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The transport of a passive scalar at unity Schmidt number in a turbulent flow over
a random sphere pack is investigated by direct numerical simulation. A bed-normal
scalar flux is introduced by prescribed scalar concentration values at the bottom and top
domain boundaries, whereas sphere surfaces are impermeable to scalar fluxes. We analyse
eight different cases characterised by friction Reynolds numbers Reτ ∈ [150, 500] and
permeability Reynolds numbers ReK ∈ [0.4, 2.8] at flow depth-to-sphere diameter ratios
of h/D ∈ {3, 5, 10}. The dimensionless roughness heights lie within k+

s ∈ [20, 200]. The
free-flow region is dominated by turbulent scalar transport and the effective diffusivity
scales with flow depth and friction velocity. Near the interface, dispersive scalar transport
and molecular diffusion gain importance, while the normalised near-interface effective
diffusivity is approximately proportional to Re2

K . Even without a macroscopic bed
topography, local hotspots of dispersive scalar transport are observed (‘chimneys’), which
are linked to strong spatial variations in the time-averaged scalar concentration field.
The form-induced production of temporal scalar fluctuations, however, goes along with
a homogenisation of those spatial variations of the scalar concentration field due to
turbulent fluid motion. Accordingly, form-induced production determines the interaction
of turbulent and dispersive scalar transport at the interface. With increasing ReK ,
momentum from the free-flow region entrains deeper into the sediment bed, such that the
form-induced production intensifies and peaks at lower positions. As a result, the transition
from dispersive to turbulent scalar transport is observed deeper inside the sphere pack.

Key words: turbulent boundary layers, turbulence simulation

1. Introduction
The hyporheic zone comprises the saturated regions of the sediment bed, where the water
in the pore space interacts with the stream flow via a bidirectional exchange of momentum,
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mass and energy (e.g. Boano et al. 2014; Woessner 2017). Steep biogeochemical gradients
in the hyporheic zone create a unique habitat for a rich community of benthic and
interstitial organisms (Brunke & Gonser 1997; Krause et al. 2017). Among the latter are
many micro-organisms, which form biofilms on solid surfaces and rely on a steady supply
with specific nutrients and dissolved substances, while they also depend on the removal
of the end products of their metabolism (e.g. Battin et al. 2016). This microbial activity
is decisive for the health of the aquatic ecosystem, it maintains different nutrient cycles
and can even mitigate anthropogenic eutrophication of the water body (e.g. Harvey et al.
2013). Accordingly, mass transport processes across the sediment–water interface are of
interdisciplinary interest (e.g. Krause et al. 2011; Ward 2016). Depending on the forcing
mechanism, these transport processes can occur on different spatial scales, which can
typically range up to tens of metres (Boano et al. 2014). In contrast to that, hyporheic
transport processes can also occur on the critically smaller length scale of individual
sediment grains, where primarily hydrodynamic forces tend to drive the flow (Boano et al.
2014). The transport processes on the grain-scale have high impact, as they appear over
large areas and act within the region shortly below the sediment–water interface, where the
ecologically most critical biota are found (Marion et al. 2014). Therefore, the present study
focuses on grain-scale hyporheic scalar transport and aims to advance the mechanistic
understanding of the processes involved.

The studies of Richardson & Parr (1988), Nagaoka & Ohgaki (1990) and Lai, Lo & Lin
(1994) were among the first systematic investigations of mass transfer across the interface
between a plane sediment bed and an overlying flow. Laboratory flume experiments were
conducted to determine effective diffusivity coefficients, which were used to summarise
the effects of turbulent transport, dispersive transport and molecular diffusion in the scope
of a gradient-based transport model. Subsequent studies performed meta-analyses and
combined different data sets to refine the prediction of an effective diffusivity, whereas
different sets of input parameters were used.

O’Connor & Harvey (2008) concluded that the ratio between the effective diffusivity
and the tortuosity-adapted molecular diffusivity can be approximated by the product of
the roughness Reynolds number and a permeability Péclet number (with an exponent
near unity). The value of this product allows the definition of four partially overlapping
ranges, which are associated with transport conditions dominated by molecular diffusion,
shear-induced flow, advective pumping or penetrating turbulence, respectively. After a
correction of biases in the underlying data, Grant, Stewardson & Marusic (2012) applied
a procedure based on multiple linear regression to isolate a small set of parameters
with a high predictive power for the effective diffusivity. A resulting model uses the
porosity, the permeability Reynolds number and a Reynolds number based on the bed
depth as dimensionless input parameters, which appear with different exponents. In
contrast to O’Connor & Harvey (2008), the roughness length remains unconsidered,
which is explained by a strong correlation with other parameters. Voermans, Ghisalberti &
Ivey (2018) combined insight from their own measurements (Voermans, Ghisalberti &
Ivey 2017) with data points from various other experimental studies (e.g. Richardson
& Parr 1988; Nagaoka & Ohgaki 1990; Packman, Salehin & Zaramella 2004; Chandler
et al. 2016). On that basis, they proposed a model for the mass transport across the
sediment–water interface, which predicts the ratio of effective diffusivity and molecular
diffusivity only in dependency of the permeability Reynolds number and the Schmidt
number. With a progressively higher permeability Reynolds number, the model describes
a transition from the diffusion-dominated regime to the dispersion-dominated regime
and from there to a regime dominated by turbulent scalar transport. From the observed
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scaling behaviour at the transition from the dispersion-dominated regime to the turbulent
regime, Voermans et al. (2018) deduced that turbulent motion at the interface disrupts
dispersive scalar transport. A hypothetical explanation is found in the reduction of
the spatial variations in the passive scalar field due to turbulent mixing. Voermans
et al. (2018) remarked that the permeability Reynolds number is correlated with the
roughness Reynolds number, which also indicates the roughness regime. In agreement
with this remark, Chen, Fytanidis & Garcia (2024) concluded that the roughness
Reynolds number is the preferred input parameter to determine the interfacial effective
diffusivity.

Besides the effort invested in effective diffusivity models, several studies also
documented qualitative phenomena associated with hyporheic scalar transport. Packman
et al. (2004) conducted experiments in a laboratory flume for both flat beds and beds
with a dune-shaped surface topography. Injected dye allowed a visualisation of the
scalar transport. Also in flat-bed sediments, advective flow paths in the bed-normal
direction were observed. Though the concept of advective pumping had been described
by Elliott & Brooks (1997) for beds with a macroscopic topography, Packman et al.
(2004) hypothesised that grain-scale irregularities induce pressure head variations, which
are sufficient to cause upwelling or downwelling fluid motion. In deeper regions of the
sediment bed, dye was sometimes found to follow preferred flow paths, while a pulsating
motion suggested an influence from the turbulent flow above the bed. Shen, Yuan &
Phanikumar (2020) emphasised the impact of bed roughness on the exchange processes
across the interface, while keeping ReK constant. In the scope of a grain-resolved direct
numerical simulation (DNS), they compared synthesised macroscopically flat beds with
randomly and regularly arranged spheres at the interface against each other. The random
arrangement of spheres at the interface was shown to introduce larger roughness length
scales, which cause larger-scale pressure fluctuations at the interface. The resulting flow
paths reach deeper into the sediment layer and increase the contribution of dispersive
fluxes to the transport of mass and momentum. Thus, the irregular texture of the sediment
bed surface also influences the time that an average fluid parcel resides within the sediment
bed, as documented by Shen, Yuan & Phanikumar (2022).

The above overview emphasises the strong scientific interest in hyporheic scalar
transport. Many studies focus on the effective scalar diffusivity and the dominant processes
at the interface, whereas different models for the prediction of the interfacial effective
diffusivity utilise different input parameters. In recent years, pore-resolved numerical
studies have granted valuable insight into the complex and strongly three-dimensional flow
field inside the sediment bed, which allowed further conclusions concerning hyporheic
scalar transport processes. To our knowledge, however, no pore-resolved single-domain
simulations with a wider parameter space have been conducted, which actually solve
the advection–diffusion equation for a passive scalar in the context of turbulent flow
over a random sphere pack. Building on v.Wenczowski & Manhart (2024), the present
study closes this gap, whereas particular focus is put on the following research questions.
(i) Which parameters affect the near-interface scalar transport? (ii) Which scalar transport
mechanisms are dominant in different regions? (iii) How do these transport mechanisms
interact with each other?

