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ABSTRACT. The systematic investigation of individual glacier surges across

a large statistical sample is key to a better understanding of surge mech-

anisms. This study introduces a consistent framework for identifying glacier

surges from diverse remotely sensed datasets: NASA ITS_LIVEvelocity fields,

glacier thickness changes digital elevation models, and surface roughness from

SAR backscatter. We combined these diverse datasets using Gaussian process

modelling and signal processing approaches to generate the first worldwide in-

ventory of glaciers with active surges between 2000 and 2024, identifying 261

surge events on 246 glaciers. We performed validation against reference data

and conducted a quantitative analysis of key surge metrics - surge duration

and peak surface velocity. Our results confirm 12 surge-type glaciers in the

Randolph Glacier Inventory (v7). We further evaluated climatological influ-

ences on the distribution of surge-type glaciers and assessed the predictive

capabilities of existing theories for surges, including hydrological and thermal

controls as well as the enthalpy balance theory. In addition, we present the

first global analysis of velocity time series from individual surge events, and
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discuss terminus-type dependent dynamics. Our findings strongly support the

unified enthalpy balance theory in explaining the breadth of observed surge

behaviours. Finally, we report new surge onsets in glaciers quiescent since the

19th century.

1 Introduction

Glacier surges are quasi-periodic oscillations of ice flow behaviour affecting polythermal or temperate

glaciers. During a surge event, a glacier flows at rates significantly higher than its baseline velocity (Jiskoot,

2011; Benn and Evans, 2014). The increase in flow velocity leads to the transfer of a substantial amount of

mass from a reservoir zone to the receiving zone down the glacier (Meier and Post, 1969), which may result

in a marked advance of the glacier terminus (Sund and others, 2014; Truffer and others, 2021). Surges last

for a few months to years and are generally decoupled from climate trends, since many glaciers continue

to surge in the current context of global glacier recession (Guillet and others, 2022; Kääb and others,

2023; Lovell and Fleming, 2023; Lovell and others, 2023), thus complicating the investigation of the glacier

response to climate variability (Yde and Paasche, 2010; Benn, 2021). In this regard, the recent work of

Hugonnet and others (2021) and Guillet and Bolch (2023) highlighted the need for a more comprehensive

inventory of glaciers with known surge-type behaviour, as well as better constraints on the timing of surges

when processing and analysing digital elevation model (DEM) time series. Surges represent transient

behaviour that cannot be captured by standard space-time statistical models used to compute worldwide

glacier mass loss, and thus hinder the interpretation of glacier/climate relationships. In addition, cyclical

and climate-independent advances of surge-type glaciers have been documented as a significant source of

repeated and widespread glacier hazards, such as glacier lake outburst floods (Round and others, 2017;

Muhammad and others, 2021; Bazai and others, 2022) and complete glacier collapses (Gilbert and others,

2018; Kääb and others, 2018). The hazards associated with surge-type glaciers have far-reaching impacts,

with direct implications for the local environment (Humphrey and others, 1986; Humphrey and Raymond,

1994; Merrand and Hallet, 1996; Lei and others, 2021), as well as communities downstream (Heinrichs and

others, 1995; Ding and others, 2018; Gao and others, 2021; Truffer and others, 2021).

A broad variety of mechanisms have been proposed to better understand and capture surging behaviour.

Seminal works by Clarke (1976) and subsequent studies (Fowler, 1987; Murray and Porter, 2001) relate
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surging behaviour to transitions from frozen to temperate basal conditions while Kamb and others (1985);

Kamb and Engelhardt (1987) presented surges as resulting from rapid changes in the subglacial drainage

system. Other hydrological mechanisms, such as pulsed englacial water storage were described by Fatland

and Lingle (2002) and further examined by Lingle and Fatland (2003). In addition, hydro-mechanical

feedbacks such as interactions between till deformation and drainage efficiency (Clarke and others, 1984)

or propagating waves of till failure (Nolan, 2003) have been described at various glaciers in Alaska.

A binary classification of Svalbard-type and Alaska-type surges has gained significant traction in the

literature (e.g. Murray and others, 2003; Cuffey and Paterson, 2010; Paul and others, 2017; Bhambri and

others, 2017; Solgaard and others, 2020; Guan and others, 2022). According to this classification, surges

are driven by two distinct mechanisms at opposite ends of the glacier thermodynamic behaviour spectrum:

a switch in thermal properties of the glacier bed, versus a switch in bed hydrology. The thermal switch

hypothesis suggests that surges are triggered by a rapid transition from cold to warm conditions at the

bed of the glacier (Fowler and others, 2001), a process limited to the surge of polythermal glaciers. During

the quiescent phase, a surge-type glacier may be in a cold-based state, characterised by low basal water

pressure and slow ice movement. However, as external factors such as increased meltwater input or changes

in thermal gradients warm the glacier bed, the glacier may transition to a temperate-based state. This

transition leads to enhanced basal sliding, reduced friction, and increased ice flow, which triggers a surge.

The surge ends when the glacier reverts to a cold-based state due to decreased meltwater input or cooling

of the glacier bed. The hydrological switch hypothesis states that quiescence results from a distributed

subglacial drainage system that efficiently evacuates meltwater. If the drainage system becomes inefficient,

water accumulates at the glacier-bed interface, leading to an increase in subglacial water pressure, which

results in acceleration of glacier flow, effectively triggering the surge. The surge ends when the drainage

system switches back to a more efficient state (Kamb and others, 1985).

More recently, Sevestre and Benn (2015), Benn and others (2019a) and Benn and others (2023) proposed

a unifying hypothesis based on the enthalpy balance theory. The enthalpy balance framework formulates

surging as an imbalance between potential energy, thermal energy, and basal water content as a trigger

for primary flow acceleration. As flow accelerates, frictional heating at the base of the glacier leads to

enhanced meltwater production, supported by the influx of additional meltwater through surface-to-bed

drainage, resulting in a positive sliding/heating feedback. The surge ends once the subglacial drainage

system has evacuated the surplus enthalpy from the bed (Benn and others, 2019a). The enthalpy balance
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hypothesis was supported by the global statistical analysis of glacier surges conducted by Sevestre and Benn

(2015), although the underlying data set was prepared through the compilation of surging observations in

publications spanning the period 1861 to 2013 and relied on inconsistent qualitative criteria and variable

methodologies. In contrast, the Svalbard vs. Alaska-type classification, including its predictions of a

bimodal distribution in both peak velocity and surge duration, with differences between modes on an order

of magnitude, has yet to be tested against a comprehensive global dataset. It is therefore necessary to

compare both hypotheses with observational evidence obtained from a consistent quantitative methodology

applied to a statistically significant number of surge events.

Lately, surge-type glaciers have received increasing attention, leading to the creation of various new

global and regional inventories (Sevestre and Benn, 2015; Guillet and others, 2022; Guo and others, 2023;

Lovell and others, 2023; Kääb and others, 2023). These efforts have provided a more accurate under-

standing of the prevalence of dynamic glacier instability on regional and global scales. However, different

inventories were compiled using inconsistent diagnostic criteria and identification methods and a majority

focused on the sole classification of glaciers as surge-type or non-surge-type, rather than identification and

characterisation of individual surge events (e.g. as in Herreid and Truffer (2016) and Guillet and others

(2022)). In addition, a common limitation of recent studies proposing surge-type glacier inventories has

been the reliance on manual identification of surges from datasets with coarse temporal resolution, pre-

venting the precise investigation of individual surge events. These limitations emphasise the clear need for

a systematic and global inventory of individual surge events, derived from a consistent methodology.

