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The phenomenon of focusing of microwave beams in a plasma near a turning-point
caustic is discussed by exploiting the analytical solution to the Gaussian beam-tracing
equations in the two-dimensional (2-D) linear-layer problem. The location of maximum
beam focusing and the beam width at that location are studied in terms of the beam initial
conditions. This focusing must be taken into account to interpret Doppler backscatter-
ing (DBS) measurements. We find that the filter function that characterises the scattering
intensity contribution along the beam path through the plasma is inversely proportional to
the beam width, predicting enhanced scattering from the beam focusing region. We show
that the DBS signal enhancement for decreasing incident angles between the beam path
and the density gradient is due to beam focusing and not due to forward scattering, as
was originally proposed by (Gusakov et al., (Plasma Phys. Contr. Fusion, vol. 56, 2014,
p. 0250092014, 2017); Plasma Phys. Rep. vol. 43(6), 2017, pp. 605–613). The analytic
beam model is used to predict the measurement of the ky density-fluctuation wavenum-
ber power spectrum via DBS, showing that, in an NSTX-inspired example, the spectral
exponent of the turbulent, intermediate-to-high ky density-fluctuation spectrum might be
quantitatively measurable via DBS, but not the spectral peak corresponding to the driving
scale of the turbulent cascade.
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1. Introduction

The confinement of plasmas in magnetically confined fusion experiments, such as
tokamaks and stellarators, is dictated by small-scale microturbulence fluctuations.
The turbulence produces anomalous transport of particles and heat, determining the
background equilibrium profiles of density and temperature. In the past decades,
we have improved our understanding of microturbulence fluctuations and their
related anomalous transport using experimental measurements (Liewer 1985; Tynan,
Fujisawa & McKee 2009), analytical calculations of the micro-instabilities driving
the turbulence (Horton 1999; Garbet 2001), and using direct numerical turbulence
simulations (Garbet et al. 2010) and reduced fluid models (Staebler, Kinsey & Waltz
2005; Ivanov et al. 2020). To study turbulence in magnetic confinement fusion
devices, the theory of gyrokinetics (Catto 1978; Frieman & Chen 1982) has been
developed. Gyrokinetics has been highly successful at predicting the linear micro-
instabilities driving turbulence and the associated transport. Due to the complexity
of the equations, only linear calculations are analytically tractable in certain lim-
its, but these cannot predict the saturated turbulence. To systematically study the
turbulence saturated state and transport, the nonlinear gyrokinetic system of equa-
tions (Frieman & Chen 1982) has been implemented over the years in performance
codes such as GENE (Jenko et al. 2000), GS2 (Kotschenreuther 1995), GYRO
(Candy & Waltz 2003a; Candy & Belli 2014), CGYRO (Candy, Belli & Bravenec
2016), STELLA (Barnes, Parra & Landreman 2019) etc. These codes have been
well benchmarked (Dimits et al., 2000; Nevins et al. 2006; Bravenec et al. 2013)
and have proven successful at predicting the experimentally inferred transport levels
(Candy & Waltz, 2003b; Howard et al. 2013).

Gyrokinetic codes can also calculate intrinsic turbulence characteristics, some of
which can be measured by fluctuation diagnostics. Detailed comparisons of the
intrinsic turbulence characteristics (fluctuation spectrum, correlation length, etc.)
between the measurements and simulations remain difficult, but are becoming more
common practice (White et al. 2008; Holland et al. 2009; Hillesheim et al. 2012;
Holland et al. 2012; Leerink et al. 2012; Gusakov et al. 2013; Stroth et al. 2015;
Lechte et al. 2017; Happel et al. 2017; Ruiz et al. 2019; Krutkin et al., 2019a).
As we approach burning-plasma scenarios in the coming decade (ITER, Ikeda 2007;
SPARC, Creely et al. 2020; STEP, Wilson et al. 2020), it is important to measure and
characterise detailed physical turbulence processes in today’s tokamaks to validate
our models and to build confidence in the model’s predictions for next generation
fusion devices (Terry et al. 2008; Greenwald 2010; Holland 2016; White 2019). This
motivates a detailed understanding of the complex turbulent phenomena being mea-
sured, as well as the detailed physical mechanisms in the measurement process itself.
Both should be understood from a fundamental level.

To make quantitative comparisons between fluctuation diagnostics and numeri-
cal turbulence simulations, synthetic diagnostics are needed. Synthetic diagnostics
enable the understanding of the diagnostic effects on the measurement (Bravenec &
Nevins 2006; Shafer et al. 2006) and are a natural tool to help design new fluc-
tuation diagnostics. These require a detailed understanding of the physical process
behind the experimental measurement: collisional excitation and charge exchange
rates in the case of beam emission spectroscopy (BES) (Fonck, Duperrex & Paul
1990; Hutchinson 2002), electron cyclotron emission (ECE) physics in the case of
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ECE (Sattler, Hartfuss & Team 1994; Cima et al. 1995), plasma sheath physics for
magnetic probe measurements (Hutchinson 2002), wave diffraction physics in phase-
contrast imaging (Weisen 1988; Coda & Porkolab 1992), and microwave scattering
physics in the case of microwave diagnostics such as reflectometry (Cripwell et al.
1989; Costley et al. 1990), Doppler backscattering (DBS) (Holzhauer et al. 1998;
Hirsch et al. 2001) and high-k scattering (Mazzucato 1976; Surko & Slusher 1976;
Slusher & Surko 1980; Peebles et al. 1981), to name a few. In this manuscript, we
focus on the measurement of the turbulence wavenumber spectrum via DBS. We
use a linear-response beam-tracing model for the propagation and scattering of the
microwaves inside the plasma to assess the impact of the beam properties on the
backscattered power spectrum measured by DBS.

The Doppler backscattering technique (Holzhauer et al. 1998; Hirsch et al. 2001)
can measure the turbulent wavenumber spectrum (Hennequin et al. 2006; Hillesheim
et al. 2015), zonal and equilibrium flows (Hirsch & Holzhauer 2004; Hennequin et al.
2004; Hillesheim et al. 2016) as well as the turbulent correlation length (Schirmer
et al. 2007). To perform the measurement, a beam of microwaves is launched into
the core plasma with a finite incidence angle α0 with respect to the density gradi-
ent ∇n. The beam propagates in the plasma until it encounters a cutoff surface,
following which the forward beam is deviated away from the detector. The detec-
tor receives backscattered radiation from all along the beam path from turbulent
fluctuations with characteristic wavevector k, which are related to the incident beam
wavevector K via the Bragg condition for backscattering k = −2K. Despite the sim-
ple qualitative idea behind the measurement, there is very rich physics impacting the
scattering measurement, such as scattering along the path (Gusakov & Surkov 2004),
the mismatch angle between the incident beam K and the turbulence wavenumber k
(Rhodes et al. 2006; Hillesheim et al. 2015; Hall-Chen et al. 2022a,b,c), the Doppler
shift, and a nonlinear response of the diagnostic for sufficiently large fluctuations
(Gusakov, Surkov & Popov 2005; Blanco & Estrada 2013; Fernández-Marina et al.
2014; Krutkin et al. 2019b). One option to understand some of these effects is to
couple high-fidelity full-wave models with direct nonlinear gyrokinetic simulations.
This is a daunting task, but has been successfully carried out by some authors in the
context of DBS (Stroth et al. 2015; Happel et al. 2017; Lechte et al. 2017, 2020).
This critical and necessary exercise validates full-physics turbulence simulations as
well as full-wave codes, where agreement should be reached between the full-physics
modelling and experimental measurements. When agreement is not reached, the dif-
ference might be due to insufficient physics or resolution in the simulated turbulence,
full-wave simulations or both. These exercises make it difficult to isolate particular
physics phenomena affecting the measurement, which hinders fundamental under-
standing. A second option to understand DBS is to split the problem into smaller
pieces and to use reduced models for the turbulence, the wave propagation or both.
With reduced models, one can make analytical progress, have a strong handle on the
hypotheses and limitations and establish a clear origin of the results and predictions.
The latter is the approach we have opted for in this manuscript.

First-principles theory and analytical calculations of the DBS scattered power spec-
tra have been carried out for almost two decades by Gusakov et al. (Gusakov &
Surkov 2004; Gusakov & Popov 2011; Gusakov et al. 2014, 2017). These calcula-
tions start from the full-wave analytical solution to the Helmholtz wave equation, and
they are restricted to two-dimensional (2-D) geometry in a Cartesian slab, although
some preliminary calculations have been performed in a cylinder (Gusakov &
Krutkin 2017). In their work, Gusakov et al. argue that non-local ‘forward-scattering’
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events cause an enhancement of the DBS signal preferentially for decreasing inci-
dence angles α0. Gusakov et al. also analysed the measurement locality, challenging
the traditional understanding that DBS is sensitive to fluctuations from the cutoff
(in this manuscript, we will interchangeably refer to this location as the cutoff, or
turning point). These calculations use a realistic representation of the wave scattering
process and a simple turbulence spectrum (Gaussian) in their analytical calculations.

In this work, we adopt Gaussian beam tracing to model the propagation of the
electric field in a simple 2-D slab geometry, as used previously (Gusakov & Surkov
2004; Gusakov & Popov 2011; Gusakov et al. 2014, 2017). The theory of Gaussian
beam-tracing has been developed in different fields of physics (Casperson 1973;
Červený et al. 1982; Yu. A. Kravtsov and Berczynski P. 2007). In magnetic con-
finement fusion, the theory of Gaussian beam propagation in anisotropic media
has been used for approximately three decades (Pereverzev 1992, 1993, 1996, 1998;
Poli, Pereverzev & Peeters 1999, 2001b,c) and has been successfully implemented in
numerical codes such as TORBEAM (Poli et al. 2001a,2018) and more recently in
Scotty (Hall-Chen et al. 2025) to model reflectometry/DBS and electron cyclotron
(EC) beam absorption. The Gaussian beam-tracing equations are a set of ordinary
differential equations (ODEs), which present great computational advantage with
respect to full-wave codes, even in two dimensions. Although scarce, analytic solu-
tions for beam-tracing exist (Maj et al. 2009, 2010; Weber, Maj & Poli 2018) and are
exploited in this work. Previous authors have shown that the Gaussian beam-tracing
model remains a good approximation when the incidence angle α0 is not too small
(Balakin et al. 2007, 2008; Maj et al. 2009, 2010). Gaussian beam tracing is bound
to break near the cutoff at small angles (α0 ∼ 10◦ for K0L values of approximately
103 characteristic of magnetic confinement experiments (Belrhali et al. 2025)). For
these small angles, beam tracing could yield inaccurate predictions for a small part
of the beam and the resulting scattering. Some of the concerns are revisited in this
manuscript.

The rest of the manuscript proceeds as follows. In § 2, we introduce Gaussian
beam tracing. We use the analytical solution by Maj et al. (2009, 2010) that exhibits
beam focusing (also referred to as pinching or lensing) near the turning point. This
phenomenon of beam focusing was already observed in past work using numerical
simulations (Poli et al. 1999, 2001c; Yu. A. Kravtsov and Berczynski P., 2007;
Conway et al. 2007). We characterise how an O-mode beam focuses in a 2-D
Cartesian slab with a linear density profile as a function of the beam initial con-
ditions. In § 3, we use the analytic solution for beam tracing in conjunction with a
recently developed linear-response beam model of DBS (Hall-Chen et al. 2022b) to
find an analytic expression for the DBS filter function |Fxμ|2. With this filter func-
tion, we develop and implement an analytic synthetic diagnostic for DBS, which
can be used to analyse fluctuation data from gyrokinetic codes. In § 4, we show
that by parametrising the filter function |Fxμ|2 by the scattered radial wavenumber
component kx of the turbulent wavevector along the path, we are able to recover
previous known results for the scattered power (Gusakov & Surkov 2004; Gusakov
et al. 2014, 2017). Our results confirm that the results by Gusakov et al. (2014, 2017)
can be obtained using the Gaussian beam-tracing approximation, and hence, do not
include full-wave effects. Gusakov et al. argued that the enhancement of the DBS
signal power was due to a forward-scattering component, which is absent in our
model by design. We find the exact same analytical formulae as Gusakov et al. for
the DBS filter function |Fxμ|2 by using a model only based on backscattering and
Gaussian beam tracing, instead of the full-wave solution. This suggests that forward
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scattering, in the form described by Gusakov et al. (2014, 2017), is not the physi-
cal phenomenon leading to the enhancement of the DBS power for finite kx values
near the turning point, but rather that beam focusing is. Section 4, in conjunction
with Appendices C and D, establishes the equivalence between the beam model of
DBS by Hall-Chen et al. (2022b) and the 2-D DBS model by Gusakov et al. In the
last section of this manuscript, we apply the analytical filter function |Fxμ|2 from
the beam model to understand its effect on scattered power measurements from
DBS. We use a realistic turbulence spectrum obtained from gyrokinetic simulations,
following recent work by Ruiz et al. (2022). Our model predicts that, for a represen-
tative NSTX-inspired example, the Doppler-backscattered power spectrum cannot
reproduce the peak in ky from the true density-fluctuation spectrum, but is accurate
at predicting the characteristic spectral exponent of the turbulent cascade.

2. Beam focusing and beam tracing

In DBS experiments, one can model the propagation of the microwaves launched
externally from the plasma as a Gaussian beam. The behaviour of a Gaussian
beam can be complex due to the inhomogeneities in density and magnetic field.
To gain physical understanding of the phenomena affecting beam propagation, we
first discuss vacuum propagation.

In vacuum, a Gaussian beam will propagate in a straight line. If the beam is not
focusing, then it will constantly expand. Asymptotically, the width of the beam will
grow linearly with the propagation path length. If the beam is initially focusing, it will
focus to a minimum width, called the waist, following which the beam will expand,
as previously described by Goldsmith (1998). This behaviour is due to diffraction: a
wave packet of finite extent does not want to be confined: if initially expanding, it
will not cease to expand; if initially focusing, it will focus before expanding.

For a beam propagating in an anisotropic, inhomogeneous medium, its trajectory
can substantially differ from that in vacuum. The inhomogeneity in space causes
refraction of the central ray. The inhomogeneity experienced by the central ray
causes changes in the group velocity g, which affects the intensity of the electric
field, which scales as E ∝ 1/|g| 1

2 (Lopez & Dodin 2021).
1

Of particular interest is
the problem of a wave encountering a cutoff surface at normal incidence. This is the
situation encountered by diagnostics such as reflectometry, where the group velocity
along the inhomogeneity approaches zero at the cutoff and the electric field diverges.
This is a well-known limitation of beam tracing when close to normal incidence
to the inhomogeneity. Close to a turning point, one cannot assume slow variation
of the background experienced by the wave and the beam-tracing approximation
fails. To solve this problem, one needs to resort to solving the full Helmholtz wave
equation. This limitation disappears when the angle of incidence with respect to the
inhomogeneity is finite (or more precisely, large enough, as we will discuss), such
as encountered in DBS. The group velocity still decreases approaching the cutoff
(the component of g along the inhomogeneity vanishes, while the g component
perpendicular to it remains approximately constant). This produces an enhancement
of the electric field E near the turning point, which should remain finite due to a

1In contrast to beam tracing, the electric field intensity in ray tracing reads E ∼ 1/(|g|| cos α|) 1
2 for the 2-D

linear layer (Lopez & Dodin 2021), where α is the angle between g and the density gradient, see figure 1 and (A.9).
This divergence is integrable in ray tracing and resolved in beam tracing.
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finite |g|. The decrease of the group velocity near the turning point is one factor that
enhances the electric-field amplitude in DBS and will be discussed in this manuscript.
This will show up as a ray term affecting the filter function |Fxμ|2 for backscattering.
As we will see, |Fxμ|2 ∝ 1/|g| ∝ 1/K. Importantly, there is another factor that can
enhance the intensity of the electric field and that is the beam width.

For a beam propagating in an anisotropic, inhomogeneous medium, the behaviour
of the beam width can also be substantially different from the behaviour in vacuum.
Beam tracing can describe diffraction effects due to the finite extent ∼ W of a
wave packet in the direction transverse to the direction of propagation. In addition
to the beam waist present in vacuum, other authors have shown that the beam
can experience additional focusing, or lensing, in the presence of inhomogeneity
(Poli et al. 1999, 2001c; Bornatici & Maj 2003; Maj 2005; Yu. A. Kravtsov and
Berczynski P. 2007; Conway et al. 2007; Berczyński et al. 2008; Maj et al. 2009,
2010). This phenomenon tends to happen close to the turning point. In the beam-
tracing formulation, one can show that the electric-field amplitude E scales inversely
proportional to the beam width W , as E ∝ 1/W

1
2 (Yu. A. Kravtsov and Berczynski

P. 2007; Hall-Chen et al. 2022b).
2

This shows that when the beam focuses, the
electric field is enhanced. This is a different effect from the enhancement due to
the decreasing group velocity of the central ray. In fact, it can be shown that the
electric field scales as E ∝ 1/(|g|W )

1
2 (Yu. A. Kravtsov and Berczynski P. 2007; Hall-

Chen et al. 2022b). It is this phenomenon, the beam focusing in an inhomogeneous
medium, that we explore in this manuscript. In full toroidal geometry, this results in
the filter function ∝ 1/|g|W ∝ 1/KW (Hall-Chen et al. 2022b).

3
In the 2-D linear-

layer model, we will find g = 2K/K2
0 and |Fxμ|2/|F0|2 = K0W0/KW , where |F0|2, K0

and W0 are the filter function |Fxμ|2, the magnitude of the beam central wavenumber
K and the beam width W evaluated at the initial condition. We call the 1/W term the
beam term in the filter function (Hall-Chen et al. 2022b). Importantly, the beam term
and the ray term can both separately contribute to the enhancement of the electric
field in the vicinity of a turning point. This motivates studying the propagation of
a ray and a beam in inhomogeneous, anisotropic media. For this, we adopt the
ray-tracing and beam-tracing formulation, which we describe next.

2.1. Ray tracing and Gaussian beam tracing
This section closely follows notation introduced by Hall-Chen et al. (2022b), who

rederived Gaussian beam tracing from first principles and presented it in full detail.
The beam-tracing method (or paraxial WKB) is an asymptotic representation of

the electric field in anisotropic media for finite size wave packets with characteristic
scale in the transverse direction of propagation ∼ W . Beam tracing extends ray
tracing by including diffraction effects in a set of ODEs. As in ray tracing, the
wavevector of the wave K is ordered inversely proportional to the wavelength ∼ 1/λ,

2Here, we consider a 2-D configuration, with one of the directions being the direction of propagation, and the
other the transverse direction. In three dimensions, there is a second transverse direction with a second characteristic

width WX . Then, in three dimensions, the electric field scales as E ∝ (WWX )−
1
2 .