Section 2 contains the underlying equations as well as their formulation within the
double-averaging analysis framework. The applied methods and the parameter space with
a systematic variation of Reτ and ReK are introduced in § 3. In § 4, we present the main
results, which are then discussed in § 5. Section 6 concludes the study.
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2. Theory
The following § 2.1 contains the underlying equations. The double-averaging analysis
framework is introduced in § 2.2, which allows us to discuss the double-averaged scalar
transport equation in § 2.3. In § 2.4, budget equations for temporal scalar fluctuations
and spatial scalar variations are formulated, which will help us later to investigate the
interaction between processes.

2.1. Governing equations
Using DNS, we solve the incompressible Navier–Stokes equations for a Newtonian fluid
with a kinematic viscosity ν and a density ρ. The Einstein summation notation allows us
to formulate the conservation of momentum and mass as given by (2.1) and (2.2):

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂p

∂xi
+ ν

∂2ui

∂x j∂x j
+ gi . (2.2)

The coordinate x1 ≡ x represents the streamwise direction, x2 ≡ y represents the
spanwise direction and the coordinate x3 ≡ z specifies a vertical position above the
sediment bed. The corresponding flow velocities are u1 ≡ u, u2 ≡ v and u3 ≡ w,
respectively. Furthermore, p represents the pressure and gi is a volume force acting on the
fluid. The computed flow field is used in the solution of the advection–diffusion equation
for a passive scalar, which reads

∂c

∂t
+ u j

∂c

∂x j
= Γc

∂2c

∂x j∂x j
. (2.3)

In (2.3) the variable c represents the scalar concentration and Γc is the corresponding
scalar diffusion coefficient. As we consider a Schmidt number of Sc = ν/Γc = 1, the
Batchelor length scale is similar to the Kolmogorov length scale. Under steady conditions,
the dimensionless form of (2.3) reduces to

û j
∂ ĉ

∂ x̂ j
= 1

Pe
∂2ĉ

∂ x̂ j∂ x̂ j
. (2.4)

In (2.4), Pe = Re Sc represents the dimensionless Péclet number, which describes the
ratio between the diffusive and the advective term. If one wished to interpret the passive
scalar c as a temperature (without buoyancy effects), Γc would correspond to the thermal
diffusivity and the Schmidt number Sc would be replaced by the Prandtl number Pr .

2.2. Analysis framework
Double averaging in time and space provides a useful analysis framework for hyporheic
scalar transport (e.g. Giménez-Curto & Lera 1996; Nikora et al. 2001; Mignot, Barthelemy
& Hurther 2009). In a first step, the arbitrary quantity ϕ undergoes a Reynolds
decomposition. The ensemble average in time is denoted as ϕ, while ϕ′ represents a
temporal fluctuation of the quantity, such that

ϕ(x, t) = ϕ(x) + ϕ′(x, t) , where ϕ(x) = 1
T

∫ T

0
ϕ(x, t) dt. (2.5)

In the following, ϕ is further decomposed with respect to its spatial distribution. The
intrinsic average within a horizontal plane is written as 〈ϕ〉. Deviations from the in-plane
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Figure 1. Diffusion problem with decomposition of the solution into intrinsic horizontal averages and spatial
variations. In contrast to the actual solution, both the intrinsic averages and the spatial variations violate the
zero-flux (adiabatic) Neumann boundary conditions.

average represent spatial variations and are marked by a tilde, such that

ϕ(x) = 〈ϕ〉(z) + ϕ̃(x) , where 〈ϕ〉(z) = 1
A f

∫∫
A f

ϕ(x) dx dy. (2.6)

The intrinsic average 〈ϕ〉 is defined by (2.6) and results from averaging over the fluid-
filled area A f of the averaging plane at height z. In contrast, the superficial average 〈ϕ〉s

represents a spatial mean value with respect to the complete area A0 of the averaging
plane, such that both quantities are connected via the in-plane porosity θ(z), i.e.

〈ϕ〉s (z) = θ(z) 〈ϕ〉 (z), with θ(z) = A f (z)/A0. (2.7)

Below the crests of the topmost spheres of the sphere pack, the fluid-filled area A f in the
averaging plane is interrupted by solid-occupied areas. In general, however, the physical
boundary conditions on the fluid–solid interface are neither fulfilled by 〈ϕ〉 nor by ϕ̃,
individually. As a consequence, horizontal averaging and spatial derivatives do not simply
commute and special rules apply (e.g. Giménez-Curto & Lera 1996), which gives

〈∇ϕ〉 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
∂ϕ

∂x

〉
〈
∂ϕ

∂y

〉
〈
∂ϕ

∂z

〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
A f

∮
s

ϕ
nx√

n2
x + n2

y

ds

1
A f

∮
s

ϕ
ny√

n2
x + n2

y

ds

1
θ

∂θ 〈ϕ〉
∂z

+ 1
A f

∮
s

ϕ
nz√

n2
x + n2

y

ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

⎛⎜⎜⎜⎜⎜⎜⎝

BT1(ϕ)

BT2(ϕ)

1
θ

∂θ 〈ϕ〉
∂z

+ BT3(ϕ)

⎞⎟⎟⎟⎟⎟⎟⎠ .

(2.8)

In (2.8) the curve s represents the intersection of the averaging plane with the fluid–
solid interface. The unit normal vector n = (nx , ny, nz)

T at the solid–fluid interface points
out of the fluid-filled volume. We will refer to the curve integrals as boundary terms,
abbreviated by BTi (ϕ). By that, we emphasise that the terms are necessary to take into
account for the physical boundary conditions, which are met by ϕ and ϕ′, but not by 〈ϕ〉
and ϕ̃. This issue is illustrated by figure 1 for the solution of a two-dimensional diffusion
problem with adiabatic boundary conditions on curved boundaries, which enforce that
∂ϕ/∂n = 0. While the field ϕ fulfills this condition, both 〈ϕ〉 and ϕ̃ have non-zero wall-
normal gradients, which would cause unphysical wall-normal diffusive fluxes of these
quantities. These unphysical fluxes have opposite signs and compensate each other.
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2.3. Scalar transport processes
In view of the application, we derive the equations under the assumption that no-slip
conditions apply on the surface of the sediment grains. Furthermore, we assume that
no net flux in the bed-normal direction exists, i.e. 〈w〉 = 0. The surface of the sediment
grains is defined to be impermeable to (diffusive) scalar fluxes, which resembles adiabatic
conditions. Therefore, the superficially averaged scalar flux 〈J 〉s

tot across all horizontal
planes must be constant, while contributions from different scalar transport processes can
be distinguished:

〈J 〉s
tot = θ〈w′c′〉︸ ︷︷ ︸

turb.

+ θ
〈
w̃ c̃

〉︸ ︷︷ ︸
disp.

− θ

〈
Γc

∂c

∂z

〉
︸ ︷︷ ︸

diff.

= const. for ∀ z. (2.9)

The terms on the right-hand side of (2.9) represent fluxes from turbulent scalar transport,
dispersive scalar transport and scalar transport due to molecular diffusion. These transport
processes rely on fundamentally different mechanisms: Turbulent transport results from
temporally correlated fluctuations of the bed-normal velocity and the scalar concentration.
In contrast, the dispersive transport depends on spatially correlated in-plane variations of
the mean velocity and the mean scalar concentration. Finally, the diffusive flux term is
induced by gradients of the concentration field in the bed-normal direction.

2.4. Budget equations
As both temporal fluctuations and spatial variations of the scalar concentration field play
an important role for scalar transport (see (2.9)), we consider the budget equations for both
quantities:

′′ ′ ′ ′ ′

′ ′ ′ ′ ′
′ ′

′ ′
w

w w

. (2.10)

′ ′

′ ′

w

w
w

. (2.11)
A comparison of (2.10) and (2.11) shows similar patterns in the formulation of both

budgets, which contain a production term, a dissipation term, as well as terms for
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advective, turbulent and diffusive transport. The production part of the budgets is further
subdivided: the term in the dashed box leads to a positive production of 〈c′c′〉 or
〈̃c c̃〉, if turbulent or dispersive scalar transport, respectively, acts against the gradient
of the double-averaged scalar concentration field. Accordingly, we will refer to these
terms as turbulent or dispersive gradient production, respectively. The terms in the solid
boxes appear with opposite signs in the budget equations and, therefore, represents a
transfer mechanism between temporal fluctuations and spatial variations. Temporal scalar
fluctuations 〈c′c′〉 are generated at the expense of spatial scalar variations 〈̃c c̃〉, if turbulent
scalar transport takes place against the gradient of the scalar variation, thus homogenizing
the in-plane scalar field. In smooth-wall channel flow, c̃ has zero value, such that only
the presence of a characteristic geometry renders the production mechanism relevant.
Therefore, the mechanism is referred to as form-induced production of temporal scalar
fluctuations. Besides the already discussed terms, (2.11) contains a boundary term. This
term arises as both 〈c〉 and c̃ violate the boundary condition by inducing non-zero diffusive
fluxes of opposite signs across the zero-flux boundary. Formally, the boundary term
represents a redistribution of c c between 〈c〉〈c〉 and 〈̃c c̃〉 by means of these fluxes across
the boundary. The role of the boundary term is highlighted by the diffusion problem in
figure 1, in which the Neumann boundary condition on the inclined walls acts as the only
source of spatial variations under zero-velocity conditions.

