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Relatively, recent work by Jeganathan (2008, Cowles Foundation Discussion Paper
1649) and Wang (2014, Econometric Theory, 30(3), 509–535) on generalized martin-
gale central limit theorems (MCLTs) implicitly introduces a new class of instrument
arrays that yield (mixed) Gaussian limit theory irrespective of the persistence level
in the data. Motivated by these developments, we propose a new semiparametric
method for estimation and inference in nonlinear predictive regressions with persis-
tent predictors. The proposed method that we term chronologically trimmed least
squares (CTLS) is comparable to the IVX method of Phillips and Magdalinos (2009,
Econometric inference in the vicinity of unity. Mimeo, Singapore Management
University) and yields conventional inference in regressions where the nature and
extent of persistence in the data are uncertain. In terms of model generality, our
contribution to the existing literature is twofold. First, our covariate model space
allows for both nearly integrated (NI) and fractional processes (stationary and
nonstationary) as a special case, while the vast majority of articles in this area
only consider NI arrays. Second, we allow for nonlinear regression functions. The
CTLS estimator is obtained by applying certain chronological trimming to the OLS
instruments using appropriate kernel functions of time trend variables. In particular,
the instruments under consideration are a generalized (averaged) version of those
widely used for time-varying parameter (TVP) models. For the purposes of our
analysis, we develop a novel asymptotic theory for sample averages of various
processes weighted by such kernel functionals which is of independent interest
and highly relevant to the TVP literature. Leveraging our nonlinear framework, we
also provide an investigation on the effects of misbalancing on the predictability
hypothesis. A new methodology is proposed to mitigate misbalancing effects. These
methods are used for exploring the predictability of SP500 returns.
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1. INTRODUCTION

Estimation and inference under temporal dependence are challenging tasks. An
enormous literature in time series econometrics and statistical time series is dedi-
cated to this topic. Despite major advances in this area, relatively little progress has
been made toward the development of a comprehensive framework for inference
in general models that allow for flexible functional forms and regressors that may
exhibit a wide range of persistence.

The major obstacle for a development of this kind has to do with the fact
that parametric estimators, under nonstastionarity and mild endogeneity, exhibit
drastically different limit distributions than those under stationarity. As a con-
sequence, inferential procedures developed for stationary data are not applicable
under nonstationarity and vice versa. A number of early studies in the area of non-
stationary econometrics (e.g. Phillips and Hansen, 1990; Johansen, 1995; Phillips,
1995) develop inferential procedures suitable for nonstationary models with I(1)

covariates; however, these methods are nonrobust to local deviations from the unit
root paradigm, and some of them are not valid under stationarity1. In particular,
when there are local or larger deviations from a unit root, nuisance parameters
such as memory and near-to-unity feature in estimators’ limit distributions make
inference challenging. Near-to-unity parameters are not estimable, rendering var-
ious statistical tests non pivotal. On the other hand, memory parameters can be
estimated in general; however, more complicated procedures are required for valid
inference.

Despite progress in recent years toward methodologies that partially robustify
inference to the persistence properties of the data, a unifying framework for
inference that allows for a wide range of persistence in the data and a wide range
of model specifications remains elusive. In general, two main approaches have
been proposed to address this issue in the predictive regression literature. The first
approach relies on so-called conservative methods; see, e.g. Mikusheva (2007),
Phillips (2014), for a review. An alternative approach that has gained a lot of
attention lately is the semiparametric IVX method first proposed by Phillips and
Magdalinos (2009, PM hereafter). This is an IV method that yields conventional
inference for a general class of regressors via signal reduction in the instruments.
Further, it should be mentioned that there is related literature for fractional
cointegration systems (e.g. Hualde and Robinson (2010), that has received little
attention in the predictability area. More recently, Jin and Wang (2024) investigated
self-weighted estimation for nonlinear cointegrating regression. A more detailed
review of existing methods for robust inference under temporal dependence can
be found in Section S1 of the Online Supplement.

In this article, we consider a reduced signal IV method comparable to IVX.
We develop estimation methods that yield conventional inference in predictive

1Phillips (1995) allows for both I(0) and I(1) covariates without prior knowledge of the exact integration properties of
each series. The proposed FMLS method yields conventional inference in the presence of both I(0) and I(1) covariates.
However, for certain restrictions, FMLS Wald tests can be conservative.
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CHRONOLOGICALLY TRIMMED LS 3

regressions that are nonlinear in variables, with nonlinearities of known form, see,
e.g., Park and Phillips (1999, 2001). In particular, we consider linear in parameter
models that allow for a wide range of dependence in the data including stationary
or nonstationary long memory as well as NI fractional arrays (e.g., Buchmann and
Chan, 2007). The proposed methods, which we term chronologically trimmed LS
(CTLS), share the same underlying principle as the IVX method.

The CTLS method is partly encouraged by recent developments in generalized
MCLTs (e.g., Jeganathan, 2008, Wang 2014, 2015). These generalized MCLTs
entail asymptotic orthogonality conditions between triangular arrays and mar-
tingale difference terms that correspond to instruments and regression errors,
respectively. The validity of the aforementioned orthogonality conditions requires
instruments of weaker signal than that of the OLS instrumentation. These high
level requirements effectively define a class of instrument arrays that, similarly
to IVX, yield conventional limit theory (normal or mixed normal) irrespective of
the persistence level in the data. To illustrate how CTLS instrumentation achieves
signal reduction, consider the simple predictive regression

yk = βf (xk−1)+ ek, k = 1,...,n, (1)

where the regression errors {ek}n
k=1 together with some appropriate filtration

{Fk}n
k=1 form a martingale difference sequence. In this case, the proposed CTLS

instruments for the estimate of β are a generalized version of

Zkn(τ ) = K [cn (k/n− τ)] f (xk−1), 0 < τ < 1, c−1
n + cnn−1 → 0, (2)

with K > 0 being an integrable kernel function, and cn is a (reciprocal) bandwidth
term. Notice that for f (x) = x, the term in equation (2) is exactly the instrument
utilized for the estimation of TVPs in a number of studies2, e.g. Robinson (1991),
Giraitis et al. (2014), Phillips et al. (2017), Giraitis et al. (2021), and Hu et al.
(2024). The term Zkn(τ ) is a reduced signal version of the OLS instrument f (xk−1).
To see this, without loss of generality, assume that lim|x|→∞ K (x) = 0. It then
follows from (2) that as n → ∞ we have K [cn (k/n− τ)] → 0, for all k such that
cn |k/n− τ | → ∞. While trimming applies for values of k/n away from τ , the
particular instrument extracts information locally around the “chronological point
τ .” Notice that the kernel function is bounded away from zero when cn |k/n− τ |
is bounded, i.e., when k/n ≈ τ . Therefore, no trimming applies when k/n is in the
vicinity of the chronological point τ . By allowing the cn sequence to diverge at an
arbitrarily slow rate (i.e. cn → ∞), the resultant IV (CTLS) estimator attains an
arbitrarily slower convergence rate relative to that of the OLS estimator.

Despite the fact that Zkn(τ ) is a reduced signal instrument, its utilization does
not yield conventional inference under nonstationarity when there is more than one
regression parameter, e.g., equation (1). In fact, Phillips et al. (2017) demonstrate
that when covariates are I(1) and the dimensionality of parameter space is strictly

2The usual assumption in the TVP literature is that regression coeffients are of the form β(k/n) with β being a
function β : [0,1] → R.
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greater than unity, limit distributions associated with Zkn(τ ) instrumentation are
comparable to those of OLS, i.e., they are nonconventional determined by stochas-
tic integrals. This phenomenon occurs because the “Hessian” is singular with
multiple convergence rates arising from this singularity. We refer to Phillips
et al. (2017) for more details. Alternatively, the CTLS estimator proposed here
involves averaging over a multitude of chronological points. In particular, CTLS
instruments are of the form

Zkn =
l∑

j=1

Zkn(τj), 0 < τ1 < ... < τl < 1,

with Zkn(.) defined in (2) and l is either fixed or l = ln → ∞, as n → ∞. We
demonstrate that under nonstationarity (e.g., xk is an NI fractional process), Zkn

yields conventional limit theory as long as the number of chronological points
(i.e., l) is no smaller than the dimensionality of the parameter space and ln does
not diverge too fast. The former restriction is required for ruling out a singularity
in the Hessian. In particular, it is necessary that ln is no smaller than the number of
the regression parameters for the Hessian to be of full rank. The second restriction
ensures that nontrivial trimming (i.e. sufficient signal reduction) applies. The
signal reduction achieved by CTLS results in vanishing endogeneity between Zkn

and ek and therefore leads to mixed Gaussian limit distributions.
To illustrate why instruments of attenuated signal can facilitate conventional

inference, assume that f in (1) is linear. The particular choice of instruments yields
the following limit theory for the CTLS estimator

λn

(
β̂ −β

)
→d mixed normal,

where λn =
√

nln
cn

dn, and dn is a normalizing sequence such that d−1
n x[nt] satisfies an

FCLT. Notice that because ln/cn → 0, the estimator attains a reduced convergence
rate. Both the reduction in the convergence rate and the asymptotic mixed normal-
ity are due to the fact that the instruments are of attenuated signal. In particular,
the instruments satisfy the following asymptotic orthogonality condition which is
sufficient for mixed normality3

1√
n

n∑
k=1

∣∣E (λ−1
n Zknek · vk | Fk−1

)∣∣= OP(
√

ln/cn) = oP(1), (3)

with vk being the regression error that drives xk (and Zkn). The term on the l.h.s.
above captures the degree of endogeneity. In fact, it can be readily seen that
summand is the modulus of the conditional covariance between the score term
λ−1

n Zknek and the random process that drives the instruments, i.e., vk. It is obvious
from the above that the degree of endogeneity is proportional to the signal of
the instruments. Therefore, using reduced signal instruments results in vanishing

3See Jeganathan (2008, Condition R4) and Wang (2014, equation (2.3)).
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endogeneity, which, in turn, yields mixed normality. Notice that for the OLS
instruments the above requirement fails. Noting that the convergence rate of the
OLS estimator is λn = √

ndn, we get

1√
n

n∑
k=1

∣∣E (λ−1
n xkek · vk | Fk−1

)∣∣→d |E (v1e1)| ·
∫ 1

0
|Xt|dt,

where Xt is some limit process, e.g., fractional BM, Ornstein–Uhlenbeck process,
etc.