3Note that Hall-Chen et al. (2022b) find that the filter function ∝ 1/g2 (see (196)), whereas here we have
∝ 1/g. This apparent inconsistency is due to the fact that Hall-Chen et al. (2022b) express their filter function as
an integral in l, but here we express it as an integral in kx. The additional factor of g appears from the change of
integration variable from kx to l, as shown in the comments preceding (3.13).
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while the background equilibrium is assumed to vary on a scale L � λ. In beam
tracing, the scale W is intermediate and obeys L � W � λ, with W ∼ (λL)

1
2 . In

this manuscript, we denote the wavevector associated with the wave with the capital
letter K. The same notation will apply to its components Kg, Kx, etc., while the
wavevector components associated with the turbulence will be in lower case, e.g. kx
and ky.

In Gaussian beam tracing, the variation of the wave electric field perpendicular
to a central ray is assumed to be of Gaussian shape. The central ray propagation
obeys the traditional ray-tracing equations for the ray position vector q(τ ) ∼ L and
wavevector K(τ ) ∼ 1/λ, where τ is a parameter along the central ray. For reference,
the ray-tracing equations are

dq
dτ

= ∇KH,

dK
dτ

= −∇H,
(2.1)

where H is the cold-plasma dispersion relation and g = ∇KH is the effective group
velocity. Note that there are infinite ways to define an H that give rise to the same q
and K (the different definitions of H only change the dummy parameter τ ). We use
a specific definition that ensures that the wave electric field scales as ∼ 1/g

1
2 , where

g = dq/dτ (see discussion in § 2.2 of Hall-Chen et al. (2022b) for details). Equations
(2.1) are routinely solved by codes such as GENRAY (Smirnov et al. 2009).

In the Gaussian beam-tracing approximation, the beam electric field Eb is writ-
ten in amplitude and phase as Eb(r) = A(r) exp [iψ(r)]+ c.c., where the phase ψ
is expanded to second order about the central ray in the perpendicular direction
to g,

ψ(r) = s(τ ) + Kw · w + 1

2
w · Ψw · w. (2.2)

Here, s = s(τ ) = ∫ τ K(τ ′) · g(τ ′) dτ ′ = ∫ τ Kgg dτ ′ is the large phase Eikonal term
measuring the variation of the electric field along the central ray. The phase given
by s scales as s ∼ L/λ� 1, which follows from τ ∼ L/λ, g ∼ λ and H ∼ 1 (see (2.1)).
Note that the second term in (2.2) is ordered as Kw · w ∼ W/λ� 1, while the last
term is (1/2)w · Ψw · w ∼ 1, since the components of Ψw are ordered as �w,ij ∼ 1/W 2.
The vector Kw = (I − ĝĝ) · K in the phase (2.2) is the component of K perpendicular
to ĝ. The matrix Ψw is a singular 3 × 3 matrix and only has non-zero components
along the two directions perpendicular to ĝ. The matrix Ψw contains information
about the phase-front curvature of the Gaussian beam (through the non-zero eigen-
values of its real part = K3/(K2

gRb,i), where K = |K| and Kg = K · ĝ) and beam width
Wi (through the non-zero eigenvalues of its imaginary part = 2/W 2

i ).
A general point in space is described by

r = q(τ ) + w = q(τ ) + X X̂(τ ) + Y Ŷ(τ ). (2.3)

We define the (orthonormal) beam-frame coordinate system {Ŷ, ĝ, X̂} as follows:

Ŷ = b̂ × ĝ

|b̂ × ĝ| , ĝ = g
g
, X̂ = Ŷ × ĝ

|Ŷ × ĝ| , (2.4)
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FIGURE 1. Lab frame and beam frame for coordinates with oblique beam incidence (finite
α0) used throughout this manuscript. Here, (xc, yc) denote the coordinates of a point along the
central ray and not the cutoff location.

where b̂ = B/B is the unit vector along the background magnetic field. This is not to
be confused with the Cartesian lab-frame system of coordinates {x̂, ŷ, ẑ} (see figure 1
for a comparison between beam frame and lab frame in two dimensions). Using (2.3)
and (2.4), a general point in space can be determined from the coordinate τ along
the central ray and the two coordinates X and Y in the directions perpendicular
to ĝ.

In the beam-tracing formulation which we use in this manuscript, the beam-tracing
matrix Ψ is a 3 × 3 matrix that is convenient to evolve along the central ray. From
this matrix, we can obtain Ψw by projection Ψw = (I − ĝĝ) · Ψ · (I − ĝĝ). The beam
matrix Ψ follows the beam-tracing evolution equations, a set of ordinary differential
equations parametrised by τ , see Hall-Chen et al. (2022b) and Appendix A. Given
Ψ , the electric field Eb in Gaussian beam tracing is written as

Eb =Aant exp [i(φG + φP)]

[
det (	[Ψw])

det (	[Ψ w,ant])

] 1
4
(

gant

g

) 1
2

× exp
(
is + iKw · w + i

2
w · Ψw · w

)
ê + c.c.,

(2.5)

where Eb = Ebê and 	 denotes the imaginary part. The unit vector ê is the polarisa-
tion vector, φP and φG are respectively the polarisation and Gouy phases, which are
of limited interest in this manuscript (see Hall-Chen et al. (2022b) for their evolution
equations). The subscript (.)ant means that quantities are evaluated at the antenna
launch location. As previously discussed, the prescription in (2.5) for the elec-
tric field shows that Eb ∼ 1/(gWX WY )

1
2 ∝ 1/(KWX WY )

1
2 . This is due to the terms

det (	[Ψw])
1
4 ∝ 1/(WX WY )

1
2 and 1/g

1
2 ∝ 1/K

1
2 . For the purposes of this manuscript,

in the 2-D linear layer, only the width WY in the direction Ŷ is relevant.
In the next section, we show numerical solutions to the beam-tracing equations

(Appendix A) in real tokamak geometry, which exhibit the phenomenon of beam
focusing. These will be compared with analytical solutions to beam tracing for the 2-
D linear-layer problem. We will see how the analytical solution qualitatively captures
the phenomenon of beam focusing.
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(a) (b) (c)

FIGURE 2. (a) Trajectory of the central ray of a DBS beam projected on the poloidal (R,Z)
plane overlaid by contour lines of the poloidal flux function �p for JET discharge 97 080 (NBI-
heated L-mode). (b) Numerical solution of the two principal widths perpendicular to the central
ray propagation, noted here W1 and W2, using Scotty (Hall-Chen et al. 2025). The black dots
correspond to the turning point in the trajectory (vanishing wavenumber component normal to
the flux surface), while the red dots correspond to the plasma exit. (c) Analytic solution of the
beam-tracing equations for the 2-D linear layer in slab geometry using experimental parameters
corresponding to the case shown in panels (a) and (b): K0L ≈ 1600,K0W0 ≈ 22, α0 ≈ 10◦,
RY0 = ∞ (launch at the waist). There is good qualitative agreement between the numerical and
analytic solutions.

2.2. Beam focusing in experimentally relevant conditions
In this section, we will show that the beam-focusing phenomenon appears in

numerical calculations of beam-tracing modelling of DBS experiments. We will see
that the beam width has a tendency to focus as the beam moves towards higher
density. A beam propagating in increasing density is routinely encountered in most
DBS measurements.

We describe the phenomenon of beam focusing, that is, the decrease or com-
pression of the beam width as the beam propagates near the turning point that
characterises a cutoff. This phenomenon was previously observed in numerical sim-
ulations (Poli et al. 1999, 2001c; Yu. A. Kravtsov and Berczynski P. 2007; Conway
et al. 2007, 2015, 2019) and in analytic solutions (Maj et al. 2009, 2010; Weber et al.
2018). To confirm the existence of the beam-focusing phenomenon and its relevance
to real-life experimental conditions, in figure 2, we show the result of a numerical cal-
culation with the Scotty code (Hall-Chen et al. 2025) for the DBS beam propagation
with X-mode polarisation in the core of the tokamak JET for L-mode discharge 97
080 in a phase heated only by neutral-beam injection (NBI). Figure 2(a) shows the
trajectory of the central ray projected on the 2-D (R,Z) plane overlaid by contour
lines of the poloidal flux function �p. The turning point is at �p/�p0 ≈ 0.7, where
�p0 is the separatrix value. Figure 2(b) shows the perpendicular widths W1 and
W2 that correspond to the non-zero eigenvalues of the imaginary part of the beam-
tracing matrix 	[Ψw]. We approximate the overmoded waveguide launch by a beam
with circular cross-section and initial conditions W0 ≈ 1 cm, RY0 = ∞ (launch at the
waist). The widths W1 and W2 are plotted against the path length l = ∫ dτg. The
beam propagates in vacuum from l ≈ 0 to l ≈ 0.4 m, which roughly corresponds to
the plasma edge. In vacuum, both principal beam widths follow the same behaviour:
expansion following a launch from the waist. In the plasma, both widths initially
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continue expanding, but one of them (blue) starts contracting and reaching a min-
imum at l ≈ 0.7 m (beam focusing). Following the beam focusing, the contracted
width starts to expand again. The behaviour observed in figure 2(b) consistently
appears in beam-tracing numerical calculations near a turning point, and is con-
firmed by the beam-tracing code TORBEAM (Poli et al. 2001a, 2018) (not shown).
This behaviour was also observed in simulations of DBS in other tokamaks (Conway
et al. 2007, 2015, 2019). This motivates studying the beam-focusing phenomenon
using a reduced model that is analytically tractable, the 2-D linear-layer model (Maj
et al. 2009, 2010), which we present next.

2.3. Beam focusing in the 2-D linear layer
To understand the beam-focusing phenomenon observed in the Scotty numerical

solution in toroidal geometry in figure 2(b), we first solve the equations for ray
tracing (2.1) using a simplified Cartesian-slab geometry in two dimensions (Maj
et al. 2009, 2010). Following the ray-tracing solution, we will subsequently solve the
beam-tracing equations.

We solve the 2-D linear-layer model in the lab frame, given by the unit vectors
{x̂, ŷ, ẑ} (figure 1). Using (2.4), the lab-frame unit vectors are related to the beam-
frame {Ŷ, ĝ, X̂} in two dimensions by a simple rotation

Ŷ = sin α x̂ − cos α ŷ,
ĝ = cos α x̂ + sin α ŷ,

X̂ = ẑ,

(2.6)

where we note that α= α(τ ) is a function of τ . We will ignore the coordinate
ẑ, which points in the antiparallel direction to the magnetic field. These defini-
tions will be needed in order to subsequently solve the beam-tracing equations.
The 2-D linear-layer problem in slab geometry has O-mode polarisation, uniform
B(r) = B0b̂ = −B0ẑ and linear density profile ω2

pe(x) =	2x/L. Here, x is our ’radial’
coordinate, also Cartesian x in figure 1, 	 is the launch frequency, ωpe0 =	 cos α0

is the electron plasma frequency at the turning point location, Ln = L cos2 α0 is the
turning point location

4
and L is the turning point location for zero incident angle

(α0 = 0, see figure 1). The ray-tracing equations determine the trajectory of the cen-
tral ray q and the wavevector of the central ray K. In the 2-D linear layer, q and K
have components

q(τ ′) = (xc(τ
′), yc(τ

′)
)
,

K(τ ′) = (Kx(τ ′),Ky(τ ′)
)
,

(2.7)

where τ ′ = τ/K0L is the normalised parameter along the path and K0 is the
wavenumber magnitude at launch. Here, (xc, yc) denote the coordinates of an arbi-
trary point along the central ray and not the cutoff location. In this manuscript,
we define the turning point, or cutoff, as the location where Kx = 0 (Kx is the
Cartesian x-component of the beam wavevector K, see (2.9)). We will make use

4Ln also corresponds to the density gradient scale length evaluated at the turning point.
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of the dispersion relation H = 0, where H takes the form

H = K2

K2
0

− 1 + ω2
pe

	2
(2.8)

for the O-mode. The form of H given by (2.8) ensures that the electric field
is given by (2.5). Using (2.8), we have ∇KH = g = 2K/K2

0 (initial condition
gant = 2/K0) and ∇H = x̂/L. As can be seen from figure 1, the magnetic field is into
the page and the angle α0 measures the vertical incidence angle of the central ray at
launch. In what follows, α will measure the vertical incidence angle along the central
ray. The initial conditions are (xc, yc)0 = (0, y0), (Kx,Ky)0 = K0( cos α0, sin α0). The
ray-tracing (2.1) can be readily solved in the 2-D linear layer, giving the following
components of q and K in (2.7):

xc(τ
′) = L

(
cos2 α0 − ( cos α0 − τ ′)2

)
= L

(
cos2 α0 − K2

x/K
2
0

)
,

yc(τ
′) = y0 + 2L sin α0 τ

′,

Kx(τ ′) = K0( cos α0 − τ ′) = K0( cos2 α0 − xc/L)
1
2 ,

Ky(τ ′) = K0 sin α0.

(2.9)

Equations (2.9) describe a parabolic trajectory in (x, y). We will find it useful to
parametrise the ray trajectory by the radial wavenumber of the central ray Kx,
instead of τ . We will also parametrise the beam-tracing solution by Kx.

The 2-D linear-layer problem with finite incident angle α0 is also analytically solv-
able in Gaussian beam tracing, as was previously shown by Maj et al. (2009, 2010).
For details of the derivation, we refer the reader to Appendix A. The beam-tracing
equations for the linear-layer problem reduce to dΨ /dτ = −(2/K2

0)Ψ 2, which is a
nonlinear matrix equation for Ψ . This equation belongs to a class of ODEs known
as Ricatti equations. The main component of the beam matrix Ψ of interest in
this manuscript is the Ŷ Ŷ component �YY , which captures the beam-focusing phe-
nomenon through the perpendicular beam width WY = (2/	[�YY ])

1
2 . The solution

for �YY is

�YY (Kx) =
−1

2 sin2 α0 +� ′
yy0

[
K3

x
K3

0
+ 3 sin2 α0

Kx
K0

− sin2 α0
cos α0

(
cos2 α0 − sin2 α0

)]
[

sin2 α0 + K2
x

K2
0

][
Kx
K0

+ 2� ′
yy0

(
cos2 α0−sin2 α0

cos α0

Kx
K0

+ sin2 α0 − K2
x

K2
0

)] K0

L
,

(2.10)

where � ′
yy0 =�yy0(L/K0) is the initial condition for the beam �yy component in

the lab-frame direction ŷ (vertical direction in figure 1) that contains information
about the initial beam width and radius of curvature of the phase front (normalised
to K0/L, see Appendix A for details). Equation (2.10) is the basis for most of the
analysis in this manuscript. The reader is referred to Appendix A for details in the
calculation of �YY . The analytic solution of �YY contains the beam-focusing phe-
nomenon for the 2-D linear-layer problem and is used to characterise the Doppler
backscattering power contributions along the beam trajectory through the filter
function |Fxμ|2 (§ 3).

We wish to compare the analytic beam-tracing solution for WY , computed using
(2.10), with the numerical solution in toroidal geometry shown in figures 2(a) and

https://doi.org/10.1017/S0022377825000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825000170


12 J. Ruiz Ruiz and others

2(b). To do so, we extract the physical values of K0, L and the initial width W0
from experimental conditions in the JET discharge 97080: K0 ≈ 2200 m−1, W0 ≈ 1
cm and L ≈ 0.7 m. Knowing that, in reality, the beam propagates in a plasma with
a varying density gradient, we choose the value of L to be the average value of
the density gradient experienced by the beam as it propagates through the plasma,
yielding L ≈ 0.7 m. We use the experimental values of K0, L and W0 to normalise
the initial conditions in the analytic beam-tracing solution, giving K0W0 ≈ 22, K0L ≈
1600. The width WY that is perpendicular to the central ray propagation and in
the (x, y) plane is plotted in blue in figure 2(c), as a function of the beam path
length l. The vacuum solution is plotted in orange (absence of plasma),

5
which

is also the same solution as the ẑ-component of the width for the linear layer in
the ẑ-direction Wz. Despite the limitations of the model (linear density profile, 2-
D slab) and the difference in polarisation (X-mode versus O-mode), a qualitative
comparison between figures 2(c) and 2(b) clearly shows that the analytic solution
for the 2-D linear layer is able to recover the focusing behaviour observed in the
numerical solution in toroidal geometry. This confirms that the beam focusing is
not a numerical artefact. The beam focusing behaviour in the vicinity of the turning
point is physical within the beam-tracing approximation

6
and motivates studying the

beam-focusing phenomenon using the analytic solution to the beam-tracing equations
in the 2-D linear-layer problem. In what follows, we describe the dependence of the
analytic beam-tracing solution for �YY on the initial conditions for the width W0,
the radius of curvature RY0 and the vertical launch angle α0. The initial condition is
at τ = 0, which corresponds to the plasma edge x = 0.

We start by considering the analytic beam-tracing solution for �YY = K/RY +
i2/W 2

Y (Appendix A). In this beam-tracing solution, the dimensional quantities

K0 = 2π/λ, W0 and L enter the equations through the beam parameter W0/(λL)
1
2 .

Therefore, in the rest of the manuscript, only the beam parameter W0/(λL)
1
2 will

be specified since it is the only parameter needed to determine the normalised solu-
tion �YY (L/K0). The beam width WY is shown in figure 3 as a function of τ for
different initial conditions of the incident angle α0 = 10◦, 30◦, 50◦ and 80◦, and the
initial radius of curvature RY0 (coloured curves). In this slab model, we assume that
plasma is only present for x> 0 and the vacuum exists for x< 0. Therefore, one
needs to calculate the range of τ for which the central ray trajectory has positive
xc. According to (2.9), for initial conditions at τ ′ = 0, the plasma exit corresponds
to τ ′ = 2 cos α0. The initial width W0 is kept fixed at W0 = 0.40(λL)

1
2 . The coloured

dashed lines are the vacuum solutions (absence of plasma) with initial conditions cor-
responding to the respective WY of the same colour in the 2-D linear-layer problem.
The vacuum solution initially follows the plasma solution until the beam approaches
the turning point. The initial value of RY0/L = −2cos α0/sin2 α0 corresponds to the
particular initial condition employed by Gusakov et al. (2014, 2017) (see discussion

5The solution for Wz in figure 2(c) corresponds to the vacuum solution. In figure 2(c), the widths are plotted
versus the path length l, which introduces an apparent acceleration of the width in the ẑ-direction in the vicinity of
the turning point, whereas in figures 3 and 4, the vacuum widths are plotted versus τ , which shows that they evolve
nearly in a straight line as a function of τ . This is because, although one can transform continuously from l to τ
and vice versa, the transformation is not a simple linear one.