3. Methods
The case configuration is described in § 3.1 and the representation of the porous medium in
§ 3.2. The parameter space is introduced in § 3.3, before we discuss the interface definition
in § 3.4. Section 3.5 focuses on the numerical methods, and a convergence study follows
in § 3.6. Some aspects of this section are described in greater detail in v.Wenczowski &
Manhart (2024), where we validated the flow field.

3.1. Case configuration
In the scope of a single-domain DNS, we investigate turbulent open-channel flow over a
mono-disperse random sphere pack. This configuration resembles the flow in a gravel-bed
river, as the sphere pack imitates the sediment bed and individual spheres act as sediment
grains. As sketched in figure 2, the top boundary of the domain is a rigid lid with a free-
slip boundary condition, which approximates the free water surface. A constant volume
force in the streamwise direction, i.e. gx > 0, acts on the fluid and drives the flow. The
domain has periodic domain boundary conditions in the streamwise x-direction and lateral
y-direction. The simulation statistics are gathered in a statistically stationary state, where
the boundary layer is fully developed and the boundary layer thickness δ equals the flow
depth h. During the flow simulation, the spheres with diameter D remain in fixed positions
and no-slip boundary conditions apply on the sphere surfaces. The bottom boundary of
the domain cuts through the sphere pack. A free-slip condition reduces the influence of
the bottom domain boundary, as it ensures that streamwise momentum is only absorbed
by the spheres and not by the domain boundary. Dirichlet boundary conditions prescribe
fixed scalar concentration values cbot and ctop at the bottom and top domain boundary,
respectively. The concentration difference 
c = ctop − cbot induces a scalar flux in the
bed-normal direction. The surfaces of the spheres are impermeable to scalar fluxes, which
is equivalent to adiabatic conditions in heat transport. In the absence of any scalar sinks or
sources, the superficially double-averaged scalar flux is constant at all vertical positions z
within the domain (see (2.9)).
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Water surface (free-slip rigid lid)
Scalar value ctop

Scalar value cbot

Turbulent free-f low region

Linear Darcy flow region(b)
(a)

Scalar

f lux

Z

XY

(c)

Figure 2. Sketch of case configuration. The bed-normal scalar flux is induced by fixed scalar values at
the bottom and top of the domain. Dispersive transport due to mean flow paths through the sediment
(a), diffusive transport due to scalar concentration gradients (b) and turbulent transport due to turbulent fluid
motion (c) contribute to the scalar flux.
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Figure 3. Properties of a sediment bed with A0 = 64D × 32D. (a) In-plane porosity profile with the geometric
interface z = 0 defined by ∂2θ/∂z2 = 0. (b) Spatial autocorrelation of the bed elevation fluctuation z̃b over the
horizontal shift r .

3.2. Representation of the porous medium
In preparation for the flow simulations, mono-disperse random sphere packs of different
extents were generated, as described in v.Wenczowski & Manhart (2024). The generated
sphere packs have a level mean bed surface, as we do not consider bed forms like,
e.g. riffles or dunes. The in-plane porosity profile θ(z) of a sphere pack with a base
area of A0 = 64D × 32D is shown in figure 3(a). Like Voermans et al. (2017), we
use the inflection point ∂2θ/∂z2 = 0 of the porosity profile as a geometrically defined
interface position. The distance between the geometrically determined interface and the
top boundary of the domain defines the nominal flow depth h of the case. For all simulated
cases, the sediment bed has a depth of 5 D. At each location, the bed elevation zb(x, y)

is defined as the topmost point, where a vertical line at this location would intersect a
sphere surface. The derived variable z̃b represents the spatial variation of the bed elevation
field around its mean value. Figure 3(b) shows the spatial autocorrelation of the bed
elevation z̃b. A rapid decay of the spatial autocorrelation function over the distance r
confirms that no repeating large-scale patterns prevail in the bed surface.

3.3. Parameter space
The parameter space of the present study is described in terms of the friction
Reynolds number Reτ and permeability Reynolds number ReK . The friction Reynolds
number Reτ = uτ h/ν characterises the unconfined flow above the sediment layer, where
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K

 (−
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Figure 4. Simulated cases as sampling points within a dimensionless parameter space, including reference
points from literature. The grey dashed lines represent fixed ratios between the flow depth h and the sphere
diameter D. The reference points refer to Breugem et al. (2006), Voermans et al. (2017), Shen et al. (2020) and
Karra et al. (2023). Figure adapted from v.Wenczowski & Manhart (2024).

similarities to smooth-wall open-channel flow prevail. The available computing power
limited the Reynolds number to Reτ < 500. The permeability Reynolds number ReK =
uτ

√
K/ν uses the square root of the permeability as an effective length scale of the

pore space (Breugem, Boersma & Uittenbogaard 2006). By putting
√

K in relation to
the viscous length scale δτ = ν/uτ , ReK gives an indication whether the smallest-scale
turbulent motion can penetrate the pore space or not. Therefore, ReK 
 1 and ReK � 1
represent effectively impermeable and highly permeable regimes, respectively. Values of
ReK ≈ 1 − 2 mark the transition between both extremes (Voermans et al. 2017). The cases
are characterised by different ratios of the flow depth to the sphere diameter, i.e. h/D,
which allows different combinations of Reτ and ReK , as shown in figure 4. Besides the
Reynolds numbers, table 1 summarises further nominal parameters of the simulated flow
cases. We use the term nominal parameters to indicate that those parameters refer to the a
priori geometrically defined flow depth h and the friction velocity uτ = √

gx h.
While the transport of gases in air is described by Sc = O(1), the transport of dissolved

substances in water is usually characterised by critically higher Schmidt numbers of
Sc = O(103). Still, we consider a unitary Schmidt number ideal for the present study,
as it will allow us to observe both diffusion- and advection-dominated hyporheic regimes
within the range of ReK ∈ [0.4, 2.8]. From a practical perspective, the choice of Sc = 1
allows us to keep control of the required grid resolution, while the comparatively short
diffusive time scale reduces the amount of simulated time until a steady state is reached.

3.4. Interface position
The geometrically defined interface is determined from the porosity profile of the sphere
pack, such that this interface is available during the configuration phase of the simulations,
while it lacks flow-dynamical motivation. To discuss the scalar transport across the
interface between a porous medium and a free turbulent flow and to find similarities, a
flow-dynamically meaningful interface definition is required, which can be obtained a
posteriori from the simulation results. As described in v.Wenczowski & Manhart (2024)
in greater detail, we computed the superficially double-averaged drag distribution f s

(p+ν)
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Symbol Case h/D Lx/h × L y/h 
x+
i,min 
x+

i,max Reτ ReK Rep

L-180 3 13.3 × 6.7 1.21 1.21 174 1.63 0.95
L-300 3 13.3 × 6.7 1.04 2.08 300 2.82 2.77
M-150 5 12.8 × 6.4 0.63 2.52 154 0.87 0.15
M-300 5 12.8 × 6.4 0.63 2.52 300 1.69 0.59
M-500 5 12.8 × 6.4 1.04 4.16 500 2.82 1.60
S-150 10 12.8 × 6.4 0.31 1.24 150 0.42 0.02
S-300 10 12.8 × 6.4 0.63 2.52 300 0.84 0.07
S-500 10 12.8 × 6.4 1.04 4.16 500 1.40 0.20
I-180 → ∞ 13.3 × 6.7 0.63 1.26 180 0 0
I-300 → ∞ 12.8 × 6.4 0.75 3.00 300 0 0
I-500 → ∞ 12.8 × 6.4 0.90 3.60 500 0 0

Table 1. Overview of nominal case parameters. The variable h represents the flow depth above the
geometrically defined interface, D is the sphere diameter, L is the extent of the domain, 
x+

i,min describes
the side length of the smallest cubic cells near the interface and 
x+

i,max the side length of the largest cells in
the free-flow region. The friction, permeability and particle Reynolds numbers are defined as Reτ = uτ h/ν,
ReK = uτ

√
K/ν, Rep = 〈u〉s D/ν, respectively, where uτ = √

gx h is the friction velocity, K the permeability
and ν the kinematic viscosity.