This paper has two primary objectives. The first objective is to enhance existing methods for identifying

glacier surges by introducing a comprehensive, consistent, and semi-automated framework for glacier surge

detection that takes advantage of a variety of widely accessible remotely-sensed datasets, including glacier

surface velocity, radar backscatter, and surface elevation time series. Motivated by the desire to create

a transparent and explicit approach, we employ statistical modelling of glacier surface velocity, surface

elevation and synthetic aperture radar (SAR) time series to compile the first consistent global inventory of

surge events, providing detailed insights into the dynamic behaviour of individual tributaries within larger

glacier complexes for the period between 2000 and 2024. The second objective is to leverage the systematic

inventory of surge events to evaluate existing hypotheses for surge dynamics. Specifically, we test the

predictive capabilities of the enthalpy balance theory in relation to the existence of an optimal climate

envelope for surge-type glaciers, as well as its unifying character with respect to the Svalbard vs. Alaska-
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type classification. We first investigate the role of climate as a fundamental control on the propensity for

surging, resulting from climatic influences on mass and enthalpy budget components, before testing for the

predicted existence of a continuum in peak velocity and surge duration. We further test the prediction

of the Svalbard vs. Alaska-type classification, stipulating the existence of a bimodal distribution for both

peak velocity and surge durations, with an identifiable order-of-magnitude difference between modes.

Beyond the identification of glaciers that experienced surges since the beginning of the 21st century,

this work aims to prepare the first homogeneous catalogue of surge events. Here we incorporate crucial

quantitative information about each event, and provide an important step toward a standardised community

approach to studying glacier surges, similar to what has been done for earthquakes and volcanic eruptions

in the past. We finally stress that the current surge event catalogue need not be static and that future or

unreported surge events should be recorded and incorporated into this database.

2 Terminology and criteria for surge identification

Automating the detection of surge events requires defining a limit between what is deemed unstable (surge-

type) behaviour, and what is regarded as baseline (stable) glacier behaviour. However, because of the wide

spectrum of observed surge-type behaviour, surge events are often described and defined using variable

terminology, and thus deriving a clear threshold between what can be considered surge-type and stable

glacier behaviour is not straightforward. As a basis for defining clear thresholds between surging and stable

behaviour, we first start by reviewing existing qualitative and quantitative definitions of what is considered

to be surge-type behaviour and then discuss the criteria we used to automatically identify surges from the

available data.

Benn and Evans (2014, pp. 186–187) describe glacier surges as "cyclic phenomena that are not directly

triggered by external events, but instead result from internally driven oscillations in conditions at the bed

of the glacier." Benn and Evans (2014, pp. 186–187) further mention that "maximum velocities during the

active phase are typically one or two orders of magnitude higher than the velocity during the quiescent

phase." In the Glossary of Glacier Mass Balance and Related Terms, Cogley and others (2010, p. 89)

define a surge as "the abnormally fast flow of a glacier over a few months to years, during which the glacier

margin may advance," before further emphasising that "velocities during the surge are often greater by

an order of magnitude than those during the quiescent phase." Jiskoot (2011, p. 415) describes surges

as quasi-periodic oscillations between long periods (tens to hundreds of years) of slow glacier flow and
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shorter periods of abrupt velocity increase in velocity (typically 10 to 1000 times faster than baseline)

maintained over some time (115 years); Jiskoot (2011, p. 415) further adds that during a surge, "a large

volume of ice is transported from the reservoir zone (upper part) to the receiving zone (lower part) of

the glacier, sometimes resulting in a marked frontal advance." Similarly, the National Snow and Ice Data

Center (NSIDC) Cryosphere Glossary defines a surge as "a dramatic increase in flow rate, 10 to 100 times

faster than [a glacier’s] normal rate; usually surge events last less than one year and occur periodically

between 15 and 100 years."

Based on these definitions, we attempt to define objective and tractable criteria for evidence of active

glacier surging:

Abrupt and sustained increase in glacier surface velocity Abrupt and large increases in glacier

flow velocity, sustained for at least several months, are assumed to indicate surging (see Section 3.2.2

for more information), which we typically identify here as accelerations in the flow regime of a glacier.

Although many existing definitions involve a surface velocity of at least ten times that observed during

the quiescent phase, here we follow the reasoning of Guillet and others (2022) and use a lower criterion

of two times. In addition, we define a speed-up event as a surge candidate if the velocity is maintained

above the threshold for at least four consecutive months (120 days), as it prevents the false identification

of seasonal speed-ups as surge events. In the next section, we provide more information on how this and

the subsequent proposed thresholds are used to detect surges.

Substantial and spatially concentrated thickening near the glacier terminus We generally con-

sider a glacier to be a candidate for surging if it presents substantial and spatially concentrated changes in

surface elevation (over 1-10 years) at lower elevations (near the glacier terminus; see Section 3.2.3 for more

details), as this deviates from recent trends in global glacier thinning and retreat (Hugonnet and others,

2021). Thus, our objective is to identify glaciers that exhibited a substantial and widespread surface eleva-

tion gain (dynamical thickening) over the receiving zone. We consider clear statistical breakpoints (defined

by a unitless changepoint score) and positive trends in surface elevation time series over glaciers to be the

result of surge-induced dynamical thickening.

Abrupt changes in glacier surface crevassing Surges typically result in intense and widespread

surface crevassing and changes in the crevasse patterns at the glacier surface (Truffer and others, 2021;

https://doi.org/10.1017/jog.2025.10065 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.10065


Guillet and others: IGS LATEX 2ε guide 7

Guillet and others, 2022; Kääb and others, 2023). Such changes are identifiable via proxy as abrupt

changepoints in glacier SAR backscatter trend time series (Leclercq and others, 2021; Kääb and others,

2023). Again, we consider clear statistical breakpoints (defined by a unitless changepoint score) and positive

changes in trend of SAR backscatter time series over glaciers to be indicative of intense surface crevassing

associated with a surge.

In the present surge identification scheme, we require at least two of the aforementioned criteria to be

met in order to verify a detected event as a surge. As an example, an event flagged as a surge candidate

through extended positive surface elevation but for which no signal is detected in either surface velocity or

crevassing changes will not be classified as a surge. Adopting a multi-criteria approach makes the frame-

work conservative, but this is necessary as it reduces the occurrence of false positives, such as significant

accelerations in ice flow resulting from dynamic adjustment of tidewater glaciers to major calving events or

frontal collapses (De Angelis and Skvarca, 2003; Benn and others, 2007; Benn and Evans, 2014). Although

surges often result in an advance of the glacier terminus, not all surge-type glaciers show a terminal advance

during the active phase (Murray and others, 1998; Benn and Evans, 2014; Guillet and others, 2022), and

thus we do not use glacier advance as a criterion for surge identification.

3 Methods and data

Building upon the methodology developed by Guillet and others (2022), we propose a surge identification

scheme that detects surge-type behaviour from abrupt variations in glacier surface velocity, positive changes

in thickness and SAR backscatter.

3.1 Data

3.1.1 Surface velocity

Guillet and others (2022) relied on changes in annual NASA MEaSUREs ITS_LIVEsurface velocity com-

posite products (Gardner and others, 2024) to identify surges. Although this approach offered an efficient

first step in automated surge identification, the annual resolution precluded the accurate identification

of the timing of surge onset and termination. Here, we have used the entire archive of 120-m resolu-

tion ITS_LIVE feature-tracking velocity magnitude products prepared from individual pairs of Landsat,

Sentinel-1 and Sentinel-2 images (Gardner and others, 2024), which has allowed the precise identification

of the onset date, termination date, and duration of each surge.
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3.1.2 Surface elevation changes

To detect positive thickness change anomalies (see Section 3.2.3), we used surface elevation time series

prepared from Digital Elevation Models (DEMs) generated using stereo images acquired by the ASTER

(Hugonnet and others, 2021) and Maxar WorldView-1/2/3 and GeoEye-1 satellite instruments (ArcticDEM,

Porter and others (2018)). In their study, Hugonnet and others (2021) rely on a multistep outlier filtering

approach to iteratively improve DEM quality by 1) removing elevation outliers using a reference elevation

(TanDEM-X) and 2) filtering elevations that would lead to glacier thinning rates beyond the maxima

defined by the authors. Although they subsequently used Gaussian process (GP) regression alongside

iterative sigma-clipping to compute glacier surface elevation time series, recent efforts have discussed how

this step likely results in filtering out the dynamic thickening signal for certain surge events (Guillet and

Bolch, 2023). In the present study, we thus only rely on the TanDEM-X filtered surface elevation time

series, omitting any of the Gaussian process filtering performed by Hugonnet and others (2021), and rather

use a custom Gaussian process providing a more robust kernel to transient changes; see Section 3.2.3.

