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CURVATURE EVOLUTION OF PLANE CURVES
WITH PRESCRIBED OPENING ANGLE

NAOYUKI ISHIMURA

We discuss the evolution of plane curves which are described by entire graphs
with prescribed opening angle. We show that a solution converges to the unique
self-similar solution with the same asymptotics.

1. INTRODUCTION

In [4], Ecker and Huisken discussed the mean curvature evolution of entire graphs
with linear growth in Kn + 1, n > 2. They proved the long time existence and under
further assumptions, the convergence to a self-similar solution. In this note, on the
other hand, we deal with the evolution of entire plane curves with prescribed opening
angle. We consider the problem:

V-xx
(1) ut = - 5-, u > 0 in - oo < a; < oo, t>0,

(2) ux —> — K2 as x —> —00 and ux —> K\, as x —> 00 for t > 0,

(3) u(O,x)=uo{x).

Here 0 < K\ ^ K% < 00 are prescribed constants. uo{x) is a given convex function
assumed to satisfy (2) and

(4) (uo

for some constants C > 0 and 0 < 6 ^ 1. Notice that (4) does not follow from the
convexity. In fact, there exits a convex function u which satisfies (2) but where the
growth of (u — xux) dominates x2^1"^ for any 0 < 6 ̂  1. For example, we may take
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u = x — a;(loga;) for x > e2, u — 2~1e2 for x ^ e2. The assumption of convexity

will turn out not to be restrictive.

The growth condition (4) is essentially the same as (3) in Ecker and Huisken [4].

Thus the long time existence and the convergence to a self-similar solution will be

established in a similar way. The novelty of our research consists in analysing a structure

of self-similar solutions for (1).

To derive the self-similar equation corresponding to (1), we employ the so called

similarity change of variables. We set

= y/2{l+t)-U(T,y), y= } x and r=\log(l + t).
/Z(l + t) *

Then (1) becomes

(5) UT = TT
A stationary solution to (5) is called a self-similar solution. We show in Section 3 that
the self-similar solution satisfying condition (2) exists uniquely. We remark that (4) is
fulfilled automatically in this case. To summarise, we shall prove:

THEOREM 1 . 1 . There exists a solution of (1) - (3) for all t > 0. Under (4), it
converges as t —> oo to t i e unique self-similar solution with the same asymptotics (2).

Mean curvature evolution is now a huge field of research. We refer to, for instance,
Angenent [2], Ecker [3], Ecker and Huisken [5], Gage and Hamilton [6], Gage and Li
[7], Grayson [8], Huisken [9], [10], and the references there in. (5) is a self-expanding
equation. As to self-shrinking, we refer to, for instance, Altschuler, Angenent and Giga
[1] and the pioneering observations of Leray [12].

After completing this work, Dr G.H. Williams kindly informed us of a related
result; Broadbridge [13] considered the equilibrium solution of (5) for y > 0 under
the conditions Uy(0) = given constant and U —» 0 as y —> oo. He gives the exact
representation of such solutions. We greatly thank Dr G.H. Williams for his interest in
this work.

2. EXISTENCE AND CONVERGENCE OF SOLUTIONS

We first investigate the existence and the convergence of a solution to (l)-(4). As

we mentioned before, we may argue similarly to Ecker and Huisken [4]. We include the

proof, however, for completeness.

First, we derive an a-priori gradient bound. Set w : = logu, v := -y/l + u\ and

compute

w t = •

= v~2wxx — v~iux
2
x < v~2wxx
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By applying the maximum principle, we find that v is bounded, independent of t.

Next, we deal with curvature estimates. Write K = u\ = (uij j /( l + u | ) ) to
obtain

= v~2Kxx — 2v~2v.2x — Av~iuxux

^ v~2Kxx — v~iuxuxxKx .

A uniform bound for K now follows.
As in Proposition 4 of Ecker and Huisken [4], we can also infer that for every

integer i ^ 0 there exists a constant C(i) independent of t such that

(i) 2 <j Cfl for t ^ 0

We may safely omit the details. We simply remark that we have by induction in
particular that K^ —> 0 as |x| —y oo.

