calculated maximum
dissipation line. However, as B increases, the maximum dissipation line deviates from both
reference lines, but remains closer to theΛ′ = cc line. This behaviour can be interpreted by
wave impedance matching with the impedance of the contact line motion. The results sug-
gest that the incident energy is more effectively coupled to the contact line boundary when
Λ′ is closer to the phase speed of the pure capillary wave (cc) than the capillary–gravity
wave (cp). This proximity to Λ′ = cc reflects the dominant role of surface tension effects
in determining energy dissipation at any Bond numbers. The results extend a finding of
Zhang & Thiessen (2013) that, in the limit of pure capillary waves (B → 0) and infinites-
imal barrier (r → 0), maximum dissipation occurs when the slip coefficient Λ′ equals the
phase speed of the incident capillary waves. Extending this analysis, we examine energy
dissipation beyond pure capillary waves, incorporating an arbitrary Bond number B.

Also shown in figure 6(a) is the ridge of dissipation (black solid line), following from
the minima of the magnitude of the gradients of the dissipation in the parameter space. The
line represents the path of least descent for dissipation in the parameter space. Intriguingly,
it is observed that this dissipation ridge line fits with the relation (white dashed line)

Λ′ =√σk/ρ ·√(1 + B)/(1 − B), (9.3a)

corresponding to

tan ζ =√B/(1 − B). (9.3b)

The physical interpretation of this coincidence remains unclear and warrants further
investigation. The phase difference arg T − arg R depicted in figure 6(b), generally
differing from 90◦ with the dissipation, crosses 90◦ around the ridge of the dissipation.

As the barrier size increases from zero to a finite value, the calculated results of the
dissipation partition Es , phase difference arg T − arg R, transmission |T | and reflection
|R| are presented in figure 7 in the parameter space of r and ζ for a Bond number B = 1,
a typical value when surface tension and gravity effects are comparable. The results of the
dissipation partition in figure 7(a) show that contact line dissipation remains significant
even as the barrier size increases. The slip parameter ζ corresponding to maximum
dissipation for a given r stays near 0.2π across the range of r , where the dissipation
remains approximately 80 %. Increasing the barrier size has little effect on the overall
energy dissipation, as the dissipation is due to the contact lines and is largely independent
of the barrier size. Nevertheless, the phase difference is sensitive to the size, as depicted
in figure 7(b).

Even though the barrier size has little effect on the overall energy dissipation, the
transmission and reflection individually have a strong dependence on the size. The
transmission shown in figure 7(c) highlights a significant reduction as the barrier radius
increases, particularly for r > 1, where the barrier size becomes comparable to the
wavelength for the transmission to diminish to nearly negligible levels. This sharp decrease
underscores the dominance of reflection and/or dissipation when the barrier size exceeds
the wavelength scale. Also shown is the slip parameter ζ for the minimum transmission

1013 A27-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
15

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10158


G. Liu and L. Zhang

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

|T |

r

|R|

1 – |T |2 – |R|2  arg T  – arg R
(a) (b)

(d )(c)

10−2 10−1 100 101

r
10−2 10−1 100 101

r
10−2 10−1 100 101

r
10−2 10−1 100 101

0°

20°

40°

60°

80°

100°

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

π/2

π/4

0

π/2

π/4

90°

ζ

0

π/2

π/4

0

π/2

π/4ζ

ζ

ζ

Figure 7. Intensity plots of (a) 1 − |T |2 − |R|2, (b) arg T − arg R, (c) |T | and (d) |R| in the parameter space of
the dimensionless barrier radius r and slip parameter ζ for a Bond number B = 1. The dashed lines correspond
to (a) a maximum 1 − |T |2 − |R|2, (b) a 90◦ phase difference, (c) a minimum |T | and (d) a minimum |R| at
given B.

for a given r (white dashed line), which changes from 0.17π to 0.5π , with particularly
rapid variation near r = 1.

The reflection, depicted in figure 7(d), generally increases with increasing size r . The
value of ζ corresponding to minimum reflection for a given r gradually shifts from 0.25π
to 0.18π . This indicates that the reflection is less sensitive to changes in barrier size
compared with transmission, which could imply a relatively stable reflection behaviour
over a range of barrier sizes.

Overall, results from figure 7 suggest that while the transmission is heavily affected
by increasing barrier size, dissipation and reflection exhibit more complex but less drastic
changes. The interplay between r and ζ across the different plots provides a comprehensive
view of the wave dynamics influenced by the barrier. All key observations in this section
have been summarised in table 2.

10. Summary and discussion
This study develops a comprehensive semi-analytical framework to investigate the
scattering of capillary–gravity waves by a fixed, semi-immersed cylindrical barrier while
incorporating the dynamic contact line condition. The formulation begins with the
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Parameter / Condition Key Observations

Infinitesimal barrier (r 	 1) Analytical solution (7.8).
Maximum dissipation line occurs near slip speed Λ′ ≈ cc for small B,
deviating moderately for larger B, where cc = √

σk/ρ is the phase speed
of capillary waves.
Maximum dissipation line is closer to cc than to cp for a broad range of B,
indicating the importance of surface tension effects, where
cp = √

σk/ρ
√

1 + B is the phase speed of capillary–gravity waves.
Dissipation ridge follows Λ′ ≈ √

σk/ρ
√

1 + B/1 − B; its exact physical
significance needs further study.
Phase difference, arg T − arg R, crosses 90◦ near the dissipation ridge.
Results presented in figure 6.

Barrier with non-zero radius
(r > 0)

Overall dissipation remains high (e.g. ∼80 % at B = 1) and is not strongly
affected by increasing r .
Transmission |T | drastically decreases for r � 1, reflecting stronger
blockage.
Reflection |R| generally increases as r increases, though less sharply than
|T | decreases.
Slip coefficient for maximum dissipation remains near ζ ≈ 0.2π across a
range of r (results for B = 1).
Results presented in figure 7.