The contribution of this article can be summarized as follows.

(i) First, we provide a general theoretical contribution. Recent developments
in generalized MCLTs reveal that there is a whole class of reduced signal
instruments that yield conventional inference similar to IVX, cf. equation (3).
Therefore, more research is required to identify other potential methods and
evaluate their relative merits.

(ii) Second, the current work allows for a substantially more general regressor
space than that considered by most research articles in this area. Existing
studies focus primarily only on NI predictors. For example, the ARFIMA
class has received very little attention in the predictive regression literature,
if any, despite the fact that it can accommodate precesses exhibiting far
more general levels of persistence than those of the usual NI processes.
Note that if {xk}n

k=1 is an NI array, we have the following single order of
magnitude

∑n
k=1 xk = Op(n3/2). On the other hand, if xk ∼ I(d) with memory

parameter d > −1/2 we get
∑n

k=1 xk = Op
(
n1/2+d

)
, which gives a continuum

of asymptotic rates.4 In the current work, we allow for wide range of stationary
and nonstationary covariates that encompass both NI and fractional processes
as special cases, e.g., the NI fractional (NIF, hereafter) nonstationary array5

(see also Buchmann and Chan, 2007; Kasparis et al., 2015)

xk = (1+ c/n)xk−1 + vk, vk ∼ I(δ), δ > −1/2. (4)

(iii) Further, this article allows for nonlinear regression models (e.g. Park and
Phillips, 1999, 2001), generalizing the linear predictive regressions commonly
used in practice. Nonlinear specifications can potentially address misbalanc-
ing issues that are typically encountered in the applied predictive literature,
i.e., situations where the predictor is more persistent than the dependent
variable, see, e.g., Kasparis, Andreou and Phillips (2015), Phillips (2015),
and the discussion below. A new methodology, which entails rolling test
statistics of sequences of flexible functional forms, is proposed for mitigating
misbalancing effects related to the predictability hypothesis.

4Notice that an I(d) process of memory d > −1/2, can be either nonstationary or stationary, possibly of negative
memory.
5The memory of xt is d = 1 + δ. Note that for δ = 0, xt is the usual NI process considered in the predictability
literature. On the other hand, for c = 0, we get a fractional process with memory parameter d > 1/2.
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(iv) Finally, this work provides a novel limit theory of independent interest. For
example, we generalize asymptotics for kernel functionals related to the
literature on TVP models in various directions. Among other things, we
consider kernel functionals that entail substantially more general nonstation-
ary covariates than those in the existing studies, e.g., Phillips et al. (2017).
Furthermore, we consider kernel sample functionals that involve stationary
and nonstationary processes, possibly of long memory, at the same time.
The basic limit theory derived here can readily provide asymptotic results
for the Hessian terms associated with TVP model estimators. However,
a complete characterization of these estimators—specifically, the asymp-
totics for score terms similar to those considered by Phillips et al. (2017)—
requires additional work. We leave further developments in this area for future
research.

Finally, we provide some comparison between CTLS and IVX. PM shows
that IVX can accommodate NI and mildly integrated (MI) covariates while the
most recent work of Kostakis et al. (2015) extends the method to stationary
short-memory processes. Further, some preliminary theoretical results suggest, see
Theorem 3.2 in Duffy and Kasparis (2018), that IVX, probably after some minor
modification, is also valid for fractional processes. Our theoretical framework
does not allow for MI processes but readily allows for fractional predictors and
nonlinear regression functions. The current results could be generalized to MI
covariates, but generalization would require a drastically different asymptotic
machinery, e.g., a generalization of the asymptotic theory provided by Duffy and
Kasparis (2021). We leave an extension toward this direction for future work.
In terms of implementation, both methods are of comparable complexity, i.e.,
they both rely on studentized IV estimators. The simulation study provided here
indicates that, for the usual linear specifications with NI covariates, IVX-based
inference has better finite sample performance relative to CTLS. Nevertheless, as
mentioned above, CTLS is readily available to nonlinear models and in situations
where covariates are nonstationary fractional arrays.

The remainder of this work is organized as follows. Section 2 introduces the
model and the main assumptions. Section 3 presents the CTLS instruments and
related estimators. Section 4 considers CTLS-based predictive tests in a univariate
setting. CTLS inference in a multicovariate setting is provided in Section S2 of
the Online Supplement. Section 5 provides a theoretical investigation into the
consequences of misbalancing due to functional form misspecification on CTLS
predictability tests and proposes a new methodology for mitigating adverse effects
due to this phenomenon. Section 6 is a simulation study. An empirical application
to the predictability of stock returns is the subject of Section 7. Our basic limit
theory is presented in the Appendix, i.e., Sections A and B. All proofs are provided
in the Online Supplement.

Throughout this article, we make use of the following notation. For two
deterministic sequences an and bn, an ∼ bn denotes limn→∞ an/bn = 1. I(A) is
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the indicator function on set A. We may write the integral
∫
R

f (x)dx (
∫

A f (x)dx)
as
∫

f (
∫

A f ). ⇒ denotes weak convergence in the space D[0,1]. For a vector x,
‖x‖ is its inner product norm and x′ its transpose. For a matrix A, ‖A‖ denotes its
matrix norm. For a matrix A, [A]ij denotes its (i,j) element. By [x] we denote the
integer part of a positive number x. Definitional (distributional) equality is denoted
as := (=d). Finally, diag{a1,...,ap} denotes a (block) diagonal matrix with (blocks)
elements {a1,...,ap} on the main diagonal, →d denotes convergence in distribution,
and Y := MN(0,�) denotes a mixed Gaussian variate with characteristic function
ψ(t) = Eeit′Y = Ee−t′�t/2.

2. MODEL AND ASSUMPTIONS

We consider the nonlinear in variables regression model

yk = μ+β ′f(xk−1)+ ek,ek = σkuk,k = 1,...,n, (5)

where μ is an intercept, β = [
β1,...,βp

]′
a vector of slope parameters, xk =[

xk,1,...,xk,p
]′

a vector of covariates, and f : Rp → R
p known regression functions

with f(xk) = [f1
(
xk,1

)
,...,fp

(
xk,p

)
]′. Without loss of generality, it is convenient

for presentation purposes to use the following initialization for the covariate
vector x0 = 0. The process uk together with some filtration Fkforms a martingale
difference sequence such thatE

(
u2

k | Fk
)= 1 a.s., and xk isFk-measurable. Finally,

σk is a volatility process allowing for a variety of conditionally heteroscedastic
regression errors (ek), e.g. strictly stationary ARCH(∞) or GARCH. The exact
properties of these processes will be specified in Assumptions A1-A3 below.
Similar nonlinear models with a predetermined covariate have been considered,
for example, by Park and Phillips (1999, 2001), Chang et al. (2001), and Chan
and wang (2015), in a parametric setup, and by Wang and Phillips (2009a, 2009b,
2011, 2012), Kasparis et al. (2015) in a nonparametric setup. For recent related
results, we refer to Wang (2021), Hu et al. (2021b), Duffy and Kasparis (2021)
and the references therein. It should be mentioned that the model of equation (5)
can be rewritten in the following more compact form:

yk = θ ′F(xk−1)+ ek, (6)

where θ := [
μ,β ′]′, and F(xk−1) := [

1,f(xk−1)
′]′. To keep our technical exposition

and notation relatively simple, we assume that either all covariates xk are stationary
or they are all nonstationary.6 Furthermore, following Park and Phillips (1999,
2001), we assume that under nonstationarity the regression functions {fi}p

i=1, are
asymptotically homogeneous functions. This class of functions is specified in detail
by the following definition.

6Our basic asymptotic theory in the Appendix can readily accommodate models where some regressors are stationary
and some are nonstationary. However, to keep our presentation simple, we do not explicitly allow for both regimes
at the same time in a regression setup. A generalization toward this direction would require substantially more
complicated notation, see, e.g., Chang et al. (2001).
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Definition AHF (asymptotically homogeneous function). A measurable func-
tiong :R→R is an asymptotically homogeneous function (AHF, hereafter), if there
is some continuous function Hg : R → R and πg : (0,∞) → (0,∞) such that for
all λ > 0,

g(λx) = πg(λ)Hg(x)+Rg(λ;x),

where
∣∣Rg(λ;x)

∣∣ ≤ ag(λ)Pg(x), with Pg(x) = 1 + |x|δg for some δg > 0, and
ag(λ)/πg(λ) → 0, as λ → ∞. Hg and πg are the limit homogeneous function and
asymptotic order of g respectively.