on the porous medium via the relation

f s
(p+ν) = ∂

∂z

(
−θ

〈
ν
∂ u

∂z

〉
+ θ

〈̃
u w̃

〉+ θ〈u′w′〉
)

− θ gx . (3.1)

The expression in (3.1) results from the double-averaged Navier–Stokes equation (e.g.
Nikora et al. 2001), while we summarise both viscous and pressure drag in f s

(p+ν). The
obtained drag distribution exhibits a characteristic peak near the sediment–water interface,
which can be associated with the absorption of incoming momentum from the free-flow
region. Inspired by the idea of Thom (1971) and Jackson (1981), we apply a curve fitting
approach to characterise the free-flow momentum absorption peak by few parameters
and to distinguish it from the Darcy drag, which is exerted by the porous media flow
independently of the free flow above. In our fitting function, a Gaussian normal distribution
is used to parametrise the free-flow momentum absorption peak, while a complementary
error function ensures that the Darcy drag is only accounted for below the interface. Both
terms of our fitting function f (z, μz, σz) share the mean position μz and spread σz as
fitting parameters, such that

f (z, μz, σz) = (uμ
τ )2 ·

(
1

σz
√

2π
e
− 1

2

(
z−μz

σz

)2
)

︸ ︷︷ ︸
Free-flow momentum absorption

+ θpor gx ·
(

1
2

erfc
(

z − μz√
2σz

))
︸ ︷︷ ︸

Darcy drag absorption

. (3.2)

With (uμ
τ )2 = gx (h − μz), the formulation of the first term in (3.2) ensures that all

momentum introduced by the source term gx between the free surface and the mean
position μz is absorbed. Accordingly, uμ

τ is the consistent friction velocity for the interface-
adapted flow depth hμ = (h − μz). The second term in (3.2) represents the absorbed Darcy
drag, which is computed from an equilibrium with the volume forces acting on the fluid in
the pore space of the porous medium, which has a bulk porosity of value θpor = 0.385.

For each simulated case, a nonlinear least-square fit of f (z, μz, σz) to the actual drag
distribution f s

(p+ν) yields case-specific values for the fitting parameters μz and σz , which
are listed in table 2. Figure 5 shows that the fitted function achieves a good approximation
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Case μz/D σz/D hμ/h Reμ
τ Reμ

K λ k+
s

L-180 0.141 0.272 0.953 162 1.59 0.159 131
L-300 0.093 0.283 0.969 286 2.78 0.161 204
M-150 0.215 0.276 0.957 144 0.85 0.111 59
M-300 0.143 0.290 0.971 286 1.67 0.119 126
M-500 0.096 0.303 0.981 482 2.79 0.118 202
S-150 0.257 0.271 0.974 143 0.41 0.060 16
S-300 0.202 0.273 0.980 289 0.83 0.074 50
S-500 0.151 0.287 0.985 489 1.39 0.079 95
I-180 – – 1.000 174 0.00 0.033 0
I-300 – – 1.000 300 0.00 0.028 0
I-500 – – 1.000 500 0.00 0.024 0

Table 2. Parameters of the drag-based interface as well as interface-adapted flow depth and Reynolds numbers.
The parameters μz and σz specify a mean interface position and an interfacial length scale, respectively. The
interface-adapted flow depth is defined as hμ = h − μz , where h is the nominal flow depth. The interface-
adapted Reynolds numbers are defined as Reμ

τ = uμ
τ hμ/ν and ReK = uμ

τ

√
K/ν, respectively, where uμ

τ =√
gx hμ is the interface-adapted friction velocity. The Darcy–Weisbach friction factor λ and the equivalent sand

roughness ks were determined as described in v.Wenczowski & Manhart (2024). The variable D represents the
sphere diameter.

(a) (b) (c)Cases with h/D = 3 Cases with h/D = 5 Cases with h/D = 10

z/D

L-180

L-300

f (z, μz, σz)

M-150

M-300

M-300

f (z, μz, σz)

S-150

S-500

−1.5 −1.0

f s
( p+v) ˙ D/u2

τ

−0.5 0−1.5 −1.0

f s
( p+v) ˙ D/u2

τ

−0.5 0−1.5 −1.0

f s
( p+v) ˙ D/u2

τ

−0.5 0

S-300

f (z, μz, σz)

1

0

−1

Figure 5. Distribution of the superficially double-averaged drag on the sediment bed. The coloured curves
with symbols represent the drag-distribution obtained from the simulation (see (3.1)), while the dashed black
lines represent the approximation by the fitting function using the case-specific fitting parameters μz and σz
(see (3.2)). Each of the three plots summarises simulation cases with an equal h/D ratio. The sphere diameter
D and the shear velocity uτ are used for normalisation. Figure adapted from v.Wenczowski & Manhart (2024).

of the drag distribution. The obtained parameter μz represents the centroid of the free-
flow momentum absorption peak, and is thus interpreted as the mean interface position.
The spread σz of the drag peak was used as a proxy for an interfacial length scale.

While the nominal parameters of the simulation cases in table 1 refer to the
geometrically defined interface, table 2 provides the interface-adapted flow depths and
Reynolds numbers. For the computation of the interface-adapted Reynolds numbers, a
consistent friction velocity is used, which is obtained as uμ

τ = √
gx hμ. Whereas the
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Reynolds numbers of cases with smooth impermeable walls do not change, it is worthwhile
to note that Reμ

τ < Reτ and Reμ
K < ReK for cases with rough and permeable surfaces.

In the following, the vertical position is either specified in terms of z/D or z/h, where
z refers to the geometrically defined interface. Alternatively to z/h, we use the interface-
adapted coordinate ζ = (z − μz)/(h − μz) for orientation in the free-flow region, where
ζ = 0 coincides with the drag-based interface and ζ = 1 with the free-slip water surface.

In v.Wenczowski & Manhart (2024), we demonstrated that the flow-dynamically
motivated drag-based interface and the adapted parameters allow us to unravel several
similarities in the flow field, which we could not see clearly within the framework of the
geometric interface. Particularly in advection-dominated regions, it appears unlikely to
find potential similarities in the scalar field if there are no similarities in the flow field,
such that we resort to the drag-based interface whenever we aim to investigate similarities.
While we will employ the drag-based interface framework in parts where similarities
are addressed, other paragraphs can be presented more conveniently with respect to the
geometric interface.

3.5. Numerical methods
To resolve all temporal and spatial scales both in the free-flow region and in the pores of the
sphere pack, we follow a single-domain DNS approach, which avoids model assumptions.
The simulations were conducted by means of our MPI-parallel in-house code MGLET
(Manhart, Tremblay & Friedrich 2001; Manhart 2004; Sakai et al. 2019), which solves the
incompressible Navier–Stokes equations using an energy-conserving central second-order
finite-volume method. MGLET resorts to an explicit third-order low-storage Runge–Kutta
method (Williamson 1980) for the time integration. Local grid refinement was applied to
ensure that the Kolmogorov and Batchelor scales are resolved within the complete domain.
The highest spatial resolution is required near the surface of the sediment bed, where we
use cubic cells with a side length of 
x+

i � 1 (see table 1). Within the porous medium, a
resolution of 48 cells per sphere diameter was found to yield a good resolution of the pore
space (v.Wenczowski & Manhart 2024). The geometry of the sphere pack is represented
by an immersed boundary method. The no-slip Dirichlet condition on the sphere surfaces
is enforced by a ghost-cell approach, which reaches second-order spatial accuracy for
the velocity field, while mass conservation is ensured (Peller et al. 2006; Peller 2010).
The zero-flux Neumann boundary condition for the scalar reaches first-order spatial
accuracy at the immersed boundary. By its construction, the implementation ensures strict
conservation of the scalar within the complex geometry, such that we tolerate the reduced
order in comparison to the velocity field. Commonly used spatial discretisation methods
fail to resolve the infinitesimally narrow fluid gap at the contact points between spheres
(Finn & Apte 2013; Unglehrt & Manhart 2022). To achieve a convergence against a defined
geometry, we insert small fillet bridges, which seal regions where the sphere surfaces are
extremely close to each other (v.Wenczowski & Manhart 2024). We acknowledge that the
contact points influence the mixing processes on the microscale (e.g. Heyman et al. 2020),
but, as errors cannot be completely avoided, it appears preferable to commit a quantifiable
error, which is independent of the grid resolution.