Implications Matching the contact-line slip coefficient Λ′ near capillary-wave speed
leads to significant energy dissipation.
Barrier size modifies transmission/reflection more than total dissipation.

Table 2. Summary of dissipation properties and wave transmission/reflection for dynamic contact lines.
Parameters: Bond number B, slip parameter ζ and barrier radius r .

linearised potential flow assumption, leveraging an effective-slip model to connect the
contact line velocity and the deviation of the contact angle from its equilibrium state.
This approach extends classical theories of pure gravity wave scattering by a thin barrier
to include the effect of surface tension, dynamic contact lines and a cylindrical barrier
geometry with non-zero cross-section, thereby providing a more complete representation
of realistic wave–barrier interactions.

Two coupled boundary value problems regarding the velocity potential and surface
elevation, formulated from the governing equations and boundary conditions, are
solved using techniques such as differential equations, conformal mapping and Fourier
transforms. These problems are combined into a compound integral equation, which is
simplified using advanced integral equation techniques and then numerically solved via
discretisation with the Nyström method. Numerous integrals were analytically resolved
using specialised techniques to streamline the formulation.

Benchmarking against prior pure-gravity results validates the consistency and accuracy
of the theoretical framework. Under the limiting cases of fixed and free contact line
conditions, our analysis of capillary–gravity wave scattering revisits the fundamental
energy-conserving behaviours and reveals a 90◦ phase difference between the transmission
and reflection coefficients, T and R.

A key theoretical contribution of our analysis of capillary–gravity wave scattering is
the closed-form solution (7.8) derived for an infinitesimal barrier using Fourier cosine
and sine transforms, along with advanced integral equation techniques. This solution
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reveals that the diffracted field is symmetric or anti-symmetric between the incident and
transmitted sides under fixed or free contact line conditions of no dissipation, respectively.
The analysis for no dissipation also characterises reduced transmission (|T0|) varying from
1 to 0.5 as the waves transition from gravity waves to capillary waves. This analytical
result then serves as a baseline for illustrating how scattering characteristics evolve from
an infinitesimal barrier radius to larger barrier radii using the ratio |T |/|T0|, providing
insights into the transition from nearly unimpeded wave propagation (|T |/|T0| = 1) to
regimes where the barrier significantly alters the transmission.

Our analysis of energy dissipation due to dynamic contact lines reveals the effects of
barrier radius, Bond number and slip coefficient in capillary–gravity wave scattering.
For an infinitesimal barrier, the maximum dissipation occurs when the slip coefficient
approximates the phase speed of capillary waves given by (9.1), supporting previous
findings for impedance matching between pure capillary waves and contact line motions
while extending the analysis to arbitrary Bond numbers. In the parameter space of Bond
number and slip parameter, the dissipation ridge, representing the path of least descent,
was found to coincide with a special relation given in (9.3), where the phase difference
crosses 90◦, suggesting certain physics behind that requires further investigation. For a
barrier with a non-zero radius, dissipation remains significant and is largely independent
of barrier size, maintaining approximately 80 % as the maximum dissipation across all
barrier sizes. Transmission decreases sharply as the barrier size becomes comparable
to the wavelength, while reflection increases moderately with barrier size, showing
less sensitivity to barrier size than transmission. These findings broaden the theoretical
understanding of fluid–structure interactions under the influence of surface tension and
dynamic contact line conditions.

Despite these insights, our framework has several limitations. First, we adopt a linearised
potential flow model, so strong nonlinear effects – such as wave breaking, steepening or
large-amplitude deformations – fall outside the scope of our analysis. Viscous mechanisms
are treated only implicitly through an effective-slip parameter, and meniscus phenomena
near the contact line are not captured in detail. Moreover, the barrier is assumed to be semi-
immersed in infinite (or effectively deep) water, which simplifies the geometry to a simply
connected domain amenable to standard conformal mapping. Relaxing these assumptions
to account for fully submerged barriers, finite-depth conditions or more general body
shapes requires additional mathematical or numerical developments.

Several directions arise naturally for future work:

(a) Barrier position relative to the free surface
What if the cylindrical barrier is not semi-immersed (e.g. its centre lies above or below the
mean water level)? As long as the barrier does not create a hole in the fluid domain,
transformations such as circle–line or more general Möbius maps can still flatten the
geometry to the lower half-plane. In contrast, a fully submerged cylinder yields a multiply
connected domain, requiring mappings onto an annulus or strip (e.g. Nehari 1952; Ahlfors
1979; Hassani 2013; Carathéodory 2021). These more advanced conformal mapping
procedures remain theoretically feasible but are mathematically more involved.

(b) Other body shapes
Although linear theory suppresses many geometric details, the circular cylinder case is
particularly convenient due to the classical Joukowski transform. For arbitrary shapes,
one loses that closed-form map, but the Riemann mapping theorem still guarantees
the existence of a conformal mapping to the lower half-plane, assuming the fluid
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region is simply connected. Schwarz–Christoffel transformations (Henrici 1993; Driscoll
2002), successive Möbius mappings (Nehari 1952) or numerical schemes (Driscoll 2002;
Papamichael & Stylianopoulos 2010) can be employed to solve the linear boundary value
problem in a suitably transformed domain.

(c) Finite water depth
Lastly, our model currently assumes infinite (or effectively deep) water depth, which
is reasonable in many practical scenarios where wave motion near the free surface is
only weakly influenced by a distant seabed. When the depth is not large relative to the
wavelength, the finite-depth setting must be considered. Conceptually, one replaces the
open half-plane below the free surface with a finite strip bounded by the free surface
on top and the bottom boundary beneath. This strip minus the (semi-)cylindrical region
remains simply connected, so a suitable mapping still exists, although hyperbolic functions
typically arise to satisfy bottom boundary conditions (Fetter & Walecka 2003; Mei,
Stiassnie & Yue 2005). Extending the present formulation to finite-depth or shallow-water
regimes would enable a richer study of capillary–gravity wave scattering across a broader
range of physical contexts.