6In some cases, particularly for small incidence angles α0, the beam-tracing approximation breaks down, and
the focusing predicted by beam tracing could be unphysical. One needs more advanced models to quantify the
amount of focusing in those conditions (Lopez et al. 2023).
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(a) (b)

(c) (d)

FIGURE 3. Thick coloured curves indicate values of the width WY for varying initial incident
angle α0 = 10◦, 30◦, 50◦ and 80◦, and different initial RY0 (see legend) and fixed initial W0 =
0.40(λL)

1
2 . Corresponding dashed lines of same colour indicate vacuum values of WY for same

initial conditions as the thick coloured curves. The initial value of RY0/L = −2cos α0/sin2 α0
(green) corresponds to the particular initial condition employed by Gusakov et al. (2014, 2017).
The vertical dotted points in grey indicate the location of the turning point, or cutoff (location
where Kx = 0).

in Appendix A). For that particular case, the initial radius of curvature takes the val-
ues RY0/L = −65.32,−6.93,−2.19 and −0.3581 respectively for α0 = 10◦, 30◦, 50◦
and 80◦. Here, RY0 has little effect on the beam focusing around τ ′ ≈ 1 for small
angles, but has a non-negligible effect in the vicinity of the initial launch and after
the turning point for the outgoing beam. These differences appear for small initial
|RY0|/L� 1, that is, for strongly focusing or diverging beams (see red and magenta
curves in figure 3). The initial radius of curvature RY0 becomes more important
in the vicinity of the turning point for increasing incident angles, where the beam
focusing location is shifted (see α0 = 30◦). For α0 = 50◦, 80◦, the beam focusing
does not take place inside the plasma. The only focusing region corresponds to the
beam waist that is captured by the vacuum solution. Note how the initial condition
of RY0/L = −2cos α0/sin2 α0 from Gusakov, Irzak & Popov (2014) and Gusakov
et al. (2017) strongly depends on the launch angle α0: it defines a beam that is closer
to a launch at the waist (RY0/L = ∞) for small incident angles, but becomes strongly
focusing (smaller, negative RY0) for larger α0.
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(a) (b) (c)

FIGURE 4. Similar to figure 3 for varying initial width W0/(λL)
1
2 = 0.13, 0.40, 1.26 and fixed

α0 = 30◦. For small W0, the beam is initially strongly focused and experiences a large expansion
(due to diffraction) that follows the vacuum solution before focusing slightly past the turning
point (for all of RY0). For increasing W0, the initial growth is less severe and the beam focusing
depends on the initial RY0. The beam even focuses twice along the path for particular initial
conditions RY0/L = −0.5, α0 = 30◦, W0/(λL)

1
2 = 0.4 (red in panel b), and 1.26(λL)

1
2 (for the

same RY0/L, α0, red in panel c), where the first focusing region is the waist captured by the
vacuum solution. Varying the initial width W0 affects the initial expansion of the beam, from
a pronounced initial expansion in panel (a,b) to no initial expansion for some RY0/L in panel
(c). The inset in panel (c) focuses on the initial propagation region, which exhibits converging
or diverging beams depending on the initial conditions.

Figure 4 shows the beam width for different initial conditions W0/(λL)
1
2 =

0.13, 0.4, 1.26, and the same scan in RY0/L as in figure 3, all while keeping a
fixed initial incident angle α0 = 30◦. For small W0 = 0.13(λL)

1
2 , the beam width

WY initially follows closely the vacuum solution (dashed line), independent of the
initial conditions W0 and RY0. Small W0/(λL)

1
2 corresponds to a highly focused

beam. Diffraction produces a strong initial expansion of the beam width WY , which
is followed by strong focusing slightly past the turning point (for all of RY0). For
W0 = 0.40(λL)

1
2 , the initial growth is less severe and the beam focusing (value and

location) exhibits a noticeable dependence on the initial RY0. The dependence on
the initial RY0 is even more noticeable for W0 = 1.26(λL)

1
2 , especially for the focus

location: the beam even focuses twice along the beam for RY0/L = −0.5 (red curve),
which is an initially focusing beam at the plasma edge (the first focusing region
is the waist captured by the vacuum solution). The double focusing happens for
both W0 = 0.4(λL)

1
2 and W0 = 1.26(λL)

1
2 . Comparing the same initial condition

RY0 = ∞ (launch at waist, black curve) between the different initial W0, we see
that the beam focusing location takes place after the turning point for small initial
W0 = 0.13, 0.40(λL)

1
2 and approaches the turning point for large W0 = 1.26(λL)

1
2

(the turning point location is given by the vertical dotted lines). This discussion has
important consequences for interpreting the regions in the plasma with predominant
contributions to backscattering in DBS measurements, as will be discussed in § 4.

In this section, we have seen how the 2-D linear-layer model exhibits focusing of
the beam width around the cutoff. This focusing is separate from the focusing caused
at the beam waist in vacuum. The beam focusing depends on the initial conditions
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for the incident angle α0, normalised beam parameter W0/(λL)
1
2 and radius of cur-

vature RY0/L. Beam focusing tends to be enhanced for small α0, while it tends to
disappear for large α0. For small W0/(λL)

1
2 , strong initial growth precedes strong

focusing. For large W0/(λL)
1
2 , the beam focuses from the initial condition towards

the focusing region, and the initial growth disappears for some initial conditions.
These phenomena are not captured by the vacuum solution.

Having gained an understanding of the phenomenon of beam focusing, in what
follows, we will use the analytical 2-D model solution to assess the impact of beam
focusing on Doppler backscattering measurements.

3. Beam-tracing model for DBS in the 2-D linear layer

In the previous section, we have shown the behaviour of the width WY of a
microwave beam propagating in a 2-D linear layer. In this section, we will use that
solution to find the backscattered signal amplitude and power in DBS measure-
ments. This will allow us to study how the phenomenon of beam focusing impacts
the scattered power measured by DBS. We will see how the scattered power can
be written as the integral over k-space of a filter function |Fxy|2 multiplied by the
Fourier transform of the turbulence correlation function, which corresponds to the
density-fluctuation power spectrum. We will also see how the dependence of the filter
function on kx and ky is not trivial, and we will show how |Fxy|2 can be enhanced in
the vicinity of the focusing region, where WY reaches a minimum. The formulae that
we obtain using a beam-tracing model for DBS recover previous analytic work based
on a 2-D Cartesian slab by Gusakov et al. (2014, 2017) and connect it with more
recent work based on a beam-tracing model of DBS in full toroidal geometry (Hall-
Chen et al. 2022b). To do so, we use a representation of the density fluctuations in
2-D Cartesian coordinates, as done by Gusakov et al. (2014, 2017). A representation
aligned along the beam trajectory, or beam-aligned representation (Hall-Chen et al.
2022b), is not used in the main body of this manuscript. In Appendices C and D, we
use the beam-aligned representation of the density to show the equivalence between
the beam model by Hall-Chen et al. (2022b) and the 2-D DBS model by Gusakov
et al. (2014, 2017). For the purposes of calculating the scattered power contributions
along the beam path, we show in Appendices C and D that both representations of
the density are related to each other by a rotation. With respect to the wavenumber
resolution, the situation is more subtle and one cannot simply assume that both rep-
resentations of the density are related by a rotation. This will be the subject of an
upcoming publication.

We start by defining the Cartesian representation of the density fluctuations,
or lab-frame density-fluctuation amplitude. We expand the density fluctuations in
r = (x, y, z) as follows

δn(x, y, z, t) =
∫

dkxdky δn̂(kx, ky, z, t) exp (ikxx + ikyy), (3.1)

where x and y are the directions perpendicular to the magnetic field, and z is along
the magnetic field (see figure 1 for the 2-D linear layer). In the 2-D linear layer, the
density fluctuations in (3.1) are evaluated at z = 0. A point (x, y) in the 2-D plane is
given by

x = xc(τ ) + Y sin α(τ ),
y = yc(τ ) − Y cos α(τ ),

(3.2)
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where
(
xc(τ ), yc(τ )

)
in (3.2) are the coordinates along the central ray (figure 1 and

Appendix A), and α is the angle between the central ray tangent vector ĝ and the
horizontal (sin α and cos α are given by (A.9)). The wavevector of the turbulence is
written in its Cartesian components k⊥ = kxx̂ + kyŷ (figure 1). Here, the Cartesian
kx naturally corresponds to the radial direction, or normal to the flux surface, and ky
corresponds to the binormal component, that is, the component in the flux surface
and perpendicular to the magnetic field. This is a useful frame in which to express
turbulent fluctuations perpendicular to the background magnetic field (Catto 1978;
Frieman & Chen 1982).

Having introduced the representation of the density fluctuations, we calculate the
backscattered amplitude and power. To do so, we use a theoretical beam-tracing
model of DBS (Hall-Chen et al. 2022b) that gives an analytical relationship between
the beam electric field and the scattered amplitude. As shown in Appendix B,
the scattered amplitude takes an analogous form to (153) from Hall-Chen
et al. (2022b),

Ar(t) = Aant

∫
dkxdky Fxy,μ(kx, ky) δn̂(kx, ky) exp

[
i
(
2sμ + kxxcμ + kyycμ

)]
, (3.3)

where (xcμ, ycμ) = (xc(τμ), yc(τμ)
)

denote the point along the central ray trajectory
evaluated at a particular τ = τμ, and xc and yc are given by (2.9). The subscript (.)μ
means that functions are evaluated at a point along the trajectory τ = τμ that satisfies
the Bragg condition for backscattering (3.4). In (3.3), the phase in the argument
of the exponent is equivalent to the phase 2sμ + k1lμ of Hall-Chen et al. (2022b)
(where k1 is written as k⊥,1), and it is ordered large ∼ L/λ. The filter function
Fxy,μ(kx, ky) is the Cartesian equivalent to Fμ(k1, k2) of Hall-Chen et al. (2022b).
The expression for Fxy,μ is given in Appendix B. For the rest of the manuscript, we
will only need the magnitude of Fxy,μ, given in (3.8). Note that the expression for
Ar(t) is related to the spectral amplitude Ãr(ω) by the Fourier transform F in time,
Ãr(ω) = F

[
Ar(t)

]
(ω) = (2π )−1

∫
Ar(t) exp (iωt)dt (only δn is assumed to depend on

time). In this manuscript, we will preferentially work with Ar(t).
As we announced above, the location τμ is defined by the condition of stationary

phase (Bender & Orszag 1978), given to lowest order by

2Kμgμ + kx
dxc

dτ

∣∣∣
μ

+ ky
dyc

dτ

∣∣∣
μ

= 0. (3.4)

Equation (3.4) can be rewritten as 2Kμ + k⊥ · ĝμ = 0, where ĝ = cos α x̂ + sin α ŷ
from (2.6). The components cos α and sin α can be calculated explicitly using the
ray trajectory from (2.9), and the fact that cos α = dxc/dl, sin α= dyc/dl and the
element of path length is dl = gdτ , which recovers (A.9). It will be useful to introduce
the projections of the turbulence wavevector k⊥ along ĝ and Ŷ,

k⊥ · ĝ = kx cos α + ky sin α,

k⊥ · Ŷ = −ky cos α + kx sin α,
(3.5)

which defines a rotation in the 2-D (x, y) plane for every point along the beam path
denoted by τ (note that α depends on τ through the trajectory in (2.9)).
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To solve (3.4), we notice that ky + 2K0 sin α0 ∼ 1/W 
 1/λ (see Appendix B).
The equation for τμ is then

Kx(τμ) ≈ −kx

2
+ sin α0

(
ky + 2K0 sin α0

)K0

kx
≈ −kx

2
. (3.6)

Note that (3.6) defines a τμ that fails near the turning point kx ≈ 0, but this
divergence will not cause problems. More details are given in Appendix B.

From (3.3), we calculate the scattered power, which takes an analogous form to
(177) of Hall-Chen et al. (2022b),

pr

Pant
=
∫

dkxdky|Fxy,μ|2〈|δn̂(kx, ky)|2〉T , (3.7)

where the slowly varying filter |Fxy,μ|2(kx, ky) is

|Fxy,μ|2(kx, ky) = 2π
e4

m2
eε

2
0	

4

	[�YY ]μ
|�YY |μ

exp

[
−

(
2 dK

dτ

)2

μ
g2
μ∣∣2 dK

dτ g− 2K2
�YY

(
dα
dτ

)2∣∣2
μ

2
(
k⊥·Ŷμ

)2


k2
μ2

]
∣∣2dK

dτ g − 2K2

�YY

(dα
dτ

)2∣∣
μ

.

(3.8)

Here, me is the electron mass, e the electron charge, ε0 is the vacuum permittivity and
〈.〉T is an ensemble average, which we compute as a time average over a period of
length T . The Gaussian exponential term in k⊥ · Ŷ in (3.7), entering through |Fxy,μ|2
in (3.8), is to be considered as a Gaussian exponential in ky, where k⊥ · Ŷ is defined
in terms of kx and ky by (3.5). Note that all functions of τ in (3.8) are evaluated
at τ = τμ. Here, αμ = α(τμ) is the vertical incidence angle at τ = τμ, figure 1. The
functions of τμ in |Fxy,μ(kx, ky)|2 in (3.8) are functions of (kx, ky) through the Bragg
condition relating τμ to kx and ky ((3.4), (3.6)).

In (3.8), we have introduced the wavenumber resolution, given by 
k2
μ2 =

4|�YYμ|2/	[�YYμ] (Hall-Chen et al. 2022b). In the context of the 2-D linear layer,
the quantity 
kμ2 is a measure of the resolution in the wavenumber component that
is perpendicular to ĝ. This is because k⊥ · Ŷμ is the component of k⊥ in the per-
pendicular direction to ĝ (see (3.5)). The dependence of (3.8) on k⊥ · Ŷμ therefore
implies k⊥ · Ŷμ ∼ 1/W , that is, kx ≈ ky cos αμ/ sin αμ, because 
kμ2 ∼ 1/W 
 1/λ.
The resolution 
kμ2 is of limited interest in this manuscript, beyond the fact that it
is of order ∼ 1/W .

The Gaussian exponential term in ky from (3.8) allows us to calculate
the wavenumber resolution in the lab frame, or DBS ky-resolution 
ky (see
Appendix B). The final expression for the scattered power, expressed in terms of
kx and ky, is

pr

Pant
≈ 2

1
2π

e4

m2
eε

2
0	

4

K2
0L


ky

∫
dkxdky

exp
[−2

(
ky + 2K0 sin α0

)2
/
k2

y
]

KμWYμ

〈|δn̂(kx, ky)|2〉T
≈ π

3
2 K2

0L
e4

m2
eε

2
0	

4

∫
dkx

〈|δn̂(kx,−2K0 sin α0)|2〉T
KμWYμ

,

(3.9)
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where we have defined the ky resolution of the DBS diagnostic as


k2
y = 4

|�yy0|2
	[�yy0]

. (3.10)

Equation (3.9) defines a one-dimensional filter |Fxμ|2, given by

|Fxμ|2 = π
3
2 K2

0L
e4

m2
eε

2
0	

4

1

KμWYμ
, (3.11)

where the product KμWYμ is given by

KμWYμ = K0(
2	[�yy0]

) 1
2

∣∣∣∣− kx

K0

+� ′
yy0

(
−2

cos2 α0 − sin2 α0

cos α0

kx

K0
+ 4 sin2 α0 − k2

x

K2
0

)∣∣∣∣. (3.12)

In (3.12), we used the beam-tracing analytic solution for WY = WY (τ ) ((2.10),
Appendix A) as well as the expression for K = K(τ ) in the 2-D linear-layer problem.

The first approximately equal sign in (3.9) recovers the expected Gaussian expo-
nential dependence of the power with ky. Note how the exponential term in (3.8)
has explicit dependence on kx and ky through k⊥ · Ŷμ. In addition, there is an
additional dependence on kx and ky that appears through τμ, given by (3.6).
Equation (3.9) is the lowest-order contribution to the Gaussian exponential term
in (3.8), and shows that the selected wavenumber ky is given approximately by
ky ≈ −2K0 sin α0 ∼ 1/λ, and the correction to that is ordered ∼ 1/W . This justifies
the first approximately equal sign in (3.9). The second approximately equal sign in
(3.9) can be justified by the separation of scales in the integral in ky: on the one
hand, the spectrum 〈|δn̂(kx, ky)|2〉T depends on ky ∼ 1/λ; on the other hand, the
resolution in (3.10) scales as 
ky ∼ 1/W , which means that the exponential term
in (3.9) scales as ∼ exp [−W 2/λ2] if one assumes that ky + 2K0 sin α0 ∼ 1/λ. The
integral in ky can therefore be calculated via Laplace’s method, which results in the
second approximately equal sign in (3.9). More details can be found in Appendix B.

Importantly, (3.9), (3.10) and (3.12) recover (16) of Gusakov et al. (2014), which
was extended to (14) and (15) of Gusakov et al. (2017) for the cross-correlation
function CCF. Gusakov et al. carry their analysis for radial correlation Doppler
reflectometry (RCDR), and not for standard DBS, as done in this manuscript. In
RCDR, one is interested in the cross-correlation function CCF(
x), which depends
on the radial separation 
x between DBS scattering locations. The scattered power
calculated in this work can be recovered by setting 
x = 0 in the work by Gusakov
et al. (2014, 2017) (power is auto correlation). Gusakov et al. (2014, 2017) also use
a particular initial condition � ′

yy0 = iK0L/(K0ρ)2, where ρ is related to the launched
beam width. One can see that setting the particular initial condition for � ′

yy0 =
iK0L/(K0ρ)2 in (3.12) recovers (14) and (15) of Gusakov et al. (2017) for 
x = 0.

The backscattered power can be written as an integral along the path l ((196) of
Hall-Chen et al. 2022b). This can be achieved by realising that the Bragg condition
and the fact that k⊥ · Ŷ ≈ 0 imply kx ≈ −2Kxμ (3.5). Having integrated in ky, the
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scattered kx along the Cartesian x-direction can parametrise the location along the
path. To express the kx-integral (3.9) in terms of l, change the integration variable
using dkx = 2Kμ|dKμ/dτ |dl/|gμKxμ| = 2dl/(gL), where we used (B.25). Then, the
denominator under the integral sign

∫
dkx can be explicitly expressed as a function

of the path length l. Additional details on the calculation are given in Appendices A
and B. We find

pr

Pant
≈ 4π

3
2

e4

m2
eε

2
0	

4

∫
dl

g2WY

〈∣∣δn̂(kx(l),−2K0 sin α0
)∣∣2〉

T . (3.13)

Equation (3.13) closely connects to the expression for the scattered power in (196) of
Hall-Chen et al. (2022b). In that case, 1/g2 is the ray piece, while the beam piece can
still be written as 1/WY . We see that WY plays an explicit role in the kx wavenumber
resolution (see (3.9)) and equivalently in the spatial localisation of the power along
the beam path (see (3.13)). Finally, (3.13) may seem to contradict our prediction
that the scattered power scales as ∼ 1/g. Note that in (3.13), one of the factors of g
comes from the change of integration variable from kx to l.