3.6. Convergence study
A case-specific grid study of the turbulent velocity field is documented in v.Wenczowski
& Manhart (2024). This allows us to focus on the grid convergence of scalar profiles
and the scalar transport processes, whereas turbulent and dispersive transport implicitly
reflect the influence of the velocity field. The grid study is carried out on case L-180,
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Figure 6. Grid study for case L-180. The scalar concentration profile (a) and the relative contributions of
different transport processes to the total scalar flux (b–d) are evaluated for different grids with cubic cells of
side length 
x . The side length 
x is normalised by the sphere diameter D. A resolution of D/
x = 48
corresponds to 
x+

i = 1.21.

2

0

−2

−4

2

0

−2

−4

2

0

−2

−4

2

0

−2

−4

0 0.5

(c − cbot)/�c

uτTs/h = 
3

6

12

24

θ〈w′c′〉/〈J 〉s
tot

1.0 0 0.5 1.0 0 0.5 1.0 0 0.5 1.0

z/D

(a) (b) (c) (d)Scalar profile Turbulent Dispersive Diffusive

θ〈w∼c∼〉/〈J 〉s
tot −θ〈Γc ∂c/∂z〉/〈J 〉s

tot

Figure 7. Statistical convergence study for case L-180. Besides the scalar concentration profile (a), relative
contributions of different transport processes to the total scalar flux (b–d) are evaluated after different statistical
sampling time spans Ts . The sampling time span is normalised by the friction velocity uτ and the flow depth h.

which is the computationally cheapest simulation. Spatial resolutions with 16, 24, 32 and
48 cells per sphere diameter D are compared. Figure 6 shows that the grid dependence
is largest in deeper sediment layers, where insufficiently resolved configurations tend to
underpredict diffusive scalar transport, while overpredicting the relative importance of
dispersive transport.

In the flow case under consideration, the molecular scalar diffusion in the sediment bed
is characterised by the largest time scale, which makes it the ‘slowest’ among all physical
processes involved. Accordingly, the scalar field also requires more simulated time to reach
a statistically stationary state than the velocity field. Due to that, the sampling of quantities
related to scalar transport was only initiated a while after the sampling of velocity data
had started. As a result, the scalar statistics were gathered over Tsub/Lx > 10, which
corresponds to Tsuτ /h > 13. Thus, the scalar sampling time period Ts is about half as long
as the sampling period T of the velocity field (v.Wenczowski & Manhart 2024). Using case
L-180 as an example, the statistical convergence study in figure 7 shows a fast statistical
convergence in the near-interface region, where turbulent motion on smaller length scales
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and shorter time scales is expected. In comparison, absolute statistical convergence in the
free-flow region requires longer statistical sampling periods, whereas the time span Ts
appears to be just sufficient for the convergence of second-order statistics.

4. Results
The following § 4.1 provides an overview of the scalar concentration profiles under
different normalisation. Similarities in the free-flow region scalar concentration profile
(§ 4.2) can be traced back to a similarity in the effective diffusivity, as shown in § 4.3.
Section 4.4 presents the dominant processes within different regions. Local hotspots
of different transport processes are identified in § 4.5. Finally, § 4.6 focuses on the
near-interface interaction between dispersive and turbulent transport.

4.1. Double-averaged scalar concentration profiles
The three plots in figure 8 show the intrinsically double-averaged scalar concentration 〈c〉
under different normalisations. In figure 8(a) the concentration profile is normalised by the
concentration difference 
c = ctop − cbot. Accordingly, the obtained curves show a zero
value at the bottom boundary and increase monotonically, until they reach a value of unity
at the top domain boundary. The vertical coordinate z is normalised by the sphere diameter
D. Whilst all domains have the same depth of 5 D, the top domain boundary is found
at different heights in terms of z/D. The gradient of the double-averaged concentration
profile differs drastically between the free-flow region and the sediment bed. In the free-
flow region a small gradient ∂〈c〉/∂z suffices to maintain the bed-normal scalar flux,
which hints at a high effective conductivity in this region. Within the sediment bed, a
critically steeper concentration gradient indicates that the vertical scalar flux encounters
a high resistance. For cases with low ReK , the profiles are approximately linear in the
region of z/D < 0, whereas increasing values of ReK lead to a progressively stronger
curvature in the profiles below the interface, which points at a variation of the effective
conductivity over the depth of the sediment bed. In figure 8(b) the vertical coordinate z
is normalised by the flow depth h, which allows us to include the cases with smooth and
impermeably bottom boundaries. Under normalisation with 
c, the concentration profiles
deviate considerably from each other, as the scalar concentration at the geometrically
defined interface at z/D = 0 differs between the cases. This observation motivates the
normalisation applied in figure 8(c), where the concentration at z = 0 acts as a reference.
Under this normalisation, the profiles in the free-flow region have a similar shape, though
they still do not collapse.

4.2. Similarities in the free-flow region
To explore similarities in the free-flow scalar concentration profiles among all simulated
cases, we resort to the dimensionless quantity 〈c〉+, which is defined as

〈c〉+ = 〈c〉
cτ

, with cτ = 〈J 〉s
tot

uμ
τ

and uμ
τ =√

gx hμ. (4.1)

The variable cτ in (4.1) represents the friction scalar concentration (in analogy to the
friction temperature), which is computed from the superficially double-averaged total
scalar flux 〈J 〉s

tot in the bed-normal direction and the friction velocity uμ
τ . The friction

velocity is obtained via a balance between the driving volume force and the wall friction,
which includes the interface-adapted flow depth hμ (see (4.1)). In figure 9 the scalar
concentration profiles are shown in a defect form, which exploits the prescribed fixed
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Figure 8. Double-averaged scalar concentration profiles under different normalisations. (a) Scalar
concentration normalised by the concentration difference between the bottom and top of the domain, i.e.

c = ctop − cbot, and coordinate z normalised by the sphere diameter D, such that the top domain boundary is
found at z/D = 3, z/D = 5 or z/D = 10 for L, M and S cases, respectively. (b) Normalisation of concentration
profile like (a), but z normalised by the flow depth h. Accordingly, the bottom domain boundary is found at
z/h = −1.67, z/h = −1 or z/h = −0.5 for L, M and S cases, respectively. (c) Concentration profile normalised
by ctop − 〈c〉(z=0), whereas the double-averaged concentration at z = 0 is a reference. The coordinate z is
normalised by h.
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Figure 9. Defect representation of the dimensionless double-averaged concentration field. The concentration
ctop is prescribed at the top domain boundary. The dimensionless vertical coordinate ζ accounts for the drag-
based interface position μz .
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Figure 10. Effective scalar diffusivity profile in the free-flow region. The effective diffusivity Γeff is normalised
by the molecular diffusivity Γc. The dimensionless vertical coordinate ζ accounts for the drag-based interface
position μz .

concentration value ctop at the clearly defined top domain boundary. The distance above
the sediment is given relative to the flow depth under consideration of the interface position
at z = μz . Above a certain distance from the bed surface, the dimensionless scalar defect
profiles for cases with similar Reτ collapse well, indicating an outer-layer similarity of
the scalar field.

4.3. Effective diffusivity
The observed similarity under consideration of the total scalar flux also hints at a similarity
of the effective scalar diffusivity among cases with similar Reτ . Therefore, figure 10
provides profiles of the effective diffusivity, which is set in relation to the molecular
diffusivity of the scalar. This ratio of Γeff/Γc can be interpreted as a local Sherwood
number for a differentially thin slice at a certain z position. Near the sediment–water
interface, the profiles appear to group roughly according to the nominal permeability
Reynolds numbers, as high values of ReK are correlated with higher values of Γeff/Γc.
In the free-flow region the expected grouping according to Reτ is recognisable, whilst
differences become most visible in the peak values around ζ ≈ 0.5.

To investigate the scaling behaviour in detail, figure 11(a) shows the effective
diffusivity at the drag-based interface as a multiple of the molecular scalar diffusivity.
The values are plotted over the interface-adapted permeability Reynolds number Reμ

K .
In addition, the dashed reference line represents the values predicted by the model of
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Figure 11. Scaling of the effective diffusivity Γeff at the drag-based interface at ζ = 0, i.e. z = μz , and in
the centre of the free-flow region, i.e. ζ = 0.5. The effective diffusivity is normalised by the molecular scalar
diffusivity Γc. The adapted Reynolds numbers Reμ

τ and Reμ
K account for the drag-based interface. In (a) the

relation according to Voermans et al. (2018) is given as a reference (dashed line). This relation includes a
transition from a ‘dispersive’ to a ‘turbulent’ regime at ReK ≈ 1, which is marked in grey.