(d) Meniscus effects
All of the above cases assume that the free surface remains flat except for wave-induced
deformations, effectively taking a 90◦ static contact angle and thus avoiding a meniscus
at the barrier. If this contact angle deviates from 90◦, a static meniscus forms near the
barrier, complicating the dynamic boundary condition and altering the fluid domain itself.
Even within linear theory, the local curvature induced by the meniscus modifies the
boundary condition on the free surface, no longer allowing straightforward conformal
mapping to a half-plane minus a semicircle. Analytical expressions for menisci can
become cumbersome (Gennes et al. 2004; Landau & Lifshitz 2013) and numerical or
alternative analytical approaches are often required to treat these geometries accurately.
Accounting for meniscus effects in scattering problems represents a significant challenge
and a fruitful direction for future study.

(e) Nonlinear contact line dynamics
Real contact line behaviour is often governed by hysteresis and nonlinear dependencies
between contact line speed and contact angle (Eggers 2005; Amberg 2022; Butt et al.
2022; Eral et al. 2013). Such phenomena may entail time-dependent evolutions and
energy losses that do not reduce to a simple linear slip parameter. Incorporating these
nonlinearities would require a departure from the monochromatic assumption, likely
involving unsteady simulations or multi-mode projection methods (Bongarzone, Viola &
Gallaire 2021). Although challenging, this effort would significantly enhance the realism
and predictive capabilities of wave–barrier interaction studies.

Combined with experimental validation and numerical simulations, the research could
pave the way for advanced control techniques, improved energy absorption systems, and
innovative fluid management strategies in both industrial and research settings. At large
scales, our theoretical insights can inform the design of coastal defences, guiding strategies
to reduce wave energy transport and improve stability. At smaller scales, such as in
microfluidic devices, manipulating contact line dynamics and barrier geometry can enable
precise control of capillary flows and energy partitioning. Understanding and tuning
dissipation – interpreted as an impedance-matching condition – can lead to more efficient
energy harvesting and fluid control.
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Appendix A. Solution to the BVPs for η

In this appendix, we will solve the inhomogeneous second-order linear differential
equation (ISOLDE) for η given in (2.12) using the method of variation of constants
(Hassani 2013). The ISOLDE is given by

d2η

dx2 − Bη= −(1 + B)φ(x, 0). (A1)

The corresponding inhomogeneous second-order linear differential equation (HSOLDE),

d2η

dx2 − Bη= 0, (A2)

has two solutions:

η1 = e
√

Bx , η2 = e−√
Bx . (A3)

The particular solution to (A1) can be obtained through variation of constants from η1, η2:

η∗ = η2(x)
∫ x η1(x ′)r(x ′)

W (x ′)
dx ′ − η1(x)

∫ x η2(x ′)r(x ′)
W (x ′)

dx ′, (A4)

where r(x)= −(1 + B)φ(x, 0) is the source term in (A1), and W (x)= η1η
′
2 − η′

1η2 =
−2

√
B is the Wronskian of η1 and η2. Substituting expressions for η1, η2, r,W into (A4),

we have

η∗ = 1 + B

2
√

B

(
e−√

Bx
∫ x

φ(x ′, 0)e
√

Bx ′
dx ′ − e

√
Bx
∫ x

φ(x ′, 0)e−√
Bx ′

dx ′
)
. (A5)

Therefore, the general solution to (A1) can be given by

η= c1η1 + c2η2 + η∗, (A6)

where c1, c2 are arbitrary constants. For x > r , we have the boundary conditions specified
in (2.12b), given by

dη
dx

= −iΛ−1η, at x = r, (A7a)

η→ T eix , as x → +∞, (A7b)

where the condition at infinity can be further simplified as

dη
dx

= −iΛ−1η, at x = r, (A8a)
dη
dx

= iη, as x → +∞. (A8b)

From (A6), we have the form for η and dη/dx :

η= c1e
√

Bx + c2e−√
Bx

+ 1 + B

2
√

B

(
e−√

Bx
∫ x

r
φ(x ′, 0)e

√
Bx ′

dx ′ − e
√

Bx
∫ x

r
φ(x ′, 0)e−√

Bx ′
dx ′
)

(A9a)
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and
dη
dx

= √
Bc1e

√
Bx − √

Bc2e−√
Bx

− 1 + B

2

(
e−√

Bx
∫ x

r
φ(x ′, 0)e

√
Bx ′

dx ′ + e
√

Bx
∫ x

r
φ(x ′, 0)e−√

Bx ′
dx ′
)
.

(A9b)

Substituting (A9) to (A8), we get

c1 = 1 + B

2
√

B

∫ ∞

r
φ(x ′, 0)e−√

Bx ′
dx ′, (A10a)

c2 =
√

BΛ+ i√
BΛ− i

e2
√

Br c1. (A10b)

Therefore, if we define the slip parameter:

ζ = tan−1
(√

BΛ
)
, (A11)

c2 becomes

c2 = tan ζ + i
tan ζ − i

e2
√

Br c1

= e2i( π2 −ζ )e2
√

Br c1

= −1 + B

2
√

B
e−2iζ e2

√
Br
∫ ∞

r
φ(x ′, 0)e−√

Bx ′
dx ′. (A12)

Substituting c1, c2 to (A9a):

η= 1 + B

2
√

B

(
e
√

Bx
∫ ∞

r
φ(x ′, 0)e−√

Bx ′
dx ′ − e−2iζ e2

√
B(2r−x)

∫ ∞

r
φ(x ′, 0)e−√

Bx ′
dx ′

+e−√
Bx
∫ x

r
φ(x ′, 0)e

√
Bx ′

dx ′ − e
√

Bx
∫ x

r
φ(x ′, 0)e−√

Bx ′
dx ′
)

= 1 + B

2
√

B

(∫ x

r
φ(x ′, 0)e

√
B(x ′−x) dx ′ +

∫ ∞

x
φ(x ′, 0)e

√
B(x−x ′) dx ′

−e−2iζ
∫ ∞

r
φ(x ′, 0)e

√
B(2r−(x+x ′)) dx ′

)