Remark 1. An AHF g(x) postulates that for large λ, g(λx) ≈ πg(λ)Hg(x). Many
popular functions satisfy this property, e.g., polynomial functions, logarithmic,
step functions, and distribution type of functions—see, e.g., Park and Phillips
(1999, 2001) for further discussion. We impose continuity on Hg in order to
simplify our derivations. The results presented in this work can be extended to
locally integrable functions (e.g. functions with integrable poles) at the expense
of more complicated exposition—see, e.g., Christopeit (2009), Wang and Phillips
(2009a,b), Duffy and Kasparis (2021) and the references therein.

The following assumptions specify in detail the covariates and the regression
error in (5).

A1 (innovations): ηk ∈ R
p+1 is a random sequence of the form ηk = [ξ ′

k,uk]′,
ξk ∈ R

p, and Fk = σ(uk,uk−1,...,u1;ξj,j ≤ k) a sequence of sigma-fields.
{ηk,Fk}k≥1 is a (p+1)-dimensional martingale difference sequence satisfying
the following conditions:

(a) supk≥1 E(u2
kI(|uk| ≥ M)|Fk−1) = oP(1), as M → ∞;

(b) supk≥1 E(‖ξk‖2 I(‖ξk‖ ≥ M)|Fk−1) = oP(1), as M → ∞;
(c) for all k ≥ 1, E(u2

k |Fk−1) = 1.

A2 (stationary process): xk = [
xk,1,...,xk,p

]′
is a functional of {ξk,ξk−1,...},

and σk is adapted to Fk−1, where Fk is defined in A1 so that F(xk−1)

and F(xk−1)σk are strictly stationary ergodic sequences with F measurable
and E

[‖F(x1)‖2 +σ 2
2

(
1+‖F(x1)‖2)]< ∞.

A3 (nonstationary process & invariance principle):

(a) Xn,k := D−1
n xk, with Dn = diag{d1n,...,dpn}, 0 < d2

in = Var(xn,i) → ∞, for
each i = 1,...,p, and xk is a functional of {ξk,ξk−1,...}, possibly depending
on n, such that on D

R3p [0,1],[
1√
n

[nt]∑
k=1

ξk,
1√
n

[nt]∑
k=1

ξ−k, Xn,[nt]

]
⇒ [

B1,t,B2,t,Xt
]
, (7)

with B1,t, B2,t two independent vector Brownian motions, and Xt is a
continuous vector process that depends only on functionals of {B1,t}0≤t≤1

and {B2,t}0≤t≤1;
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(b) σk is adapted to Fk−1 and is a strictly stationary ergodic sequence satisfy-
ing Eσ 4

1 < ∞, where Fk is defined in A1.

The martingale assumption for the innovation process {ηk,Fk}k≥1 under A1 is
standard in the literature. The uniform integrability conditions (a) and (b) are
weak in comparison to higher moment assumptions used in previous studies—
see, e.g., Wang (2014) and Wang and Phillips (2009a,b). In A1(c), we impose
E(u2

k |Fk−1) = 1 for convenience of notation. In fact, if σ 2
u := E(u2

k |Fk−1) = 1, it
is routine to see that our results still hold when σk is replaced by σk σu. Examples
of processes that satisfy A2 include short and long memory linear processes, e.g.,
xk =∑∞

i=0 φiξk−i,ξi ∼ iid(0,σξ ),
∑∞

i=0 φ2
i < ∞. For the purposes of the subsequent

analysis, it is worth noting that when [xk,σk] are (strictly) stationary relying on
ξk,ξk−1,..., we also have that f(xk−1)σk is an ergodic strictly stationary sequence.
The NIF array of (4) is an example of a nonstationary process that satisfies A3(a).
For (scalar) xk as in (4), under certain additional technical conditions, we have
the following weak limit to a fractional Ornstein–Uhlenbeck process (see, e.g.,
Bunchmann and Chan, 2007; Kasparis et al., 2015)

Xn,[nt] ⇒
∫ t

0
ec(t−r)dWd(r),

where Wd(r), d > 1/2 is a fractional Brownian motion. Note that the limit process
depends on dual nuisance parameters, i.e., the near-to-unity parameter c ∈ R

and the memory parameter d > 1/2. Finally, we note that the strict stationarity
requirement for σk of A3(b) is general enough to allow for a strictly stationary
GARCH, ARCH(∞) regression error ek (e.g., Francq and Zakonian, 2010; Section
2.2).

3. CTLS INSTRUMENTS AND ESTIMATION

This section presents the CTLS estimator in the context of the regression model (5),
together with its asymptotic properties. Let K be some integrable kernel function
and cn a (reciprocal) bandwidth term. For an integer valued sequence ln and 0 <

τ1 < ... < τln < 1, define the vector of instruments

Zkn :=
ln∑

j=1

Zkn(τj), Zkn(τj) := K
[
cn
(
k/n− τj

)]
f(xk−1).

Given that the main focus of our analysis is inference for the slope parameters, it
is convenient to consider an estimator for β only. For this reason, certain intercept
demeaning for yk is used below. For any {ak}n

k=1 (ak can be a vector), define

a :=
∑n

k=1 akKkn∑n
k=1 Kkn

and ak := ak −a, (8)

where Kkn := ∑ln
j=1 K[cn(k/n − τj)]. The proposed CTLS estimator for β in the

model of (5) is
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β̂ =
[

n∑
k=1

Zkn f̄(xk−1)
′
]−1 n∑

k=1

Zknȳk. (9)

We note that, when ln = 1, the CTLS estimator reduces to the usual local level
kernel estimator that has been widely used in the TVP literature; for example,
see Phillips et al. (2017), Hu et al. (2024) and the references therein. Although
it may not be directly obvious, the CTLS estimator given in (9) also entails
instrumentation for the intercept. In fact, Kkn is implicitly used as an instrument
for the intercept. This instrumentation is manifest in the demeaning of yk, i.e.

ȳk = yk −
∑n

k=1 ykKkn∑n
k=1 Kkn

.

Notice that if we set Kkn = 1, the term above yields the OLS demeaning (instru-
mentation) as a special case. It should be mentioned that instrumentation for the
intercept is necessary for CTLS to achieve mixed normality in the nonstationary
case. In practice, it is possible to choose different kernel functions and bandwidth
terms for each element of f(xk−1). In order to keep the technical exposition simple,
in this section, we only consider the case where the kernel function K and cn is the
same for all elements of f(xk−1). We refer to Hu et al. (2021a) for more technical
details about the properties of CTLS when different kernel functions are employed.

The following two assumptions specify in detail the properties of the kernel
function K and the sequences cn, ln, and

{
τj
}ln

j=1.

A4 (kernel function and restrictions on τj,ln and cn):

(a) K(x) is a positive real function having a compact support with 0 <
∫

K <

∞;
(b) 0 < cn → ∞ and cn/n → 0;
(c) τj = j/(ln +1) where j = 1,...,ln with c−1

n ln + l−1
n → 0.

The compact support requirement of A4, for the kernel function K(x), can be
relaxed under some additional conditions on ln as follows:

A4* (kernel function and restrictions on τj,ln and cn):

(a) K(x) is a bounded positive and eventually monotonic real function7 with
0 <

∫
K < ∞;

(b) 0 < cn → ∞ and cn/n → 0;
(c) τj = j/(ln +1) where j = 1,...,ln with c−1

n ln log ln + l−1
n → 0.

Assumptions A4 and A4∗ postulate that the bandwidth cn is divergent and
dominated by n, and that ln is divergent and dominated by cn. It should be empha-
sized that these restrictions are not model specific, that is, they are independent
of the properties of xk. It is explained in more detail below that in practice
we can also assume that ln is fixed, but with the additional restriction l ≥ p,

7i.e., there exists an A1 > 0 such that K(x) is monotonic on (−∞, −A1) and (A1,∞).
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under nonstationarity. The chronological points are assumed to be equispaced.
This can probably be relaxed at the expense of more involved derivations. Using
equispaced chronological points appears more compelling from a practical point of
view. Recall that CTLS extracts information in the vicinity of each chronological
point. Therefore, it is more reasonable to spread τj’s evenly over time rather than
concentrating them within a specific time window and disregarding information
from other periods.

Our first result provides the limit distribution of the CTLS estimator when
A2 is satisfied, i.e., for stationary xk. The basic limit theory for stationary and
nonstationary functionals is provided by Theorem 5 and Theorem 6, respectively,
in the Appendix.

Theorem 1. Suppose that:

(a) yk is generated by (5);
(b) A1, A2 and either A4 or A4∗ hold;
(c) 1 := E

{
[f(x1)−Ef(x1)] [f(x1)−Ef(x1)]

′} is nonsingular.

Then as n → ∞,√
nln
cn

(
β̂ −β

)
→d N

(
0,

∫
K2(∫
K
)2 ·−1

1 0
−1
1

)
,

with 0 := E
{
σ 2

2 [f(x1)−Ef(x1)] [f(x1)−Ef(x1)]
′} .

We note that the multiplicative structure of the limit variance matrix in Theo-
rem 1 is due to the conditional heteroscedasticity assumption for the regression
error ek. Under conditional homoscedasticity, e.g. σk = σ for all k, we have

0 = σ 21 which gives the limit variance matrix
[∫

K2/
(∫

K
)2
]
·σ 2−1

1 .