Next, we discuss the filter function |Fxμ|2 ∝ 1/KμWYμ in (3.11). Gusakov et al.
(2014, 2017) argue that non-local forward-scattering events produced by large-radial-
scale fluctuations cause the denominator of |Fxy,μ|2 to approach zero. This happens
for specific kx and should cause an enhancement in the DBS signal. Gusakov et al.
(2014, 2017) state that this enhancement is due to forward-scattering events taking
place all along the beam path through the plasma, making the DBS measurement
spatially non-local. They argue that this effect should preferentially enhance the
DBS signal for small incidence angles α0, which they observe as an enhancement
in the CCF. In our work, forward scattering is absent by design. Our model only
includes contributions from backscattering events, which are selected through the
Bragg condition in (3.4) and (3.6). Equation (3.9) shows that all the contributions to
the so-called forward scattering can be explained by the filter function, which is the
term ∝ 1/KWY in (3.9), or equivalently ∝ 1/g2WY when written as an integral in l.
Importantly, in § 4, we will see how the focusing effect due to WY can be far greater
than the decrease of K near the turning point. It is therefore crucial to understand
the behaviour of WY to understand its effect on the backscattered signal. In this
work, we interpret (3.9) and the signal enhancement produced for specific kx as a
consequence of beam focusing in the vicinity of a turning point, and not as due to
forward scattering. The more the beam is focused (small WY ), the more the signal is
localised around the focusing region due to the local increase in the wave intensity,
which takes place at a finite kx (in the vicinity of, but not exactly at the turning
point). This effect preferentially happens for small incident angles α0, as was shown
in § 2. The fact that the width WY does not focus exactly at the turning point (see
figures 3 and 4) results in the filter function peaking at a finite kx (recall that kx = 0
corresponds to the turning point location).

With respect to the wavenumber resolution, (3.9) recovers previous calculations
of the DBS wavenumber resolution (Lin et al. 2001; Hirsch et al. 2001; Hillesheim
et al. 2012), which is derived here in the context of a beam-tracing model. Note
the difference between 
ky in the lab frame, which is constant along the path in
the particular case of the 2-D linear layer, and 
kμ2 of Hall-Chen et al. (2022b),
which is perpendicular to the central ray propagation and depends strongly on the
distance along the path. Equation (3.10) simplifies to 
ky = 2/ρ for the choice of
�yy0 made by Gusakov et al. (2014, 2017). Note how the value 2/ρ is a lower limit to
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the diagnostic ky-wavenumber resolution. Interestingly, the wavenumber resolution

ky depends on the incidence angle α0 for a given initial W0, RY0 and a given
L. Inspecting (3.10) and using the expression for �yy0 in terms of W0 and RY0
(Appendix A), we find that


k2
y = 2 cos2 α0

K2
0W 2

0

K0L

⎡
⎣( L

RY0
+ sin2 α0

2 cos α0

)2

+ 4

(
K0L

K2
0W 2

0

)2
⎤
⎦ K0

L
. (3.14)

Equation (3.14) shows how 
ky can have a non-trivial dependence on α0, which
should be taken into consideration when comparing the scattered power in DBS
measurements and in numerical turbulence simulations via synthetic diagnostics.

Equations (3.9), (3.10) and (3.12) are the bases for synthetic DBS diagnostics
that can be readily applied to direct nonlinear gyrokinetic simulations of plasma
turbulence. In that context, and borrowing notation from previous work (Ruiz et al.
2022), kx and ky can be directly identified to the physical normal and binormal
wavenumbers kn and kb. The Cartesian kx employed here corresponds to the normal
wavenumber component of the gyrokinetic simulation kx = kn = k⊥ · ên, where ên =
∇r/|∇r| is the unit vector normal to the flux surface identified by minor radius r. The
Cartesian ky corresponds to the binormal wavenumber of gyrokinetic simulations
ky = kb = k⊥ · êb, where êb = ên × b̂ is the binormal wavevector, perpendicular to
the unit vector of the magnetic field b̂ and to ên. Depending on the gyrokinetic
code used, kn and kb might need to be mapped from internal code wavenumber
definitions, examples of which are given by Ruiz et al. (2022).

4. Consequences of beam focusing for DBS measurements

The phenomenon of beam focusing affects the DBS signal localisation and
wavenumber resolution, and it enhances the DBS signal in the vicinity of the beam
focusing region, as shown by the filter function |Fxμ|2 ∝ 1/KμWYμ for the 2-D
linear-layer problem in (3.11). This challenges the interpretation of ‘forward scatter-
ing’ provided by Gusakov & Surkov (2004), Gusakov et al. (2014) and Gusakov et al.
(2017) as the responsible mechanism for the DBS signal enhancement for decreasing
launch angle α0. In this section, we characterise the consequences of beam focusing
on the DBS signal through the filter function |Fxμ|2 for the 2-D linear-layer problem.
We scan the possible initial conditions: incident angle α0, initial width W0 and initial
radius of curvature RY0. In what follows, Kμ and WYμ are normalised to the initial
conditions K0 and W0, respectively.

4.1. The 1-D filter function |Fxμ|2
The filter function |Fxμ|2 in (3.11) provides the kx-selectivity of the DBS power.

This is tied to the localisation along the path: the scattering turbulent kx can be
thought of as a parameter determining the location of scattering along the path τμ, as
τμ is related to the turbulent scattering kx via the Bragg condition for backscattering
in (3.6), which is used to arrive at (3.13). The radial component Kxμ = K0( cos α0 −
τ ′
μ) from (2.9) is a decreasing function of τ ′

μ from the launch, becoming negative
after the turning point (Kxμ = 0, i.e. τ ′

μ = cos α0). The vertical component Ky is
constant, since the system is homogeneous in y. This means that Kμ reaches its
minimum at the turning point, which should enhance the DBS signal contribution
at that location. As we saw in the previous section, the perpendicular beam width
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(a) (b)

(c) (d)

FIGURE 5. Filter function |Fxμ|2(τ )/|F0|2 = K0W0/KμWYμ and the corresponding ray compo-
nent K0/Kμ and beam component W0/WYμ for varying values of the incident launch angle
α0, and fixed RY0 = ∞ and W0 = 0.40(λL)

1
2 . Note that in all cases, the filter function is

predominantly affected by the beam term 1/WYμ which represents the focusing.

WYμ has a tendency to focus, which should further enhance the DBS signal power.
In this section, we separate the enhancement due to ray and the beam contributions
in the filter function.

Figure 5 shows the ray (blue) and beam (red) components of |Fxμ|2 for varying

incident angles α0 = 10◦, 30◦, 50◦ and 80◦, and fixed W0 = 0.40(λL)
1
2 and RY0 = ∞

(launch at the waist). For convenience, we normalise the filter function to its value
at τ = 0, |F0|2. The filter functions correspond to some of the beam solutions in
figure 3. For α0 = 10◦, the filter function |Fxμ|2 is strongly localised at the focus
location, which almost matches the location of the turning point, or cutoff (maximum
of the ray term in blue). The turning point, or cutoff, is represented in each figure by
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(a) (b) (c)

FIGURE 6. Filter function |Fxμ|2(τ )/|F0|2 = K0W0/KμWYμ and the corresponding ray com-
ponent K0/Kμ and beam component W0/WYμ for varying values of the initial width W0 =
0.13, 0.40, 1.26(λL)

1
2 , and fixed RY0 = ∞ and α0 = 30◦. Note that in all cases, the filter

function is predominantly affected by the beam term 1/WYμ which represents the focusing.

a vertical grey dotted line. Careful inspection shows that the focus location takes
place in the vicinity but after the turning point τ ′

μ = cos α0 for α0 = 10◦, consistent
with beam focusing taking place after the turning point in figure 3. This shows that
the contributions to the DBS power are predominantly from the vicinity (but after)
the turning point for these initial conditions.

For larger incident angles, the turning point takes place for smaller τ ′
μ = cos α0,

while the beam term peaks at larger τ ′
μ (beam focus takes place at larger τ ′

μ): the
ray and beam terms compete to yield a filter function that is less peaked and less
localised around the focus location for increasing α0. The ray term (blue) decreases
in amplitude for larger α0, but less than the beam term (red), which decreases more.
The beam term becomes broader in τ ′

μ for larger angles. These effects make the
signal more delocalised along the path. This can be clearly seen in figure 5(c). The
localisation becomes broad for α0 = 50◦, where beam focusing becomes less impor-
tant in favour of contributions from τ ′

μ = 0. In figure 5, the initial condition is chosen
to be at the waist WY (τ = 0) = W0. In figure 7, we show the effect of the initial radius
of curvature RY0 on the filter function. An initially expanding beam (positive and
finite RY0/L) is shown in figure 7 not to make a dramatic difference on |Fxμ|2. For
larger incident angles (α0 = 80◦), the filter peaks around τ = 0, corresponding to the
waist initial condition of figure 5 (figure 7 shows that the behaviour is qualitatively
similar for different initial RY0). Therefore, for large incident angles, the DBS signal
becomes delocalised with predominant contributions before and after the turning
point (figures 5 and 7).

Figure 6 shows the ray (blue) and beam (red) components of |Fxμ|2 for differ-

ent values of the initial width W0/(λL)
1
2 = 0.13, 0.40 and 1.26, and fixed incident

angle α0 = 30◦ and RY0 = ∞ (launch at the waist). The filter functions in figure 6
correspond to some of the beam solutions in figure 4. In this case, the ray term
remains constant. The beam term is narrowest around the initial launch (waist) and
around the focusing point for small initial width W0 = 0.13(λL)

1
2 . This is because

a small initial width produces rapid expansion of the beam (see figure 4), which
gives negligible contributions to the beam term outside the waist and focus point.
This suggests a very localised contribution to the DBS power from the vicinity of
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(a) (b)

(c) (d)

FIGURE 7. Values of the filter function |Fxμ|2/|F0|2 for varying incident angles α0 and fixed
initial W0 = 0.40(λL)

1
2 as a function of the turbulent, selected kx component. For small incident

angle α0 = 10◦, the filter is strongly peaked near kx = 0, consistent with the signal being strongly
localised near the turning point region. The signal is in fact sensitive to slightly positive kx > 0,
which corresponds to a focusing slightly after the turning point. For α0 = 30◦, the peak near
kx = 0 decreases and shifts to larger kx values, meaning that the signal starts getting important
contributions from finite kx turbulent fluctuations away from the turning point. For α0 = 50◦,
the peak has almost disappeared and the signal receives close-to-uniform contributions in the
range of −1 � kx/K0 � 2, corresponding to a highly delocalised signal along the beam path. For
α0 = 80◦, the beam expands for most of its path and the filter function approaches the vacuum
solution.

the focus point as well as the plasma edge (if enough fluctuations are present). For
initial width W0 = 0.40(λL)

1
2 , the location of the peak in |Fxμ|2 is similar to that for

W0 = 0.13(λL)
1
2 , but the filter function becomes broader, suggesting that the beam

focusing is slower and takes place over a larger region, as shown in figure 4. For
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W0 = 1.26(λL)
1
2 , the filter function maximum has increased in value (beam focuses

more) and has a peak as broad as the filter function for W0 = 0.4(λL)
1
2 . Interestingly,

in this case, the filter function |Fxμ|2 does not exhibit an initial decrease after the
launch. This is because, in this condition, the beam does not initially expand fol-
lowing the launch, but only contracts from launch to the focus location (see black
line in figure 4c). Moreover, the beam focuses closer to the turning point than for
W0/(λL)

1
2 = 0.13, 0.4.

Figures 3–7 show that the beam focusing in WY tends to take place close to but
after the turning point (Kxμ = 0, τ ′

μ = cos α0) depending on the initial conditions for

the incident angle α0, width W0/(λL)
1
2 and especially on the phase front radius of

curvature RY0. This challenges the common belief that the DBS signal is always
most sensitive at the turning point and has important consequences for interpreting
the DBS scattered power.

It is equally instructive to characterise the filter function in terms of the turbulent
scattered kx. Note that negative kx corresponds to scattering from the beam in its
first pass from launch towards the turning point, and positive kx to scattering from
the beam in its return journey away from the turning point. Figure 7 shows the
variation of the filter function |Fxμ|2 for different incident angles α0, different initial

radii of curvature RY0 and W0 = 0.40(λL)
1
2 as a function of the turbulent scattered

kx. For α0 = 10◦, |Fxμ|2 is strongly peaked at kx = 0. This means that the DBS
signal is strongly localised near the turning point region and predominantly sensitive
to fluctuations with kx ≈ 0. For α0 = 30◦, the filter peak shifts towards larger kx. For
even larger α0 = 50◦, the filter is sensitive almost uniformly to −1 � kx/K0 � 2, with
peaks of the filter function at both positive and negative kx, and surprisingly a dip in
the vicinity of kx = 0. This suggests that the DBS power is sensitive predominantly
to specific values of kx, with a subdominant contribution from kx = 0. For α0 = 80◦,
the beam follows closely vacuum propagation and the filter has contributions from
small kx/K0 near 0, but this time originating near τ = 0 (near the vacuum beam-
waist, or edge of the plasma in a real experiment) and decays for larger kx. The
beam expands for most of its path and the filter function approaches the vacuum
solution (black dashed line).

Figure 8 shows the corresponding filter function for varying W0/(λL)
1
2 =

0.13, 0.40 and 1.26, different radii of curvature and fixed initial angle α0 = 30◦.
The behaviour of the filter function for small W0 can be understood from figure 4.
For small initial W0, the filter is strongly peaked at two different values of kx
and is independent of the initial condition RY0, consistent with the signal being
strongly localised at the plasma entrance and near the turning point region. For
W0 = 0.40(λL)

1
2 , the filter is dominated by a peak with amplitude and location sim-

ilar to those of the peak due to focusing for small W0, but broader, and hence the
signal gets enhanced contributions from turbulent fluctuations away from the focus-
ing region, depending on the initial condition RY0. For W0 = 1.26(λL)

1
2 , the peak in

kx stays broad and shifts towards kx = 0 for launch near the waist (large |RY0/L|).
The small |RY0/L| cases are different, exhibiting distinctive narrow peaks that even
appear twice for RY0/L = −0.5, consistent with two consecutive focusing regions,
as in figure 4.
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(a) (b) (c)

FIGURE 8. Values of the filter function |Fxμ|2/|F0|2 for varying initial width W0/(λL)
1
2 =

0.13, 0.40, 1.26 and fixed α0 = 30◦ as a function of the turbulent, selected kx. For small ini-
tial W0, the filter is strongly peaked at two values of kx: one negative that corrresponds to the
entrance to the plasma, and one positive from the beam focusing. For small W0, the filter is also
independent of the initial condition RY0. For W0 = 0.40(λL)

1
2 , the filter is dominated by a peak

of amplitude and location similar to those of the peak due to focusing for small W0, but broader.
For W0 = 1.26(λL)

1
2 , the peak in kx stays broad and shifts towards kx = 0 for launch near the

waist (large |RY0/L|).

4.2. Predictions of the measured turbulent spectra
Throughout this manuscript, we have focused on describing the dependence of

the filter function |Fxμ|2 on experimentally relevant initial values for α0, W0 and
RY0. We should note, however, that the intrinsic power spectrum of the turbulence
itself has a direct impact on the measurement. The turbulent spectrum is generally
a decreasing function of kx, as demonstrated by direct numerical gyrokinetic turbu-
lence simulations. In conditions where the filter function predominantly selects large
kx (finite to large α0), the turbulence spectrum in kx should be taken into account to
understand the dominant kx contributing to the backscattering signal. In this section,
we apply what we have learned about the filter function |Fxμ|2 in the beam-tracing
model and use it to understand its effect on the DBS backscattered power from a
realistic density-fluctuation spectrum.

We use the electron-density-fluctuation wavenumber power spectrum
〈|δn̂(kx, ky)|2〉T obtained from nonlinear gyrokinetic simulations resolving strongly
developed ETG turbulence in NSTX, which was examined by Ruiz et al. (2015,
2019, 2020a,b); Ren et al. (2020); Ruiz et al. (2022); Guttenfelder et al. (2022). The
turbulent spectrum can be approximated by the following shape:〈|δn̂(kx, ky)|2〉T

n2
∼ A

1 + ∣∣ kx
wkx

∣∣ζ + ∣∣ky−ky∗
wky

∣∣η . (4.1)

This expression is fitted to the specific strongly driven ETG simulations that we have
mentioned above (Ruiz et al. 2022) to find: ζ ≈ 3.14, η≈ 3.19,wkxρs ≈ 0.89,wkyρs ≈
4.09, ky∗ρs ≈ 6.53, A ≈ 1.18 10−6 (here ρs is evaluated at the cutoff of the hypotheti-
cal DBS experiment). Ruiz et al. (2022) represented the fluctuation spectra in terms
of the normal and binormal wavenumber components kn and kb perpendicular to
the magnetic field, which can be easily calculated from the internal wavenumber
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(a) (b)

FIGURE 9. (a) Values of the normalised beam width WY /W0 along the path τ for varying
values of the incident angle α0, W0 ≈ 1.26(λL)

1
2 and RY0/L = 0.5. The curves are plotted for

the values of τ in which the beam is traversing the plasma slab, x> 0. We assume vacuum
for x< 0 and the beam is launched at x = 0. (b) Corresponding filter function |Fxμ|2/|F0|2 =
K0W0/KμWYμ plotted as a function of the scattered turbulent kx within the plasma slab, that
is, for |kx/K0 cos α0|< 2.

components in a gyrokinetic code. The normal and binormal components corre-
spond to the Cartesian kx and ky employed throughout this manuscript, as we have
explained at the end of § 3. Importantly, from here on, we assume that the turbu-
lent spectrum is uniform in space, that is, the parameters A, ζ, η,wkx,wky and ky∗
are assumed to be constant throughout the whole plasma volume through which the
beam propagates.

DBS experiments routinely vary the angle of incidence α0 to select different
wavenumbers from the turbulence spectrum. In what follows, we show how the
beam width WY , the filter function |Fxμ|2 and ultimately the measured turbulence
spectrum are impacted by varying α0.