3.1.3 SAR backscatter

To infer changes in surface crevassing, we used ESA Sentinel-1 SAR backscatter time series back to its

earliest usable data in 2015. The Sentinel-1 mission is set to acquire backscatter data in preset illumination

angles in recurring orbits, defined by relative orbit numbers, at one of two polarizations (vertical, VV;

horizontal, HH; and optionally cross-polarizations HV/VH), with the choice of polarization varying around

the globe depending on the predominant use-case. The acquisition strategy per location, i.e. which angle

and polarization, has been relatively consistent since 2018, but underwent several revisions between 2015

and 2018. Consequently, establishing the longest consistent time series for every considered glacier requires

care.

For each glacier flowline point, we examined all Ground Range Detected (GRD) Sentinel-1 SAR prod-

ucts available through Google Earth Engine to obtain the longest consistent time series. Consistency is

only retained through assessing the same illumination angle (relative orbit number) and polarization, so

each combination of these were split up, and the longest combination was chosen per glacier. The GRD

products in Google Earth Engine are not radiometrically corrected, meaning the reflective power is not

normalized by distance and local incidence angle to the satellite. This is a problem when assessing abso-

lute backscatter changes or comparing different relative orbits, but it should not introduce problems here
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because we only measure relative changes through time for a set angle. As the SAR data are inherently

noisy due to instrument noise and quasi-random speckle, we used time series sampled from medians in a

10 pixel (100 m) radius of each point.

3.1.4 ERA5-Land climate reanalysis data

ERA5 is a high-resolution, global climate reanalysis data set produced by the European Centre for Medium-

Range Weather Forecasts (ECMWF) from 1950 to present (Muñoz-Sabater and others, 2021). ERA5-Land

improves the spatial resolution of ERA5 reanalysis using a 9 km Gaussian grid (TCo1279) for the land

surface level. The ERA5-Land data available through the Climate Data Store (Sabater, 2019) were re-

gridded to a regular lat-lon grid of 0.1x0.1 degrees. The key atmospheric parameters used to run ERA5-

Land are adjusted to compensate for the altitude discrepancies between the forcing grid and the higher

resolution grid of ERA5-Land using lapse-rate correction (Muñoz-Sabater and others, 2021).

We analysed the 2-m air temperature and total precipitation variables from the monthly average ERA5-

Land products between January 2000 to December 2023. We sampled the ERA5-Land products at the

centroid of each RGI glacier polygon using bi-cubic interpolation.

3.1.5 Glacier outlines and flowlines

We used glacier outlines provided by the Randolph Glacier Inventory version 7.0 (RGI v7) (RGI 7.0

Consortium, 2023) and the released flowlines product available at https://nsidc.org/data/nsidc-0770/

versions/7.

3.2 Detection of surge events

3.2.1 Data sampling strategy

Based on the spatial resolution of the ITS_LIVE and DEM products (≈120m), we limited our analysis to

RGI glacier polygons with flowlines long enough to be sampled at ten equally spaced vertices, i.e longer

than 20 pixels and 2.4 km. This results in a total of 32133 glaciers with 54178 flowlines, and thus 541780

points to automatically evaluate for surging (Figure 1).
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Fig. 1. Example of the data sampling strategy applied to Khurdopin glacier, Karakoram. a) The map shows
the RGI7.0 outline of the glacier (blue area) as well as the different flowlines (greyed lines), with the main flowline
highlighted in red. Black squares are vertices at which each dataset is sampled. b) ITS_LIVE surface velocity
estimates. c, d) surface elevation change, and e, f) SAR backscatter. The scatterpoints in c and e represent the pre-
Gaussian process regression time series. The mean of each Gaussian process regression is presented a solid blue line,
while the shaded blue area is the 95% credible interval. d, f) Changepoint detection scores for the surface elevation
change detection (d) and SAR backscatter (f) frameworks, see section 3.2.3. Note the variable x-axis ranges as the
datasets span different periods. The synchronously detected surge in all three datasets is shaded in yellow.

https://doi.org/10.1017/jog.2025.10065 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.10065


Guillet and others: IGS LATEX 2ε guide 11

3.2.2 Surface velocity

Automating the detection of glacier surge events within a time series of glacier surface velocity data

faces challenges when relying solely on conventional signal processing techniques and time series analysis

methodologies. Multiple sensors are used to prepare the ITS_LIVE velocity time series, which improves

spatio-temporal sampling for all glaciers, but data quality issues arise due to the limitations of individual

sensors, including cloud cover and illumination conditions for optical instruments. Such constraints lead to

velocity data that have data gaps in time and space, with variable uncertainty, which presents difficulties

for conventional time-series analysis methods meant for regularly sampled data. In addition, glacier surges

demonstrate intricate dynamics, showing different velocity patterns with diverse durations, magnitudes,

and temporal changes. Therefore, we chose a statistical modelling approach to automatically detect surges

in the irregular surface velocity time series.

We apply the following framework independently to each point s(x, y, z) along the flowline at which

the velocity time series is sampled. We only consider surface velocity estimates computed with a temporal

baseline of 6 to 110 days. We then normalise the surface velocity time series Us(t) using the mode of surface

velocity magnitude for the full 2000-2024 time period. We assume that the observed surface velocity Us(t)

is the result of two distinct sources: the baseline surface velocity of the glacier Ub(t) and an "excess" surface

velocity term Ue(t) which potentially includes dynamic ice flow instabilities:

Us(s, t) = Ub(s, t) + Ue(s, t) (1)

Our surge identification scheme relies on estimating the excess velocity Ue(t) at a given time t by modelling

Ub(t).

Several approaches to model time-varying glacier surface velocity have been proposed. However, these

efforts rely on a periodic structure of the velocity signal (sine or cosine), often use higher-order polynomials

to interpolate missing values, and/or require continuous temporal data coverage (e.g. Vijay and others,

2019; Greene and others, 2020; Charrier and others, 2022). Here, we model Ub(s, t) for each point s of the

flowline as a Gaussian process:

Ub(t) ∼ GP(µU (t), k(t, t′)) (2)

where µU (t) is the time-dependent mean and k(t, t′) is the kernel function that captures the temporal

covariance between data points.
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Gaussian process mean The Gaussian process proposed here acts as a surrogate model, or emulator,

for what can be considered the baseline surface velocity of each glacier. Thus, its mean represents the most

likely baseline velocity value at any given time t and is derived directly from the data. Since the distributions

of glacier surface velocity values are non-symmetric and present heavy positive tails, the median value for

the full 2000–2024 period is not a robust estimate of the most probable baseline velocity value. Here we

use the mode of the distribution of the surface velocity values as the mean for the Gaussian process. To

calculate the mode of the distribution, we first used a Gaussian kernel to estimate the probability density

function of the whole sample of glacier surface velocities. The mode was then estimated as the minimum

of the negative probability density function. It is thus assumed that surges are represented by a relatively

small proportion of the distribution and hence that the glacier is, more often than not, in quiescence during

the 2000–2024 period.

Gaussian process covariance In practice, we model the changes in glacier velocity at a given point

s(x, y, z) and time t as a stochastically driven damped simple harmonic oscillator (SHO). This allows us to

more intuitively capture potential variations in the frequency of baseline glacier surface velocity from one

year to another. We use the celerite2 (Foreman-Mackey and others, 2017) Python implementation of

Gaussian process models with SHO kernel terms defined by the authors through the power spectral density

(ω):

S(ω) =
√

2
π

S0ω
4
0(

ω2 − ω2
0
)2 + ω2

0ω
2/Q2

(3)

with ω0 being the undamped angular frequency and Q the quality factor describing the resonance of the

harmonic oscillator. celerite2 proposes an alternative parametrization of the SHO term and further

allows the user to define more intuitive kernel hyperparameters of the form:

ρ = 2π/ω0, the undamped period of the oscillator (in days) (4)

τ = 2Q/ω0, the damping timescale of the process (in days) (5)

σ =
√
S0ω0Q, the standard deviation of the process (normalized) (6)
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We thus define the covariance function as a sum of two SHO terms capturing velocity variations through

an additive model as a annual and sub-annual (typically 4 months) periodic deviations:

k(t, t′) = SHO(ρ = 365, τ = 365 ∗ 2, σ = IPR(Us))︸ ︷︷ ︸
Annual variations term

+ SHO(ρ = 365/4, τ = 365, σ = IPR(Us))︸ ︷︷ ︸
Sub−annual variations term

(7)

where IPR represents the interpercentile range (between the 5th and 95th percentiles) of the entire available

sample of glacier surface velocity measurements, Us.