Theorem 2 below gives the limit distribution of the CTLS estimator for nonsta-
tionary covariates, i.e., xk satisfies A3 instead of A2.

Theorem 2. Suppose that:

(a) yk is generated by (5).
(b) A1, A3 and either A4 or A4∗ hold.
(c) For each i = 1,...,p, fi is an AHF with limit homogeneous function Hfi and

asymptotic order πfi . Furthermore, Dn := diag
{
πf1(d1n),...,πfp(dpn)

}
.

(d) 2 := ∫ 1
0 H̃f(Xt)H̃f(Xt)

′dt is nonsingular a.s., where Hf(Xt)
′ :=[

Hf1

(
Xt,1

)
, . . . ,Hfp

(
Xt,p

)]
, with Xt = [

Xt,1,...,Xt,p
]′

and H̃f(Xt) = Hf(Xt) −∫ 1
0 Hf(Xs)ds.

Then as n → ∞,√
nln
cn

Dn

(
β̂ −β

)
→d MN

(
0,

∫
K2(∫
K
)2 ·E(σ 2

1 )−1
2

)
.
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The limit distribution in Theorem 2 is mixed normal and, therefore, conven-
tional inference applies. Furthermore, unlike the stationary case, the volatility
term E

(
σ 2

1

)
separates from the variance matrix, ensuring easy implementation in

applications.

Remark 2. Both under stationarity and nonstationarity, the CTLS estimator
attains the OLS convergence rate (

√
n and

√
nDn respectively) times

√
ln/cn → 0.

The term
√

ln/cn can be chosen to vanish at an arbitrarily slow rate, e.g., slowly
varying. In the nonstationary case, the convergence rate depends on the asymptotic
order of the regression functions, i.e.

{
πfi

}p

i=1, as well as the memory characteristics
of the covariates, i.e. {din}p

i=1 —see also Park and Phillips (1999, 2001) and
Chang et al. (2001) for comparable results. It should be mentioned that the
requirement cnn−1 → 0 ensures that there is sufficient signal in the instruments
for consistent estimation, while the restrictions cn

−1,lnc−1
n → 0 ensure that there

is sufficient signal reduction in the instruments to facilitate mixed normality under
nonstationarity. If cn

−1 → ∞, it can be shown that CTLS and OLS are in general
asymptotically equivalent8. In the stationary case, a fixed value for cn also yields
an CTLS estimator that is asymptotically equivalent to OLS—see, e.g., Hu et al.
(2024, Remark A1).

Remark 3. If a single chronological point, say τ , is utilized (i.e. ln = 1), then

2 = Hf(Xτ )Hf(Xτ )
′,

which is necessarily singular. Phillips et al. (2017) demonstrate that in this case
the limit distributions of kernel regression estimators for TVPs are determined
by stochastic integrals, and therefore limit theory is not conventional. In fact, the
limit distribution in this case is comparable to that of OLS. Phillips et al. (2017)
propose a kernel variant of FMLS to obtain pivotal tests. However, it is known that
this method is not robust to local deviations from unity. The singularity of the limit
variance matrix is due to the nonstationarity of the regressors. To see this, recall
that the covariates in this case satisfy an FCLT with Xt being the limit process. As a
result, the kernel functional that utilizes the single chronological point τ estimates
the continuous limit process at time τ , i.e.∑n

k=1(Dnxk)(Dnxk)
′ Kkn∑n

k=1 Kkn
≈ XτX ′

τ .

Therefore, there is no sufficient information for the identification of the regression
parameters. On the other hand, for stationary covariates the aforementioned
functional approximates the averaged regressor process, i.e.∑n

k=1 xkx′
k Kkn∑n

k=1 Kkn
≈ Ex1x′

1.

8i.e. under stationarity
√

n
(
θ̂ − θ

)
= √

n
(
θ̂LS − θ

)
+ op(1), and under nonstationarity

√
nDn

(
θ̂ − θ

)
=

√
nDn

(
θ̂LS − θ

)
+oP(1).
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The averaging of information over time prevents a singularity in the limit variance
matrix. As explained in the subsequent remark, the utilization of multiple chrono-
logical points induces averaging of information over time, even if the covariates
are nonstationary.

Remark 4. The limit result of Theorem 2 applies with a nondegenerate variance
matrix for a fixed number of chronological points {τj}l

j=1 provided l ≥ p, i.e., the
number of regression parameters does not exceed l. In this case, the variance matrix
is of the form

2 = 1

l

l∑
j=1

Hf(Xτj)Hf(Xτj)
′.

It can be shown that if there are a.s.p-many linearly independent vectors Hf(Xτj),
then the term above is nonsingular a.s.

Remark 5. Kostakis et al. (2015) show that the IVX estimator attains a
√

n-
convergent rate for stationary short memory covariates. However, CTLS attains a
sub-OLS convergence rate in this case. This reduction in the convergence rate has
an impact on the asymptotic power of CTLS-based tests. A solution to this problem
is to fine tune the bandwidth cn using some memory estimator for the covariates.
For example, consider the alternative bandwidth

ĉn =
{

cn, if d̂ ≥ 0.5
1, if d̂ < 0.5

, (10)

where d̂ is some memory estimator for a covariate, e.g., local Whittle. It follows
from Remark 2 above that if ĉn = 1, β̂ is asymptotically equivalent to OLS.
In fact, if ĉ is employed, CTLS trimming is “switched off” when the process
is in the stationary region. As a consequence, there is an improvement in the
convergence rate of β̂. Some preliminary results show that this bandwidth selection
method delivers valid inference even if the covariate is an NIF array, i.e., equation
(4).9 Simulations provided in Section 6 show that the bandwidth of (10) yields
substantial power improvements when the covariate is in the stationary region. In
particular, for values of the memory parameter d ≤ 0.4, the CTLS predictive tests
are indistinguishable from the OLS tests. A similar bandwidth selection method
has been considered by Kasparis et al. (2015) for improving the performance
of kernel-based inference in the presence of fractional covariates. Furthermore,
this method is comparable to the “sliding” statistics considered by Kostakis et al.
(2015), Elliott et al. (2015), and Magdalinos and Petrova (2022). Kostakis et al.
(2015) provide a finite sample improvement for the IVX method by considering

9The NIF array of (4) has the same memory characteristics as those of an ARFIMA with d > 1/2, in the sense that
both processes are Op(nd−1/2), d = 1 + δ (δ is defined in (4)). Preliminary results show that the local Whittle and
log periodogram estimators both converge to d (for d ≤ 1), even if there is some near-to-unity parameter, therefore
correctly capturing the order of magnitude of the process. We expect that the exact local Whittle (Shimotsu and
Phillips, 2005) is also valid, even if d > 1.
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a sliding studentization for the IVX t-statistic. This method employs plug-in
estimators for long-run variance matrices that yield a different studentization
in situations of weak and strong endogeneity. Elliot et al. (2015) consider an
inferential method for predictive regressions with an NI predictor. The method
requires the near-to-unit parameter to be on a bounded prespecified interval,
therefore ruling out stationary processes. A preliminary autoregressive estimator
is utilized to switch to a conventional test statistic when the predictor is in the
stationary region. Magdalinos and Petrova (2022) propose a similar switching
mechanism to switch test statistics between stationary, NI, and explosive regions
in predictive regressions.

4. CTLS INFERENCE

Next, we consider statistical inference for regression parameters based on CTLS
estimation. It follows from the results in Section 3 that the CTLS estimator delivers
conventional inference (e.g. N(0,1) and χ2). In order to keep our exposition
relatively simple, in the remainder of the main article, we restrict our analysis to
t-tests for single restriction in the context of univariate regressions. Inference in the
context of multicovariate models with possibly multiple restrictions is provided in
Section S2 of the Online Supplement.

Setting the dimension of the slope coefficient vector p = 1, and suppressing the
second index on the r.h.s., we can rewrite (5) as

yk = μ+βf (xk−1)+ ek, k = 1,...,n, (11)

where xk and ek are defined as in A1-A3. In this case, the slope parameter estimator
of β in (9) reduces to

β̂ =
∑n

k=1 Zknyk∑n
k=1 Zknf k

, (12)

where Zkn = Kknf (xk−1),Kkn =∑ln
j=1 K

[
cn
(
k/n− τj

)]
,yk = yk −

∑n
k=1 ykKkn∑n

k=1 Kkn
and

f k = fk −
∑n

k=1 fk Kkn∑n
k=1 Kkn

, with fk = f (xk−1).

To test the hypothesis H0 : β = β0 (for some β0 ∈R), we consider the CTLS-based
t-statistic defined by

T̂ = Hn
β̂ −β0√
AnV̂nA′

n

, (13)

where

An := [−f̄, 1
]
, Hn :=

n∑
k=1

Zknf k, V̂n :=
n∑

k=1

K2
kně2

k

[
1 fk
fk f 2

k

]
,
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and ěk are the OLS residuals ěk = yk − μ̂LS − β̂LSfk. Note that for the estimation of
the regression error variance, we use residuals based on the OLS estimator, which
is more efficient than the CTLS estimator (see also Kostakis et al. (2015) for a simi-
lar approach). The normalizing matrix V̂n allows for conditional heteroscedasticity.
However, if σ 2

k = σ 2 for all k, then the following estimator can be used instead.

