BEHAVIORAL AND BRAIN SCIENCES

Volume 2 1979

Reprinted with the permission of the original publisher by Periodicals Service Company Germantown, NY 2006

Printed on acid-free paper.

This reprint was reproduced from the best original edition copy available.

NOTE TO THE REPRINT EDITION: In some cases full page advertisements which do not add to the scholarly value of this volume have been omitted. As a result, some reprinted volumes may have irregular pagination.

91

The Behavioral and Brain Sciences

An International Journal of Current Research and Theory with Open Peer Commentary

ISSN 0140-525X

Editor Stevan Harnad

Assistant Editor Helaine Randerson

Associate Editors

Animal Intelligence David Premack Department of Psychology, University of Pennsylvania

Behavioral Biology Hans Kummer Zoologisches Institut und Museum der Universität Zürich

Cognition and Artificial Intelligence Zenon Pylyshyn

Department of Psychology, University of Western Ontario

Ethology and Neuroethology John C. Fentress Department of Psychology, Dalhousie University, Halifax, N.S.

Higher CNS Function Robert W. Doty Center for Brain Research, University of Rochester

History and Systems Julian Jaynes Department of Psychology, Princeton University

Language and Cognition Peter Wason Psycholinguistics Research Unit, University College London Neurobiology Graham Hoyle Department of Biology, University of Oregon

Neurophysiology Barry H. Smith

Surgical Neurology Branch National Institutes of Health, Bethesda, Md.

Neuropsychology Karl Pribram Department of Psychology, Stanford University

Volume 2 1979

Cambridge University Press Cambridge London New York New Rochelle Melbourne Sydney 1979 Published by the Press Syndicate of The University of Cambridge The Pitt Building, Trumpington Street, Cambridge CB2 1RP 32 East 57th Street, New York, NY 10022 296 Beaconsfield Parade, Middle Park, Melbourne 3206

© Cambridge University Press 1979

Printed in the United States of America by Science Press, Ephrata, Pennsylvania

Continuing Commentary on

Roland, P. E. (1978) Sensory feedback to the cerebral cortex during voluntary movement in man. BBS 1:129-171.

305

Kugler, P. N. & Turvey, M. T. Two metaphors for neural afference and efference

Author's Response

Roland, P. E. Degrees of freedom between somatosensory and somatomotor processes; or, One nonsequiture deserves another

307

313

Number 3, September 1979

Target Article

Olton, D. S., Becker, J. T. & Handelmann, G. E. Hippocampus, space, and memory

Open Peer Commentary

Adey, W. R. Hippocampal theta and organism-	
environment interaction	322
Bennett, T. L. A gating function for the	
hippocampus in working memory	322
Berger, T. W. The hippocampus and "general"	
mnemonic function	323
Buhr, R. D. Comparative memory and the	
hippocampus	324
Bureš, J. Spatial working memory – significance of	
intramaze and extramaze cues	325
Deadwyler, S. A. How much work should the	
hippocampus do?	325
Divac, I. A neuropsychological theory of	
hippocampal function: Procrustean treatment of	
inconvenient data	326
Douglas, R. J. Working memory, interference, and	
inhibition	327
Ellen, P. Limitations of unitary theories of	
hippocampal functions	328
Gambarian, L. S. The hippocampus, behavioral	
optimization, and working memory	329
Halgren, E. The human amnesic syndrome and	
homologies in cross-species hippocampal function	330
Hirsh, R. Working memory redefined in terms of	500
organizational processes	332
Honig, W. K. Spatial aspects of working memory	332
Horel, J. A. The hunting of the engram	333
Isaacson, R. L. & Bohus, B. Multiple memories?	334
Jarrard, L. E. On the role of the hippocampus in	
memory: information processing versus memory	
system	334
Kimble, D. P. Some working notes on working	
memory	335
Livesey, P. J. The hippocampus: a system for coping	
with environmental variability	336
Mahut, H. Nonunitary function of the hippocampus	0.00
in the monkey	337

Morris, R. G. M. Absolute capacity and the	
functional implications of spatial and working	
memory	338
Nadel, L. Working memory won't work	338
Nonneman, A. J. Hippocampus, maps, and memory:	
toward a rapprochement	339
O'Keefe, J. Hippocampal function: does the working	
memory hypothesis work? Should we retire the	
cognitive map theory?	339
Oscar-Berman, M. Bait in arms: what happens when	
the wind blows?	343
Rawlins, J. N. P. Advancing memorial theories of	
hippocampal function	344
Sinnamon, H. M. Recent reward value of places	345
Squire, L. R. & Cohen, N. J. Hippocampal lesions:	
reconciling the findings in rodents and man	345
Stein, D. G. The ghost in the machine is still there	346
Thompson, R. F. & Hoehler, F. K. Hippocampal	
activity as a temporal template for learned	
behavior	348
Walker, J. A. Support for a memory – not spatial –	
deficit after hippocampal system damage	348
Winocur, G. A comment on hippocampal function in	
working and reference memory systems	349
Woodruff, M. L. Hippocampal function in learned	
and unlearned behaviors	350
Zimmer, J. Lesion size in hippocampal studies	351
Zornetzer, S. F. & Abraham, W. C. The working-	
memory/reference-memory theory of	
hippocampal function: darts and laurels	351