Figure 9(a) shows the normalised beam width WY/W0 from the beam-tracing
equations as a function of τ for a range of incident angles α0 = (10◦, 30◦, 50◦, 80◦),
W0 = 1.26(λL)

1
2 and RY0/L = 0.5. The beams in figure 9 have the same initial fre-

quency 	 and reach a turning point location at x = Ln = L cos2 α0 (see figure 1).
Figure 9(a) exhibits beam focusing for α0 = 10◦, 30◦ within the plasma while the
beam focusing takes place outside the plasma for α0 = 50◦. Both the value of the
minimum beam width and the focusing location increase with α0 in this particular
case.

Figure 9(b) shows the DBS filter function |Fxμ|2 corresponding to figure 9(a)
plotted as a function of the turbulent scattered kx normalised to K0 cos α0. The
scattered kx at every τ location is computed using the Bragg condition for backscat-
tering written in Cartesian coordinates, kx = −2Kxμ = −2K0( cos α0 − τ ′

μ) (see § 3
and Appendix B). The turning point takes place where Kxμ = 0, i.e. τ ′

μ = cos α0.
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Note how the filter function peaks closer to kx = 0 for decreasing α0, correspond-
ing to the beam focusing location approaching the turning point for small angles.
The intensity of the enhancement decreases for increasing α0. The dominant kx
contributing to scattering is always positive kx > 0 in this situation, which means
that the signal is predominantly originating from plasma locations after the turning
point. Note how this depends on the initial condition: figure 4(c) shows how the
beam focusing can take place arbitrarily close to the turning point for the same
α0 = 30◦ and W0 = 1.26(λL)

1
2 values but different RY0. Increasing values of α0 will

move the filter function localisation of the DBS signal further and further away from
the turning point, reaching the plasma exit for α0 ≈ 50◦ in these conditions (see red
line in figures 9a and 9b).

Next, we quantify the combined effect of the filter function and its depen-
dence on kx, in conjunction with a realistic, power-law turbulence spectrum. In
figures 10 and 11, we normalise kx, ky and the initial wavenumber magnitude K0

to the local ion sound gyroradius at the cutoff ρs = cs/	D, where cs = (Te/mD)1/2

is the local ion sound speed, mD the deuterium mass and 	D = eB/mD is the deu-
terium gyro-frequency. Using the relation 	=ωpe0/ cos α0 between 	 and the local
value of the electron plasma frequency at the cutoff ωpe0 (see § 2.3), we have
K0ρs = (βemD/2me)1/2/ cos α0 ≈ 4.26/ cos α0, where βe ≈ 1 % is the electron beta
using the local magnetic field, electron density and temperature of the NSTX exper-
iment analysed by Ruiz et al. (2015, 2019, 2020a,b); Ren et al. (2020); Ruiz et al.
(2022); Guttenfelder et al. (2022).

Figure 10 shows the radial-wavenumber dependence of the density-fluctuation
power spectrum (blue lines) that would be sampled as the microwave beam prop-
agates through the plasma. The product of the filter function |Fxμ|2 and the
density-fluctuation power is shown in red. These quantities are plotted as a function
of the turbulent kx normalised by ρs using kxρs = (kx/K0)(K0ρs). The solid lines cor-
respond to kx scattered after the turning point (kx > 0 in figure 9b), while the dashed
lines correspond to kx scattered before the turning point (kx < 0 in figure 9b). As
expected, the filter function has an important effect on the DBS signal power for
smaller incidence angles α0 = 10◦, 30◦, while it becomes unimportant for larger α0,
at which point, the spectral falloff of the density spectrum becomes the dominant
effect determining the kx selection in the DBS measurement. Note, for example,
that the peaking of the filter function near the plasma exit for α0 = 50◦ becomes
negligible because it occurs at large kx. Importantly, figure 10 contains both infor-
mation about the radial localisation of the DBS power (if plotted as a function of τ )
as well as the kx-selectivity of the power spectrum in the DBS measurement (plotted
as a function of kx) through the combined effect of the filter function and the turbu-
lent spectrum. We stress again that, in this discussion, we are neglecting the spatial
dependence of the turbulence intensity and spectrum, 〈|δn̂|2〉T , which is assumed not
to vary along the path.

Ultimately, one of the main purposes of DBS diagnostics as a turbulence mea-
surement is to obtain the density-fluctuation power spectrum in the binormal
wavenumber of the turbulence, known as k⊥ in the DBS jargon. In the context
of this manuscript, k⊥ is ky. To understand the impact of the filter function in such
a measurement, in figure 11(a), we plot the integrated filter function |Fxμ|2 over the
relevant kx which would be sampled as the beam propagates through the plasma as
a function of the selected wavenumber ky = 2K0 sin α0. Since |Fxμ|2 multiplies the
density-fluctuation spectrum 〈|δn̂|2〉T , a constant

∫
dkxρs|Fxμ|2/|F0|2 as a function
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(a) (b)

(c) (d)

FIGURE 10. Density-fluctuation power 〈|δn̂|2〉T and the product of the density-fluctuation
power and the filter function 〈|δn̂|2〉T |Fxμ|2/|F0|2 as a function of the normalised scattered
turbulent radial wavenumber kxρs for different values of the scattered turbulence ky0ρs =
−2K0ρs sin α0. The different α0 = (10◦, 30◦, 50◦, 80◦) correspond to scattered wavenumbers
ky0ρs = −(1.50, 4.92, 10.15, 48.29). Solid lines correspond to kx > 0, while dashed lines cor-
respond to kx < 0. The red curve shows that the beam focusing has a strong effect in the
measurement kx selection for α0 � 30◦−40◦, while the effect becomes negligible for α0 � 40◦.

of ky would suggest that the DBS measurement is able to reproduce the true shape
of the density-fluctuation wavenumber power spectrum

∫
dkxρs〈|δn̂|2(kx, ky)〉T .

Figure 11(a) shows that the ky dependence of
∫

dkxρs|Fxμ|2/|F0|2 varies by a factor
∼ 3 for kyρs ∼ 0.4−40 (α0 ∼ 3◦−80◦). The red dots correspond to the values of the
integral of the filter function for α0 = 10◦, 30◦, 50◦ and 80◦. For small ky (small α0),
the filter function is a decreasing function of ky. This is due to the fact that for small
α0, the beam width focuses and produces an overall enhancement upon integration
over the sampled kx. In fact, WY ∼ α0 for small α0 (Belrhali et al. 2025), that is,
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(a) (b)

FIGURE 11. (a) Integrated filter function
∫

dkxρs|Fxμ|2/|F0|2 for the scattered kx within the
plasma (|kx/K0|< 2 cos α0). Note how the integrated weight

∫
dkxρs|Fxμ|2/|F0|2 is not con-

stant, meaning that the filter function can affect the measured DBS ky spectrum. (b) Turbulent
spectrum 〈|δn̂|2(kx = 0, ky)〉T (black), kx-integrated spectrum

∫
dkxρs〈|δn̂(kx, ky)|2〉T

(magenta) and synthetic DBS spectrum
∫

dkxρs(|Fxμ|2/|F0|2)〈|δn̂|2〉T (kx, ky) (blue) as a
function of ky of the turbulence. The turbulence spectrum has been fitted to a gyrokinetic
simulation (Ruiz et al. 2022). Note how the predicted DBS measurement is not able to capture
the spectral peak of the turbulent spectrum (injection scale), but it is able to quantitatively
reproduce the spectral exponent of the kx-integrated spectrum. The red dots indicate the specific
angles α0 = 10◦, 30◦, 50◦, 80◦ given for reference.

|Fxμ|2 ∼ 1/α2
0 (Kμ ∼ α0). Since beam tracing assumes WY � λ, the decrease of WY

at small α0 means that, for small enough angles, beam tracing is bound to break
down: the prediction of a signal enhancement for small angles might overestimate
the true enhancement in reality, as discussed in detail by Maj et al. (2009, 2010).
The precise angles for which this might happen and corrections to the beam-tracing
model for small angles will be the subject of future publications.

For kyρs ≈ 4−5 (α0 ≈ 30◦), the integrated filter function plateaus before abruptly
decreasing for α0 ≈ 50◦. A similar plateau behaviour is observed in detailed mea-
surements of the scattered power in DIII-D, reported in a recent publication by
Pratt et al. (2023). In our case, this is due to the fact that for such large angles,
beam focusing has started to take place close to the plasma exit (see figure 9b).
This eliminates the signal enhancement due to the beam focusing inside the plasma
(the kx integration is only performed inside the plasma), therefore decreasing the
value of the integrated filter function. For larger ky (α0 � 60◦), the integrated filter
increases. This last increase is due to the fact that the launch condition at the plasma
edge starts to become important. For such large incidence angles, the beam is prac-
tically glancing and can be treated as a high-k backscattering system (Rhodes et al.
2006; Hillesheim et al. 2015). Figure 11(a) shows that the range of sampled radial
wavenumbers in the density-fluctuation spectrum can have an important effect on
the measured DBS power spectrum.

Figure 11(b) shows the turbulence binormal-wavenumber power spectrum
〈|δn̂|2(kx = 0, ky)〉T (black) corresponding to kx = 0. This follows the traditional
interpretation that dominant contributions to the DBS signal originate from
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the cutoff. The magenta line shows the kx-integrated wavenumber spectrum∫
dkxρs〈|δn̂|2(kx, ky)〉T . This could be interpreted as a line-integrated measurement

of the density-fluctuation spectrum. The DBS system can be interpreted as a line-
integrated measurement for large angles α0, since for large α0, |Fxμ|2 varies slowly
and is not strongly peaked (see figure 7d). The extent to which it can be interpreted
as a line integral rather than a localised measurement is quantified by the filter
function |Fxμ|2, which we discuss next.

The blue dots in figure 11(b) show expected synthetic scattered power spectrum
in a DBS measurement, given by the quantity

∫
dkxρs

(|Fxμ|2/|F0|2
) 〈|δn̂|2〉T (kx, ky)

in this beam-tracing model (see (3.9)). For each incidence angle α0 (each ky), the
synthetic DBS scattered power includes the effect of the filter function and the radial
wavenumber dependence of the density-fluctuation spectrum. As expected from the
non-monotonic nature of

∫
dkxρs|Fxμ|2/|F0|2 from figure 11(a), the synthetic scat-

tered power does not reproduce the true density-fluctuation wavenumber spectrum
for kx = 0 nor the kx-integrated spectrum. The peak in the density-fluctuation power
spectrum (kyρs ≈ 6−8), which is the driving scale of the turbulence, cannot be iden-
tified in the synthetic power spectrum. The peak should be visible for α0 ≈ 30◦−40◦,
where the beam model is expected to be quantitatively accurate (Maj et al. 2009,
2010). The enhancement of the synthetic scattered power with respect to the true
turbulence spectrum for low ky (small incidence angles α0 � 20◦) is due to the
enhancement of the signal by beam focusing. For larger kyρs � 10 (α0 � 40◦), the
synthetic spectrum exhibits a power-law spectral decay ∝ k−3.05

y , which is different
from that of the true turbulent spectrum for kx = 0 (∝ k−4.16

y ). The spectral decay is
shown to quantitatively agree with the kx-integrated spectrum, for which ∝ k−2.84

y .
This suggests that DBS scattered power measurements could accurately capture the
spectral exponent of the kx-integrated spectrum, in contrast to the traditional belief
that DBS measurements only select the kx = 0 component (Hillesheim et al. 2012;
Holland et al. 2012). For this particular NSTX-inspired case, the DBS scattered
power measurements can quantitatively reproduce the true spectral exponent of the
kx-integrated, density-fluctuation power spectrum.

5. Conclusions and discussion

In this manuscript, we have discussed the phenomenon of beam focusing in the
vicinity of a turning point. This phenomenon is not new and was already observed
in numerical simulations for the 2-D linear-layer problem (Poli et al. 1999, 2001c;
Yu. A. Kravtsov and Berczynski P., 2007), analytical calculations (Maj et al. 2009,
2010), as well as in numerical simulations in realistic tokamak geometry (Conway
et al. 2007, 2015, 2019). These results were confirmed in this work by numerical
simulations using the Scotty code for an NBI-heated L-mode plasma in the JET
tokamak. The analytic solution derived from a 2-D linear-layer problem adjusted
to fit the experimental conditions of JET discharge 97 080 showed encouraging
agreement with the Scotty simulations for realistic 3-D tokamak geometry. This
motivated us to study the phenomenon of beam focusing in the linear-layer problem.
We have characterised the beam focusing in terms of the initial incident angle α0,
initial width W0 and initial radius of curvature RY0. In particular, we have seen
that beam focusing tends to be enhanced for decreasing angles, independently of
RY0. For small enough α0, the beam-tracing approximation becomes quantitatively
inaccurate near the turning point, as discussed by Maj et al. (2009, 2010). Beam
focusing also exhibits a clear dependence on the initial width W0: initial widths small
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with respect to (λL)
1
2 lead to pronounced initial expansion due to diffraction of

the electromagnetic waves as captured by the beam-tracing equations. Following the
initial beam expansion for small W0, the beam exhibits focusing in the vicinity of
the turning point. For initial widths large with respect to (λL)

1
2 , the initial expansion

can completely disappear to yield only an initial contraction towards a maximum
focusing location in the vicinity of the turning point. The value and location of the
beam focusing is shown to depend on the initial conditions α0, W0 and RY0.

We have used the analytical beam-tracing solution and applied it to the beam-
tracing model for DBS (Hall-Chen et al., 2022b). We have found an analytic
expression for the filter function |Fxμ|2/|F0|2 = K0W0/KμWYμ that characterises the
scattering intensity along the beam path through the plasma, and we have studied it
as a function of the beam initial conditions. This shows that WY is a critical param-
eter affecting the DBS scattering intensity along the path. We apply the lessons
learned from our beam focusing formula to study the DBS filter function |Fxμ|2.
When the beam focuses most (WY is minimal), the filter function is enhanced. This
means that DBS is most sensitive to enhanced contributions from the vicinity of the
focusing point, and as a consequence, it is most sensitive for small angles α0 for
which the focusing is large.

The filter function |Fxy,μ|2 in terms of kx and ky in Cartesian coordinates
opens the door to implementing synthetic diagnostics for DBS perfomed previ-
ously (White et al. 2008; Holland et al. 2009; Leerink et al. 2010; Hillesheim et al.
2012; Holland et al. 2012; Leerink et al. 2012; Gusakov et al. 2013; Krutkin et al.,
2019a; Pratt et al. 2023; Patel et al. 2024). In the kx direction, we recover formulae
reported by Gusakov et al. (2017) when applied to the case of the auto-correlation
(power) spectrum. In previous work, Gusakov et al. (2014, 2017) argued that a
forward-scattering contribution to the DBS amplitude is responsible for the signal
enhancement observed for decreasing incidence angle α0, in DBS as well as in radial
correlation Doppler reflectometry. The calculations by Gusakov et al. (2014, 2017)
were based on the full-wave analytic solution to the Helmholtz equation, including
the Airy-function behaviour near the turning point that is absent in our present
description. Our work demonstrates that the enhancement of the DBS scattered
power for decreasing incidence angles observed by Gusakov et al. (2014, 2017) can
be completely explained via beam tracing, without the need of capturing the Airy
behaviour in the vicinity of the turning point. We show that the underlying principle
behind the enhancement of the DBS power is the beam focusing near the turning
point and not forward scattering (in the form described by Gusakov et al. (2014,
2017). The formulae from § 3 recover the ky-resolution, or diagnostic wavenumber
resolution 
ky, that was already reported in previous work (Lin et al. 2001; Hirsch
et al. 2001; Hillesheim et al. 2012). We find that 
ky is dependent on the initial
conditions α0, W0 and RY0 and on L, and is constant along the path.

In addition to discussing the effect of the filter function |Fxμ|2 on the total DBS
scattered power measurement, we have studied the effect of the turbulent wavenum-
ber spectrum on the measured total scattered power. We have used a realistic
representation of the turbulence spectrum based on gyrokinetic simulations, as done
by Ruiz et al. (2022). We show the combined effect of the kx dependence of the
filter function and the kx dependence of the turbulence spectrum. In an NSTX-
inspired example, the filter function is shown to have a most dominant effect for
small angles α0 = 10◦, 30◦ since for these specific conditions, DBS is sensitive to
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low-to-intermediate ky and the spectrum is large. For larger angles, the filter func-
tion selects larger ky = −2K0 sin α0. In the specific condition analysed, α0 > 50◦
corresponded to wavenumbers ky with small turbulent power in the spectrum. In
those conditions, the filter function was shown to have little effect on the mea-
surement and the dominant contributions to the scattered power could directly be
assessed from the intrinsic turbulent spectrum itself. We also show that the filter
function integrated over kx is far from being constant and is strongly dependent on
the ky selected. The integrated filter function can be affected by the beam focusing
inside or outside the plasma and the launch condition. This shows that one expects
the total scattered power to depend on the incident angle of beam injection in the
plasma, α0. For the particular NSTX turbulent spectrum studied in this manuscript,
we show that the measured DBS scattered power spectrum could not recover the
peak in the true density-fluctuation spectrum. The power-law decay exponent of the
synthetic DBS spectrum can reproduce the kx-integrated turbulence spectrum, but
not the spectrum for kx = 0.

This work helps characterise and interpret the total scattered power measured by
DBS. Little attention has been paid to the spectral frequency power spectrum and
specific experimental analysis techniques that are usually employed to study it. For
example, of particular importance is the dependence of the Doppler-shifted DBS
frequency spectrum on the diagnostic wavenumber resolution, as well as the effect
of the kx = 0 component (which is directly related to the beam focusing). The impact
on the measured frequency spectrum remains an open question, but could be easily
tackled using the reduced filter function developed in this work. This will require
further analysis of the model and comparisons to experiments, which could be the
subject of future publications.

To our knowledge, the beam focusing discussed in this manuscript has never
been experimentally observed and future experiments should seek to experimentally
confirm it. One option could be to set up scattering experiments from plasma fluc-
tuations which exhibit a density gradient (not necessarily in magnetic confinement
devices). Arranging different viewing channels that are sensitive to different parts
of the beam trajectory along the path and assuming that the intensity of the plasma
fluctuations is similar between the different regions in the plasma that each channel
is sensitive to, one should expect enhanced scattering contributions from channels
that are aimed at regions where the beam is focused, since the beam intensity is
enhanced.