=
∫ ∞

r

1 + B

2
√

B

(
−e−2iζ e

√
B(2r−(x+x ′)) + e−√

B|x−x ′|) φ(x ′, 0) dx ′. (A13)

For x <−r , following the same approach, we have

η=
∫ −r

−∞
1 + B

2
√

B

(
−e−2iζ e

√
B(2r+(x+x ′)) + e−√

B|x−x ′|) φ(x ′, 0) dx ′. (A14)

Combining (A13) and (A14), we have the solution for η in general:

η=

⎧⎪⎪⎨
⎪⎪⎩

∫ −r

−∞
K (x, x ′)φ(x ′, 0) dx ′, ∀x <−r,∫ +∞

r
K (x, x ′)φ(x ′, 0) dx ′, ∀x > r,

(A15)
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where the dynamic kernel K (x, x ′) is defined as

K (x, x ′)= 1 + B

2
√

B

(
−e−2iζ e

√
B(2r−|x+x ′|) + e−√

B|x−x ′|) . (A16)

Appendix B. Mathematical details in expressing φ(x, 0)

This appendix provides the detailed steps required to derive φ(x, 0) in terms of η(x),
transitioning from (3.11) to (3.12).

Recall (3.11):

ψ(u, v)= 1
2π

∫ +∞

−∞
g(u′)

( ∫ +∞

−∞
1
|λ|e|λ|v eiλ(u−u′) dλ

)
du′. (B1)

Evaluating at v = 0 gives

ψ(u, 0)=
∫ +∞

−∞
g(u′)

(
1

2π

∫ +∞

−∞
1
|λ|eiλ(u−u′) dλ

)
du′. (B2)

Recognise that the expression in parentheses is the inverse Fourier transform of 1/|λ|,
namely

1
2π

∫ +∞

−∞
1
|λ| eiλ(u−u′) dλ = F−1

[ 1
|λ|
]
(u − u′) = − 1

π

(
ln |u − u′| + γ

)
, (B3)

where γ is the Euler–Mascheroni constant. Substituting this back into (B2) gives

ψ(u, 0) = − 1
π

∫ +∞

−∞
g(u′)

(
ln |u − u′| + γ

)
du′. (B4)

Since ψ(u, v)= φ(x, y) under the conformal mapping, we obtain

φ(x, 0) = ψ
(
u(x, 0), v(x, 0)

) = ψ
(
u(x, 0), 0

)
. (B5)

From the conformal mapping in component form in (3.5), we have

u = (x2 + y2 + r2) x

(x2 + y2) r
, v= (x2 + y2 − r2) y

(x2 + y2) r
. (B6)

Thus, for y = 0,

u(x, 0) = (x2 + r2) x

x2 r
= x

r
+ r

x
. (B7)

Next, recall the relation between the boundary function g(u) and the free-surface
elevation η(x) from (3.7):

g(u)=
{

0 for |u|< 2,
η/∂x u(x, 0) for |u|> 2,

(B8)

which implies

g(u) du = η(x) dx for |u|> 2 (equivalently, |x |> r ). (B9)
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Hence, we obtain

φ(x, 0)=ψ(u(x, 0), 0)

= −π−1

(∫ −2

−∞
+
∫ 2

r

) (
ln |u(x, 0)− u′(x ′, 0)| + γ

)
g(u′) du′

= −π−1
(∫ −r

−∞
+
∫ +∞

r

) (
ln
∣∣∣∣ xr + r

x
− x ′

r
− r

x ′

∣∣∣∣+ γ

)
η(x ′) dx ′. (B10)

Therefore, for |x |> r , we arrive at the final expression (3.12):

φ(x, 0) =
(∫ −r

−∞
+
∫ +∞

r

)
S(x, x ′) η(x ′) dx ′, (B11)

where the geometric kernel S(x, x ′) is given by

S(x, x ′)= −π−1
(

ln
∣∣∣∣ xr + r

x
− x ′

r
− r

x ′

∣∣∣∣+ γ

)
. (B12)

Hence, φ(x, 0) is expressed solely in terms of η(x) through the integral kernel S(x, x ′).

Appendix C. Analytical calculation of (LχK− I)e±ix

In this appendix, we will analytically calculate (LχK − I)e±ix that was proposed in (4.11),
where χ takes the values ‘e’ for even and ‘o’ for odd, Le, Lo and K are the integral
operators integrated from r to ∞ with kernels Le, Lo and K given by

Le(x, x ′)= S(x, x ′)+ S(x,−x ′), (C1a)
Lo(x, x ′)= S(x, x ′)− S(x,−x ′), (C1b)

K (x, x ′)= 1 + B

2
√

B

(
−e−2iζ e

√
B(2r−|x+x ′|) + e−√

B|x−x ′|) , (C1c)

where

S(x, x ′)= −π−1
(

ln
∣∣∣∣ xr + r

x
− x ′

r
− r

x ′

∣∣∣∣+ γ

)
. (C1d)

The expression (LχK − I)e±ix can be written in integral form:

(LχK − I)e±ix =
∫ +∞

r
Lχ(x, x ′)

(∫ +∞

r
K (x ′, x ′′)e±ix ′′

dx ′′
)

dx ′ − e±ix . (C2)

First, we calculate
∫ +∞

r K (x ′, x ′′)e±ix ′′
dx ′′:∫ +∞

r
K (x ′, x ′′)e±ix ′′

dx ′′ =
∫ +∞

r

1 + B

2
√

B

(
−e−2iζ e

√
B(2r−|x ′+x ′′|) + e−√

B|x ′−x ′′|) e±ix ′′
dx ′′

= 1

2
√

B

[
−
(√

B ± i
)

e−2iζ+
(
−√

B ± i
)]

e(
√

B±i)r e−√
Bx ′+ e±ix ′

.