Using our fully-specified Gaussian process model (Equations 2 and 7), we can now derive an estimate

of Ub(s, t) through Gaussian Process regression for each sampling point s, and hence rewrite Equation 1 to

estimate the excess velocity at a given time t (Figure 2):

Ue(s, t) = Us(s, t) − Ub(s, t) (8)

3.2.3 Surface elevation changes and SAR backscatter

We aim to identify glaciers that exhibited a substantial and widespread reorganisation of their surface as

clear identifiers of a surge. This entails drastic increases in surface elevation gain (thickening) in their

receiving zone in contrast to the expected glacier thinning trends (Hugonnet and others, 2021), or drastic

changes in surface crevassing, as visible on backscatter time series (Leclercq and others, 2021; Kääb and

others, 2023).

In practice, we are specifically aiming at detecting sharp transitions in trends in surface elevation change

rates, as well as backscatter, as shown on Figure 1. Surface elevation change and SAR backscatter time

series present similar structures in that they can be modelled as a trend term and one, or several, periodic

terms (shown for elevation change in Hugonnet and others, 2021). However, they both present individual

challenges which prevent the sole use of standard signal processing methodologies. Surface elevation change

time series are plagued by their overall sparsity and irregular sampling, and SAR backscatter time series

contain seasonal variations (largely due to precipitation and melt) with greater amplitudes than the typical

change in trend from a surge that we wish to detect. Both existing data gaps, and high-amplitude periodic

oscillations hamper the use of conventional trend change detection methods. We therefore set up a multistep

framework to detect positive break points from both datasets. Similarly to section 3.2.2, the following

framework is identical for each vertex s(x, y, z) along the flowline at which the surface elevation and
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Fig. 2. Time series of ITS_LIVE glacier surface velocity estimates (black dots) for a vertex along the main flowline
of selected glaciers. For each glacier the top plot presents ITS_LIVE glacier surface velocity estimate (black dots)
and the computed baseline velocity (solid coloured curves, mean of the Gaussian process prediction), the shaded
area is the 90% confidence interval. The bottom one presents the excess velocity estimates, i.e. the residuals from
the Gaussian process regression (black dots), and automatically identified surge events (shaded regions). Columbia
glacier is not a surging glacier and is presently used to demonstrate the proficiency of the Gaussian process in
emulating glacier surface velocities.
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backscatter time series are sampled.

Gaussian process regression and signal resampling We begin by modelling each time series y(t)

as a realisation of a Gaussian process:

y(t) ∼ GP
(
µy(t), k(t, t′)

)
(9)

We again rely on celerite2’s SHOTerm (Eq. 3) to capture both the periodic structure of the signal, as

well as longer-term (typically close to 5 years) trend:

k(t, t′) = SHO(ρ = 365, τ = 365 ∗ θ1, σ = IPR(y))︸ ︷︷ ︸
Annual variations term

+ SHO(ρ = 365 ∗ θ2, τ = 365, σ = IPR(y))︸ ︷︷ ︸
Long−term trend term

(10)

where IPR represents the interpercentile range (between the 5th and 95th percentiles) of the entire available

sample of either glacier surface elevation or backscatter measurements, y. θ1 and θ2 are parameters used

to capture the wide diversity of surface elevation and backscatter patterns observed globally. They are

fitted to each individual time series (from each flowline vertex) through maximum likelihood estimation

using an L-BFGS scheme. Examples of realizations of individual Gaussian processes used for regression

and interpolation of surface elevation and backscatter time series are given in panels b and d of Figure 1.

After fitting the Gaussian process model, each signal is resampled uniformly to ensure consistent spacing

for subsequent analyses. This step minimises the risk of aliasing and ensures that our changepoint detection

operates on an evenly sampled input signal.

Wavelet decomposition In order to identify changes in signal trend, each resampled GP estimate needs

to be decomposed into multiple time scales, accounting for trend and seasonality. In practice, we here want

to isolate the trend in either measurement by filtering out any high-amplitude seasonal signal. Since

the resampled GP signal is not purely periodic, we perform signal decomposition using discrete wavelet

transform with Daubechies 4 (db4) wavelets. We choose Daubechies wavelets as they are effective for

capturing both transient features and structural changes in signals. The wavelet transform represents the

signal y(t) as a sum of approximations and details (Mallat, 1999):

y(t) =
∑
j,k

cj,kψj,k(t), (11)
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where ψj,k(t) are wavelet basis functions indexed by scale j and position k, and cj,k are the corresponding

wavelet coefficients. An example of wavelet deseasonalisation is given in panel b and d of Figure 1.

Penalized changepoint detection We consider y(t = k) to be a changepoint if at time k ∈ T =

{t1, . . . , tK}K≤T , there is a change in the mean value of the wavelet-decomposed GP estimate. We note

T a partition of the input signal y(t) with K + 1 subsequences, where K is the number of changepoints.

In our case, K is unknown but is assumed to be in the range [0, 1] and is found through a changepoint

detection procedure.

A changepoint detection procedure aims to find the optimal segmentation T̂ by minimising the quanti-

tative criterion V (T , y) =
∑K

k=0 c
(
ytk...tk+1

)
, with c (·) a cost function measuring, for each point y(t = k) a

changepoint partitioning precision; i.e. how well the signal is divided into segments such that each segment

exhibits consistent statistical properties, with changepoints marking significant shifts in data characteris-

tics. Finding T̂ is a discrete optimization problem, with, in our case, an unknown number of K changepoints

and written as follows :

min
T

V (T , y) + pen(T ) = min
T

Ṽ (T , y) (12)

with pen(T ) constraining the number of detected changepoints by effectively penalising models with a

higher number of changepoints. The proposed changepoint detection procedure is implemented using

ruptures (Truong and others, 2020) and made up of 3 main parts:

(i) A search method or detection algorithm, to estimate T̂ : we use the window search detection

method, consisting of computing the discrepancy between two adjacent sliding windows along y(t)

(Truong and others, 2020).

(ii) A constraint on the number of changepoints. In practice, we find that a penalisation parameter

of 70 ensures the detection of a minimal number of changepoints in most cases.

(iii) A cost function c (·). We use an ensemble of three different cost functions : a rank-based cost

function (Lung-Yut-Fong and others, 2011), a Mahalanobis-type metric (Truong and others, 2019),

and a kernelized mean change (Arlot and others, 2019).

Similarly to Katser and others (2021) we then rely on the aggregation of all models, combining different

cost functions, to produce an aggregated cost; a method also known as "mixture of experts" by the machine

learning community. For each model and cost function, a score quantifies how well a particular segmentation
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Fig. 3. Dataflow diagram overview of the surge event detection scheme, showing the flow of information between
input and outputs (blue blocks), internally used data (white blocks), and processing steps (rounded blocks). Green
blocks represent the data-specific surge detection thresholds described in Section 2. Blue and red arrows represent the
dataflow of surface elevation and SAR backscatter measurements respectively. The blocks defined as AND and OR
are logical gates, stipulating that surges have to be detected by either i) the surface elevation change and velocities
detection schemes or ii) the surface elevation change and backscatter detection schemes.

fits the data. Scores are then scaled between 0 and 1 aggregated by taking the pointwise minimum. Since we

are only interested in increases in the trend of the surface elevation change and SAR backscatter signals,

we set the score of changepoints detected with a negative trend gradient to 0. Finally, vertices with a

combined changepoint score greater than 0.6 are considered candidates for surging.