Voermans et al. (2018). The model provides separate expressions for the dispersive regime
(ReK < 1) and the turbulent regime (ReK > 1), which we evaluate for Sc = 1. Whereas
the model prediction captures the macroscopic trend reasonably well, it underpredicts
the numerically obtained effective diffusivity for low ReK . According to the model of
Voermans et al. (2018), the diffusive regime with Γeff/Γc = 1 is only reached for ReK <

0.02. In contrast to that, our data points suggest that Γeff/Γc ≈ 1 is already observed for
case S-150. As discussed later in § 5, this observation can be linked to different Schmidt
numbers. Figure 11(b) shows the scaling behaviour of the effective diffusivity in the centre
of the free-flow region, i.e. at ζ = 0.5. The value of Γeff/Γc increases linearly with respect
to the interface-adapted friction Reynolds number Reμ

τ = uμ
τ hμ/ν. From that, one can

deduce that Γeff(η = 0.5) ≈ 0.1 uμ
τ hμ, which means that the effective diffusivity in the

free-flow region scales with the same interface-adapted velocity and length scales as the
velocity field (v.Wenczowski & Manhart 2024).

For modelling, the turbulent Schmidt number Sct = νt/Γt is a relevant parameter, as
it represents the ratio between turbulent effective viscosity νt = 〈u′w′〉/〈∂u/∂z〉 and the
turbulent effective diffusivity Γt = 〈c′w′〉/〈∂c/∂z〉. As shown in figure 12, the turbulent
Schmidt number has a nearly constant value of slightly less than unity over large parts
of the free-flow region, which agrees with previous studies (e.g. Schwertfirm & Manhart
2007; Pirozzoli, Bernardini & Orlandi 2016). However, Sct deviates considerably from
unity in regions influenced by the boundary conditions that are of different types for the
scalar and the velocity field. In the region directly below the crests of the topmost spheres,
i.e. near 0.5 < z/D < 1.0, the turbulent Schmidt number decreases. For the cases with
high ReK , it drops as low as Sct,min ≈ 0.55, which qualitatively agrees with the findings
of Chandesris et al. (2013), who considered a critically more porous bed with θ = 0.875.

4.4. Scalar transport processes
The previous section has shown that the effective diffusivity of the scalar exceeds the
molecular diffusivity by far, which implies that other non-Fickian transport processes
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Figure 12. Turbulent Schmidt number Sct within the free-flow region. The dimensionless vertical coordinate
ζ accounts for the drag-based interface position μz .

contribute greatly to the total scalar flux 〈J 〉tot. For each case separately, the plots in
figure 13 show the relative contributions of turbulent, dispersive and diffusive transport
to the total bed-normal scalar flux as a function of z. At the free-slip top boundary of the
domain, a thin layer exists where only diffusive scalar transport takes place in the absence
of surface-normal fluid motion. Away from this diffusion-dominated layer, turbulent
transport is dominant throughout the free-flow region. Around the position of z ≈ 0,
however, the influence of turbulent transport declines drastically with decreasing z, while
diffusive and dispersive quickly gain relevance. For the simulated cases with unity Schmidt
number, the permeability Reynolds number seems to determine whether diffusive or
dispersive transport is dominant. Only for case S-150 with ReK ≈ 0.4, diffusive transport
dominates over dispersive transport within the complete sediment bed. For ReK ≈ 0.8
(e.g. cases M-150 and S-300), the contributions of both processes are approximately equal
within the region directly below the sediment bed surface. With increasing ReK , dispersive
transport finally dominates in the layer shortly below the sediment surface. Deeper inside
the sediment bed, the contribution of dispersive transport fades out to the benefit of
diffusive transport. Finally, diffusive transport is once again exclusively responsible for
the scalar flux across the bottom domain boundary.

The plots in figure 13 visualise that the decline of turbulent scalar transport and the
increase in dispersive transport with decreasing z happen within a relatively narrow region
near the interface. Within this narrow region, the bed-normal scalar transport due to
molecular diffusion reaches a local maximum, hinting at the presence of higher vertical
concentration gradients. The elevation z(turb=disp), at which the contributions of turbulent
and dispersive transport are equally large, coincides fairly well with the position of the
drag-based interface, which is found at z = μz . As shown by figure 14, both z(turb=disp) and
μz decrease with increasing ReK , such that both approach the position of the geometrically
defined interface. The grey dashed line is the same in both plots and provides a
reference.

Figure 15 focuses on the near-interface region and compares all simulated cases. The
grouping of curves corroborates the concept of Voermans et al. (2018), according to
which ReK determines the dominant scalar transport processes. With increasing ReK ,
turbulent scalar transport can affect progressively deeper regions of the sediment bed.
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Figure 13. Relative contribution of different scalar transport processes to the total superficially averaged scalar
flux 〈J 〉s

tot in the bed-normal direction. The dotted lines indicate the geometrically defined interface at z = 0,
whereas the dashed lines mark the drag-based interface position z = μz for each case.

Deeper below the interface, however, the contribution of turbulent scalar transport tails
out. This observation is contrasted by the dispersive transport, which gains maximal
influence in the near-interface region and only decreases gradually in deeper regions. At
the largest ReK of our parameter space, nearly the complete scalar transport at z/D ≈ −1
is leveraged by dispersive transport. As the contributions of dispersive and turbulent
transport increase at the interface, the relative share of transport due to molecular diffusion
decreases at progressively higher ReK .
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Figure 14. Transition between turbulent and dispersive transport at the interface. The position z(turb=disp)

marks where the dispersive scalar flux equals the turbulent flux, i.e. 〈J 〉s
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turb, and is plotted over ReK .
Similarly, the position μz of the drag-based interface is plotted over ReK . The dashed line marks a common
trend.
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Figure 15. Influence of the permeability Reynolds number ReK on the relative contributions of different scalar
transport processes to the total scalar flux 〈J 〉s

tot in the bed-normal direction. The curves group according to
ReK . The vertical coordinate z is normalised by the sphere diameter D. Note that the normalisation of a flux
by 〈J 〉s

tot corresponds to a normalisation by (uμ
τ cτ ).

In figure 15 the impact of different processes was evaluated in terms of their relative
contribution to the total scalar flux. This representation may yield the impression that
the sub-interface dispersive scalar transport is as effective as the turbulent transport in
the free-flow region. Figure 16 corrects this impression by providing the process-specific
effective diffusivities, which result from a comparison to the diffusive scalar transport.
Above the sediment bed, the scalar field is well mixed, such that hardly any vertical
concentration gradient is present, and the turbulent scalar transport achieves a higher
effective diffusivity. In contrast, dispersive transport acts below the interface, where
comparatively strong vertical scalar concentration gradients prevail, which exposes a lower
effective diffusivity associated with the process. The near-interface turbulent effective
diffusivity profiles collapse well for cases with similar ReK . In comparison, differences
between the dispersive effective diffusivity profiles are larger. A possible reason could be
that specific geometrical properties of the generated sediment beds have more impact on
the dispersive transport.
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Figure 16. Process-specific effective diffusivity profiles for turbulent and dispersive scalar transport in the
near-interface region. The effective diffusivity is normalised by the molecular diffusivity and the vertical
coordinate z by the sphere diameter D. The profiles tend to group according to ReK .

4.5. Distribution of scalar transport processes in space
Dispersive transport requires a correlation between the spatial variations of the time
averaged bed-normal velocity field and the scalar concentration field, whereas turbulent
scalar transport requires a correlation of the temporal fluctuations of the two fields. The
scatter plots in figure 17 visualise the quality of these correlations at the position z = 0 of
case M-500. Regions of downwelling time-averaged fluid motion through the interface are
characterised by w̃ < 0. The samples in the third and fourth quadrant of figure 17(a) show
that c̃ is close to zero under these conditions, with only a slight tendency towards positive
values. This suggests that downwelling motion at the geometrically defined interface
transports fluid with a nearly uniform scalar concentration from the well-mixed free-
flow region into the sediment bed. In contrast, the scalar concentration in the upwelling
flow (w̃ > 0) varies over a much wider range. The scalar concentration in the free-
flow region seems to impose an upper limit for positive c̃ (see first quadrant). In some
upwelling regions, however, c̃ has negative values of high amplitude, as shown by the
circles in the second quadrant. At these sampled locations, fluid with scalar concentrations
closer to cbot is transported upwards through the interface. A reason could be that
individual nearly vertical flow paths exist that cross regions of high vertical concentration
gradients and advect fluid from deeper layers upwards. For turbulent transport resulting
from temporal fluctuations, however, similar observations cannot be made. As shown in
figure 17(b), the negative correlation between w′ and c′ becomes mainly visible from a
few points in the second and fourth quadrant. These observations suggest that dispersive
and turbulent transport behave differently, which we will investigate further by analysing
their distribution in space.