The convexity is preserved along the evolution. To see this, set q = uxx and
differentiate (1) twice with respect to x. We arrive at

qt = v~2qxx - ev^Uxii^q* - 4v~4(l - u\)u\xq.

Since q ^ 0 at t = 0, the maximum principle implies q ^ 0 for t > 0. Recall that
q —> 0 as |z| —> oo.

Convexity and uniform gradient bounds force ux to converge as |z| —> oo. In view
of the curvature bound u%x —> 0 as |x| —* oo, we conclude that (2) will be satisfied.

This completes the proof of long time existence for (1) - (3).
Now we investigate the convergence of a solution u as t —• oo. To make the

calculation transparent, we introduce some notation.
Let T := w-^l.u,.), JV := v~1(-ux,l) and fc := -v~3uxx. Then we get Tx =

-vkN, Nx =vkT and

Tt = v~2uxtN, Nt = -v~2uxtT.

The corresponding quantities for (5) are distinguished by a tilde. That is, T =
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v-i^Uy), N ^^^(-Uy,!) with v = J\ + U* = v and so on.

(1) means ut = —vk ; we deduce

= -k -v-2uxt(X,T) -v-*JL-(vk(X,

= k2(X,N) -2k

Here (• ,•) denotes the inner product in M.2

From this, we estimate the growth rate of (X,N)2 as follows. Define /

ind compute

ft ~ v~2fxx = -(6 - 2){6 - l ) " 1 / " 1 ^ -

(l + 2t + x2 + u2) and compute

We then obtain

= 2k2(X,N)2f-4k(X,N)f-2v~2 (^-(X,N)\ f

- (2 -

for some constants Ci, C^ independent of t. This implies

(6) { X , N ) ^ C 3 e 2 r e c ^ ( 2 2

Here C3 is again a constant independent of t.

Now we wish to show U2 —> 0 as T —> 00. As a first step, we compute its evolution.

— U2 = 2UT (v-2UTyy + v'1 (v~1)yUTy - UT + yUTy^j,

dy2"T
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Due to the lack of a bound for U2 as \y\ —* oo, we need to introduce the function
g = (a + y2 + U2) eCT for some constants 0 < e < 6 and a > 1. a will be
determined later. We have

e-2
= (2 - e)g + ygy + 2(1 - o) ( l - e)(a + y2 + U2)' e"

Thus we find

__2 d2

-2v-2gy(U
2)y

e'TU2
T

-4v-2UTUrygy-2v-2gU2
y

By virtue of (2 — e)(l — e) > 2, the sum of the last three terms is negative from the
Schwartz inequality. Recalling the curvature bound \(y *)

7) (W 1 /7,, £ \J $» — (J t
\ * V ** T ^ n T ^

if we choose a sufficiently large. We then obtain

C, we find

Since (6) makes U2g —» 0 as \y\ —» oo for every T > 0, the maximum principle implies
that U2g ^ C independent of r, which means

U2 -v 0 a s r - t O for all fixed y G R.

Combining this with Theorem 3.1 below, we finally conclude that the proof of Theorem
1.1 is finished.
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3. STRUCTURE OF SELF-SIMILAR SOLUTIONS

This section is concerned with the structure of solutions for the equation

f Uyy/(1 + U2) = U - yUy, U > 0 for - oo < y < oo,

1 U(y) -> oo as \y\ -> oo.

Every solution of (7) will be seen to become asymptotically hnear as \y\ —> oo. Moreover
we have the following

THEOREM 3 . 1 . Let 0 < Ki ^ K2 < oo be arbitrarily given constants. Then
there exists a unique solution U(y) to (7), which is necessarily convex, such that

u(y)--K2y + °{r]) a s y-*~°°

U(y) — K! y +ol— J as y -> + o o .

The proof proceeds similarly to the author's previous work [11], but we carry it
out here, since it is slightly different and the uniqueness is newly established.

