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Drell–Yan process

It corresponds to the sub-process, where the quark and anti-quark come from the two
scattering hadrons, and annihilate into vector bosons (photon, W ±, Z0) with large invariant
mass and then produce a lepton pair. A classical example is the annihilation into photon
and with the production of e+e−:

q̄q → e+e− , (20.1)

shown in Fig. 20.1. Drell–Yan process offers the possibility to test perturbative QCD as the
large scale is given by the invariant mass of the lepton pair (of the order of MW,Z at CERN
and Tevatron energies), while the parton densities enter quadratically in this process where
the final state is totally inclusive.

20.1 Kinematics

The kinematics of the process is characterized by the parton distribution qhi
f (x) for a quark

of flavour f issued from the hadron hi . The total momentum squared of the subprocess is:

Q2 = (x1 p1 + x2 p2)2 , (20.2)

and coincides with the invariant mass squared of the photon. The total energy squared of
the hadron is:

s = (p1 + p2)2 . (20.3)

For large s, one usually neglects the hadron mass, such that one can approximately write:

Q2 � x1x2s . (20.4)

Another useful variable is:

xF ≡ x1 − x2 , (20.5)

and the rapidity y defined as:

tanh y = x1 − x2

x1 + x2
or y = 1

2
ln

x1

x2
. (20.6)
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Fig. 20.1. Drell–Yan process.

Alternatively, in the hadron-hadron centre of mass where the photon momentum is:

q = (E ; q‖, q⊥) , (20.7)

one has:

xF = 2q‖/
√

s , y = 1

2
ln

E + q‖
E − q‖

. (20.8)

20.2 Parton model

20.2.1 Cross-section

In order to evaluate the production cross-section, one calculates the reduced cross-section
corresponding to the subprocess in Eq. (20.1), and write the total cross-section as a convo-
lution. Neglecting quark and electron masses, the point-like cross-section reads, to lowest
order:

σ̂l.o(q̄ + q → e+e−) = 4πα2 Q2
f

3Nc Q2
, (20.9)

where Q f is the quark charge in units of e. The full lowest order differential cross-section
reads:

dσl.o

d Q2
= 4πα2

3Nc Q2

∑
f

Q2
f

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2
δ (1 − z)

[
qh1

f (x1)q̄h2
f (x2) + q̄h1

f (x1)qh2
f (x2)

]
,

(20.10)

where:

τ ≡ Q2/s and z ≡ τ

x1x2
. (20.11)

τ quantifies the fraction of energy squared that goes into the lepton pair. If τ is small, then,
one of the xi is small and then favours the sea quark contribution. If the xi is maximal i.e.
around 1/3 ∼ 1/4, then the valence contribution will dominate. The Drell–Yan processes
are important as they can provide a non-trivial test of the validity of the parton approach
and of its extension in QCD through the factorization theorem. One expects that the parton

https://doi.org/10.1017/9781009290296.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.028


218 IV Deep inelastic scatterings at hadron colliders

densities measured in lepto-production for a given hadron target should be relevant to make
predictions on the Drell–Yan and some other DIS processes.

20.2.2 Approximate rules

There are typical rules for Drell–Yan processes.

Intensity rules

From the above-mentioned properties, one expects that, for large xi , the cross-section involv-
ing two valence quarks for producing the e+e− pair, is much larger than the one involving
one valence and one sea quarks. For an isoscalar target one, e.g., expects:

σ (π+N (I = 0))

σ (π−N (I = 0))
→ 1

4
. (20.12)

Scaling

In the region where the naı̈ve parton model is valid, one expects that the dimensioneless
quantities:

Q4 dσ

d Q4
, Q4 dσ

d Q2dxF
, Q4 dσ

d Q2dy
, (20.13)

should scale as functions of the scaling variables τ, xF and y independently of Q2.

Angular distribution of leptons

For large Q2, where the longitudinal structure function (WL ) is much smaller than the
transverse (WT ) one, the lepton pair angular distribution originated from an off-shell photon
is predominantly of the form:

dσ

d Q2d cos θ
∼ WT (Q2, τ )(1 + cos2 θ ) . (20.14)

Atomic number

The cross-section being proportional to the number of quarks or antiquarks in the target
nucleus, each contribution adding up incoherently, one expects a linear dependence with
the atomic number A in the Drell–Yan region.

20.3 Higher order corrections to the cross-section

The different processes relevant to the NLO corrections are:

q + q̄ → γ ∗

q + q̄ → γ ∗ + g

g + q(or q̄) → γ ∗ + q(or q̄) , (20.15)

where γ ∗ produces the lepton pairs e+e−. They are shown in Fig. 20.2.
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Fig. 20.2. NLO corrections to the Drell–Yan process.

Technically, the evaluation of higher order corrections is not easy because of the interplay
between the IR and mass singularities. The NLO corrections have been obtained in [270],
and the NNLO corrections in [271]. The interactions with the spectator quarks induce a
1/Q2 power corrections analogue of the higher twist term in DIS. The expression of the
cross-section including the NLO corrections reads:

dσl.o

d Q2
= 4πα2

3Nc Q2

∑
f

Q2
f

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

{[
δ (1 − z) +

(αs

π

)
θ (1 − z)�q (z)

]

× [
qh1

f (x1)q̄h2
f (x2) + q̄h1

f (x1)qh2
f (x2)

]
,

+
(αs

π

)
θ (1 − z)�g(z)

[
qh1

f (x1) + q̄h2
f (x1)

]
gh2 (x2, Q2) + (1 ↔ 2)

}
, (20.16)
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220 IV Deep inelastic scatterings at hadron colliders

where:

�q (z) = CF

2

[
3

(1 − z)+
− 6 − 4z + 2(1 + z2)

ln(1 − z)

(1 − z)+
+

(
1 + 4π2

3

)
δ(1 − z)

]
,

�g(z) = 1

2

[
[z2 + (1 − z)2] ln(1 − z) + 9z2

2
− 5z + 3

2

]
. (20.17)

In the case of p̄p collisions, the valence quarks and antiquarks contribution dominates in
the Drell–Yan region. In the case of pp collisions, the anti-quark comes from the sea such
that the contribution of the anti-quark and of the gluon are comparable.

20.4 The K factor

Noting that the correction term proportional to δ(1 − z) comes from vertex corrections and
from a radiation of zero momentum gluons, which cancels the IR singularity in the vertex,
one can separate this term from the others and rewrite:

δ(1 − z) +
(αs

π

)
�q (z) ≡ Kvertexδ(1 − z) +

(αs

π

)
�q (z)reg (20.18)

where �q (z)reg is the regular part of �q (z) and:

Kvertex = 1 + CF

2

(
1 + 4π2

3

) (αs

π

)
. (20.19)

One can notice that the radiative corrections in the regular part of the cross-section are
small. The most important correction comes from the π2 part of Kvertex, where it has been
noticed [272] that part of this large correction can be resummed and exponentiates:

1 + CF
π2

2

(αs

π

)
→ K (Q2) ≡ exp

(
CF

2
παs

)
, (20.20)

while the remaining correction:

1 + CF

2

(
1 + π2

3

) (αs

π

)
, (20.21)

is comfortably small. However, one should be aware of the fact that the resummation
procedure is not unique. Different phenomenology of the Drell–Yan processes have been
performed at Tevatron, which can be consulted from different contributions at various
conferences, like the QCD-Montpellier series.
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