Author's Response

Olton, D. S., Becker, J. T. & Handelmann, G. E. A re-	
examination of the role of hippocampus in	
working memory	352

Target Article

Parker, S. T. & Gibson, K. R. A developmental model for the evolution of language and intelligence in early hominids

367

Open Peer Commentary

	Dingwall, W. O. Reconstruction of the	
381	Parker/Gibson "model" for the evolution of	
382	intelligence	383

vii

Ettlinger, G. Does development tell us about	004	Lurçat, L. Graphic skills, posture, and the evolution	
evolution?	384	of intelligence	392
Fishbein, H. D. An evolutionary perspective of the		McGrew, W. C. Habitat and the adaptiveness of	
family	384	primate intelligence	393
Gould, S. J. Panselectionist pitfalls in Parker ර		Macnamara, J. Doubts about the form of	
Gibson's model for the evolution of intelligence	385	development	393
Gruber, H. E. Protocultural factors in a		Marshack, A. Data for a theory of language origins	394
constructionist approach to intellectual evolution	386	Savage-Rumbaugh, S., Rumbaugh, D. M. & Boysen, S.	
Hewes, G. W. Some complexities in the evolution of		Chimpanzees and protolanguage	396
language	387	Smith, E. O. An alternative model for language	
Isaac, G. L. Evolutionary hypotheses	388	acquisition	397
Ivanov, V. V. On the development of sign systems in		Snowdon, C. T. & French, J. A. Ontogeny does not	
primates	388	always recapitulate phylogeny	397
Jolly, A. Feeding versus social factors in cognitive		Wind, J. The evolution of intelligence: rehabilitation	
evolution: can't we have it both ways?	389	of recapitulation?	398
Kitahara-Frisch, J. The evolution of intelligence:			
making assumptions explicit and hypotheses			
testable	390		
Konner, M. Origins of language: a proposed			
moratorium	391	Authors' Response	
Lamendella, J. T. Assumptions about hominid		Parker, S. T. & Gibson, K. R. How the child got his	
"intelligence" and "language"	391	stages	399
mongenee and mogade	501		000

Target Article

Dismukes, R. K. New concepts of molecular communication among neurons 409

Open Peer Commentary

Arch, S. Terminology, modes of communication, and	
a command neurohormone	416
Arluison, M. The problem of nonsynaptic	
transmission in the neostriatum	416
Barker, J. L. Intercellular communication in the CNS	417
Boulton, A. A. The trace amines: neurohumors	
(cytosolic, pre- and/or postsynaptic, secondary,	
indirect)?	418
Branton, W. D. & Mayeri, E. Nonsynaptic	
interactions in Aplysia and their relation to	
vertebrate systems	419
Brown, D. A. Neuromodulators	419
Bullock, T. H. Communication among neurons	
includes new permutations of molecular,	
electrical, and mechanical factors	419
Butcher, L. L. What's in a name? A neuromodulator	
by any other name would function just as well	420
Chute, D. L. Do new concepts of molecular	
communication rejuvenate old concepts of	
behaviuoral "states" in learning and memory?	420
Coscina, D. V. No real alternative to existing	
definitions of neuronal communication	421
Dreifuss, J. J. & Harris, M. C. Hypothalamic	
neurohumors as neurohormones and	
neurotransmitters	421
Dunn, A. J. Molecular signals released by neurons	422
Elliott, G. R. & Barchas, J. D. Neuroregulators:	
neurotransmitters and neuromodulators	423
Evans, P. D. Modulatory actions of an identified	
octopaminergic neurone at the locust	
neuromuscular junction	424
Florey, E. Modulation of neuronal function – a not	
so new concept	424
Freedman, R. Electrophysiology is not sufficient to	
determine neuromodulatory function	425
Hatton, G. I. Neuronal communication: don't forget	
the glia!	426
Hoyle, G. Classification of communications between	
neurons	427

Author's Response	
York, D. H. A note of caution in neurohumor nomenclature	
potential neuromodulatory role?	
Re-evaluation of norepinephrine function: a	
Woodward, D. J., Moises, H. C. & Waterhouse, B. D.	
molecular communication?	
Wilson, D. L. Restricted extracellular pathways for	
Weight, F. F. Communication at synapses	
activity	
Truman, J. W. Hormones as modulators of neuronal	
Traczyk, W. Z. Neurohypophyseal hormone release	
Tömböl, T. Modulation and neurotransmitters	
information transfer	
Smith, B. H. Polarity and modality of neuronal	
Ryall, R. W. What is a synapse?	
neuromodulators	
Phillis, J. W. Neurotransmitters versus	
Palay, S. L. Modes of interneuronal communication	
thresholds, and Dale's Principle	
Osborne, N. N. Axonal varicosities, variable	
axoplasmic transport	
Ochs, S. Aspects of communication related to	
categories	
modulation: experimental evidence vs. conceptual	
Libet, B. Neuronal communication and synaptic	
Lembeck, F. Defining neuromodulation	
definition of modulation	
Kupfermann, I. Thank goodness we do not need a	
peripheral nervous system	
lversen, L. L. Co-transmitters, modulation and the	
networks?	
proposed types of communication to neuronal	
(to, M. What is the primary contribution of the	