Lastly, the model presented here has limitations for small enough incident angles
α0, that is, for close to normal incidence beams. One can show that the filter func-
tion |Fxμ|2 ∝ 1/α2

0 for small angles. That explains the highly peaked behaviour of the
filter function in figures 5(a) and 7(a) near the focusing region. This behaviour has
its origin in the beam-tracing solution for the electric field, for which one can show
that Eb ∝ 1/α0 for small angles (Belrhali et al. 2025). This was studied by Maj et al.
(2009, 2010). However, as pointed out in Maj’s work, the validity of the beam-tracing
approximation is questionable for small enough incident angles. The beam-tracing
solution for Eb might be overpredicting the electric-field enhancement due to focus-
ing. In the exact solution for the electric field, one expects Airy behaviour to become
important through interference between the incident and returning beams in the
vicinity of the turning point, especially in conditions in which the beam width WY

approaches the Airy length lAi = (L/K2
0)

1
3 . This behaviour is absent in the beam-

tracing model, which expands the Airy behaviour asymptotically far from the turning
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point. Although the beam-tracing solution might be overpredicting the electric-field
enhancement in the vicinity of the focusing region, we are confident that the phe-
nomenon of beam focusing is physical, as confirmed by Maj et al. (2009, 2010)
and by our recent work. Future work will seek to employ more sophisticated mod-
els than beam tracing that capture Airy behaviour (as done in recent publications,
such as Lopez, Kur & Strozzi 2023) to quantify how accurate the total integrated
power enhancement predicted by beam tracing is for small incidence angles.
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Appendix A. Analytic beam-tracing solution for the linear-layer problem.

We solve the beam-tracing equations in a 2-D slab for the O-mode with a constant
density gradient (ω2

pe(x) =	2x/L, where x is our Cartesian coordinate in figure 1)
and launch frequency 	. We will make use of the dispersion relation H = 0, which
takes the form H = K2/K2

0 − 1 +ω2
pe/	

2 = 0 for the O-mode. The general beam-
tracing evolution equation for Ψ is calculated along the central ray path and reads
(Hall-Chen et al. 2022b)

dΨ

dτ
= −(Ψ · ∇K∇KH · Ψ + Ψ · ∇K∇H + ∇∇KH · Ψ + ∇∇H

)
. (A.1)

The analytic solution to the Gaussian beam-tracing equations was already obtained
by Pereverzev (1998) and Poli et al. (1999) for the 2-D linear-layer problem and nor-
mal incidence (α0 = 0). The solution for the oblique incidence angle was obtained by
Maj et al. (2009, 2010). The beam-tracing equation (A.1) in the linear-layer problem
reduces to dΨ /dτ = −(2/K2

0)Ψ 2 since we have ∇∇H = 0,∇K∇H = ∇∇KH = 0 and
∇K∇KH = (2/K2

0)I, where I is the identity matrix. Normalising Ψ by K0/L and τ by
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K0L, the corresponding solution for Ψ ′ = Ψ (L/K0) is

� ′−1(τ ′) = 2τ ′I + � ′−1(0). (A.2)

The matrix Ψ ′ must also satisfy the constraint

∇KH · Ψ ′ + ∇H
L
K0

= 0. (A.3)

At τ = 0, (A.3) gives

Ψ ′(0) =
⎛
⎝�

′
xx0 � ′

xy0 � ′
xz0

� ′
xy0 � ′

yy0 � ′
yz0

� ′
xz0 � ′

yz0 � ′
zz0

⎞
⎠=

⎛
⎝� ′

yy0 tan2 α0 − 1
2 cos α0

−� ′
yy0 tan α0 0

−� ′
yy0 tan α0 � ′

yy0 0
0 0 � ′

zz0

⎞
⎠ ,

(A.4)

where the zeros along the third row and column are a particular choice of initial con-
dition. With this choice, one only needs � ′

yy0 and α0 to specify the initial conditions
for the beam in the 2-D linear-layer problem.

The beam-tracing equations are more easily solved in the lab frame {x̂, ŷ, ẑ}
(figure 1), but to interpret the results, it is useful to use the beam frame. Noting that
r = q + Y Ŷ + X X̂, we find that (r − q(τ )) · Ψ · (r − q(τ ))=�YY Y 2 + 2�XY XY +
�XX X 2, where �YY = Ŷ · Ψ · Ŷ, �XY = X̂ · Ψ · Ŷ and �XX = X̂ · Ψ · X̂. The other
components of Ψ are defined by �Yg = Ŷ · Ψ · ĝ, �Xg = X̂ · Ψ · ĝ and �gg = ĝ · Ψ · ĝ.
They are determined from (A.3) and given by

Ŷ · Ψ ′ · ĝ = −1

g

(∇H · Ŷ
) L
K0
,

ĝ · Ψ ′ · ĝ = −1

g

(∇H · ĝ
) L
K0
,

X̂ · Ψ ′ · ĝ = −1

g

(∇H · X̂
) L
K0

= 0.

(A.5)

Evaluating (A.5) at τ = 0, we have⎛
⎝�

′
YY0 � ′

Yg0 � ′
YX0

� ′
Yg0 � ′

gg0 � ′
Xg0

� ′
YX0 � ′

Xg0 � ′
XX0

⎞
⎠=

⎛
⎝ � ′

YY0 −1
2 sin α0 0

−1
2 sin α0 −1

2 cos α0 0
0 0 � ′

zz0

⎞
⎠ , (A.6)

where � ′
YY0 is the beam-frame initial condition. In (A.6), the initial condition

� ′
YX0 = 0 is a choice that is consistent with (A.4), and the component � ′

YY0 in
(A.6) is related to � ′

yy0 in (A.4). We proceed to discuss how.
According to our discussion above, the matrix Ψ is given by(

�YY �Yg �YX
�Yg �gg �Xg
�YX �Xg �XX

)
= RT

α(τ )

(
�xx �xy �xz
�xy �yy �yz
�xz �yz �zz

)
Rα(τ ), (A.7)

where

Rα(τ ) =
(

sin α(τ ) cos α(τ ) 0
− cos α(τ ) sin α(τ ) 0

0 0 1

)
. (A.8)
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Equations (A.7) and (A.8) show that the components of Ψ in the lab frame are
related to those in the beam frame by a change of basis that corresponds to a
simple rotation of angle π/2 − α along ẑ = X̂ (figure 1). Note that �YX = 0 implies
�xz =�yz = 0, which gives an easy interpretation to our choice of initial conditions
in (A.4): the cross-section of the beam is not tilted in the {X̂, Ŷ} plane.

The evolution of the angle α along the path can be easily computed from the
trajectory of the central ray (see (2.9)). It is given by

tan α = tan α0

1 − τ ′/ cos α0
= sin α0

K0

Kx
,

sin α = sin α0

(1 − 2τ ′ cos α0 + τ ′2)1/2
= sin α0

K0

K
,

cos α = cos α0 − τ ′

(1 − 2τ ′ cos α0 + τ ′2)1/2
= Kx

K
.

(A.9)

Using (A.7) and (A.8), one can relate the beam-frame initial condition
�YY0 = K0/RY0 + i2/W 2

0 to the lab-frame initial condition � ′
yy0, yielding � ′

YY0 =
−sin2 α0/(2 cos α0) +� ′

yy0/cos2 α0. The change of basis in (A.7) also gives the
following relations between all the beam-frame and lab-frame components:

�YY (τ ′) =�xx sin2 α − 2�xy sin α cos α +�yy cos2 α,

�Yg(τ ′) = (�xx −�yy
)

sin α cos α +�xy
(

sin2 α − cos2 α
)
,

�gg(τ ′) =�xx cos2 α + 2�xy sin α cos α+�yy sin2 α,

�XX (τ ′) =�zz.

(A.10)

We now provide the lab-frame solution, derived from (A.2),

� ′
xx(τ ′) = � ′

xx0 + 2
0τ
′

D(τ ′)
,

� ′
xy(τ ′) = � ′

xy0

D(τ ′)
,

� ′
yy(τ ′) = � ′

yy0 + 2
0τ
′

D(τ ′)
.

(A.11)

Here, the denominator D(τ ′) can be readily expressed in terms of the lab-frame x̂
component of the central ray K, Kx, yielding

D(τ ′) = 1 + 2τ ′Tr0 + 4
0τ
′2

= 1

cos α0

Kx

K0
+ 2

� ′
yy0

cos α0

(
cos2 α0 − sin2 α0

cos α0

Kx

K0
+ sin2 α0 − K2

x

K2
0

)
,

(A.12)

with


0 = (� ′
yy�

′
xx −� ′2

xy)0 = (� ′
YY�

′
gg −� ′2

Yg)0 = − � ′
yy0

2 cos α0
,

Tr0 = (� ′
yy +� ′

xx)0 = (� ′
gg +� ′

YY )0 = − 1

2 cos α0
+ � ′

yy0

cos2 α0
,

(A.13)
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where we used τ ′ = cos α0 − Kx/K0. It is convenient to express (A.11) in terms of
Kx and the initial conditions α0, � ′

yy0 and K0. We have

� ′
xx = sin2 α0

K2
0

K2
x
� ′

yy − 1

2

K0

Kx
,

� ′
xy = − sin α0

K0

Kx
� ′

yy,

� ′
yy = � ′

yy0
Kx
K0

cos α0D(Kx)
.

(A.14)

The denominator D in (A.14) is a function of Kx and is evaluated using the second
line of (A.12).

Using the evolution of the angle α along the path in (A.9), and �YY (τ ′) =
�xx sin2 α − 2�xy sin α cos α +�yy cos2 α (see (A.10)), we arrive at the final solution
for � ′

YY given in (2.10). Equation (2.10) contains the beam-focusing phenomenon

for the 2-D linear-layer problem through WY = (2/	[�YY ]
) 1

2 . Expressing �YY as a
function of the central ray Kx is convenient, since it readily allows us to express WY
as a function of the turbulent scattered kx, as done in this manuscript. We simply
substitute kx = −2Kx (Bragg condition).

At this point, it is worth relating the beam-tracing solution to previous work.
Gusakov et al. (2014, 2017) employ particular initial conditions for the beam-tracing
equations. Gusakov et al. (2014, 2017) perform their calculations in the lab frame,
setting the initial conditions to

� ′
yy0 ≡ iγ,

� ′
xx0 = iγ tan2 α0 − 1

2 cos α0
,

� ′
xy0 = −iγ tan α0,

(A.15)

where γ = L/(K0ρ
2) is purely real. Equations (A.15) are very particular initial con-

ditions since they define a purely imaginary �yy0 in the lab frame, but not in the
beam frame. This means that this initial condition does not correspond to the
beam waist at launch, but has a specific initial value for the radius of curvature
in the beam frame. Using the relation between �YY0 and �yy0 in (A.10), we have
RY0/L = −2 cos α0/sin2 α0, W0 = √

2ρ cos α0. Note that we can recover expressions
by Gusakov et al. (2017) by setting � ′

yy0 → iγ . In the work of Gusakov et al. (2014,
2017), (A.11), (A.12) and (A.13) show that � ′

yy can be explicitly written as

� ′
yy(Kx) =

2γ 2
(

cos2 α0−sin2 α0
cos α0

+ K0
Kx

sin2 α0 − Kx
K0

)
1 + 4γ 2

(
cos2 α0−sin2 α0

cos α0
+ K0

Kx
sin2 α0 − Kx

K0

)2

+ iγ

1 + 4γ 2
(

cos2 α0−sin2 α0
cos α0

+ K0
Kx

sin2 α0 − Kx
K0

)2
.

(A.16)

The particular initial conditions from Gusakov et al. (2014, 2017) finally
yield
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� ′
YY (Kx) =

−1
2 sin2 α0 + iγ

[
K3

x
K3

0
+ 3 sin2 α0

Kx
K0

− sin2 α0
cos α0

(
cos2 α0 − sin2 α0

)]
[

sin2 α0 + K2
x

K2
0

][
Kx
K0

+ 2iγ
(

cos2 α0−sin2 α0
cos α0

Kx
K0

+ sin2 α0 − K2
x

K2
0

)] .

(A.17)

Using WY computed from (A.17) and |Fxμ|2/|F0|2 = K0W0/KμWYμ recovers (14)
and (15) from Gusakov et al. (2017).

Appendix B. Details of the scattered power calculations

In this appendix, we provide details of the scattered-power calculations in the 2-D
linear-layer problem from § 3. We follow a derivation analogous to that of Hall-Chen
et al. (2022b), but using Cartesian coordinates instead of beam-aligned coordinates.
The position (x, y) in Cartesian coordinates is related to the (τ, Y ) coordinates by
x = xc(τ ) + Y sin α(τ ), y = yc(τ ) − Y cos α(τ ) (see (3.2)), where (xc, yc) are the coor-
dinates along the central ray (figure 1), and sin α and cos α are given by (A.9).
The density fluctuations are expressed in terms of (x, y) and the conjugate turbulent
wavevector is expressed in its Cartesian components k⊥ = kxx̂ + kyŷ, that is, we have
δn(x, y, t) = ∫ dkxdky δn̂(kx, ky) exp (ikxx + ikyy) (see (3.1)). Starting from (100) of
Hall-Chen et al. (2022b), the scattered amplitude can be written as

Ar(t) = i	Aant

2πc

∫
dV dkx dky 	[�YY ]

1
2 	[�XX ]

1
2
gant

g
exp (i2φG)

δn̂
n

[
ê∗ · (εeq − 1) · ê

]
× exp

[
i
(
2s + kx (xc(τ ) + Y sin α)+ ky (yc(τ ) − Y cos α)

+X 2�XX + Y 2�YY

)]
, (B.1)

where the differential volume element is dV ≈ gdτ dX dY (see (114) of Hall-Chen
et al. 2022b) and εeq is the equilibrium part of the cold-plasma dielectric tensor (note
the approximately equal sign, since dV has corrections of order ∼ λ/W due to the
fact that X̂ and Ŷ depend on τ ). In (B.1), the integrals in X and Y are integrals of a
complex Gaussian and give

Ar(t) =−	Aantgant

2c

∫
dkxdky

δn̂
n

∫
dτ
[	[�YY ]

�YY

] 1
2 [

ê∗ · (εeq − 1) · ê
]

× exp (i2φG) exp [if (τ )],

(B.2)

where we set 	[�XX ]/�XX = 1 (to be able to ignore the variation along the field line
direction X ). Here, f (τ ) is

f (τ ) = 2s + kxxc(τ ) + kyyc(τ ) − (k⊥ · Ŷ)2/4�YY , (B.3)

where k⊥ · Ŷ = kx sin α− ky cos α from (3.5). The largest piece in f is given by

f0 = 2s + kxxc + kyyc, (B.4)

where f0 ∼ L/λ. The last term in (B.3) is order ∼ 1, since k⊥ · Ŷ ∼ 1/W . Naively, this
would suggest calculating the integral in τ from (B.2) via the method of stationary
phase using df0/dτ = 0. This results in a point of stationary phase τμ ∼ L/λ that is

https://doi.org/10.1017/S0022377825000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825000170


38 J. Ruiz Ruiz and others

real, but yields an error of order ∼ 1 in the result, as we shall see. The reason for
this is subtle. While the exponent exp [if (τ )] from the τ integral in (B.2) appears
to be imaginary at first sight, it is not quite imaginary due to the term exp [−i(k⊥ ·
Ŷ)2/4�YY ]. Even though this term is order ∼ 1, it ends up giving rise to an order
∼ 1 error in the result. This is because, despite being order ∼ 1, its first and second
derivatives are not.

We start by calculating the τ integral in (B.2) using the traditional stationary phase
from the largest part exp [if0], while keeping the term exp [−i(k⊥ · Ŷ)2/4�YY ] ∼ 1
constant. We call τμ the solution to df0/dτ

∣∣
μ

= 0, which defines a point along the
trajectory of the central ray where, for a given k⊥, we have the resonant Bragg
condition 2Kμ + k⊥ · ĝμ = 0. Now, consider a point situated at a distance 
τ ∼
W/λ
 τμ from τμ. At that point, the phase f0 gives the following contribution:

f0(τμ +
τ ) = f0(τμ) + d2f0

dτ 2

∣∣∣
μ

(
τ )2

2
+ O

(
λ

W

)
, (B.5)

where (d2f0/dτ 2)
∣∣
μ

(
τ )2/2 ∼ 1. Next, we calculate the contributions from

exp [−i(k⊥ · Ŷ)2/4�YY ] at τμ +
τ . We find

− (k⊥ · Ŷ)2

4�YY

∣∣∣∣
τμ+
τ

= − (k⊥ · Ŷμ)2

4�YYμ
− (k⊥ · ĝμ)(k⊥ · Ŷμ)

2�YYμ

dα
dτ

∣∣∣∣
μ


τ

− (k⊥ · ĝμ)2

2�YYμ

(
dα
dτ

)2 ∣∣∣∣
μ

(
τ )2

2
+ O

(
λ

W

)
,

(B.6)

where we used the following relation between the unit vectors:

dĝ
dτ

= −Ŷ
dα
dτ
,

dŶ
dτ

= ĝ
dα
dτ

.

(B.7)

Equation (B.7) can be easily proven by taking the derivative of the unit vectors
in (2.6). Using the fact that k⊥ · ĝ ∼ 1/λ and k⊥ · Ŷ ∼ 1/W , we note that all terms
in (B.6) are ∼ 1. This is contradictory, because the term −i(k⊥ · Ŷ)2/4�YY |τμ+
τ
in (B.6) should be approximately −i(k⊥ · Ŷ)2/4�YY |μ for the method of stationary
phase to work. The corrections to that term from small deviations 
τ should have
been ∼ λ/W or smaller. They are not smaller because, despite being ∼ 1 at τ =
τμ, the term −(k⊥ · Ŷ)2/4�YY is not ∼ 1 for τ − τμ ∼ W/λ. The fact that we find
that the corrections to that term from a small deviation 
τ to τμ are important
suggests that, in fact, the term −i(k⊥ · Ŷ)2/4�YY has to be taken into account in
the stationary phase calculation, alongside f0, despite the fact that it is, at first sight,
order ∼ 1 for τ = τμ and f0 ∼ L/λ. Having shown this, we proceed to calculate the
dominant contribution to the τ integral in (B.2) by a method related to the steepest
descent (Bender & Orszag 1978), but not exactly the steepest descent method.