3.2.4 Combination of criteria and derivation of a surge inventory

Each of the aforementioned detection steps and data types lead to a different subset of candidate surge

events (Figure 3). The subsets of potential surge-type glaciers are then compared based on their RGI

v7.0 identification number. Sub-inventories are then combined as follows: glaciers detected by both our

surface elevation change and surface velocity frameworks, or both the surface elevation change and SAR

backscatter frameworks are considered to be surging (Figure 3). Since surge-induced changes in SAR

backscatter are the result of changes in surface velocity, we do not consider the combination between our

surface velocity and SAR backscatter frameworks to be indicative of surging, as other phenomena could

be falsely identified as surges.

3.2.5 Validation and quality control

Validating the semi-automated detection of glacier surges is not straightforward due to existing inventories

being derived from inconsistent methods and data sets. The most comprehensive inventory of surge-type

glaciers is the one presented by Sevestre and Benn (2015). However, we argue that, due to the mismatch in

the 2000-2024 period of our inventory and the 1861-2013 period of the Sevestre and Benn (2015) inventory,

as well as the conceptual differences in the identification of surges, a detailed comparison between the two
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inventories would be inconclusive. The most recent global inventory of glacier surges was presented by

Kääb and others (2023) and relied on the visual interpretation of Sentinel-1 backscatter signals, following

the methods described in Leclercq and others (2021).

We rely on the inventory of Kääb and others (2023) as a validation data set and assess the capability of

our detection framework quantitatively through the use of the Jaccard index, also known as the Intersection

over Union, a similarity measure commonly used in object detection and expressed as follows:

J(A,B) = |A ∩B|
|A ∪B|

= |A ∩B|
|A| + |B| − |A ∩B|

(13)

where A and B represent two different sets of glaciers: A, a validation set of surge-type glaciers identified

and B, the glaciers with semi-automatically detected surge events identified in this study. |A ∩ B| thus

represents the total surface area (in km2) covered by the glaciers identified in both A and B, while |A∪B|

is the surface area covered by the sum of A and B. The Jaccard index is thus bounded between 0 and 1,

with a value of 0 when the sets are completely dissimilar and 1 if the sets are identical.

In addition to the proposed validation experiment, each identified glacier has been manually checked

following the criteria proposed in Section 2. In the final product, potential misidentifications have been

culled.

4 Results and discussion

4.1 Global distribution of glaciers with active surges between 2000 and 2024

Of the ≈ 32000 glaciers analysed, we detected 246 glaciers with active surges over the 2000 to 2024 period

(Figure 4). Most glaciers surged only once, while five glaciers surged two or more times between 2000

and 2024, and one glacier surging four times (Sit’Kusa/Turner glacier, Alaska). Compared to version 7

of the RGI, in Alaska and the Yukon, we identify one surge on a glacier that was previously classified as

"No evidence" (Nadina Glacier), as well as 4 previously classified as "Probable" surge-type (Martin River,

Marvine, Valerie, and Ferris glaciers). In Svalbard, we note a surge of Lilliehöökbreen, previously classified

as having no evidence of surge-type behaviour. We further identified nascent surges at Nordsysselbreen,

Aavatsmarkbreen and Doktorbreen, all classified as "Probable" surge type. Similarly, we identify a surge

on Borebreen, classified as "Possible" surge-type. We finally report the onset of surges at Deltabreen and

Seftrombreen which, according to Sevestre and Benn (2015), have not surged in the 20th century, effectively
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displaying quiescence for the past 165 and 128 years, respectively. All other identified surges in our global

sample affect previously identified surge-type glaciers.

Glaciers with active surges during the 2000-2024 period represent around 1% of all glaciers studied

and 0.1% of all glaciers in RGI V7.0. However, the total surface area of these glaciers with active surges

is approximately 38000 km2, which corresponds to approximately 5.5% of the worldwide glacierized area

outside of the polar ice sheets.

The spatial distribution of surge events is consistent with previous assessments. Approximately 167

(68%) glaciers with identified surges are located in High Mountain Asia, with 78 (32%) in the circum-

Arctic region (the Arctic Ring). Within the Arctic Ring, Alaska-Yukon and Svalbard-Russian Arctic had

the highest number of glaciers with active surges, with estimates of 28 and 24, respectively. Our method

identified 16 active surge-type glaciers in Greenland, 12 in the Canadian Arctic, and one in the Andes. No

surge events were detected during the 2000-2024 period in Iceland. A near or total absence of surges in

Iceland is expected (Kääb and others, 2023), as most known surge-type glaciers in Iceland surged during

the 1990s (Hannesdóttir and others, 2020) and are therefore likely to be quiescent (Björnsson and others,

2003) or senescent (Benn and others, 2023).

4.2 Climatic controls on the distribution of surge-type glaciers

Surge-type glaciers are found within a specific climatic envelope where they are accompanied by non-surge-

type glaciers; beyond this envelope, only non-surge-type glaciers are typically observed. Figure 5 shows

the distribution of non-surge-type and surge-type glaciers in relation to the median temperature and the

median total annual precipitation from ERA5-Land data for the period between 1990 to 2024. The surge-

type glacier climatic envelope typically encompasses a median annual temperature of -1 to -20◦ C and a

median total precipitation of 100 to 1200 mm a−1 (Figure 5, panel a).

Seasonal climate data reveal additional insights on surge-type glacier distributions (Figure 5, panels b

and c). Surge-type glaciers typically occur over a broad range of median total winter (OctoberApril for the

Northern Hemisphere, JuneSeptember for the Southern Hemisphere) precipitation (20 to 1000 mm a−1)

and median winter temperature (-10 to -30◦ C), while they are still absent from either end of the ranges for

the larger population of global glaciers. The occurrence of surge-type glaciers is firmly bound by median

summer temperature, as surge-type glaciers are almost non-existent in regions where the median summer

temperature exceeds 3 ◦ C. Similarly, 90% of the surge-type glacier population lies within a median total
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Southern Andes

Fig. 4. Global distribution of 246 glaciers with active surges between 2000 and 2024 identified with our method-
ology. Prominent but well-known clusters of surge-type glaciers are evident in High Mountain Asia and the Arctic
Ring. N refers to the number of surge-type glaciers detected.
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summer precipitation range of 100-1000 mm a−1.

The clearest climatic relationship used to distinguish surge-type glaciers is between the median summer

temperature and the median total winter precipitation (Figure 6). Surge-type glaciers are absent beyond

median summer temperatures higher than 3 ◦ C and less than -10 ◦ C. Similarly, they are seldom present

in regions where the median total winter precipitation exceeds 1000 mm a−1.

The characteristics of the climatic envelope established by our analyses are similar to those of Sevestre

and Benn (2015) and in very strong agreement with the envelope described by Lovell and others (2023)

using ERA5-Land. Using the glaciers identified by Sevestre and Benn (2015), Falaschi and others (2018),

Guillet and others (2022) Lovell and others (2023), and Kääb and others (2023), we calculated an updated

climate envelope using the more modern ERA5-Land products, which very strongly concurs with our results

(Figures 6 and 5).

We finally focus on further validating the proposed climatic envelope. We here aim at avoiding sampling

bias in climatic distributions, resulting from sample size differences between non surge-type (around 270000

glaciers) and surge-type glaciers. For the latter, we use both the 246surge-type glaciers from this study,

as well as the composite inventory formed from the datasets of Sevestre and Benn (2015), Falaschi and

others (2018), Guillet and others (2022) Lovell and others (2023), and Kääb and others (2023), containing

close to 2200 glaciers. From each sample of glaciers, we obtain continuous estimate probability density

functions (PDFs) on the number of glaciers in a given temperature/precipitation range by kernel density

estimation, using a Gaussian kernel. Figure 7 represents 200000 samples drawn from each PDF and

highlights the clustering of surge-type glaciers within the defined climatic envelope. The samples derived

from the proposed inventory (Figure 7, panel a) show a greater variance compared to those from the

composite inventory (Figure 7, panel b), which results from initial sample size disparity.