Before going into details, we observe that it suffices to consider only the symmetric
case Uy(0) = 0. To see this, we argue as follows. Since the hnear function U = ay solves
(7) for every a G K, U(y) claimed in Theorem 3.1 is in the region {U > -K2y} C\{U >

Kiy} from an interior touching principle. Thus, (7) can be parametrised by polar
coordinates; {U{9), y(8)) := (R(0)sin6, .R(0)cos0) with R2 = U2+y2 for 0i < 9 < 62.

&i € ( 0 , T ) are determined by B\ = a r c t a n i ^ , 92 = — arctan_Ki. (7) is equivalent to

-k=(X,N),

where

X := (U{9), y(9)), N := y-^-yg^e), v2 := U2+y2

and
, Uee ye - Ue yee
AC • — _ •

(7) is now transformed into

.o. = {RRee - 2R\ - R?)/{R2 + R2)2 for 91 < 9 < 92,
(8) \

* R o o as 9^>91}92 .I'.
One sees that (8) is invariant under the translation 9 >-> 9 + c ,c EM.; the solution of (8)
is characterised through 92 — 9i. Only the centre of scaling is different. Therefore, we
just have to establish the next proposition which says that for every 92 — 9i 6 (0, TT) ,
there corresponds the symmetric solution uniquely.
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PROPOSITION 3 . 2 . There exists a one-parameter family of convex solutions

U(y;U0) for (7) such that

Uy(0) = 0, 1/(0) = Uo > 0.

We define a(Uo) := lim Uy(y;Uo). The function Uo >—* o.(Uo) is strictly increasing
y—>oo

and provides a homeomorphism from R + = {x > 0} into itself.

PROOF: We divide the proof into several steps.

1. U{y; Uo) exists for all y € R.

The solution U{y;U0) of (7) with U(0) = Uo and Uy{0) = 0 certainly exists on
some interval (—3/1,2/1). Uyy > 0 by virtue of Uyy(0) = Uo > 0. If there exists a point
2/2 > 0 such that Uyy(y2) = 0 but U,Uy are bounded, then we have U^-n\y2) = 0
for n ^ 2, performing successive differentiations on (7). The analyticity of the regular
elliptic equation leads to

a contradiction.

If there exists a point 2/3 > 0 with ^(2/3) = 00 or £ ,̂(2/3) = 00, then we may choose
d so that U = Ciy touches U(y;U0); U{y;U0) ^ dy on (0,T/3) and U{yi,Uo) =
C12/4, Uy{yi\ Uo) = C\ for some y4 6 (0,j/3). [/ = Ciy is a solution to (7). Thus, this
cannot happen; U(y; Uo) exists on all j / £ R , keeping the convexity.

2. oc(Uo) '•— h'm Uy(y;Uo) < 00 is defined.
y—*oo

Let I(y;U0) •- arctan{/B(y;Z70). Since 1(0) = 0, Iy(y) > 0, we infer that 0 <

I(y) < 7r/2 for 1/ > 0 and the limit P(U0) := lim /(t/;{/o) ^ T / 2 exists. We show
y—*oo

that j3(Uo) < 7r/2. If /?(C/o) = 7r/2, then Uy increases to 00 as y —» 00. However, the

concavity of arctanz for x > 0 implies / s (y) —» 0 as y —> 00; that is, Z7 — y Uy —* 0.

Therefore, t7/y - Uy = 0(Vj/),^»y = 0 ( V / ) > which is a contradiction to £/v —* 00 as

2/ —» 00. The claim is proved. U

To proceed further, we need a lemma.

LEMMA 3 . 3 . Every distinct pair of solutions to (7) intersect at most once.

PROOF: For a contradiction, suppose two distinct solutions U\{y), U2(y) intersect

at 1/1 < 1/2 with Ui(y) > U2(y) for 7/1 < y < y2. Integration of (7) over the interval
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arctan

Jy%

fV2
= / - yUiy)dy

rV2

> / 1U2dy — y2U2(y2) + yiU2(yi)

= arctanZ72,,(y2) — arctanJ72y(j/i) .