Dismukes, R. K. Discussing new	
neurocommunication concepts: complements,	
counterdefinitions and counterexamples	441

Target Article

Arbib, M. A. & Caplan, D. Neurolinguistics must be computational

Open Peer Commentary

Dimetain C. F. Dhumalam, "handam," and		Kean, ML. & Smith, G. E. Issues in core linguistic	
Blumstein, S. E. Phrenology, "boxology," and neurology	460	processing	469
Buckingham, H. W., Jr. Must neurolinguistics be		Langendoen, D. T. Linguistics must be	
computational?	461	computational too	470
Cohen, G. Are computational models like HEARSAY		Locke, S. Localization, representation, and re-	
psychologically valid?	462	representation in neurolinguistics	471
Frazier, L. Constraining models in neurolinguistics	463	Marshall, J. C. The sense of computation	472
Freemon, F. R. Computers are dumb	464	Reiss, R. F. A neurolinguistic computation: how must	
Gardner, H. Computational neurolinguistics:		"must" be understood?	473
promises, promises	464	Richards, B. Neurolinguistics: grammar and	
Garrett, M. & Zurif, E. Neurolinguistics must be		computation	473
more experimental before it can be effectively		Schank, R. C. Process models and language	474
computational	465	Schnitzer, M. L. Computational neurolinguistics and	
Goodglass, H. Is model building advancing		the competence-performance distinction	475
neurolinguistics?	466		
Greenblatt, S. H. Is neurolinguistics ready for			
reductionism?	467		
Halwes, T. An embarrassment of riches in nascent		One Author's Response	
neurolinguistics	467	One Author's Response	
Hudson, P. T. W. What is computational		Arbib, M. A. Cooperative computation as a concept	
neurolinguistics anyway?	468	for brain theory	475

Continuing Commentary

Pylyshyn, Z. W. (1978) Computation	onal n	nodels and empirical constraints.	
BBS 1:93–127.		_	485
Otto, H. R. Models in cognitive psychology:		Pask, G. A broader view of psychology and of	
contrast and constraint	485	computation	486

Number 4, December 1979

Target Article

O'Keefe, J., Nadel, L. Précis	The hippocampus as a cognitive map	487
-------------------------------	------------------------------------	-----

Open Peer Commentary

Amsel, A. Hippocampus, memory and movement	494	Horel, J. A. Lost maps and memories	506
Berger, T. W. Selective activation of hippocampal neurons	495	Isaacson, R. L. Hippocampal lesions and intermittent reinforcement	507
Blanchard, D. C., Blanchard, R. J. Behavioral analysis	400	Jackendoff, R. What is a cognitive map?	507
of the hippocampal syndrome	496	Jarrard, L. E. Considerations in evaluating the	
Bliss, T. V. P. O'Keefe & Nadel's three-stage model	406	cognitive mapping theory of hippocampal	509
for hippocampal representation of space Bureš, J. The "neuroethological revolution" in unit	496	function Keeper B. B. Hispacempus and memory	509 509
studies	497	Kesner, R. P. Hippocampus and memory Moore, J. W. The hippocampus and informational	009
Douglas, R. J. The hippocampus and its apparent	431	salience	510
migration to the parietal lobe	498	Nonneman, A. J. Time: a fourth dimension for the	010
Downs, R. M. On the nature of cognitive maps	499	hippocampal cognitive map	511
Ellen, P. The hippocampus and operant behavior	500	Olton, D. S. Inner and outer space: the	
Gray, J. A. Spatial mapping only a special case of		neuroanatomical bases of spatially organized	
hippocampal function	501	behavior	511
Greene, E. On panspatial theories of brain and		Pinker, S. Mental maps, mental images, and	
behavior	503	intuitions about space	513
Hécaen, H. Cortical areas involved in spatial		Ranck, J. B. Jr. On O'Keefe, Nadel, space and brain	513
function	503	Squire, L. R. The hippocampus, space, and human	
Hirsh, R., Krajden, J. Hippocampal function: logic,		amnesia	514
logic, and more logic	504	Swanson, L. W. The anatomy of a cognitive map	515
Holmes, J. E. Waves and cells, maps and memories,		Thomas, G. J. Cognition, memory, and the	F 1 F
space and time	505	hippocampus	515

449