4.3 Surge event statistics

The following section describes surge events statistics that are solely derived from velocity time series. Due

to the data quality issues described in Section 4.6.1, velocity time series for glaciers in the polar regions

lack the temporal resolution necessary to clearly identify surge onset and termination dates. Consequently,

we do not consider the surges identified in the Canadian Arctic and the periphery of Greenland within the

present section.

The peak surface velocity is defined here as the maximum velocity measured over all sampled ITS_LIVE
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b, c) Due to the disparity in sample size between surge-type (246) and non-surge-type glaciers (more than 270000),
the median temperature/median total precipitation relationship is represented using a kernel density estimate, all
levels represent lines of probability, or density of the 2D distributions: 20%, 40%, 60%, 90% and 99%. a)Median total
annual precipitation versus median annual temperature. b)Median total winter precipitation versus median winter
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glaciers from this study (red scatter plots) and using the glaciers identified bySevestre and Benn (2015), Falaschi
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Fig. 6. Median summer temperature and median total winter precipitation for surging and non-surge-type glaciers.
Distribution of surge-type glaciers from this study (red scatter plots) and using the glaciers identified by Sevestre
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Fig. 7. Median summer temperature and median total winter precipitation for a) surge-type glaciers from this
study, b) the surge-type glaciers from by Sevestre and Benn (2015), Falaschi and others (2018), Guillet and others
(2022) Lovell and others (2023), and Kääb and others (2023) and c) non-surge-type glaciers from the RGI v7.0.
Note the important clustering of surge-type glaciers within the defined climatic envelope in a and b. Non-surge type
glaciers are more uniformly distributed over the temperature/precipitation spectrum.

time series. Similarly the surge duration is taken as the longest time interval for which the glacier is detected

to be actively surging, for all individual surges and across all flowline vertices. The distributions of the

peak surge velocity and duration for 193 surge events are presented in Figure 8.

4.3.1 Peak surface velocity during surges

The median peak surface velocity for the entire sample is 4.2 m day−1, with an interpercentile range of

2.1 m day−1 (Figure 8a). The glacier displaying the highest peak surge surface velocity is that of Sít’ Kusa

in Alaska, where the peak velocity reached an estimate of 28.8 ± 0.4 m day−1.

A closer analysis of regional samples shows a marked similarity between Alaska-Yukon and Svalbard-

Russian Arctic. The median peak surface velocities are 6.8 and 6.5 m day−1, while interpercentile ranges

are 6.2 and 5.4 m day−1. Surges in High Mountain Asia present significantly lower peak surface velocities,

with a median value of 3.3 m day−1 and an interpecentile range of 2.2 m day−1.

4.3.2 Duration

Across 193 surge events detected between 2000 and 2024, the median surge duration was 2.6 years, with

an interquartile range (25th to 75th percentile) of 2.1 years. While the median surge duration for Alaska-

Yukon is 2.3 years, surges appear to last longer in Svalbard-Russian Arctic and High Mountain Asia with

median durations of 3.3 and 2.8 years respectively. In addition, surge durations for the Alaska-Yukon sub-
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cluster present a slightly narrower interpercentile range (1.7 years) compared to Svalbard-Russian Arctic

(2.6 years) and High Mountain Asia (2.1). The longest detected surge event is the 9.1 year surge of West

Kunlun Glacier (RGI2000-v7.0-G-13-47689) in the Western Kunlun between 2008 and 2019. In Alaska-

Yukon, the longest surge is that of Klutlan Glacier (St. Elias Mountains, Yukon) which lasted 6.8 years.

In Svalbard-Russian Arctic, the longest surge is the still-ongoing 12 year surge of Austfonna Basin-3.

Further analyses showed no linear correlation between peak surface velocity and the duration of indi-

vidual surge events. In addition, no linear correlation has been found between surge duration, peak surface

velocity and glacier geometry (length, surface area and surface slope) i.e. longer and/or steeper glaciers

do not appear to be more prone to faster or longer-lasting surges.

4.4 Regional differences in surge dynamics: on the Svalbard vs Alaska-type classifi-

cation

The hydrological switch (Alaska-type surges) hypothesis posits relatively short active phases, typically

lasting between 1 and 3 years, and reaching a peak velocity of 10 to 100 metres per day (Murray and

others, 2003). Conversely, the thermal switch hypothesis supposes longer durations than Alaska-type

surges, typically lasting up to more than 10 years and reaching peak velocity between 1 and 15 metres per

day (Murray and others, 2003). We therefore test for the existence of statistical differences between the

distributions of peak surface velocity and surge duration between different surge clusters, with a focus on

Alaska-Yukon and Svalbard-Russian Arctic.

The distribution of peak velocity during surge events appears similar in both regions, with surge events

reaching more than 20 m day−1 of peak velocity and both distributions displaying a median close to 6

m day−1, with an average spread of 5 m day−1. More quantitatively, a two-sample Kolmogorov-Smirnov test

comparing the distributions of peak surface velocity for surges in Alaska-Yukon and Svalbard-Russian Arctic

return a statistic of 0.18 and a p-value of 0.81 indicating that the two distributions are not significantly

different. Our results therefore do not statistically support a Svalbard-vs-Alaska-type classification. This

finding corroborates the idea of dynamical unity between what was previously considered two ends of a

behavioural spectrum resulting from distinct processes (Jiskoot, 2011; Herreid and Truffer, 2016; Sevestre

and Benn, 2015; Benn and others, 2019a).

A closer investigation of the differences between glaciers in Alaska-Yukon, Svalbard-Russian Arctic and

High Mountain Asia further reveals the breadth of dynamical behaviours displayed by surges.
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First, it is worth noting that we expect the distributions described in Section 4.3 to be updated by future

work as, out of the 31 surges detected in Svalbard-Russian Arctic, the onset and termination date could only

be estimated for 18 of them. Most ongoing surges have already lasted longer than the estimated median

surge duration in Svalbard-Russian Arctic and are likely to further positively skew the distribution. As an

example, the surge of the Nathorstbreen Glacier system, the onset of which is invisible on ITS_LIVE, is

believed to have occurred around 2006 (Sund and others, 2014). Similarly, the surges of Austfonna Basin-3

and Scheelebreen, which started in 2012 and 2021, respectively, are still ongoing.

Second, to understand the regional differences in surge dynamics, we find added value in investigating

the velocity signals from individual surges. Figure 9 shows the similarities between the surface velocity

signals for Alaska-Yukon and High Mountain Asia, as well as how they differ from surges in Svalbard-

Russian Arctic. The acceleration phases of all the surges presented in Figure 9 first shows relatively low

linear increase in surface flow velocity, before a rapid switch to a quasi-exponential regime roughly 500 days

prior to reaching peak value (Figure 9 panels 13, 26, 39). All three clusters further seem to reach around

10% of maximum velocity value. Individual differences are apparent in the transition between slow linear

flow acceleration and active surge phase. In the selected surges from Alaska-Yukon, few glaciers, apart

from Donjek and Lowell (Figure 9 3, 8), show notable increases in surface flow earlier than 500 days prior

to the peak. This dynamic is similar in Svalbard-Russian Arctic, where only Monacobreen ice cap (Figure

9, 18) shows a gradual increase in ice flow before a dramatic spike in velocity, marking the transition to an

active surge phase.

Notable differences between regions are further observable in the deceleration phase of individual surges.