(C3)

Substituting (C3) into (C2), we have

(LχK − I)e±ix = −e±ix + 1

2
√

B

[
−
(√

B ± i
)

e−2iζ+
(
−√

B ± i
)]

e(
√

B±i)r I1,χ+I2,χ,±,
(C4)
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where

I1,χ =
∫ +∞

r
Lχ(x, x ′)e−√

Bx ′
dx ′, (C5a)

I2,χ,± =
∫ +∞

r
Lχ(x, x ′)e±ix ′

dx ′. (C5b)

Since Le = S(x, x ′)+ S(x,−x ′) and Le = S(x, x ′)− S(x,−x ′), first we calculate

∫ +∞

r
S(x, x ′)e−√

Bx ′
dx ′ = −π−1

∫ +∞

r

(
ln
∣∣∣∣ xr + r

x
− x ′

r
− r

x ′

∣∣∣∣+ γ

)
e−√

Bx ′
dx ′

= 1

π
√

B

(
e−

√
Br2
x Ei

(
−

√
Br(x − r)

x

)

+ e−√
Bx Ei(

√
B(x − r))

− Ei(−√
Br)− ln

∣∣∣ x
r

+ r

x
− 2
∣∣∣e−√

Br − γ e−√
Br

)
. (C6)

Since S(x,−x ′)= S(−x, x ′), we have

∫ +∞

r
S(x,−x ′)e−√

Bx ′
dx ′ =

∫ +∞

r
S(−x, x ′)e−√

Bx ′
dx ′

= 1

π
√

B

(
e

√
Br2
x Ei

(
−

√
Br(x + r)

x

)

+ e
√

Bx Ei(−√
B(x + r))

− Ei(−√
Br)− ln

∣∣∣ x
r

+ r

x
+ 2
∣∣∣e−√

Br − γ e−√
Br

)
.

(C7)

Now, we calculate I1:

I1,e =
∫ +∞

r
Le(x, x ′)e−√

Bx ′
dx ′

=
∫ +∞

r
S(x, x ′)e−√

Bx ′
dx ′ +

∫ +∞

r
S(x,−x ′)e−√

Bx ′
dx ′

= 1

π
√

B

(
e−

√
Br2
x Ei

(
−

√
Br(x − r)

x

)
+ e

√
Br2
x Ei

(
−

√
Br(x + r)

x

)

+ e−√
Bx Ei(

√
B(x − r))+ e

√
Bx Ei(−√

B(x + r))

−2 Ei(−√
Br)− 2 ln

( x

r
− r

x

)
e−√

Br − 2γ e−√
Br
)
, (C8a)
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I1,o =
∫ +∞

r
Lo(x, x ′)e−√

Bx ′
dx ′

=
∫ +∞

r
S(x, x ′)e−√

Bx ′
dx ′ −

∫ +∞

r
S(x,−x ′)e−√

Bx ′
dx ′

= 1

π
√

B

(
e−

√
Br2
x Ei

(
−

√
Br(x − r)

x

)
− e

√
Br2
x Ei

(
−

√
Br(x + r)

x

)

+ e−√
Bx Ei(

√
B(x − r))− e

√
Bx Ei(−√

B(x + r)) −2 ln
(

x − r

x + r

)
e−√

Br
)
.

(C8b)
Some care is needed in the calculation of I2. Since e±ix is O(1) and Lχ is O(ln x) at

x → ∞, I2 is not converged in the range [r,∞]. Some mathematical technique is used to
calculate the principal value of I2, as shown below:

I2,e,± = P
∫ +∞

r
Le(x, x ′)e±ix ′

dx ′

= lim
ε→0+

∫ +∞

r
Le(x, x ′)e±ix ′

e−εx ′
dx ′

= 1
π

(
∓2iγ e±ir − 2π + πe∓ix + 2π cos

(
r2

x

)
∓ 2i Ei(±ir)

± i
[

e
ir2
x Ei

(
ir(±x − r)

x

)
+ e− ir2

x Ei
(

ir(±x + r)

x

)

+ eix Ei(i(−x ± r))+ e−ix Ei(i(x ± r)) −2e±ir ln
( x

r
− r

x

)] )
, (C9a)

I2,o,± = P
∫ +∞

r
Lo(x, x ′)e±ix ′

dx ′

= lim
ε→0+

∫ +∞

r
Lo(x, x ′)e±ix ′

e−εx ′
dx ′

= 1
π

(
−πe∓ix ± 2π i sin

(
r2

x

)

+ i
[

e
ir2
x Ei

(
ir(±x − r)

x

)
− e− ir2

x Ei
(

ir(±x + r)

x

)

+ eix Ei(i(−x ± r))− e−ix Ei(i(x ± r)) ∓2e±ir ln
(

x − r

x + r

)])
. (C9b)

Now, we have the analytical expression for (LχK − I)e±ix , recalling (C4):

(LχK − I)e±ix = −e±ix + 1

2
√

B

[
−(√B ± i)e−2iζ+ (−√

B ± i)
]

e(
√

B±i)r I1,χ+ I2,χ,±,
(C10)

with I1, I2 defined in (C8) and (C9).

Appendix D. Analytical solution for T , R in scattering by an infinitesimal barrier
In this appendix, we will solve integral equations proposed in (7.5):
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hχ,± =LχKhχ,± + gχ,±, (D1)

where χ takes the values ‘e’ for even and ‘o’ for odd, Le, Lo and K are the integral
operators integrate from 0 to ∞ with kernels Le, Lo and K given by

Le(x, x ′)= −π−1 (ln ∣∣x − x ′∣∣+ ln
(
x + x ′)+ 2γ

)
, (D2a)

Lo(x, x ′)= −π−1 (ln ∣∣x − x ′∣∣− ln
(
x + x ′)) , (D2b)

K (x, x ′)= 1 + B

2
√

B

(
−e−2iζ e−√

B(x+x ′) + e−√
B|x−x ′|) , (D2c)

and gχ,± = (LχK − I)e±ix can be calculated analytically through similar methods as in
Appendix C:

ge,± = (LeK − I)e±ix

=
∫ +∞

0
Le(x, x ′)

(∫ +∞

0
K (x ′, x ′′)e±ix ′′

dx ′′
)

dx ′ − e±ix

= ∓2i sin x ± i
π

[
eix Ei(−ix)+ e−ix Ei(ix)− 2(γ + ln |x |)