Figure 18 shows the local contributions to turbulent, dispersive and diffusive transport
within an arbitrarily chosen vertical slice through case M-500. Above z/D ≈ 2, the
turbulent scalar transport seems to occur nearly uniformly distributed in space, which
suggests that this region is well mixed. Only at a few individual spots, turbulenttransport
takes place within the pore space below the bed surface. In contrast, several local hotspots
of increased bed-normal turbulent scalar transport are found directly above the sediment–
water interface, e.g. at x/D ≈ 14 or x/D ≈ 58 in figure 18(a). The observations made in
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Figure 17. Correlations between the bed-normal velocity w and the scalar concentration c. Correlated spatial
variations (a) are responsible for dispersive scalar transport. Correlated temporal fluctuations (b) are required
for turbulent scalar transport. Each point represents a sample taken at a random position within the plane z = 0
of case M-500. The red colour indicates a positive contribution and the blue colour a negative contribution to
the scalar transport.

the arbitrarily chosen slice suggest that hotspots of turbulent scalar transport above the
interface occur where upwelling fluid motion contributes strongly to enhanced dispersive
transport below the sediment–water interface. In figure 18(b), two such locations are
marked by arrows. In their appearance, these locations resemble chimneys, which release
the scalar quantity. Continuing in this analogy, the transition from dispersive to turbulent
transport near the interface represents the outlet of the sub-interface chimney, from
which the released scalar is immediately advected downstream within the free-flow field.
Due to this downstream advection, a strong vertical concentration gradient prevails at
the chimney outlet, which fosters the local diffusive scalar transport. In figure 18(c),
two such near-interface locations with local maxima of diffusive transport are marked
by arrows.

The insight from the local contributions to turbulent, dispersive and diffusive transport
facilitates the interpretation of the double-averaged flux values, previously presented
in figure 13. Accordingly, the sharp near-interface transition between dispersive and
turbulent transport coincides with the outlets of the sub-interface chimneys. The enhanced
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Figure 18. Local contributions to the turbulent, dispersive and diffusive scalar transport within an arbitrarily
chosen x–z-plane of simulation case M-500. The values are normalised by the absolute value of the
superficially averaged total scalar flux 〈J 〉s

tot. Coordinates in the x- and z-direction are given in x/D and z/D,
respectively, where D is the sphere diameter.

diffusive transport at the chimney outlets explains the local maximum in the share of
the diffusive scalar transport, which accompanies the transition between dispersive and
turbulent transport. The abrupt transition at the chimney outlets also implies that there
is hardly any spatial overlap between dispersive and turbulent scalar transport hotspots.
Rather, one process replaces the other such that the local vertical scalar flux is continued
across the interface.

4.6. Interaction at the interface
The previous sections have shown that different scalar transport processes are active in
the near-interface region. In the following, we aim to describe their interaction both
qualitatively and quantitatively. For the qualitative investigation, we consider the arbitrarily
chosen vertical slice through case M-500, for which different quantities are provided in
figure 19. Figure 19(a) shows the time-averaged scalar concentration field. Even with a
strongly nonlinear colour map, hardly any concentration differences become visible in
the well-mixed free-flow region. Strong scalar concentration gradients, however, prevail
within the sediment bed. It is remarkable that isoconcentration surfaces in this region
are not even approximately parallel to the surface of the sediment bed, but have a
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Figure 19. Form-induced production of temporal scalar fluctuations. The mean scalar concentration field
(a) and an instantaneous scalar concentration field (b) are shown within an arbitrarily chosen x-z-plane of
simulation case M-500. The form-induced production (c) appears strongly localised with spots of strong
intensity near the chimneys, of which one is marked by the dashed box. Coordinates in x- and z-direction
are given in x/D and z/D, respectively, where D is the sphere diameter.

strong relief. For cases with lower ReK , this relief is not as strong, yet still present
(not shown). Figure 19(b) shows a realisation of the instantaneous scalar concentration
field. The strongly nonlinear colour map emphasises concentration differences in the free-
flow region. In particular near the chimney outlets, the interaction between turbulent fluid
motion and the scalar concentration field becomes visible and suggests enhanced turbulent
mixing at these locations. One such location is marked by dashed boxed in figure 19(b).
As formally shown by (2.10) and (2.11) in § 2.4, the form-induced production mechanism
creates temporal scalar fluctuations, while reducing the spatial variance in the scalar
field. Figure 19(c) corroborates that the marked location acts as one hotspot of form-
induced production, while further hotspots are found around the chimneys at x/D ≈ 14 or
x/D ≈ 58 (not shown). The visualisation by volume rendering uses a logarithmic colour
map, as regions of high form-induced production appear strongly localised. Most hotspots
of form-induced production are found between the spheres in the topmost layer of the
sediment bed. Below that, the local observation suggests that only a few spots of high
form-induced production intensity occur primarily in larger pores, which are likely to
provide good conditions for turbulent mixing. Apart from those local hotspots, hardly any
form-induced production can be detected in large parts of the porous medium.
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Figure 20. Production mechanisms of temporal scalar fluctuations: profiles of form-induced production
(a) and gradient production (b) in direct comparison. For normalisation, the friction velocity uτ , the friction
scalar concentration cτ = 〈J 〉tot/uτ and the sphere diameter D are used.

To assess the impact and the scaling behaviour of form-induced production, we
evaluate double-averaged profiles. Figure 20(a) shows the profiles of form-induced
production intensity, using the sphere diameter, the friction velocity and the friction scalar
concentration value for a normalisation with interface-related scales. Except for S-150,
all cases exhibit a form-induced production peak, which is found at z/D ≈ 0.5 for lower
ReK and moves towards z/D ≈ 0.2 with increasing ReK . Under the given normalisation,
the amplitude of the peak increases with ReK , causing the curves to group roughly
accordingly. Below the peak, the form-induced production declines with increasing depth,
whereas the tailing behaviour is similarly determined by ReK . For cases with high ReK ,
the form-induced production introduces temporal scalar fluctuation even at greater depth.
Most notably for case L-300, the profile is not fully smooth but exhibits characteristic
features. This agrees with the observation that the form-induced production does not occur
uniformly in space, but rather concentrates in certain locations. To put the influence of
the form-induced production in relation, figure 20(b) shows the gradient production of
scalar fluctuations. For all cases with ReK > 1, the peak of the form-induced production is
considerably larger than the peak value of the gradient production. A further difference to
the form-induced production is that gradient production hardly affects the region z/D < 0,
whereas it does have influence in the free-flow region.

5. Discussion
The defect representation of the double-averaged concentration profiles reveals an outer-
layer similarity among cases with similar Reτ (figure 9). This similarity shows up under
the normalisation 〈c〉+ = 〈c〉 uμ

τ / 〈J 〉s
tot, in which the flux compensates for different

conditions in the bed and the friction velocity acts as a velocity scale. The similarity under
consideration of the flux implies that the ratio between effective and molecular diffusivity,
i.e. Γeff/Γc, at a certain vertical position is determined by Reτ or, even more accurately, by
the interface-adapted Reynolds number Reμ

τ (figure 11). The observations that Γeff scales
with uμ

τ hμ and that the turbulent Schmidt number is near unity over large parts of the flow
depth agree well with the findings of Pirozzoli et al. (2016) for smooth-wall channel flow.
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It has been observed in v.Wenczowski & Manhart (2024) that also the outer-layer velocity
profiles and turbulent fields show similarities at similar Reτ , if the drag-based interface
position is used. In our view, those similarities are tightly linked to the observed similarity
of the concentration profiles in the outer layer, which is dominated by turbulent transport.

While the free-flow region is dominated by turbulent transport, different scalar transport
regimes can be distinguished at the sediment–water interface. According to Voermans
et al. (2018), the transition from the diffusive to the dispersive regime takes place at
ReK ≈ 0.02. For case S-150, which is characterised by ReK ≈ 0.4, however, we already
observe that molecular diffusion dominates the near-interface scalar transport (figure 15).
This discrepancy may be explained by the role of the Schmidt number Sc = ν/Γ , which
was set to unity in the present study. To avoid jumps in the predicted effective diffusivity
between the diffusive regime (Deff/Γ = 1 for ReK < 0.02) and the dispersive regime
(Deff/Γ = 1.6 Re2

K Sc for ReK > 0.02), however, Voermans et al. (2018) implicitly
assumed that Sc = O(103), which is realistic for dissolved substances in water. To close
the comparability gap, we refer to the Péclet number, which allows us to judge if a process
is dominated by advection (Pe � 1) or diffusion (Pe 
 1). For Sc = 1 and

√
K as the

characteristic length scale, we obtain a permeability Péclet number PeK = Sc ReK = 1
already for ReK = 1. In fact, cases M-150 and S-300 show nearly equal shares of diffusive
and dispersive transport at the interface (figure 13). For Sc = O(103), critically lower
values of ReK suffice to reach PeK = O(1). This suggests that the permeability Péclet
number PeK is a more robust parameter to predict the transition between the diffusive
and the dispersive regime, which avoids implicit assumptions concerning the Schmidt
number. In fact, O’Connor & Harvey (2008) considered PeK in their categorisation of
the interfacial transport regime.