V̌n := σ̌ 2
n∑

k=1

K2
kn

[
1 fk
fk f 2

k

]
, σ̌ 2 := n−1

n∑
k=1

ě2
k . (14)

Under nonstationarity, conditional heteroscedasticity in the regression error does
not affect the limit variance of the CTLS estimator in a material way as seen
in Theorem 2. In particular, the volatility term Eσ 2

1 is scaled out. As a result,
conventional estimators for the limit variance (i.e. V̌) can be employed for the
construction of t-statistics (see also Remark 7 below). This fact is comparable
with the recent findings of Magdalinos (2022) who demonstrates that conditional
heteroscedasticity has a material effect in the limit distribution of the IVX estimator
only under stationarity.

The subsequent result gives the limit distribution of T̂ under the null hypothesis
when the regressor is either stationary satisfying A2 or nonstationary satisfying A3.

Theorem 3. Suppose that the conditions of Theorem 1 or Theorem 2 hold with
p = 1. In addition, supk≥1 Eu4

k < ∞. Then, under H0 : β = β0, we have

T̂ →d N(0,1).

Remark 6. The limit distribution of the test statistic under the null hypoth-
esis is standard normal for both stationary and nonstationary regressors. Under
the alternative hypothesis, the divergence rate of the t-statistic is determined
by the convergence rate of the CTLS estimator. In particular, for stationary
xk straightforward arguments show that T̂ = OP(

√
nln/cn). On the other hand,

in the nonstationary case, we have T̂ = OP(πf (dn)
√

nln/cn), where dn is the
normalizing sequence of A3(a) for the case p = 1, e.g., dn = √

n for xk NI
and dn = nd−1/2, xk for I(d), 1/2 < d < 3/2. Therefore, a faster divergence rate
is attained for more persistent processes. This fact is also corroborated by our
simulation results (see Figure S1 in the Online Supplement). In the nonstationary
case, asymptotic power is affected by the asymptotic order (i.e. growth rate) of
f . Note that for logarithmic, or lower order polynomial (e.g. f (x) = |x|p, p < 1)
regression functions, slower power rates are attained relative to linear and higher
order polynomial transformations—see also Park and Phillips (1999, 2001) for
comparable results.

Remark 7. The fourth moment requirement for uk in Theorem 3 can be
dispensed with when the regression errors are conditionally homoscedastic, i.e.,
in situations where V̌n, of (14), can be utilized in the place of V̂n.
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4.1. Impact of Bandwidth Terms on Tests

As mentioned before, CTLS effectively involves dual bandwidth terms. First, cn

can be seen as a conventional bandwidth term that controls kernel smoothing. On
the other hand, ln determines the number of chronological points. Recall that the
CTLS instruments extract information locally to each chronological point τj. It is
well known that the choice of bandwidth in semiparametric (and nonparametric)
methods involves a trade-off between size and power. More efficient estimators
are associated with better power, while less efficient estimators typically exhibit
better size. This is true for CTLS as well. In general, choices of ln, cn that yield
better asymptotic power are associated with inferior size and vice versa. Smaller
values for cn (oversmoothing) result in stronger instruments while larger values
(undersmoothing) attenuate the signal of the instruments. On the other hand,
stronger instrument signal is attained when a larger number of chronological points
are utilized. The size/power trade-off associated with the bandwidth terms can be
formulated mathematically as follows:

endogeneity ∝√
ln/cn → 0 & asymptotic power ∝√

cn/ln → ∞.

The first relation is a direct consequence of (3), while the second follows from
Theorem 4 of the subsequent section. Therefore, it is evident from the above
that endogeneity and asymptotic power are inversely related to pure mathematical
terms.

Figure 1 provides a graphical illustration of how information extraction associ-
ated with the CTLS is affected by different values of the bandwidth terms. CTLS
instruments extract a fraction of the information utilized by OLS. The information
utilized by OLS is represented by the whole box area (dark + grey area), while the
information extracted by CTLS is represented by the dark area only. Notice that the
shape of dark area is determined by the kernel function. For the particular figure,
we use Gaussian kernels. It can be readily seen that CTLS extracts a fraction of
the information utilized by OLS. The panels on the l.h.s. (Fig. 1(a)–(c)) illustrate
the impact of the cn bandwidth when a single chronological point utilized at the
middle of the sample, i.e., τ = 1/2. Notice that more information is extracted in
the vicinity of τ . In addition, signal attenuation is achieved when undersmoothing
is employed, i.e., cn is large. The panels of the r.h.s. (Fig. 1(d)–(f)) illustrate the
impact of ln. The utilization of additional chronological points results in a stronger
signal and more even information extraction over time. In general, larger dark area
is associated with more powerful tests, but this comes at the expense of size.

An optimal choice of these bandwidth terms would require second-order limit
theory comparable to that of Sun et al. (2008), which is very challenging from a
technical point of view under our theoretical framework. In the current work, we
recommend values for the bandwidth terms that appear to give a good size/power
trade-off based on a simulation study; see Section 6 below.
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Figure 1. Signal of CTLS instruments vs. OLS.

5. CONSEQUENCES AND MITIGATION OF MISBALANCING IN
PREDICTABILITY TESTS

Regression misbalancing (cf. Phillips, 2015) is an important issue that has received
relatively little attention in the predictability literature. In this section, we pro-
vide some theory about the consequences of misbalancing to the predictability
hypothesis. These results are supported by the simulation study in the next section.
A well-known stylistic fact in the empirical studies of stock return predictabil-
ity is that stock returns and various predictors exhibit vastly different memory
characteristics. Stock returns are typically consistent with I(0) processes, while
various financial and macroeconomic predictors (e.g., dividend yield, inflation)
appear to be long memory and in most cases nonstationary (see, e.g., Kostakis
et al., 2015). Phillips (2015) referred to this memory mismatch as misbalancing.
Misbalancing makes linear specifications that dominate the empirical literature
less plausible. We show that for many specifications of interest, misbalancing
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due to incorrect functional form still leads to consistent tests as long as the true
regression function is diverging. However, there is a reduction in the asymptotic
power rate. Overall, the power loss is more substantial if the model is badly
misspecified, the persistence of the predictor is more intense, and the noise
(regression error) is less substantial. In addition, if the true regression function is of
vanishing order, statistical tests can be bounded under the alternative hypothesis.

A departure from the usual linear-in-levels specification can potentially address
misbalancing issues. For instance, Christensen and Nielsen (2007) and Bollerslev
et al. (2013) consider predictive models for returns where the systematic part
of the model is of the form μ + f (xk−1) with f being the fractional difference
operator (I − L)d and d the memory parameter of some volatility predictor, xk

say. Note that in this case f (xk−1) is I(0)—see also Andersen and Varneskov
(2021). Similarly to spectral LS methods, e.g., Robinson and Hualde (2003) and
Christensen and Nielsen (2006), this approach requires plug-in estimates for the
memory parameters.

Marmer (2008), Kasparis (2010), Kasparis et al. (2015) and Phillips (2015)
suggest that nonlinear regression functions can potentially address misbalancing
issues. It is well known (e.g., Park and Phillips (1999, 2001) that nonlinear
transformations can significantly attenuate the signal of persistent processes. In
fact, a transformed nonstationary process may exhibit a weaker signal than a
stationary one. For example, for some measurable function f and xk stationary
we have

∑n
k=1 |f (xk)| = OP(n), in general. On the other hand, for xk ∼ I(1) the

following orders apply (e.g., see Park and Phillips, 2001):

n∑
k=1

|f (xk)| =

⎧⎪⎪⎨
⎪⎪⎩

OP(n1+p/2), f polynomial of order p > −1;
OP(n ln(n)), f logarithmic;
OP(n), f bounded;
OP(

√
n), f integrable.

It is easy to see from the orders shown above that certain nonlinear transformations
of I(1) processes exhibit very weak signals that can be equal (bounded functions)
or smaller (integrable and reciprocal functions) than those of a stationary process.
Figure 2 provides a graphical illustration of the effects of certain nonlinear
transformations on the paths of an I(1) process relative to those of stationary
GARCH (1,1) (i.e., a martingale difference process). It can be seen that the
aggregated paths of a GARCH with those of a transformed nonstationary process
may resemble those of martingale difference processes.

As emphasized by Phillips (2015)—see also Kasparis (2011)—misbalancing
may result in asymptotically vanishing estimators.10 Nevertheless, it is not directly
obvious how this affects the predictability tests. Interestingly, for many specifica-
tions of interest (e.g. AHF of diverging homogeneous order), t-statistics diverge
under the alternative hypothesis even if misbalancing has been committed, albeit
at slower rates. This is due to the fact that the test statistic studentization partially

10Consider for instance linear regression of yk on xk with yk ∼ I(dy), dy < 1/2, and xk ∼ I(dx) with dx > 1/2.
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Figure 2. Paths of GARCH(1,1) vs. transformations of I(1).
P1: 0.5xk; P2: 0.5 |xk|0.25; P3: 0.5 ln(|xk|); xk − xk−1 ∼ i.d.N(0,1); GARCH(1,1) with param.
0.01,0.45,0.45.

offsets misbalancing effects. However, if the fitted model is badly misspecified,
the t-tests can be bounded under the alternative hypothesis.