Surges in the Alaska-Yukon cluster show a median deceleration to 10% of the maximum surface velocity

within 180 days of their peak. In addition, most glaciers in the sample are back to quiescent velocity 500

days after peak. In the Svalbard-Russian Arctic cluster, surging velocities are maintained at 50% of the

maximum surface velocity for 180 days. Most deceleration phases last for than 1000 days, with Negribreen

and Sonklarbreen still close to 20% of peak surface velocity 2000 days after (Figure 9 15, 21). Surges in

High Mountain Asia typically show a more symmetric velocity profile, centred around the date of peak

velocity. We observe a median deceleration to around 30% of the maximum surface velocity at 180 days

after peak, with most surges terminated by day 800. In addition, slowdown phases for surges in Svalbard-

Russian Arctic show very strong seasonal fluctuations, that are mostly absent from in Alaska-Yukon and

High Mountain Asia.
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We interpret the regional differences in surge duration as different sensitivities of individual glaciers to

the propagation of a frictional instability at the glacier bed. Glaciers such as Kluane, Arnesenbreen, or

RGI2000-v7.0-G-13-05693 (Figure 9 panels 5, 14, 30) show a very clear spike in surface velocity, without

gradual flow acceleration before the transition point. This testifies to the rapid onset of transient feedbacks

between drainage and friction (Benn and others, 2019b; Thøgersen and others, 2024). For surges with a

more gradual onset such as Donjek, Osbornbreen and Gulyia ice cap (Figure 9 panels 3, 16, 27), lower

enthalpy production likely first leads to the observable gradual increase in ice flow. The glacier then

transitions to a velocity weakening regime (Thøgersen and others, 2024), as increased sliding velocity leads

to lower basal friction triggering a sliding/frictional heating feedback (Benn and others, 2023), further

enhancing glacier motion and propagating the surge.

We further infer longer deceleration phases in Svalbard-Russian Arctic, as well as the drastic seasonal

speed-ups, to be correlated to the large proportion of tidewater surge-type glaciers in the region (Figure 10).

Indeed, contrarily to High Mountain Asia where all surge-type glaciers are land-terminating, or Alaska-

Yukon where only Sit’Kusa (Turner), Valerie and La Perouse glaciers are marine-terminating, all but one

of the identified surge-type glaciers in Svalbard-Russian Arctic are tidewater glaciers. The surge detected

at Vallåkrabreen, the only land-terminating glacier in our Svalbard-Russian Arctic sample, displays a

velocity signal similar to surges affecting land-terminating glaciers in Alaska-Yukon and High Mountain

Asia. We however want to note that 3 of the tidewater glaciers in our sample, Sit’Kusa (Alaska-Yukon),

Arnesenbreen (Svalbard-Russian Arctic) and Sortebræ (East Greenland), present velocity signals closer to

that of land-terminating glaciers. While the surge Sortebræ still displays a strong periodicity, Arnsenbreen

and Sit’Kusa only multiple surges over the studied time period. We did no find any correlation between

glacier geometry as given in the version 7 of the RGI (mostly length, area, altitude range and slope) and

either the maximum velocity or duration of surge events. We cannot control for differences in thermal

regime between land-terminating and tidewater-glaciers, or in our sample. We thus posit that ice-ocean

interactions at the front of surging tidewater glaciers lead to the observed longer active phases in the

Svalbard-Russian Arctic cluster. More specifically, higher hydrostatic pressure at the glacier terminus

likely hampers frontal drainage of the water at the glacier bed resulting in the inability of basal drainage

systems to act as efficient enthalpy sinks (e.g. Terleth and others, 2024). This ultimately leads to a more

gradual termination of surges (Benn and others, 2019b, 2023) and higher sensitivity to seasonal meltwater

input. The interpretation of our results therefore corroborate the hypothesis that surge termination is
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controlled by how efficiently the drainage system can evacuate the basal enthalpy (Benn and others, 2019a;

Ravier and others, 2023; Thøgersen and others, 2024; Terleth and others, 2024).

The presented differences in surge peak surface velocity and duration distributions between Alaska-

Yukon, Svalbard-Russian Arctic and High Mountain Asia reflect variations in enthalpy budgets. While

individual variations might originate from different enthalpy producers, such as changes in a glacier’s

thermal regime or mass balance, poor basal drainage or rapid influx of meltwater, they do not represent

any fundamental contrast in surge mechanism and rather form a wide spectrum of dynamical behaviours.

4.5 Evaluation of inter-inventory consistency

We now attempt to quantify the similarity between our catalogue of surge events and that of Kääb and

others (2023) for global detection as well as Koch and others (2023), solely for Svalbard. It is important

to note that we rely only on surges that Kääb and others (2023) classify as certain.

For this experiment, we first focus on Svalbard, for which ITS_LIVE surface velocity estimates are

only reliably available from 2013, effectively reducing the mismatch in the periods considered between the

inventories from Kääb and others (2023) and Koch and others (2023) and the one proposed here. Between

the proposed inventory and that of Kääb and others (2023), the Jaccard index estimate for Svalbard gives

an acceptable similarity between the sets of glaciers with a result of 0.61. This is due to the presence of four

relatively large glaciers in Kääb and others (2023), which are not captured by either the surface velocity or

the SAR backscatter scheme. When comparing our results to the Svalbard inventory of Koch and others

(2023), the Jaccard index quantifies a good similarity with a result of 0.71. The difference between our

inventory and that of Koch and others (2023) first lies in the detection of a surge on Austfonna Basin-3,

which, while surging, currently undergoes linear deceleration with marked seasonal accelerations. Second,

Koch and others (2023) describe a 2017 surge of Orsabreen, which is invisible in the three datasets we

analysed, and not reported in Kääb and others (2023).

In High Mountain Asia, we choose to study the regional Jaccard index for the two main clusters of surge-

type glaciers in High Mountain Asia: Pamir range/Tibetan Plateau (RGI region 13) and the Karakoram

Range (region 14). In the Pamirs and Tibetan Plateau, we obtain a Jaccard index of 0.58, similar to that

of Svalbard. The similarity is greater in the Karakoram, where the Jaccard index is 0.81. Finally, in Alaska

(region 01), the similarity index is 0.67.

Upon further investigation, false-negatives originated from our surface velocity identification scheme
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Fig. 9. Example of ITS_LIVE surface velocity times for surge events in 1-12) Alaska-Yukon, 14-25) Svalbard-
Russian Arctic, and 27-38) High Mountain Asia. 13, 26, 39) Regional stacks of surface velocity time series. Bold
lines represent stack median and shaded areas cover the minimum to maximum range. Subtitles list the name/RGI
identification number of each glacier as well as the sampling location of each surface velocity time series. The x-axes
are centred on the reference date when peak velocity was reached for each event, and y-axes show the maximum-
normalised surface velocity.
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Fig. 10. Stacks of surface velocity time series for glacier from all clusters, by terminus type. Bold lines represent
stack median and shaded areas cover the minimum to maximum range. The x-axes are centred on the reference
date when peak velocity was reached for each event, and y-axes show the maximum-normalised surface velocity. N
specifies the number of time-series used to generate each subplot. Time-series were sampled across clusters, only
accounting for terminus type. Note the strong periodic component of the velocity signal for tidewater glaciers, as
well as the overall greater variance in surface flow velocities.

lead to several points of discussion. First, in some rare cases, the quiescent behaviour of the given glacier

is obscured as the glacier is surging over the whole considered period, preventing the computation of

reliable baseline behavior. Second, the glacier is already decelerating at the beginning of the time series,

and hence, there are no positive anomalies to be detected (Austfonna Basin-3 and Nathorstbreen glacier

system in Svalbard, for example). Data availability and quality problems (RGI2000-v7.0-G-13-16640,

RGI2000-v7.0-G-14-08450, etc.) obscure potential surges; a point further discussed in Section 4.6.1. Missed

detections from the SAR backscatter and surface elevation change scheme are a direct consequence of our

changepoint detection threshold, which is purposely conservative to avoid false positives. Finally, in Alaska,

the difference between our inventory and Kääb and others (2023) is a result of their non-detection of the

surges of the three lobes forming the Sít’ Tlein (Malaspina - RGI2000-v7.0-G-01-15261) glacier system. We

however want to mention that Kääb and others (2023) identify the propagation on an instability on the

Seward lobe of Sít’ Tlein glacier but classify it as uncertain.

4.6 Towards a fully automated detection of glacier surges: uncertainties, challenges,

and perspectives

4.6.1 Uncertainties with the current inventory

Here, we reiterate that the suggested catalogue of surge events cannot be expected to be exhaustive.