We find a contradiction in view of Uiy(yi) ^ U2V(yi) and t/is(y2) ^ U2V(y2)-

3. a(Uio) < a(U2o) for Uio < U20-
Lemma 3.3 gives a(Uio) ^ a(C 2̂o)- We show the strictness of the inequal-

ity indirectly. Suppose for some Uio < U2o we have a(Uio) = oc(U2o). Consider
Uh(y;Uo) := Ui(y;Uio) + h. Uh is a supersolution, satisfying Uhy = U\y and
Uh — yUhy > U\ — yU\v. Since Uhyy(0) = Uio < U2o = U2yy(0), by letting h —» 0 we
discover some h so that U-^ touches 172 from above. This is prohibited by the interior
touching principle.

4. lim a(U0) = 0.
If not, there is a 6 > 0 such that

lim a(Un) = 8.
1/0-0 v '

Introduce a comparison function

U{y) has a tangency with U = Sy at t/i = £f0 (l + \A + S2)/6\/l + S2 < C. That is

fyi = Uo + C - y/C2 - y2 and S =

Since U{y) = U(0; Uo) = Uo, Uv(0) = Uy{0; Uo) = 0 and

we see that U{y) > U(y;Uo) in some neighbourhood of y = 0, taking Uo sufficiently
small. Furthermore, we compute

1 + U,
-{1 - {Uo + C) yJC2 - y2 + C2} > 0

- y2
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on 0 < y < j / i + e < C for some e > 0, choosing Uo smaller if necessary. Recalling
that U(y; Uo) cannot intersect with U = 6y and so U(yi; Uo) > 6yi, we conclude this
is impossible.

5. Km a(Uo) = oo.
Uo—»oo

Suppose on the contrary that lim a(Uo) = M < oo. We deduce that for any
t/o—»oo

e > 0, there exists yi > 0 and Uio such that

0 < U(y;Uo) -My < e for y^yi and Uo > U10,

invoking U—yUy —» 0 as y —» oo. Define J7(y) := f7(y; t/io) + 2e and compare this with
the solution U(y; Ulo + 3e). We have 17(0) < U(0; Uio + 3e) and U{yi) > Myx + 2e >
?7(j/i; Uio + 3e). U is a supersolution and hence, this is a contradiction.

6. Uo *—> a(Uo) is continuous.

By virtue of the monotonicity of a(Uo), the set of discontinuity points {J7»o} is

countable. Let Uio be one of them. For some e > 0, we find

lim a(Uo) + e^ lim a(Z7o).
Ti/ u0iu10 '

From the convexity of U, there exists yi, such that

lim Uv(y; Uo) H— ^ lim Uv[y, Uo) for all y ^ j / i .
t/oTt/io 2 t/0it/10 "v

The continuity with respect to the initial value on the bounded interval [0,j/i] does not
allow this.

The proof is now complete. U

A usual limit process shows that the case K\ = 0 is valid in Theorem 3.1. To be
precise, we obtain

COROLLARY 3 . 4 . For every K > 0, there exists the unique solution U(y) of
(7) such that

-> —oo

= o I j— 1 asy -» +oo.

PROOF: Let {£„} , n = 1,2,. . . , be a sequence with K > Li > L2 > • • • - + 0.
Consider the corresponding sequence of solutions {Un(y)} to (7), which are given by
K2 - K and Kx = Ln in Theorem 3.1. U(y;U0) with ct(U0) > K for y G R and
f7 = —K/2y for j / < 0 serve as upper and lower barriers on any bounded interval,
respectively. Moreover, we have 0 < Uny{y) < K. We can extract a convergent
subsequence on any bounded interval. A standard diagonal argument yields the desired
conclusion. Finally, the uniqueness follows as before; transform the equation into (8),
translate the 6 variable and appeal to the uniqueness of the symmetric solutions. U
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