Next, we consider the effects of misbalancing in CTLS t-tests due to an incorrect
functional form. Some comparable analysis is provided by Kasparis et al. (2015)
who investigate the asymptotic power rates of FMLS t-tests and the Janson and
Moirera (2006) test under functional form misspecification. In this work, we
provide some deeper analysis of the effects of misbalancing due to functional
form misspecification with a focus on CTLS fits. In particular, we assume that
the true model is given by (11) with f AHF of increasing asymptotic order πf (λ)

(i.e. πf (λ)−1 → 0) and the fitted model is

yk = μ̂+ β̂fM(xk−1)+ êk, (15)

with μ̂, β̂ being CTLS estimates, and fM AHF of asymptotic order πfM (λ) such
that πf (λ)πfM (λ)−1 → 0 i.e. a) the fitted model is misbalanced because the fitted
regression function dominates the true one; b) fM is of diverging asymptotic order.
To keep the article within manageable length, we do not provide theoretical results
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for the cases where f is integrable or AHF with πf (λ) → 0. However, this type of
misspecification is considered in the simulation study of the following section.

Before presenting the next theoretical result, we introduce some notation. Let
T̂ and T̂M be the t-statistics of (13) based on the true and misbalanced models,
respectively, for the null hypothesis H0 : β = 0. Further, recall that for any locally
integrable function q we define

q̃(Xt) := q(Xt)−
∫ 1

0
q(Xs)ds.

Furthermore, by dn we denote the normalizing sequence of Assumption A3(a) for
the case p = 1. The following result gives the divergence rate of T̂M as well as the
relative orders of T̂ and T̂M .

Theorem 4. Suppose that

(a) yk is generated by (5) with p = 1, and σ 2
k = σ 2 ∈ (0,∞) for all k;

(b) the conditions of Theorem 2 hold;
(c) fM is AHF with limit homogeneous function HfM and asymptotic order πfM ;

(d) the matrix
∫ 1

0

[
1 HfM (Xt)

HfM (Xt) H2
fM

(Xt)

]
dt is nonsingular a.s.;

(e) πf (λ)−1 +πf (λ)πfM (λ)−1 → 0.

Under H1 : β = 0, we have√
cn

nln
T̂M →d

β
∫

K · ∫ 1
0 H̃fM (Xt)Hf (Xt)dt√

σ 2∗
∫

K2
∫ 1

0 H̃fM (Xt)HfM (Xt)dt
, (16)

with σ 2∗ := ∫ 1
0

[
H(Xt)−μ∗ −β∗HfM (Xt)

]2
dt and μ∗, β∗ the pseudo-true value

limits11 of the OLS estimator. Furthermore, under H1 : β = 0

πf (dn)
−1 T̂

T̂M

→d

√
σ 2∗
∫ 1

0 H̃fM (Xt)HfM (Xt)dt
∫ 1

0 H̃f (Xt)Hf (Xt)dt
√

σ 2
∫ 1

0 H̃fM (Xt)Hf (Xt)dt
. (17)

It can be easily seen from Theorem 4 that if the true regression function is AHF
of lower asymptotic order than the fitted one, there is a reduction in the asymptotic
power rate by a factor of πf (dn). Notice that πf (.) is the asymptotic order of the

true regression function. The ratio
∣∣∣T̂/T̂fM

∣∣∣ captures the relative asymptotic power

of the test statistics based on balanced and misbalanced specifications. At first
glance, the second part of Theorem 4 suggests that misbalancing has more adverse
power effects when πf (.) is of higher order (i.e. closer to the fitted model), which
is counter intuitive. A closer reading of Theorem 4 shows that πf (.) is not the only
term that affects the relative asymptotic power. It follows from the second part of

11A full characterization of μ∗, β∗ is provided in the Online Supplement.
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the theorem above that we have the following approximate behavior.

∣∣∣T̂/T̂M

∣∣∣≈
√∫ 1

0 H̃fM (Xt)HfM (Xt)dt
∫ 1

0 H̃f (Xt)Hf (Xt)dt∣∣∣∫ 1
0 H̃fM (Xt)Hf (Xt)dt

∣∣∣ ·
√

π2
f (dn)σ 2∗ +σ 2

σ 2
(18)

=: R1 ·R2n
(
σ 2,σ 2

∗
)

.

The relative performance of the two statistics is therefore determined by

(i) πf (.): the asymptotic order of the true regression function;
(ii) dn: the persistence of the predictor;
(iii)R1: the asymptotic distance between the true and fitted regression functions;12

(iv) σ 2∗ : the asymptotic L2-distance between the true and fitted regression models;
(v) σ 2: noise.13

Misbalancing has more severe effects when the terms πf (dn), R1, σ 2∗ assume
larger values. Notice, however, that the latter two terms tend to be larger when
there is substantial discrepancy between f and fM , while the former term is more
substantial when the opposite is true. Simulation results provided in the next
section show that infinite samples misbalancing has more severe effects when
there is a larger discrepancy between f and fM indicating that R1 and σ 2∗ are more
important than πf (dn).

Mitigating Misbalancing Effects. The discussion above shows that even if
misbalancing is committed, predictability tests may have nontrivial asymptotic
power. In many cases t-statistics are divergent under H1, albeit at slower rates,
even if the fitted model is misbalanced due to incorrect functional form.14 In
view of this, we consider a strategy that potentially mitigates misbalancing issues,
when it comes to the predictability hypothesis. More specifically, we consider
rolling t-statistics incorporating regression fits that span various rates. For example,
consider the flexible functional forms given by the following set of regression
functions:

f (x,θ) = x

1+|x|θ , θ ∈ �, (19)

with � being a discrete subset of positive real numbers. For each θ ∈ �, consider
the CTLS t-statistic T̂(θ) based on the empirical model

yk = μ̂+ β̂f (xk−1,θ)+ êk, (20)

12Note that by the Cauchy–Schwarz inequality R1 ≥ 1. If f ≈ fM , then R1 ≈ 1. On the other hand, if there is a large
discrepancy between f and fM , R1 is significantly greater than unity.
13Notice that R2n

(
σ 2,σ 2∗

)
is decreasing in σ 2. Therefore, other things being equal, misbalancing has less severe

power effects when noise is substantial.
14Recall that if the fitted model is linear and the true regression function AHF of increasing order, t-statistics have
asymptotic power one. However, the tests may not have power if the true regression function is AHF of decreasing
order or integrable—see Kasparis et al. (2015) and the simulation study in this work.
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for the hypothesis H0 : β = 0—cf. equation (13). For example, for � ⊂ [0,3] we get
a wide range of growth rates for f including linear (θ = 0) bounded (θ = 1), asymp-
totically reciprocal (θ > 1), and integrable (θ > 2). Under the null hypothesis of
no predictability, we have T̂(θ)→d N(0,1) for each θ ∈� by virtue of Theorem 3.
Under H1 the test statistics tend to be divergent for a wide range of values of θ

(even if the fitted model is misspecified in terms of functional form) with maximal
asymptotic power attained when f (x,θ) is closer to the true regression function.

An alternative approach for addressing misbalancing issues is testing based
on kernel regression estimators; see, e.g., Kasparis et al. (2015). Nonparametric
methods provide more generality at the expense of slower convergence rates.
Further, an alternative parametric approach could be obtained by considering
test functionals of the form maxθ∈�T̂(θ)2,

∑
θ∈� T̂(θ)2 (see, e.g., Hansen, 1996).

Developing limit theory for sup and integral functionals under our assumptions is
challenging from a technical point of view. We leave exploration in this direction
for future work. In Section 7 below, we employ rolling test statistics based on the
flexible functional form of (19) to test the predictability hypothesis for the SP500
returns.

6. SIMULATIONS

This section explores the finite sample properties of CTLS inferential methods
with the aid of a simulation study. We consider the no predictability hypothesis

H0 : β = 0 vs. H1 : β = 0.

The DGP is of the form

yk = βxk−1 + ek. (21)

Without loss of generality, we set μ = 0. Note that estimators are numerically
invariant to the value of the intercept. In all cases, the significance level is set at 5%
and the number of replication paths is 10,000. For the purposes of this experiment,
the following vector of innovations is generated:[

ξk

uk

]
∼ i.d.N

(
0,
[

1 �

� 1

])
,

� ∈ (−1,1). The predictor is either an NI array of the form

xk =
(

1+ c

n

)
xk−1 + ξk, (22)

with c ≤ 0 and x0 = 0 or a type II fractional process (e.g. see Robinson and Hualde,
2003) of the form

(I −L)d xk = ξkI {k ≥ 1} . (23)

The regression error is

ek = σkuk,
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with either

σ 2
k = 1,

or

σ 2
k = 0.01+0.45σ 2

k−1 +0.45e2
k−1, σ 2

0 = 0.01, (24)

which makes the regression error a strong GARCH(1,1).
We report empirical size and power results for T̂ given in (13), and Ť which

is a CTLS t-stastistic that is utilizing the variance estimator of (14). Note that the
former provides valid inference in the presence of GARCH regression errors, while
the second is in general relevant when the errors are (conditionally) homoscedastic.
CTLS methods involve various tuning parameters, such as bandwidths and kernel
functions, that affect finite sample performance. As explained in Sections 3 and 4,
there is a trade-off between size and power when it comes to the choice of cn and
ln, with better size control achieved in general for larger values for cn and smaller
for ln. We have conducted extensive preliminary simulations that involved various
choices of tuning parameters. We only report results for the setup that attains the
best size-power trade-off, according to the preliminary simulations. Let ϕς(x) be
the density of an N(0,ς) variate. We consider the following bandwidth terms:

• cn = n0.95, ln = c0.7
n , with

{
τj
}ln

j=1 being equispaced points on (0,1).