In the near-interface region, dispersive transport declines rapidly and turbulent transport
increases rapidly, if one moves upward in the positive z direction. As a result, one
transport process replaces the other over a vertical distance of only approximately one
sphere diameter. Thus, if one wishes to determine which process dominates the scalar
transport across the sediment–water interface, the actual definition of the interface
becomes relevant. Voermans et al. (2018) referred to a geometrical interface definition
based on the inflection point of the porosity profile. For progressively higher ReK , our data
shows that turbulent transport becomes responsible for larger shares of the scalar transport
across this geometrically defined interface, which supports the notion of a transition from
the dispersive to the turbulent regime around ReK ≈ 1 − 2 (figure 15). In v.Wenczowski
& Manhart (2024), we had deduced the interface position from the drag distribution on
the porous medium. The present study indicates that the transition between dispersive
and turbulent transport follows approximately the position of the drag-based interface
(figure 14). Accordingly, no obvious transition between the dispersive and the turbulent
regime can be observed at the drag-based interface. Once PeK is large enough such that the
transition from the diffusive to the dispersive regime has taken place, the relevant question
according to our data is not whether the interface region is dominated by turbulent or
dispersive transport, but rather at which depth the dispersive transport takes over. Our data
suggest that this depth is linked to how deep the streamwise momentum of the free flow
entrains into the sediment bed.

To investigate the interaction between the dispersive and the turbulent scalar transport
in the interface region, we referred to the form-induced production mechanism, which
produces temporal scalar fluctuations 〈c′c′〉, while it reduces spatial in-plane variations in
the scalar field 〈̃c c̃〉. For the turbulent kinetic energy, a similar form-induced production
mechanism is known, which produces temporal velocity fluctuations 〈u′

i u
′
i 〉 at the expense
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of spatial variations in the velocity field 〈̃ui ũi 〉. For the turbulent kinetic energy, however,
form-induced production plays a minor role in comparison to shear production for
ReK < 3 (e.g. Fang et al. 2018; Shen et al. 2020). That is in strong contrast to the scalar
form-induced production, which already acts as the primary source of scalar fluctuations
for cases with ReK > 1 (figure 20). The critically different role of form-induced production
is likely linked to the different boundary conditions on the sphere surface: For the
velocity field, the Dirichlet-type no-slip boundary condition prescribes ui = 0 on the
sphere surfaces, such that velocity variations can only occur on the length scale

√
K of the

pore space. For the scalar field, however, the zero-flux (adiabatic) Neumann-type boundary
condition on the sphere surface allows the development of spatial variations of c on larger
length scales (figure 19a). Particularly in regions with upwelling fluid motion, fluid with
scalar concentrations typical of deeper regions can reach the interface. These upwelling
regions resemble chimneys and seem to contribute greatly to the dispersive scalar transport
(figure 17). The upper end of these chimneys is reached near the surface of the sediment
bed, where turbulent fluid motion mixes the scalar field in the bed-parallel direction.

All before-mentioned aspects underline that the form-induced production, i.e. the
transfer of spatial variations into temporal fluctuations of the scalar field due to turbulent
transport acting against local in-plane scalar gradients, plays a critical role for the
transition between dispersive and turbulent scalar transport, as hypothesised by Voermans
et al. (2018). This allows us to connect different observations: with increasing ReK ,
turbulent fluid motion entrains deeper into the pore space (see, e.g. Voermans et al.
2017; v.Wenczowski & Manhart 2024), form-induced production peaks at a lower position
(figure 20) and the transition between dispersive and turbulent scalar transport also
happens deeper below the crests of the sediment bed (figure 14). Furthermore, the
form-induced production mechanism explains why the transition between turbulent and
dispersive transport occurs within a thin layer of approximately one sphere diameter
(figure 13). By enhancing the temporal fluctuations in the near-interface scalar field, form-
induced production creates favourable conditions for the turbulent scalar transport, which
coincides with a turbulent Schmidt number of Sct < 1 at the interface (figure 12).

6. Conclusion
We conducted pore-resolved DNS of turbulent flow over mono-disperse random sphere
packs. The flow simulation was coupled with the solution of the advection–diffusion
equation for a passive scalar at a Schmidt number of Sc = 1. Fixed scalar concentration
values at the bottom and top of the flow domain were prescribed to induce a bed-normal
scalar flux, whereas the sphere surfaces were impermeable to scalar fluxes. After a careful
convergence study, eight cases were analysed and act as sampling points arranged within a
parameter space spanned by friction Reynolds numbers Reτ ∈ [150, 500] and permeability
Reynolds numbers ReK ∈ [0.4, 2.8]. The ratios between flow depth and sphere diameter
are h/D ∈ {3, 5, 10} and the dimensionless roughness heights lie within k+

s ∈ [20, 200],
indicating either transitionally or fully rough conditions.

The free-flow region is dominated by turbulent scalar transport. The effective scalar
diffusivity in this region scales with the friction velocity and the flow depth. Also, the
dimensionless scalar concentration defect profiles collapse in the outer layer for cases
with similar Reτ , as the quantity (ctop − 〈c〉)+ implicitly accounts for the double-averaged
scalar flux. Near the interface, the influence of turbulent scalar transport declines rapidly,
whereas the impact of dispersive scalar transport increases. The position where both
transport processes contribute equally to the total bed-normal scalar flux is found near
the point where the sediment bed absorbs most momentum from the free-flow region,
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i.e. the drag-based interface position described in v.Wenczowski & Manhart (2024). The
normalised effective diffusivity at the drag-based interface scales reasonably well with the
square of ReK , which supports the model of Voermans et al. (2018) for the prediction of
this parameter. At a constant Schmidt number Sc = 1, ReK also determines the relative
contributions of different scalar transport processes and, thus, the near-interface effective
diffusivity profiles associated with individual processes. We argue, however, that the
permeability Péclet number PeK is better suited to predict whether diffusive or dispersive
transport is dominant, such that PeK can also help to compare studies with different
Schmidt numbers. With increasing depth below the surface of the sediment bed, the
influence of dispersive transport declines, such that molecular diffusion is exclusively
responsible for the vertical scalar flux. A steep gradient in the double-averaged scalar
concentration indicates that the deeper region of the sediment bed poses a high resistance
to the scalar flux.

Even in the absence of a macroscopic bed topography, locally upwelling or downwelling
time-averaged fluid motion results from grain-scale irregularities in the sediment
bed surface. Downwelling flow through the interface transports fluid with a nearly
homogeneous scalar concentration downwards from the well-mixed turbulent free-flow
region. In contrast, upwelling motion can transport fluid with strongly varying scalar
concentration through the interface. This is possible as mean flow paths within the
sediment bed cross layers with strong scalar gradients. Locations where strong upwelling
motion advects the scalar field from deeper regions to the interface resemble chimneys
and appear to have a major contribution to the dispersive scalar transport. At the same
time, the occurrence of those chimneys is linked to strong spatial variations in the scalar
concentration field below the sediment bed surface.

Form-induced production of temporal scalar fluctuations takes place when turbulent
scalar transport acts against scalar gradients resulting from in-plane concentration
variations. As a result, temporal scalar fluctuations are introduced, while spatial
variations in the scalar concentration field are removed. Thus, the form-induced
production mechanism weakens the basis for dispersive scalar transport, while it creates
favourable conditions for turbulent scalar transport. With increasing ReK , turbulent
motion can entrain into the sediment bed more easily, such that a near-interface form-
induced production peak increases, while also progressively deeper regions are affected.
Accordingly, the role of form-induced production explains why the transition between
dispersive and turbulent scalar transport happens at progressively lower positions with
increasing ReK . Furthermore, form-induced production explains the sharp transition
between turbulent and dispersive transport processes at the interface.

While we emphasised the role of the form-induced production mechanism, the
discussion of the complete budgets for temporal scalar fluctuations and spatial scalar
variations would have exceeded the scope of the present paper. Nonetheless, the evaluation
of those budgets is likely to advance the understanding of the temporal and spatial
variability of hyporheic scalar fields, which is of high importance for the organisms in
this ecologically relevant region.

Supplementary materials. Supplementary materials are available at https://doi.org/10.1017/jfm.2025.408.
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