]

+ −(√B ± i)e−2iζ + (−√
B ± i)

2πB

×
[
e
√

Bx Ei(−√
Bx)+ e−√

Bx Ei(
√

Bx)− 2(γ + ln |x |)
]
, (D3)

go,± = (LoK − I)e±ix

=
∫ +∞

0
Lo(x, x ′)

(∫ +∞

0
K (x ′, x ′′)e±ix ′′

dx ′′
)

dx ′ − e±ix

= −2 cos x + i
π

[
eix Ei(−ix)− e−ix Ei(ix)

]

+ −(√B ± i)e−2iζ + (−√
B ± i)

2πB

[
−e

√
Bx Ei(−√

Bx)+ e−√
Bx Ei(

√
Bx)
]
.

(D4)

First, we solve for he. We apply a Fourier cosine transform (FCT)

f̂c(k)=Fc { f } =
∫ ∞

0
f (x) cos kx dx (D5)

to (D1), and we obtain

ĥe,c(k)= ĝe,c(k)+Fc

{∫ ∞

0
Le(x, x ′)Khe(x

′) dx ′
}
. (D6)

The second term on the right side can be expanded as

Fc

{∫ ∞

0
Le(x, x ′)Khe(x

′) dx ′
}

=Fc

{∫ ∞

0
−π−1 (ln ∣∣x − x ′∣∣+ ln

(
x + x ′)+ 2γ

)Khe(x
′) dx ′

}

= −π−1Fc

{∫ ∞

0
Khe(x

′)
[
(ln
∣∣x − x ′∣∣+ γ )+ (ln

(
x + x ′)+ γ )

]
dx ′
}
. (D7)
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For FCT, we have the convolution theorem:

2Fc { f }Fc {g} =Fc

{∫ ∞

0
f (x ′)

[
g(x + x ′)+ g(|x − x ′|)] dx ′

}
. (D8)

Therefore,

Fc

{∫ ∞

0
Le(x, x ′)Khe(x

′) dx ′
}

= − 2
π
Fc {ln x + γ }Fc {Khe}

= − 2
π

(
− π

2k
Fc {Khe}

)
= 1

k
Fc {Khe} . (D9)

The FCT of Khe can be calculated by

Fc {Khe} =Fc

{∫ ∞

0

1 + B

2
√

B

(
−e−2iζ e−√

B(x+x ′) + e−√
B|x−x ′|) he(x

′) dx ′
}

= 1 + B

2
√

B

(
Fc

{∫ ∞

0

(
e−√

B(x+x ′) + e−√
B|x−x ′|) he(x

′) dx ′
}

−(1 + e−2iζ )Fc

{∫ ∞

0
e−√

B(x+x ′)he(x
′) dx ′

})

= 1 + B

2
√

B

(
2Fc

{
e−√

Bx
}

ĥe,c(k)− (1 + e−2iζ )Fc

{
e−√

Bx
} ∫ ∞

0
e−√

Bx ′
he(x

′) dx ′
)

= 1 + B

2
√

B

(
2

√
B

B + k2 ĥe,c(k)− (1 + e−2iζ )

√
B

B + k2

∫ ∞

0
e−√

Bx ′
he(x

′) dx ′
)

= 1 + B

B + k2

(
ĥe,c(k)− 1 + e−2iζ

2

∫ ∞

0
e−√

Bx ′
he(x

′) dx ′
)
. (D10)

Substituting all these back into (D6), we have

ĥe,c(k)= ĝe,c(k)+ 1 + B

k(B + k2)

(
ĥe,c(k)− 1 + e−2iζ

2

∫ ∞

0
e−√

Bx ′
he(x

′) dx ′
)
. (D11)

We want to express the integral on the right side in the k-domain, we can write h with an
inverse FCT:

he(x)= 2
π

∫ ∞

0
ĥe,c(k) cos kx dk; (D12)

therefore, the integral in (D11) can be written as∫ ∞

0
e−√

Bx ′
he(x

′) dx ′ =
∫ ∞

0
e−√

Bx ′
(

2
π

∫ ∞

0
ĥe,c(k) cos kx ′ dk

)
dx ′

= 2
π

∫ ∞

0
ĥe,c(k)

(∫ ∞

0
e−√

Bx ′
cos kx ′ dx ′

)
dk
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= 2
π

∫ ∞

0
ĥe,c(k)Fc

{
e−√

Bx
}

dk

= 2
π

∫ ∞

0

√
B

B + k2 ĥe,c(k) dk. (D13)

Substituting back to (D11), we obtain

ĥe,c(k)= ĝe,c(k)+ 1 + B

k(B + k2)

(
ĥe,c(k)− 1 + e−2iζ

π

∫ ∞

0

√
B

B + k2 ĥe,c(k) dk

)
, (D14)

which can be rearranged as

ĥe,c(k)= cδ(k − 1)+ k(B + k2)ŵc(k)ĝe,c(k)− αŵc(k)
∫ ∞

0

ĥe,c(k)

B + k2 dk, (D15a)

where c is a constant to be determined, and

α= π−1
√

B(1 + B)(1 + e−2iζ ), (D15b)

ŵc(k)= (k − 1)−1(k2 + k + 1 + B)−1. (D15c)

(D15a) can be solved by dividing B + k2 on both sides and integrating with respect to k
from 0 to ∞:∫ ∞

0

ĥe,c(k)

B + k2 dk = c

B + 1
+
∫ ∞

0
kŵc(k)ĝe,c(k) dk − α

∫ ∞

0

ŵc(k)

B + k2 dk ·
∫ ∞

0

ĥe,c(k)

B + k2 dk.