Further, we use the kernel function K(x) = ϕ0.1(x)1/2 for CTLS instrumentation
for the predictor, and K(x)∗ = ϕ1(x)1/2 for intercept instrumentation15. Notice
that the latter kernel has a larger variance and, as a result, it entails more limited
trimming compared to ϕ0.1(x)1/2. Preliminary simulations show that using different
kernel functions provides a slightly better size-power trade-off. A possible expla-
nation for this is that xk is the main source of endogeneity, and consequently more
substantial signal reduction is required for the estimation/instrumentation of the
slope parameter than for the intercept.

6.1. Finite Sample Performance of CTLS Tests

Table 1 reports the empirical size of CTLS tests for NI predictors and σ 2
k = 1.

For comparison we also consider an IVX test, which incorporates the finite
sample improvement of Kostakis et al. (2015), and an OLS-based t-test. Con-
trary to the CTLS and IVX estimators, the OLS estimator does not have a
mixed normal distribution under nonstationarity. Nevertheless, OLS-based meth-
ods, or similar procedures appropriate only for stationary models (e.g. Gaussian
MLE), are routinely used in empirical work—see, e.g., Stambaugh (1999), Ami-
hud and Hurvich (2004), Ang and Bekaert (2007), Bandi and Perron (2008),

15As mentioned in Section 3, different kernel functions can be employed for each model parameter. The utilization
of K∗ implies that the intercept demeaning of the dependent variable is of the form

∑n
k=1 ykK∗

kn/
∑n

k=1 K∗
kn. For more

technical details, see Hu et al. (2021a).
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Table 1. Empirical Size of CTLS Tests (nominal size 5%; NI regressor, cond. homoscedastic regression errors)

� −0.95 −0.5 0 0.5 0.95

n Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS

c = 0 250 0.084 0.089 0.059 0.278 0.059 0.062 0.056 0.117 0.051 0.055 0.050 0.053 0.061 0.063 0.056 0.113 0.087 0.091 0.061 0.295

500 0.077 0.080 0.062 0.287 0.059 0.061 0.054 0.114 0.054 0.054 0.054 0.054 0.060 0.061 0.058 0.116 0.080 0.084 0.055 0.279

750 0.076 0.078 0.058 0.272 0.059 0.058 0.052 0.109 0.052 0.052 0.050 0.051 0.059 0.061 0.055 0.111 0.080 0.081 0.057 0.277

1000 0.070 0.069 0.053 0.278 0.054 0.056 0.051 0.111 0.049 0.049 0.051 0.053 0.059 0.060 0.050 0.108 0.075 0.077 0.053 0.277

� −0.95 −0.5 0 0.5 0.95

n Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS

c = −5 250 0.061 0.068 0.062 0.116 0.051 0.054 0.056 0.072 0.050 0.052 0.050 0.051 0.057 0.063 0.059 0.074 0.068 0.074 0.066 0.123

500 0.060 0.064 0.063 0.117 0.051 0.053 0.059 0.073 0.051 0.053 0.052 0.054 0.056 0.057 0.057 0.071 0.062 0.065 0.058 0.116

750 0.063 0.066 0.060 0.116 0.058 0.060 0.059 0.070 0.056 0.058 0.056 0.053 0.059 0.059 0.058 0.073 0.065 0.067 0.062 0.119

1000 0.058 0.058 0.060 0.116 0.049 0.051 0.054 0.066 0.047 0.048 0.050 0.051 0.050 0.052 0.052 0.066 0.059 0.061 0.058 0.115

� −0.95 −0.5 0 0.5 0.95

n Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS

c = −10 250 0.058 0.064 0.062 0.086 0.051 0.056 0.055 0.063 0.049 0.056 0.051 0.052 0.056 0.062 0.057 0.063 0.063 0.069 0.065 0.090

500 0.058 0.060 0.063 0.088 0.051 0.052 0.058 0.065 0.047 0.049 0.052 0.052 0.050 0.054 0.055 0.060 0.056 0.059 0.057 0.085

750 0.058 0.059 0.060 0.087 0.058 0.059 0.056 0.064 0.055 0.056 0.056 0.053 0.056 0.058 0.055 0.062 0.058 0.063 0.062 0.088

1000 0.053 0.056 0.058 0.084 0.049 0.051 0.053 0.059 0.046 0.048 0.050 0.051 0.049 0.047 0.051 0.058 0.054 0.056 0.058 0.088
(Continued)
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Table 1. (Continued)

� −0.95 −0.5 0 0.5 0.95

n Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS

c = −20 250 0.056 0.062 0.060 0.069 0.052 0.059 0.051 0.057 0.051 0.056 0.050 0.050 0.055 0.061 0.055 0.058 0.061 0.066 0.060 0.071

500 0.054 0.055 0.060 0.072 0.050 0.051 0.054 0.058 0.048 0.050 0.051 0.052 0.049 0.051 0.055 0.058 0.053 0.059 0.056 0.067

750 0.053 0.053 0.059 0.071 0.056 0.059 0.060 0.060 0.052 0.057 0.056 0.053 0.056 0.057 0.055 0.058 0.057 0.059 0.062 0.074

1000 0.052 0.055 0.057 0.071 0.047 0.049 0.050 0.056 0.048 0.049 0.048 0.049 0.048 0.050 0.049 0.053 0.052 0.054 0.055 0.070

� −0.95 −0.5 0 0.5 0.95

n Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS

c = −50 250 0.053 0.059 0.054 0.058 0.052 0.058 0.050 0.051 0.049 0.058 0.049 0.049 0.052 0.060 0.050 0.053 0.055 0.062 0.055 0.058

500 0.052 0.055 0.054 0.059 0.052 0.053 0.051 0.053 0.048 0.051 0.047 0.048 0.050 0.053 0.050 0.050 0.053 0.056 0.055 0.059

750 0.051 0.053 0.059 0.064 0.053 0.055 0.055 0.055 0.053 0.056 0.053 0.052 0.057 0.056 0.056 0.058 0.057 0.059 0.059 0.063

1000 0.054 0.056 0.055 0.061 0.051 0.054 0.053 0.053 0.050 0.051 0.050 0.050 0.050 0.052 0.049 0.050 0.051 0.053 0.053 0.058

Ť: CTLS test statistic for conditionally homoscedastic errors; T̂: CTLS test statistic for conditionally heteroscedastic errors
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Chen and Deo (2009), and Bandi et al. (2019). In addition, OLS provides a natural
benchmark for assessing the benefits in empirical size when mixed normality is
induced via attenuated signal instrumentation.

It can be seen from Table 1 that for NI predictors, both CTLS test statistics result
in good size control in general with empirical size close to nominal in most cases.
CTLS is somewhat oversized relative to IVX when the near-to-unity parameter is
c = 0, and the endogeneity is strong. However, the size improves as the sample
size increases. Additional simulations for the size performance of CTLS under
GARCH regression errors and fractional predictors are provided in the Online
Supplement (Tables S1 and Table S2 respectively). These results indicate that
the empirical size of T̂ under GARCH errors is comparable to that reported in
Table 1 under conditional homoscedasticity.16 Further, CTLS tests exhibit good
size control under fractional predictors, even in situations of strong endogeneity
and memory parameters in excess of unity.

Next, we explore the empirical power of CTLS tests. We focus on the T̂ statistic
that is robust to conditional heteroscedasticity in the regression error. We first
consider power performance when the predictor is NI. Figure 3 reports the rejection
probabilities for T̂ and the IVX t-statistic of Kostakis et al. (2015) against various
values for the slope parameter (β) under strong endogeneity (i.e. � = −0.95),
c = 0,−10,−50 and two different sample sizes. Regression errors are conditionally
homoscedastic. All tests are more powerful when persistence is stronger and the
sample size larger, as expected, with IVX achieving better performance. Additional
simulation results in the Online Supplement (see Figure S1) highlight the power
of T̂ for the fractional case. Again, our limit theory is corroborated since superior
performance is attained in situations where persistence is stronger and sample sizes
are larger.

As mentioned in Section 3, the CTLS estimator attains a slower convergence
rate than that of IVX under stationarity. A data-driven bandwidth, such as that of
(10), can potentially alleviate this problem. Recall that the particular bandwidth
scheme uses a preliminary memory estimator that detects if the predictor is in
the stationary region. We consider the finite sample power performance of the
CTLS statistic with cn replaced by the data-driven bandwidth ĉn of (10). The
exact local Whittle (ELW) estimator of Shimotsu and Phillips (2005) is utilized
for memory estimation. T̂SB is the CTLS t-statistic that employs the stochastic
bandwidth term ĉn (i.e. T̂SB is the same as T̂ , but with cn replaced by ĉn). To evaluate
the performance of T̂SB, we consider fractional predictors with d = 0.7,0.6,0.5,0.4.
Figure 4 provides plots of T̂SB, T̂ and the OLS-based t-statistic for the predictability
hypothesis against various values of β. It can be seen that for values of the memory
parameter d ≥ 0.6, T̂SB and T̂ have almost identical performance, while for smaller
values of d, T̂SB exhibits superior power.In particular, for d ≤ 0.4, T̂SB is practically

16Simulation results not reported here suggest that Ť and IVX exhibit some moderate oversizing under GARCH
regression errors and large deviations from unity.
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Figure 3. Empirical Power of CTLS tests plotted against β: T̂ (5% nominal size; � = −0.95; NI
regressor, cond. homoscedastic regression errors).

indistinguishable from the OLS t-statistic. Some preliminary theoretical results
show that semiparametric memory estimators (e.g., local Whittle, exact local
Whittle, log-periodogram) can also distinguish a mildly integrated process from
an NI process, if the bandwidth of the memory estimator is chosen appropriately.
Therefore, it seems possible to devise a bandwidth selection method comparable
to that of (10) that can also provide asymptotic power improvements when the
predictor is an MI process. We leave further exploration in this area for future work.