The τ integral in (B.2) is dominated by the region around df /dτ = 0, where

df
dτ

= 2Kg + kx
dxc

dτ
+ ky

dyc

dτ
− (k⊥ · ĝ)(k⊥ · Ŷ)

2�YY

dα
dτ

− (k⊥ · Ŷ)2

4

d
dτ

(
1

�YY

)
, (B.8)
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where the first three terms on the right-hand side are order ∼ 1, the fourth term
is order ∼ λ/W and the last term is ∼ λ/L. Note that directly setting df /dτ = 0
(steepest descent) will give a complex value for τμ. One option to calculate the
exact steepest descent point is to solve df /dτ = 0 for τ in (B.8), as a function of
kx, ky,K0L, α0 and �yy0, by using the exact expression for �YY in (2.10), as well
as (A.9). This leads to a high-order polynomial in τ that does not admit an analytic
solution in the general case. Instead, here we choose to solve df /dτ = 0 perturba-
tively for τ in (B.8). We will find that the τ that satisfies (B.8) can be written as
τμ +
τ , where τμ is the real solution to df0/dτ = 0 (using (B.5)). We will find that

τ is complex. This appears to pose a problem, since the functions s, xc, yc, Ŷ and
�YY in f are functions of a real τ . This means that we have to analytically continue
them to the complex plane. One can wonder how much one can extended these
functions away from real τ . That turns out not to be very important because we are
going to prove that one only needs to modify the path by a very small amount: the
saddle point will only be a small distance 
τ ∼ (W/L)τμ away from the original real
path. Since W/L is an asymptotically small number, the deviation from the original
path into the complex plane will be sufficiently small that no pole, branch point or
fundamental singularity will be crossed.

Having established the validity of the analytic continuation into the complex plane
by distances of order W/L from the original path, we now calculate that distance

τ and how it contributes to the τ integral in (B.2). We note that (B.3) implies that
k⊥ · Ŷ ∼ 1/W , and hence the term proportional to (k⊥ · ĝ)(k⊥ · Ŷ) in (B.8) is small in
λ/W . This motivates splitting the root into two pieces τμ +
τ , where τμ is real and

τ ∼ (λ/W )τμ is complex, and expanding the Bragg condition order by order in
λ/W . We denote quantities evaluated at τμ with the subscript μ (e.g. K(τμ) = Kμ).
At the lowest order, we have

df
dτ

∣∣∣
τμ

≈ df0

dτ

∣∣∣
τμ

= 2Kμgμ + kx
dxc

dτ

∣∣∣
τμ

+ ky
dyc

dτ

∣∣∣
τμ

= 0, (B.9)

where f0 is given by (B.4). The zeroth-order Bragg condition in (B.9) can be explicitly
written in terms of Kxμ as follows:

2
K2

xμ

K2
0

+ kx

K0

Kxμ

K0
+ sin α0

(
ky

K0
+ 2 sin α0

)
= 0, (B.10)

where we used (2.9) and the expression gμ = 2Kμ/K2
0 . Using the fact that k⊥ · Ŷ ∼

1/W and employing (A.9) gives kx ≈ ky/ tan αμ and hence

ky + 2K0 sin α0 ∼ 1/W . (B.11)

Note that (B.10) exhibits two solutions for Kxμ. Following (B.11), we expand the
two solutions for small ky + 2K0 sin α0. We find

Kxμ ≈
{− sin α0(ky + 2K0 sin α0)K0/kx

−kx/2 + sin α0(ky + 2K0 sin α0)K0/kx
, (B.12)

where only the second solution ∼ 1/λ is physically relevant. This shows that Kxμ =
−kx/2 + O(1/W ). As we anticipated, the Bragg condition calculated to zeroth-order
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is not sufficient to calculate the terms that are order ∼ 1 in the phase or in the
amplitude.

Next, we use the fact that k⊥ · ĝ ∼ 1/λ and k⊥ · Ŷ ∼ 1/W to find the Bragg condi-
tion to next order in λ/W . This is done by finding the solution to (B.9) at τμ +
τ ,
by setting

df
dτ

∣∣∣
τμ+
τ =

(
2Kg + kx

dxc

dτ
+ ky

dyc

dτ
− (k⊥ · ĝ)(k⊥ · Ŷ)

2�YY

dα
dτ

)
τμ+
τ

= 0. (B.13)

Note that the last term in (B.8) was dropped, since it contributes an order smaller.
Equation (B.13) determines the value of 
τ , which is given by


τ ≈
(k⊥·ĝμ)(k⊥·Ŷμ)

2�YYμ

(dα
dτ

)
μ

2dK
dτ

∣∣
μ
gμ − (k⊥·ĝμ)2

2�YYμ

(dα
dτ

)2
μ

, (B.14)

where we can easily verify that 
τ ∼ W/λ as anticipated. Having calculated the
value of τμ and 
τ that satisfy the Bragg condition order by order in (B.9),
(B.13) and (B.14), next, we approximate f (τ ) ≈ f (τμ +
τ ) + d2f /dτ 2

∣∣
τμ+
τ (τ −

τμ −
τ )2/2. We find

f (τμ +
τ ) ≈ f (τμ) +
τ
df
dτ

∣∣∣
τμ

+ 1

2

τ 2 d2f

dτ 2

∣∣∣
τμ

≈ f0(τμ) −
dK
dτ

∣∣
μ
gμ

(
k⊥·Ŷμ

)2

2�YYμ

2dK
dτ

∣∣
μ
gμ − 2K2

μ

�YYμ

(dα
dτ

)2
μ

,

(B.15)

where f0 is given by (B.4) and the second derivative term in (B.15) is given by

d2f
dτ 2

∣∣∣
τμ+
τ ≈ d2f

dτ 2

∣∣∣
τμ

= 2
dK
dτ

∣∣∣
μ
gμ − 2K2

μ

�YYμ

(
dα
dτ

)2

μ

. (B.16)

Note that the phase in (B.15) contains terms ∼ 1 that cannot be recovered by restrict-
ing the stationary phase calculation to zeroth-order, that is, by calculating df0/dτ = 0
and keeping the term −(k⊥ · Ŷ)2/4�YY in (B.3) constant.

We are now in a position to perform the steepest-descent integral in (B.2). We
find the following expression for the scattered amplitude in Cartesian coordinates:

Ar(t) = Aant

∫
dkxdky Fxy,μ(kx, ky)δn̂(kx, ky) exp

[
i
(
2sμ(kx, ky) + kxxcμ + kyycμ

)]
,

(B.17)
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where the slowly varying function (filter) Fxy,μ(kx, ky) takes the form

Fxy,μ(kx, ky) = − 	gant

2c

[	[�YYμ]

�YYμ

] 1
2

[
ê∗ · (εeq − 1) · ê

]
τμ

nμ
exp (i2φGμ)

×

⎛
⎜⎜⎝ 2iπ

2dK
dτ

∣∣
μ
gμ − 2K2

μ

�YYμ

(
dα
dτ

)2

τμ

⎞
⎟⎟⎠

1
2

exp

⎡
⎢⎢⎣−i

dK
dτ

∣∣
μ
gμ

(
k⊥·Ŷμ

)2

2�YYμ

2dK
dτ

∣∣
μ
gμ − 2K2

μ

�YYμ

(dα
dτ

)2
μ

⎤
⎥⎥⎦ .

(B.18)

Next, we calculate the scattered power following the same procedure as Hall-
Chen et al. (2022b). For this calculation, we need the turbulence correlation function
C, defined as the Fourier transform of the density-fluctuation wavenumber power
spectrum in Cartesian (kx, ky) coordinates,

C(r, t, 
r, 
t) = 〈δn(r +
r, t +
t)δn(r, t)〉T
〈δn2〉T

=
∫

dkxdky Ĉ(r, t, kx, ky, z = 0, 
t) exp [i(kx
x + ky
y)].
(B.19)

Here, 〈δn2〉T is the root-mean-square value of the density-fluctuation power. The
function Ĉ is given by

Ĉ(r, t, kx, ky) = 1

〈δn2〉T
∫

dk′
xdk′

y
〈
δn̂(kx, ky)δn̂∗(k′

x, k
′
y)
〉
T

× exp [i(kx − k′
x)x + i(ky − k′

y)y].
(B.20)

We order kx − k′
x ∼ ky − k′

y ∼ 1/L. We use (B.20) for Ĉ to calculate the scattered
power. We start by calculating the product 〈|Ar|2〉T , which is given by

〈|Ar(t)|2
〉
T =|Aant|2

∫
dkxdky Fxy,μ(kx, ky) exp

[
if0(τμ)

]
×
∫

dk′
xdk′

y F∗
xy,μ′(k′

x, k
′
y) exp

[−if0(τμ′)
]

× 〈δn̂(kx, ky)δn̂∗(k′
x, k

′
y)
〉
T ,

(B.21)

where μ′ is the scattering position corresponding to (k′
x, k

′
y), different from (kx, ky).

Note that Fxy,μ does not change significantly if kx or ky change by a small amount of
order ∼ 1/L. This means that we can neglect the differences kx − k′

x ∼ ky − k′
y ∼ 1/L

between Fxy,μ(kx, ky) and F∗
xy,μ′(k′

x, k
′
y), so that F∗

xy,μ′(k′
x, k

′
y) ≈ F∗

xy,μ(kx, ky). The

last step to calculate 〈|Ar(t)|2〉T is to compute the difference in the large phase
f0(τμ) − f0(τμ′). Since f0 ∼ L/λ, it is important to keep the differences kx − k′

x ∼
ky − k′

y ∼ 1/L; these differences will provide an order unity contribution to the
phase. Straightforward calculations lead to

2sμ − 2sμ′ + kxxcμ − k′
xxcμ′ + kyycμ − k′

yycμ′ ≈ (kx − k′
x)xcμ + (ky − k′

y)ycμ,

(B.22)
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where we used the Bragg condition (B.10) and the definition of s = ∫ Kdl in
Cartesian coordinates (see (2.5)). Using (B.22) and F∗

xy,μ′(k′
x, k

′
y) ≈ F∗

xy,μ(kx, ky),

we can relate the expression for 〈|Ar(t)|2〉T to the correlation function in (B.20).
Defining pr = 〈|Ar(t)|2〉T , we find

pr

Pant
=
∫

dkxdky |Fxy,μ|2〈δn2〉T Ĉ(rcμ, t, kx, ky), (B.23)

where rcμ = (xcμ, ycμ, z = 0). The correlation function is related to the 2-D
wavenumber power spectrum via 〈|δn̂(kx, ky)|2〉T = 〈δn2〉T Ĉ(r, t, kx, ky, z = 0, 
t =
0). The Cartesian filter function |Fxy,μ|2 in (B.23) can be calculated directly using
(B.18) and is given by

|Fxy,μ|2 =2π
(	gant

2c

)2
∣∣ê∗ · (εeq − 1) · ê

∣∣2
τμ

n2
μ

× 	[�YY ]μ
|�YY |μ

exp

[
−

(
2 dK

dτ

)2

μ
g2
μ∣∣2 dK

dτ g− 2K2
�YY

(
dα
dτ

)2∣∣2
μ

2
(
k⊥·Ŷμ

)2


k2
μ2

]
∣∣2dK

dτ g − 2K2

�YY

(dα
dτ

)2∣∣
μ

,

(B.24)

where k⊥ · Ŷ = kx sin αμ − ky cos αμ (see (3.5)), and we have introduced the

wavenumber resolution 
kμ2 = 2
(−1/	[1/�YYμ]

) 1
2 = 2|�YYμ|/	[�YYμ]

1
2 ∼ 1/W

as defined by Hall-Chen et al. (2022b). Note that the polarisation piece for the
O-mode can be written as

∣∣ê∗ · (εeq − 1) · ê
∣∣2 =ω4

pe/	
4.

Equation (B.24) for |Fxy,μ|2 is (3.8) in the main text. We note that (B.23) does
not exactly recover the expressions of Gusakov et al. (2014, 2017). Equation (B.23)
can be further simplified by using the Bragg condition and the analytic beam-tracing
solution, which we describe next. We will recover (3.9) in the main text. This result
is valid for general beam initial conditions. By using Gusakov’s initial conditions
in (A.15), we will recover the expressions for the scattered power (auto-correlation)
derived by Gusakov et al. (2014, 2017).

We want to express |Fxy,μ|2 as a function of its variables kx and ky. The function
|Fxy,μ(kx, ky)|2 in (B.23) is a function of (kx, ky) through the Bragg condition relat-
ing τμ to kx and ky (see (B.9)). We proceed to calculate the different terms in (B.23).
Using the Bragg condition kx ≈ −2Kxμ, the ray-tracing solution for the central ray
and the analytic expression for �YY (see (2.10)), we proceed to simplify the terms
outside of the exponential in (B.23). Using the formulae

dK
dτ

∣∣∣
μ
gμ = − 2

K0L
Kxμ

K0
, (B.25)

and (
dα
dτ

)
μ

= sin α0

K0L

K2
0

K2
μ

, (B.26)
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we find

2
dK
dτ

∣∣∣
μ
gμ − 2

K2
μ

�YYμ

(
dα
dτ

)2

μ

=

− 4� ′
yy0

K0L

K4
μ/K

4
0

−1
2 sin2 α0 +� ′

yy0

(
K3

x
K3

0
+ 3 sin2 α0

Kx
K0

− sin2 α0
cos α0

( cos2 α0 − sin2 α0)
) .

(B.27)

We then obtain

	[�YY ]μ

|�YY |μ
∣∣∣∣2dK

dτ g − 2 K2

�YY

(
dα
dτ

)2
∣∣∣∣
μ

= K2
0L

4Kμ

√
2	[�yy0]∣∣�yy0
∣∣WYμ

,
(B.28)

where we have used WYμ = (2/	[�YYμ])
1
2 and

	[�YYμ] =
	[�yy0]

K2
μ

K2
0∣∣∣Kxμ

K0
+ 2� ′

yy0

(
cos2 α0−sin2 α0

cos α0

Kxμ
K0

+ sin2 α0 − K2
xμ

K2
0

)∣∣∣2 . (B.29)

With respect to the terms inside the exponential in (B.23), the k2-wavenumber
resolution 
kμ2 takes the following form:


k2
μ2 = 4|�YYμ|2

	[�YYμ]
= (B.30)

4

	[� ′
yy0]

∣∣∣− 1
2 sin2 α0 +� ′

yy0

(
K3

x
K3

0
+ 3 sin2 α0

Kx
K0

− sin2 α0
cos α0

(
cos2 α0 − sin2 α0

))∣∣∣2
K6
μ/K

6
0

K0

L
.

(B.30)

Using (B.30) for 
kμ2 and employing (B.25) and (B.27), the argument of the
exponential in |Fxy,μ|2 (see (B.23)) can be written as exp [−h(kx, ky)], where

h(kx, ky) =
2
(

2dK
dτ

∣∣
μ
gμ
)2

∣∣∣∣dK
dτ g − 2 K2

�YY

(
dα
dτ

)2
∣∣∣∣
2

μ

(
k⊥ · Ŷμ

)2


k2
μ2

= K0L
2

	[� ′
yy0]

|� ′
yy0|2

K4
xμ

K4
μ

(
ky

K0
− kx sin αμ

K0 cos αμ

)2

. (B.31)

We express h in normalised quantities to emphasise that h is large, h ∼ K0L � 1,
unless ky ≈ kx tan αμ. The ky dependence of the integrand in (B.23) is through
the exponential term (via h) and through the turbulence spectrum 〈|δn̂(kx, ky)|2〉T .
Given the assumption of large h, we can further simplify the expression for |Fxy,μ|2
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by performing the ky integral using Laplace’s method (Bender & Orszag 1978).
This leads to (3.9), which can be proven as follows. The Gaussian integral in ky is
dominated by contributions where ∂h/∂ky ≈ 0, which takes place for a given ky�.
This suggests expanding h around ky�, giving h(kx, ky) ≈ h(kx, ky�) + (1/2)(ky −
ky�)2∂2h/∂k2

y

∣∣
ky�

. To calculate ∂h/∂ky and ∂2h/∂k2
y, we first use (A.9) to express

sin αμ/ cos αμ as a function of Kxμ, giving sin αμ/ cos αμ = K0 sin α0/Kxμ. Then,
we employ the expression Kxμ ≈ −kx/2 + sin α0(ky + 2K0 sin α0)K0/kx in (B.12),
giving ∂Kxμ/∂ky ≈ sin α0K0/kx. Using this, we find

∂h
∂ky

∣∣∣∣
kx,ky

≈ L
	[� ′

yy0]∣∣� ′
yy0

∣∣2
K4

xμ

K4
μ

(
ky

K0
− kx

sin α0

Kxμ

)(
1 + K2

0 sin2 α0

K2
xμ

)
, (B.32)

where we have neglected terms small in (ky − kx tan αμ). The dominant contribution
to the integral comes from ky satisfying the extrema condition ∂h/∂ky = 0, which
gives

ky� = kx sin α0
K0

Kxμ�
≈ −2K0 sin α0, (B.33)

where we used once more (B.12). Using (B.32), we calculate ∂2h/∂k2
y and evaluate

it at ky�, giving

∂2h
∂k2

y

∣∣∣∣
kx,ky�

= L
K0

	[� ′
yy0]∣∣� ′

yy0

∣∣2
K4

xμ�

K4
μ�

(
1 + K2

0 sin2 α0

K2
xμ�

)2

≈ L
K0

	[� ′
yy0]∣∣� ′

yy0

∣∣2 = 	[�yy0]∣∣�yy0
∣∣2 .

(B.34)

Putting together (B.31) and (B.34), we find that the exponential term in (B.23),
exp [−h(kx, ky)], is given approximately by

exp[−h(ky)] ≈ exp

[
− 	[�yy0]

2
∣∣�yy0

∣∣2 (ky + 2K0 sin α0)2

]
= exp

[
−2(ky + 2K0 sin α0)2


k2
y

]
.

(B.35)

Equation (B.35) is the Gaussian exponential term in ky in (3.9) and (3.10).
In this expression, we recover the wavenumber resolution of the DBS diagnos-
tic 
ky in Cartesian coordinates. Note the difference between 
ky in the lab
frame, which is constant along the path and only depends on initial conditions,
and 
kμ2, which is the wavenumber resolution in the beam frame obtained by
Hall-Chen et al. (2022b), which depends strongly on the position along the path
(see (B.30)). For the resolution in ky, we find 
k2

y = 4|�yy0|2/	[�yy0] (see (3.10)),
which simplifies to the particular case of 
ky = 2/ρ for the initial conditions cho-
sen by Gusakov et al. (2014, 2017). Note that the value 2/ρ is simply a lower limit
to the diagnostic wavenumber resolution. Putting (B.35) together with (B.28), we
recover the full expression for |Fxy,μ|2 in (3.9), including the 1/KμWYμ dependence
outside of the exponential. Performing the integral over ky, we recover (3.8) for
|Fxμ|2(kx) = ∫ dky|Fxy,μ|2(kx, ky).
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Appendix C. Mapping the density between beam-aligned and Cartesian coordinates

In this appendix, we establish the relation between the beam-aligned representation
of the density, as used by Hall-Chen et al. (2022b), and the Cartesian representation
of the density that is employed by Gusakov et al. (2014, 2017). We note that the
two representations are independent of beam-tracing or scattering physics, and are
simply a manifestation of two different frames of reference in which to express the
density fluctuations. The relation between the density expressed in both frames is
used in Appendix D to state the equivalence between the Doppler backscattered
amplitude of Hall-Chen et al. (2022b) and of Gusakov et al. (2014, 2017).