Given our strict multi-criteria identification framework, we believe the likelihood of false positives to be
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minimal. However, the likelihood of false negatives is significantly higher, as shown by the comparably

low number of detected surges, compared to even regional inventories (e.g. Guillet and others, 2022; Guo

and others, 2023). The relatively coarse spatial resolution of all the data products significantly hinders

the detection of surges on small valley glaciers. Limitations in data availability and quality further hinder,

for example, the recognition of surges prior to the deployment of Landsat-8 (2013) in Svalbard (e.g. the

pre-2013 surge initiations of Comfortlessbreen and Blomstrandbreen, Sund and Eiken, 2010) and some

regions of the Tibetan Plateau (glacier CN5Z514H0005 – RGI2000-v7.0-G-13-60066, for example, Guillet

and others, 2022), since the ITS_LIVE archive only includes data after April 2013. Given that most of

the ITS_LIVE measurements have been derived from optical imagery (either Landsat or Sentinel-2), the

polar night further obstructs the detection of surge events in the Greenland periphery and the high Arctic

regions. Although the exact number is unknown, ITS_LIVE data quality issues lead to the non-detection

of an important number surges on smaller valley glaciers in the Pamirs, Karakoram and Tibetan Plateau

(Guillet and others, 2022). As a specific example, the ongoing surge of Nadina Glacier in Alaska is invisible

in both ITS_LIVE and SAR backscatter timeseries, while the dynamical thickening and advance of the

glacier terminus are clearly visible from very high resolution imagery. Similar problems arise for DEMs

derived from optical instruments, in addition to the general sparsity of DEM time series. In Svalbard,

the 2019 surge of Sonklarbreen is not visible in the elevation data while it is detected through the excess

velocity and SAR backscatter schemes.

A final data-related source of false negatives lies in the vector layers used to sample each time series.

We indeed identified several cases of surges from individual former tributaries of larger glacier systems,

where the surge-related terminus advance leads to the reconnection of the tributary with the main glacier

trunk. In these cases, the surging tributary effectively advances past the boundary of the RGI polygon

and the dynamical thickening signal, if present, can only be detected on the main trunk. Similarly, we

identified surges initiating close to the glacier terminus, where the dynamical thickening signal is only

identifiable outside of the considered vector layers (polygon and/or flowline), effectively rendering the

detection impossible.

Finally, our method of identifying surges depends on empirical thresholds in order to distinguish be-

tween baseline and surge-type behaviour of a given glacier. By expressing intuitive thresholds, we aim to

maintain transparency in our methodology and advocate for a clear explanation of the reasoning behind

our threshold choice. The surface velocity threshold is intentionally set to detect surges at the lower end of
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the surge magnitude spectrum, while the changepoint detection threshold used for both surface elevation

and backscatter time series is purposely conservative. Although relying solely on thresholding could re-

sult in extended false identifications due to data quality, we have implemented additional spatio-temporal

constraints (minimum duration of an event, etc.) within the surge identification process before manually

culling any potential remaining misidentification. Consequently, we are confident that our multi-criteria

surge identification method is robust and can reliably determine if a particular glacier is experiencing a

surge at a specific time, given the available data and thresholds. We however want to state here that

glaciers typically affected by slow (e.g. Frappé and Clarke, 2007; Flowers and others, 2011), or long-lasting

(i.e. more than several decades long) surges, such as Airdrop Glacier in the Canadian Arctic (Lauzon and

others, 2023), cannot be expected to be detected by the proposed methodology.

4.6.2 Perspectives

We anticipate that the limitations of glacier velocity fields derived from optical methods will become less

significant in the future, thanks to the expansion of archives from synthetic aperture-radar imaging satellite

missions such as the European Space Agency Sentinel-1 (Lemos and others, 2018; Zhu and others, 2021),

and the NASA-ISRO Synthetic Aperture Radar (NISAR) mission (Kellogg and others, 2020). We also

believe that there is untapped potential in the addition of other diagnostic criteria in future efforts (Guillet

and others, 2022), such as the use of Landsat imagery to generate time series of glacier terminus position

change (Vale and others, 2021), debris displacement (Herreid and Truffer, 2016), as well as spatio-temporal

changes in glacier surface characteristics through direct mapping of crevasses (Herzfeld and Zahner, 2001;

Bhardwaj and others, 2016).

In this work, we showed that the complexity and diversity in surge-type behaviour can be captured in

part by straightforward statistical models. In addition, we highlighted that our methods cannot outperform

human expertise in identifying surges, a point similarly expressed by Kääb and others (2023). Simple

statistical models lack a holistic perspective of surges as a glacier-wide destabilisation and the ability to

detect subtle shifts in patterns that can hardly be described by quantitative thresholds. An example of

this is the terminal advance of a significant number of glaciers during their respective surges which, while

clearly visible on the SAR backscatter images (Leclercq and others, 2021; Kääb and others, 2023), would

require adding an entirely new model to the existing framework to be captured adequately (Herreid and

Truffer, 2016; Vale and others, 2021). Recent deep learning-based image segmentation techniques (e.g. Xie
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and others, 2020; Maslov and others, 2024), operating in higher-dimensional spaces and leveraging entire

data archives, present an exciting prospect towards the fully automated detection of surge events.

5 Conclusions

We have developed a semi-automated framework to identify surge events using remote sensing observations

from the 2000 to 2024 period. We demonstrated the potential for Gaussian processes to act as a surrogate

stastical model, or emulator, for baseline surface glacier velocity. By extracting the modelled baseline

behaviour from point-wise glacier surface velocity time series, we were able to detect dates of surge onset

and termination, as well as important quantitative information such as peak velocity for every identified

surge event. We finally used a changepoint detection procedure to identify surge-related changes in glacier

thickness and surface characteristics from surface elevation and SAR backscatter time series. By combining

potential surges identified from surface elevation changes with 1) candidate surges from ITS_LIVE and

2) candidate surges from SAR backscatter time series, we are confident in the robustness of the present

inventory, up to a level of uncertainty allowed by the relatively coarse resolution of the considered data

products. The resulting surge event inventory is thus conservative and not exhaustive, as there are numerous

false negatives that cannot effectively be captured by our methodology.

In total, we identified 246 glaciers with active surges during the 2000-2024 period. The vast majority

of surge-type glaciers are located in two already well-known clusters: High Mountain Asia (167) and the

Arctic Ring (78, Alaska-Yukon, Arctic Canada, Greenland, Svalbard-Russian Arctic).

We evaluated our inventory of glaciers with detected surge events against existing inventories cover-

ing similar timeăperiods but different surge identification schemes. We found a broadly good agreement

between our results and the reference dataset in all considered areas.

Using the generated surge event catalogue, we tested several predictions of the enthalpy balance theory.

Analysing the ERA-5 Land data, we first validated the presence of an optimal climatic envelope, bounded

both by temperature and precipitation, where surges are most probable. Surge-type glaciers are absent

above a threshold median summer temperature higher than 3 ◦ C and lower than -10 ◦ C. In addition,

they are seldom found in regions where the median total winter precipitation exceeds 1000 mm a−1. Then,

focusing on Svalbard-Russian Arctic and Alaska-Yukon, we showed the limits of the predictive capabilities

of the hypothesis of surges being either hydrologically or thermally controlled, fortifying the enthalpy

balance theory as a unifying framework with which to study surges. We thus suggest that the community
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moves away from classifying surge events as being either "Alaska-type" or "Svalbard-type" since it does

not adequately capture the range of observed behaviours, and instead consider their dynamic unity. We

explored why surges affecting Svalbard-Russian Arctic glaciers typically last longer than those in Alaska-

Yukon, emphasising the importance of glacier terminus type. Furthermore, we proposed that, in these

regions, surges impacting tidewater glaciers endure longer than those that affect land-terminating glaciers

due to a reduced hydrostatic gradient, which limits efficient drainage of the glacier bed. However, further

research is needed to control for other differences between these glaciers (e.g. glacier thermal regime).

Finally, we here reiterate that our resulting inventory cannot be expected to be exhaustive. However,

this work does not need to be static and we invite the community to build on the present efforts by

incorporating further past and future surges detected through different, yet consistent, schemes relying on

newer datasets and additional identification criteria.
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