(D16)
Rearranging, we have

∫ ∞

0

ĥe,c(k)

B + k2 dk =
(

c

B + 1
+
∫ ∞

0
kŵc(k)ĝe,c(k) dk

)
·
(

1 + α

∫ ∞

0

ŵc(k)

B + k2 dk

)−1

= (1 + α I3)
−1
(

c

B + 1
+
∫ ∞

0
kŵc(k)ĝe,c(k) dk

)
, (D17a)

where

I3 =
∫ ∞

0

ŵc(k)

B + k2 dk

= − ((3 + B)
√

3 + 4Bπ
)+ 2

√
B(3 + 2B) tan−1 (√3 + 4B

)+ √
B(3 + 4B) ln(1 + B)

2(1 + B)(3 + B)
√

B(3 + 4B)
.

(D17b)

Thus,

ĥe,c(k)= cδ(k − 1)+ k(B + k2)ŵc(k)ĝe,c(k)− αŵc(k)
∫ ∞

0

ĥe,c(k)

B + k2 dk

= cδ(k − 1)+ k(B + k2)ŵc(k)ĝe,c(k)

− α

1 + α I3
· ŵc(k)

(
c

B + 1
+
∫ ∞

0
kŵc(k)ĝe,c(k) dk

)
, (D18)
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where ĝe,c can be calculated by

ĝe,±,c =Fc
{
ge,±

}=
∫ ∞

0
ge,±(x) cos kx dx,

= ±i
(

1
k

− 1
1 + k

)
+ −(√B ± i)e−2iζ + (−√

B ± i)
2B

(
1
k

− k

B + k2

)
. (D19)

Notice that on the positive k-axis, only the singularity terms in hc correspond to
the terms in h that propagate as x → ∞. In this instance, there are two singularity
terms on the positive k-axis in he,c: (k − 1)−1 and δ(k − 1), which correspond to sin x
and cos x , respectively, at x → ∞ in he. Since the equations for calculating T and R
((4.14a) and (4.14b)) only require the ratio he,−/he,+, it is sufficient to calculate this ratio
using the coefficients of the (k − 1)−1 terms for ĥe,−,c and ĥe,+,c. It can also be shown
(albeit through another lengthy derivation) that the coefficient of δ(k − 1) is equal to the
coefficient of (k − 1)−1; we omit that proof for brevity. By substituting the expressions for
α, ŵc and ĝe,c into (D18) and extracting the coefficients of the (k − 1)−1 terms, we obtain
the following expression for Ce:

Ce = lim
x→∞

he,−
he,+

= − X − i
X + i

, (D20)

where

X = 1
π

(
3 + 2B√
3 + 4B

tan−1 √
3 + 4B + 1

2
ln(1 + B)

)
+ i
(3 + B) tan ζ

2
√

B
. (D21)

Similarly, ho can be analysed by applying a Fourier sine transform (FST) as follows:

f̂s(k)=Fs { f } =
∫ ∞

0
f (x) sin kx dx, (D22)

to (D1). The approach remains consistent, albeit the convolution theorem for FST differs:

2Fs { f }Fc {g} =Fs

{∫ ∞

0
f (x ′)

[
g(|x − x ′|)− g(x + x ′)

]
dx ′
}
. (D23)

The details are omitted. The calculated expression for Co is

Co = lim
x→∞

ho,−
ho,+

= Y + i
Y − i

, (D24)

where

Y = 1
π

(
3 + 6B + 2B2

√
3 + 4B

tan−1 √
3 + 4B − 1

2
ln(1 + B)

)
− i
(3 + B)

√
B

2 tan ζ
. (D25)

From (4.14a) and (4.14b), we have the theoretical results for the transmission T and the
reflection R coefficients of the infinitesimal barrier (r 	 1) case:

T = −1
2
(Ce − Co)= 1

2

(
X − i
X + i

+ Y + i
Y − i

)
, (D26a)

R = −1
2
(Ce + Co)= 1

2

(
X − i
X + i

− Y + i
Y − i

)
. (D26b)

These expressions are consistent with expressions from Hocking (1987b), see
Appendix E for details.
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Appendix E. Expressions for T , R in infinitesimal barrier case (Hocking 1987b)
Hocking (1987b) considered scattering of capillary–gravity waves from an infinitesimally
thin barrier of a finite immersed depth. In the limit of a zero depth, an analytical results
followed from Hocking (1987b) for the transmission and reflection coefficients, T and R.
Here, we show that these results agree with our analytical solutions of T and R, (7.8),
derived for a cylindrical barrier of a zero cross-section.

The coefficients T and R by Hocking (1987b) were derived in terms of the inverse Bond
number

K = σk2

ρg
, (E1)

and a dimensionless slip coefficient

λ=
√

k

g
Λ′. (E2)

In terms of K and λ, the coefficients were given as

T = i(α − β)

(1 − iα)(1 − iβ)
, (E3a)

R = 1 + αβ

(1 − iα)(1 − iβ)
, (E3b)

where

α = 2K

(1 + 3K )(J1(K )− iλ(1 + K )−1/2)
, (E3c)

β = J2(K )+ i(1 + 3K )(1 + K )1/2/2Kλ, (E3d)

and

J1(K )= 2K

π(1 + 3K )

{
1
2

ln
K + 1

K
+ 3K + 2

K 1/2(3K + 4)1/2
tan−1

(
3K + 4

K

)1/2
}
, (E3e)

J2(K )= 1
πK

{
− K

2
ln

K + 1
K

+ 3K 2 + 6K + 2
K 1/2(3K + 4)1/2

tan−1
(

3K + 4
K

)1/2
}
, (E3f )

in which a missing factor of 1/π in the original expression for J1(K ) has been included,
as identified by Zhang & Thiessen (2013).