We start from the definition of the beam-aligned representation of the density,
δn̂b, as given by (102) of Hall-Chen et al. (2022b). In the 2-D linear layer, it takes
the following form:

δn(r) =
∫

dk1dk2 δn̂b(k1, k2) exp
[
i(k1l + k2Y )

]
. (C.1)

Here, l and Y are the two spatial dimensions that describe the small-scale fluctuations
perpendicular to the background magnetic field and are aligned with the beam, k1
and k2 are the corresponding Fourier-conjugate wavenumber components, and we
assume no variation in the direction parallel to the magnetic field (u|| of Hall-Chen
et al. 2022b). The coordinate l is the arc length of the central ray, given by (2.9). To
improve clarity and to provide physical intuition, in this appendix, we use l as the
parameter that the different functions depend on along the path, such as xc(l), α(l),
etc. instead of τ as we have used in the main body of this manuscript.

We now turn to the Cartesian density-fluctuation field δn given by (3.1), with
k⊥ = kxx̂ + kyŷ. The coordinates (x, y) are related to (l, Y ) in (C.1) by x = xc(l) +
Y sin α(l), y = yc(l) − Y cos α(l) (see (3.2)). This gives the succinct form (x, y) =
q + Y Ŷ, where q = (xc, yc) and kxx + kyy = k⊥ ·

(
q + Y Ŷ

)
.

To relate the density-fluctuation spectra between beam-aligned and Cartesian
coordinates in (C.1) and (3.1), we project one onto the other. We have

δn̂b(k1, k2) =
∫

dYdl
(2π )2

exp (−ik1l − ik2Y ) δn(r)

=
∫

dkxdky

(2π )2
δn̂(kx, ky)

∫
dYdl exp

[
ifk⊥(l, Y )

]
, (C.2)

where the function fk⊥(l, Y ) is given by

fk⊥(l, Y ) = k⊥ ·
(
q + Y Ŷ

)
− k1l − k2Y . (C.3)

To find a useful relation between δn̂b and δn̂, we proceed to compute the integrals
in l and Y in (C.8). We do so by calculating the point of stationary phase in the
2-D (l, Y ) plane. We note that the unit vectors ĝ and Ŷ both depend on l, which
needs to be taken into account when computing derivatives with respect to l (see
(B.7)). The point of the stationary phase (lb, Yb) is given by the joint conditions
∂fk⊥/∂ l|lb,Yb = ∂fk⊥/∂Y |lb,Yb = 0. Using (B.7), the derivatives of fk⊥ with respect to
l and Y are given by
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∂fk⊥
∂ l

= k⊥ · ĝ
(

1 + Y
dα
dl

)
− k1,

∂fk⊥
∂Y

= k⊥ · Ŷ − k2,

(C.4)

where we used the definition of g = dq/dτ and dl = gdτ . The point of the stationary
phase (lb, Yb) is determined by

k1 = k⊥ · ĝb

(
1 + Yb

dα
dl

∣∣∣
b

)
,

k2 = k⊥ · Ŷb,

(C.5)

where the subscript (.)b means that functions are evaluated at (lb, Yb). It is worth
commenting on the implications from (C.5). Given the dependence of ĝ and Ŷ on l,
for a given k⊥, the second equation in (C.5) states that the value of k2 determines
the location lb where (C.5) is satisfied. Equivalently, given k⊥, k2 is determined
uniquely by the location along the path lb, independently of the coordinate Yb.
Having determined lb, the value of k1 then determines the location Yb where (k1, k2)
and k⊥ are resonant. Or yet equivalently, given k⊥ and lb, k1 is determined by the
location perpendicular to the central ray Yb.

Having calculated the location (lb, Yb) and the relation between k⊥ and (k1, k2),
next we want to approximate fk⊥ quadratically in (l − lb) and (Y − Yb). For that, we
turn to compute the second derivatives of fk⊥ with respect to l and Y , which are
given by

∂2fk⊥
∂ l2

= −k⊥ · Ŷ
dα
dl

+ Y

(
−k⊥ · Ŷ

(
dα
dl

)2

+ k⊥ · ĝ
d2α

dl2

)
,

∂2fk⊥
∂ l∂Y

= k⊥ · ĝ
dα
dl
,

∂2fk⊥
∂Y 2

= 0.

(C.6)

Using (C.6), we can write

fk⊥(l, Y ) ≈ fk⊥(lb, Yb) + (l − lb)2

2

∂2fk⊥
∂ l2

∣∣∣∣
lb,Yb

+ (l − lb)(Y − Yb)
∂2fk⊥
∂ l∂Y

∣∣∣∣
lb,Yb

. (C.7)

Computing the Gaussian integrals in l and Y using (C.7), we find the desired relation
between δn̂(k⊥) and δn̂b(k1, k2),

δn̂b(k1, k2) =
∫

dkxdky

2π

δn̂(kx, ky)

|k⊥ · ĝ dα/dl|b exp
[
ik⊥ · qb − ik1lb

]
. (C.8)

This is the general relation between δn̂b and δn̂ in two dimensions. In the next
section, we use (C.8) to prove the equivalence between the backscattering amplitude
in two dimensions using a beam-aligned δn̂b, as done by Hall-Chen et al. (2022b),
and using a Cartesian δn̂, as done by Gusakov et al. (2014, 2017).
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Appendix D. Relation of the scattered amplitude Ar between beam-aligned and
Cartesian coordinates

In this appendix, we show the equivalence between the scattered amplitude Ar
in beam-aligned coordinates, as used by Hall-Chen et al. (2022b), and Cartesian
coordinates, as in (3.3) and used by Gusakov et al. (2014, 2017). This shows that
both the beam-tracing model of Hall-Chen et al. (2022b) and the 2-D DBS model of
Gusakov et al. (2014, 2017) are equivalent to each other: they are simply expressed
in different frames of reference. A similar exercise for directly mapping the DBS
power between both representations requires further work, which will be the subject
of a future publication.

We start from the expression of the backscattered amplitude of (169) from Hall-
Chen et al. (2022b), which in the 2-D linear layer takes the following form:

Ar(t) = Aant
∑
ν

∫
dk1dk2 Fν(k1, k2) δn̂b(k1, k2, u||ν, t) exp

[
i(2sν + k1lν)

]
, (D.1)

where Fν is the effective filter function in beam-aligned coordinates and is given by

Fν(k1, k2) = −
[

iπ
dK
dτ g

	[�YY ]

�YY

] 1
2

ν

[
ê∗ · (εeq − 1) · ê

]
ν

nν
exp

(
i2φGν − i

4

k2
2

�YYν

)
.

(D.2)

The notation [.]ν means that functions of τ have been evaluated at τν , the location
along the central-ray path where the Bragg condition for backscattering is satisfied.
In beam-aligned coordinates, the Bragg condition is

k1 ≈ −2K(τν). (D.3)

Note that only the lowest-order contribution ∼ 1/λ to the Bragg condition has been
kept here. For a given k1, there can exist several τν associated to it. This explains
the sum

∑
ν in (D.1). The scattering amplitude in (D.1) only has contributions from

backscattering events. Any forward scattering component is absent because of the
Bragg condition.

We note that τν differs from the τμ calculated using Cartesian coordinates
throughout the manuscript by a correction of order ∼ W/λ, which we calculate
later in this appendix. This difference between τμ and τν is of limited importance in
the main text of this manuscript, but it is important to consider in order to show the
equivalence of the scattered amplitude in both representations.

To show that the formulae for the scattered amplitude in Cartesian and beam-
aligned coordinates are equivalent, we make use of (C.8) and insert it into (D.1) for
the amplitude. By exchanging the order of integration, we have

Ar(t) = − Aant
∑
ν

∫
dkxdky

2π
δn̂(kx, ky)

∫
dk1dk2

|k⊥ · ĝ dα/dl|b

[
iπ

dK
dτ g

	[�YY ]

�YY

] 1
2

ν

×
[
ê∗ · (εeq − 1) · ê

]
ν

nν
exp (i2φGν) exp

[
if
]
,

(D.4)
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where the phase f is given by

f = 2sν + k⊥ · qb + k1(lν − lb) − k2
2

4�YYν
. (D.5)

We recall from Appendix C that the subscript (.)b corresponds to the location (lb, Yb)
where the resonance condition in (C.5) takes place. We proceed to calculate the
integrals in k1 and k2 by the method of stationary phase (Bender & Orszag 1978).

The phase f in (D.5) is made of a large piece, 2sν + k⊥ · qb + k1(lν − lb) ∼ L/λ,
and a small piece, −k2

2/4�YYν ∼ 1. The large piece forces lν − lb 
 L. One can see
this by using the stationary-phase method. Indeed, ∂f /∂k1 = 0 and ∂f /∂k2 = 0 give
lb = lν to lowest order.

We proceed by assuming lν − lb ∼ W . We can then find the distance between
a nearby point lν to lb. We can expand Ŷν − Ŷb as Ŷν − Ŷb ≈ (lν − lb)dŶ/dl|b.
Multiplying by k⊥ and using (B.7), (C.5) and dŶ/dl|b ≈ dŶ/dl|ν , we find

k⊥ · Ŷν − k2 = k⊥ · ĝν
dα
dl

∣∣∣
ν
(lν − lb) + O

(
1

L

)
, (D.6)

which results in lν − lb ∼ W as we predicted above. Equation (D.6) also shows
that, for a given k⊥, we can change k2 by moving in lb. A similar exercise
can be done for ĝν , which gives k⊥ · ĝν − k⊥ · ĝb ≈ −k⊥ · Ŷb(dα/dl)|b(lν − lb) − k⊥ ·
ĝb(dα/dl)2|b(lν − lb)2/2 ∼ 1/L. In this case, we can use k⊥ · ĝν ≈ k⊥ · ĝb.

We now Taylor-expand qb in (D.5) in powers of lb − lν . Using dq/dl = ĝ and (B.7),
we have

qb ≈ qν + ĝν(lb − lν) − Ŷν
dα
dl

∣∣∣
ν

(lb − lν)2

2
. (D.7)

Next, we use (D.6) and (D.7) to find a suitable expression of the phase in (D.5) in
terms of powers of lb − lν , keeping terms up to ∼ 1. We find

f ≈ 2sν + k⊥ · qν − (k⊥ · Ŷν)2

4�YYν
−
(

k1 − k⊥ · ĝν + (k⊥ · Ŷν)(k⊥ · ĝν)(dα/dl)ν
2�YYν

)
(lb − lν)

− (k⊥ · ĝν)2(dα/dl)2
ν

4�YYν
(lb − lν)2.

(D.8)

Note that the dependence on k2 in (D.4) is now hidden in lb through (D.6).
We compute the k2 integral in (D.4) by changing variables of integration from k2

to lb by dk2 = |k⊥ · ĝ dα/dl|bdlb. The integral in lb is a complex Gaussian. We find

∫
dk2

|k⊥ · ĝ dα/dl|b exp
[
if
]=( −4iπ�YYν

(k⊥ · ĝν)2(dα/dl)2
ν

) 1
2

exp
[
ihν(k1)

]
, (D.9)

where the function hν(k1) is given by

hν(k1) = 2sν + k⊥ · qν + k⊥ · Ŷν(k1 − k⊥ · ĝν)

k⊥ · ĝν (dα/dl)ν
+ �YYν

(
k1 − k⊥ · ĝν

)2
(k⊥ · ĝν)2(dα/dl)2

ν

. (D.10)
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Having completed the k2 integral, (D.4) now takes the following form:

Ar(t) = − Aant
∑
ν

∫
dkxdky δn̂(kx, ky)

∫
dk1

[ 	[�YY ]

(gdK/dτ) (k⊥ · ĝ)2(dα/dl)2

] 1
2

ν

×
[
ê∗ · (εeq − 1) · ê

]
ν

nν
exp (i2φGν) exp

[
ihν(k1)

]
.

(D.11)

Note that the integrand under the k1 integral sign in (D.11) has a non-trivial
dependence on k1 through the Bragg condition k1 = −2Kν in (D.3). However, the
integral can be simplified by noting that k1 − k⊥ · ĝμ ∼ 1/W . This follows from the
Bragg conditions (3.4) and (D.3) and the exponential term in (D.9). Computing the
difference between (3.4) and (D.3), we find

k1 − k⊥ · ĝμ ≈ −2
dK
dl

∣∣∣∣
μ

(lν − lμ). (D.12)

Since k1 − k⊥ · ĝμ ∼ 1/W , to make the exponential term in (D.9) of order unity,
we find lν − lμ ∼ W and we Taylor-expand terms in hν in powers of (k1 − k⊥ · ĝμ).
When calculating dhν/dk1 and d2hν/dk2

1, we will make use of (D.12), so that terms
that are functions of lν can be calculated by using the chain rule

d
dk1

= − 1

2(dK/dl)ν

d
dlν

. (D.13)

Equation (D.13) is particularly useful for computing d(k⊥ · ĝν)/dk1 and d(k⊥ ·
Ŷν)/dk1. Using (B.7) and (D.13) , we have

d(k⊥ · ĝν)

dk1
= (dα/dl)ν

2(dK/dl)ν
k⊥ · Ŷν ∼ λ

W

 1,

d(k⊥ · Ŷν)

dk1
= − (dα/dl)ν

2(dK/dl)ν
k⊥ · ĝν ∼ 1,

(D.14)

where we have employed k⊥ · Ŷν ∼ 1/W . Using (D.12), (D.13) and (D.14), the large
phase term 2sν + k⊥ · qν can be expanded as

2sν + k⊥ · qν = 2sμ + k⊥ · qμ + 1

4(dK/dl)μ
(k1 − k⊥ · ĝμ)2 + O

(
λ

W

)
, (D.15)

where we have used the Bragg condition 2Kμ + k⊥ · ĝμ ≈ 0. Next, we expand the
third and fourth terms of hν in (D.10). We have

k⊥ · Ŷν(k1 − k⊥ · ĝν)

k⊥ · ĝν (dα/dl)ν
= k⊥ · Ŷμ

k1 − k⊥ · ĝμ
k⊥ · ĝμ (dα/dl)μ

− (k1 − k⊥ · ĝμ)2

2(dK/dl)μ
+ O

(
λ

W

)
,

�YYν
(
k1 − k⊥ · ĝν

)2
(k⊥ · ĝν)2(dα/dl)2

ν

= �YYμ
(
k1 − k⊥ · ĝμ

)2
(k⊥ · ĝμ)2(dα/dl)2

μ

+ O
(
λ

W

)
.

(D.16)
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The phase hν now has explicit dependence on (k1 − k⊥ · ĝμ) and it is given by

hν = 2sμ + k⊥ · qμ + k⊥ · Ŷμ(k1 − k⊥ · ĝμ)

k⊥ · ĝμ (dα/dl)μ
+ d2hν

dk2
1

∣∣∣∣
μ

(k1 − k⊥ · ĝμ)2

2
+ O

(
λ

W

)
,

(D.17)

where d2hν/dk2
1

∣∣
μ

∼ Lλ is given by

d2hν
dk2

1

∣∣∣∣
μ

= 2�YYμ

(k⊥ · ĝμ)2(dα/dl)2
μ

− 1

2(dK/dl)μ
. (D.18)

With this approximation to hν , the integral over k1 in (D.11) becomes a Gaussian
integral that can be easily evaluated. We find that the integral in k1 in (D.11)
recovers (B.17) and (B.18). This is proof that the representations of the density
in beam-aligned coordinates used by Hall-Chen et al. (2022b) and in Cartesian
coordinates used by Gusakov et al. (2014, 2017) are completely equivalent.

We note that the equivalence obtained here between the beam-aligned and
Cartesian representation of the density is proven for the scattered amplitude and
not directly for the power. It is possible to directly prove the equivalence in the scat-
tered power from the beam-aligned expression in (k1, k2) of Hall-Chen et al. (2022b)
to the Cartesian expression in (kx, ky) in (3.7), (3.8). This requires mapping the cor-
relation functions between beam-aligned Ĉb and Cartesian coordinates Ĉ, which is
non-trivial and will be the subject of a future publication.

It is worth commenting on the equivalence of the scattered-power contributions
for beam-aligned and Cartesian coordinates when regarded as a one-dimensional
integral in kx or k1. In this case, it is straightforward to directly map the Cartesian
and beam-aligned representations of the scattered power, as follows.

The backscattered power in Cartesian coordinates from (3.9) can be rewritten
as an integral over the beam-aligned k1 (Hall-Chen et al. 2022b). To express the
one-dimensional integral in (3.9) in terms of k1, change variables using dkx =
dk1Kμ/|Kxμ| = dk1/| cos αμ|, where we used (A.9). We find

pr

Pant
≈ π

3
2 K0L

e4

m2
eε

2
0	

4

∑
μ

∫
dk1

〈|δn̂μ(kx,−2K0 sin α0)|2〉T
|Kxμ/K0|WYμ

, (D.19)

where we have used (B.25) to write the term |gdK/dτ |μ as a function of Kxμ. The
dependence of kx on k1 in (D.19) can be explained as follows. First, kx is related to
the location along the path lμ through the Bragg condition in Cartesian coordinates
in (3.6). In turn, lμ is related to k1 through the Bragg condition when expressed in
beam-aligned coordinates, k1 ≈ −2Kμ to lowest order, since the difference lμ − lν is
of order ∼ W as we just saw.

Equation (D.19) recovers the same result as Hall-Chen et al. (2022b) when using
〈|δn̂b,μ|2〉T . The one-dimensional change of variables between kx and k1 shows that,
to lowest order and at scales ∼ 1/λ, the density-fluctuation spectra in Cartesian
coordinates is related to the beam-aligned spectrum of Hall-Chen et al. (2022b) by a
rotation of angle αμ, and we have 〈|δn̂μ(kx,−2K0 sin α0)|2〉T = 〈|δn̂b,μ(kx cos αμ −
2K0 sin α0 sin αμ, 0)|2〉T . Noting that kx cos αμ − 2K0 sin α0 sin αμ ≈ −2Kμ ≈ k1 by
use of the Bragg conditions, we have therefore recovered the equivalence in the
one-dimensional scattered power in both representations.
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