Hocking’s parameters K and λ relate to our Bond number B and slip parameter ζ via

K = 1
B
, λ=

√
1 + B

B
tan ζ. (E4)

Substituting (E4) into (E3c)–(E3f), the α and β reduce to functions of the Bond number
B and ζ as

α =
{

1
π

(
3 + 2B√
3 + 4B

tan−1 √
3 + 4B + 1

2
ln(1 + B)

)
− i
(3 + B) tan ζ

2
√

B

}−1

, (E5)

β = 1
π

(
3 + 6B + 2B2

√
3 + 4B

tan−1 √
3 + 4B − 1

2
ln(1 + B)

)
+ i
(3 + B)

√
B

2 tan ζ
. (E6)
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Comparing them with our expressions of X and Y in (7.8), we identify that

α = 1
X∗ , β = Y ∗, (E7)

where the asterisks denote complex conjugates. By substituting (E7) into (E3a) and (E3b),
Hocking’s T and R reduce to

T = i(1 − X∗Y ∗)
(X∗ − i)(1 − iY ∗)

=
[

XY − 1
(X + i)(Y − i)

]∗
= 1

2

(
X − i
X + i

+ Y + i
Y − i

)∗
, (E8a)

R = X∗ + Y ∗

(X∗ − i)(1 − iY ∗)
=
[ −i(X + Y )

(X + i)(Y − i)

]∗
= 1

2

(
X − i
X + i

− Y + i
Y − i

)∗
. (E8b)

These expressions for T and R are the complex conjugates of the expressions given in
(7.8). Since Hocking (1987b) uses the time convention exp(iωt), while we use exp(−iωt),
Hocking’s coefficients T and R are defined as the complex conjugates of our expressions.
By using the complex conjugates, the two analyses agree with each other in this limiting
case of an infinitesimal barrier.

Appendix F. Table for gravity waves scattering comparison

See table 3 attached.

r |R| arg R |T | arg T

0.01 1.9650(−2)
1.9880(−2)

−1.5898
−1.5900

9.9980(−1)
9.9980(−1)

−0.0190
−0.0193

0.02 3.8960(−2)
3.9260(−2)

−1.6073
−1.6076

9.9920(−1)
9.9920(−1)

−0.0365
−0.0368

0.03 5.8160(−2)
5.8480(−2)

−1.6235
−1.6238

9.9830(−1)
9.9830(−1)

−0.0527
−0.0530

0.04 7.7340(−2)
7.7650(−2)

−1.6385
−1.6388

9.9700(−1)
9.9700(−1)

−0.0677
−0.0680

0.05 9.6560(−2)
9.6850(−2)

−1.6524
−1.6527

9.9530(−1)
9.9530(−1)

−0.0816
−0.0819

0.06 1.1590(−1)
1.1610(−1)

−1.6653
−1.6656

9.9330(−1)
9.9320(−1)

−0.0945
−0.0948

0.07 1.3530(−1)
1.3550(−1)

−1.6773
−1.6775

9.9080(−1)
9.9080(−1)

−0.1065
−0.1067

0.08 1.5480(−1)
1.5490(−1)

−1.6884
−1.6886

9.8800(−1)
9.8790(−1)

−0.1176
−0.1178

0.09 1.7440(−1)
1.7450(−1)

−1.6987
−1.6988

9.8470(−1)
9.8470(−1)

−0.1279
−0.1280

0.1 1.9420(−1)
1.9420(−1)

−1.7081
−1.7082

9.8100(−1)
9.8100(−1)

−0.1373
−0.1374

0.2 3.9580(−1)
3.9520(−1)

−1.7678
−1.7677

9.1830(−1)
9.1860(−1)

−0.1970
−0.1969

0.3 5.8570(−1)
5.8460(−1)

−1.7906
−1.7906

8.1050(−1)
8.1130(−1)

−0.2198
−0.2198

0.4 7.3690(−1)
7.3560(−1)

−1.8118
−1.8120

6.7600(−1)
6.7740(−1)

−0.2410
−0.2412

Table 3. Comparison of our calculated results and results from Martin & Dixon (1983) for gravity wave
scattering, with Martin & Dixon’s at the top of each cell and ours at the bottom.
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r |R| arg R |T | arg T

0.5 8.4030(−1)
8.3910(−1)

−1.8550
−1.8552

5.4210(−1)
5.4400(−1)

−0.2842
−0.2844

0.6 9.0460(−1)
9.0360(−1)

−1.9277
−1.9279

4.2630(−1)
4.2840(−1)

−0.3569
−0.3571

0.7 9.4270(−1)
9.4190(−1)

−2.0275
−2.0278

3.3370(−1)
3.3590(−1)

−0.4568
−0.4570

0.8 9.6500(−1)
9.6450(−1)

−2.1495
−2.1495

2.6210(−1)
2.6420(−1)

−0.5772
−0.5787

0.9 9.7830(−1)
9.7780(−1)

−2.2878
−2.2877

2.0730(−1)
2.0930(−1)

−0.7170
−0.7169

1.0 9.8620(−1)
9.8590(−1)

−2.4385
−2.4383

1.6550(−1)
1.6730(−1)

−0.8677
−0.8675

2.0 9.9960(−1)
9.9960(−1)

2.0608
2.0614

2.6630(−2)
2.7420(−2)

−2.6516
−2.6510

3.0 1.0000
1.0000

0.1315
0.1321

7.1320(−3)
7.6250(−3)

1.7023
1.7031

4.0 1.0000
1.0000

−1.8325
−1.8319

2.5650(−3)
2.9560(−3)

0.2617
−0.2608

5.0 1.0000
1.0000

2.4728
2.4733

1.1170(−3)
1.4610(−3)

−2.2396
−2.2386

6.0 1.0000
1.0000

0.4877
0.4881

5.5630(−4)
8.7070(−4)

2.0585
2.0596

7.0 1.0000
1.0000

−1.5016
−1.5011

3.0530(−4)
5.9760(−4)

0.0693
0.0705

8.0 1.0000
1.0000

2.7898
2.7902

1.8050(−4)
4.5430(−4)

−1.9226
−1.9213

9.0 1.0000
1.0000

0.7962
0.7966

1.1310(−4)
3.7100(−4)

2.3670
2.3683

10.0 1.0000
1.0000

−1.1986
−1.1982

7.4280(−5)
3.1810(−4)

0.3722
0.3734

Table 3. (Continued)
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