In general, CTLS tests appear to have reasonably good size performance.
IVX tests appear to be more powerful; however, the CTLS procedures under
consideration are readily available for fractional predictors, nonlinear regressions,
and in situations where there is conditional heteroscedasticity in the regression
error. Some preliminary simulations show that IVX also has good performance in
the fractional case. This can be partly explained by Theorem 3.2 of Duffy and
Kasparis (2018) that yields basic limit theory for functionals of MI processes
driven by long memory innovations. The authors of the aforementioned work are
working on a formal investigation of IVX methods in the presence of fractional
processes.
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Figure 4. Empirical power of CTLS tests plotted against β: T̂SB, T̂ , OLS (5% nominal size; � =
−0.95; fractional regressor, cond. homoscedastic regression errors).

6.2. Effects of Misbalancing on the Power of CTLS Tests

We next provide finite sample power results for the case where misbalancing has
been committed due to functional form misspecification. We assume that the true
regression model is given by (11) with σk = 1, and we consider 6 alternative DGPs
for the true regression function:

Specification 1: f (x) = sign(x) |x|0.5 Specification 4: f (x) = x
1+|x|

Specification 2: f (x) = sign(x) |x|0.25 Specification 5: f (x) = x
1+|x|1.5

Specification 3: f (x) = ln |x| Specification 6: f (x) = x
1+|x|3

We report asymptotic power results for CTLS T̂-statistics that are either based
on a balanced fit (i.e. the regression function is correctly specified) or on a linear
fit (i.e. the regression function is misspecified). The values of the T̂-statistics are
plotted against various values of the slope parameter β in Figure 5. Notice that in
all cases, the fitted regression function is of higher order of magnitude than the true
one. For the computation of the T̂-statistics, we choose the following configuration:
K(x) = K(x)∗ = ϕ0.1(x)1/2, cn = n0.95, ln = c0.7

n . � = −0.95. Additionally, the
sample size is n = 1000.

It can be seen in Figure 5 that there is no substantial power drop when the true
regression model is a polynomial of increasing order. Nevertheless, there is a sub-
stantial power reduction when the true regression function is logarithmic, bounded,
or of decreasing order (i.e., vanishing at infinity). The poorest performance is
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Figure 5. Empirical power: Balanced vs. Misbalanced models; T̂ plotted against β. (5% nominal
size; unit root regressor; � = −0.95; i.d.N(0,1) regression errors).

evident in the case where f (x) is integrable (Specification 6). For the integrable
DGP, the test statistic appears to be bounded in probability if misbalancing is
committed. This finding is consistent with some theoretical results provided by
Kasparis et al. (2015).

7. APPLICATION TO THE PREDICTABILITY OF STOCK RETURNS

A substantial literature in empirical finance and econometrics investigates whether
stock returns can be predicted with publicly available information. There are two
main approaches in this area. First, certain studies (e.g. Welch and Goyal, 2008;
Bollerslev et al., 20133) investigate the in sample or out of sample predictability
with the aid of some forecast adequacy test (e.g. McCracken, 2007) or some
goodness of fit statistic (e.g. R2). Typically, predictive regressions take the form of

rk = μ+βxk−1 + ek, (25)
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where rk are stock returns relating to some stock index, xk some predictive
variable, and ek a martingale difference regression error. Another approach is
to test the predictability hypothesis H0 : β = 0 using appropriate (in sample)
inferential procedures (e.g., Valkanov, 2003; Lewellen, 2004; Campbell and Yogo,
2006; Kostakis et al., 2015). Usually some financial variable (e.g., dividend
yield, earnings-to-price ratio, book-to-market ratio, realized variance) or some
macroeconomic variable (e.g., inflation) is considered as a possible predictor for
future returns.

Many studies in this area investigate the predictability hypothesis under the
assumption that the predictor is a stationary AR(1) process driven by i.i.d.
innovations and employ techniques that are generally valid only under stationarity.
For instance, Stambaugh (1999), Amihud and Hurvich (2004), and Chen and Deo
(2009) assume that the predictor is a stationary AR(1) process driven by i.i.d.
or Gaussian i.i.d. errors. Furthermore, Ang and Bekaert (2007) assume that the
dividend yield is covariance stationary. However, there is strong evidence that
in certain data sets various financial and macroeconomic variables are persistent,
i.e., consistent with stationary long memory processes (see, e.g., Bollerslev et al.,
2013) or nonstationary long memory processes (see, e.g., Kostakis et al., 2015;
Table 4). Christensen and Nielsen (2007) (see also Chistensen and Nielsen, 2006),
Bollerslev et al. (2013), and Bandi et al. (2019) develop methods that allow for
stationary long memory predictors.

Several other articles focus on predictive regressions with nonstationary pre-
dictors. For example, Campbell and Yogo (2006) consider conservative testing
procedures that allow for an NI predictor. The latter article utilizes Bonferroni
bounds with confidence intervals based on the inversion of unit root tests (see
also Cavanagh et al., 1995). Phillips (2014) shows that testing procedures based
on this approach provide good robustification for local deviations from unity
but may not perform that well under larger deviations (e.g., Mildly Integrated
or stationary data). The most recent work of Kostakis et al. (2015) investigates
the predictability hypothesis utilizing the IVX method of PM. PM provides
conventional inference in regressions with NI or MI covariates. Kostakis et al.
(2015) demonstrate that the IVX method is also valid under larger deviations from
unity, i.e., when the data are generated short memory linear processes. Further,
they provide a finite sample correction for IVX-based test statistics that relates to
intercept demeaning. Several other studies have also used the IVX method in the
context of predictive regressions. Gonzalo and Pitarakis (2012) investigate regime-
specific predictability in the context of threshold regressions while Demetrescu
et al. (2022) examine episodic predictability in TVP predictive regressions. Both
of the aforementioned articles develop predictability tests that utilize IVX instru-
mentation. A comprehensive review of the econometric methodology used in this
area can be found in Phillips (2015).

Next, we investigate the predictability of stock returns using the Welch and
Goyal data set, 2018. The returns variable (rk) is the log differenced index. We
consider four alternative predictors: dividend-to-price ratio (DP), earnings-to-price
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Table 2. Memory estimates (bandwidth n0.65)

Monthly Quarterly Annual

LW ELW LW ELW LW ELW

Returns 0.07 0.07 0.14 0.15 −0.12 −0.08

DP 0.90 0.89 0.62 0.62 0.59 0.64

EP 0.99 1.00 0.68 0.68 0.44 0.47

BM 0.99 1.03 0.74 0.77 0.63 0.65

SVAR 0.53 0.53 0.46 0.47 0.33 0.35

Figure 6. Rolling CTLS F-statistics, T̂(θ)2, plotted against θ ∈ [0,3].

ratio (EP), book-to-market (BM), and a realized variance (SVAR) variable (the
sum of squared daily returns on the SP500). Moreover, we consider three different
sampling frequencies of the aforementioned variables, i.e., monthly, quarterly, and
annual. To get some idea of the memory properties of the data, we report memory
estimates based on the local Whittle (LW) and the exact local Whittle (ELW; cf.
Shimotsu and Phillips, 2005) estimators. It can be seen from Table 2 that SP500
returns closely resemble an I(0) process in all frequencies, while the predictive
variables are persistent, exhibiting either stationary long memory (SVAR in lower
frequencies) or nonstationary long memory, particularly DY, EP, and BM.

We utilize the inferential techniques of Section 3. More specifically, we compute
rolling CTLS t-statistics as per (20), employing the set of nonlinear regression
functions f (x,θ) = x

1+|x|θ ,θ ∈ [0,3]. We only report results based on T̂ . Tests

based on T̂SB lead to the same conclusions. Figure 6 reports the values of the
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CTLS F-statistics T̂(θ)2 against θ for three sample frequencies (monthly, quarterly,
annual). We find evidence of predictability only when monthly BM is used as a
predictor. The null hypothesis is rejected at 10% significance level for all choices of
θ , and at 5% level for 0.5 ≤ θ ≤ 2.1 approximately. Interestingly, power is maximal
for θ ≈ 1.3, which indicates a nonlinear (reciprocal) relationship between returns
and BM of the form f (x) ≈ 1/x0.3, for large x. Our findings on the BM predictor
are comparable with those of Kostakis et al. (2015), who also find predictability
evidence for monthly data.

APPENDIX

A. Asymptotics for Chronologically Trimmed Sample Functionals

In this section of the Appendix, we develop basic limit theory for chronologically trimmed
sample functionals of stationary and nonstationary processes that are relevant for regression
analysis. This asymptotic theory is of independent interest and provides a generalization of
existing limit results, e.g., Phillips et al. (2017) and Hu et al. (2024) who consider kernel
methods for time-varying parameter models. The notation in this section is the same as that
used in Sections 2 and 3. In particular, {xk}1≤k≤n is a p-dimensional time series process and
{Xn,k}1≤k≤n,n≥1 is a p-dimensional random array that satisfies A2 and A3, respectively, in
Section 2. We assume that K is an integrable kernel function, and for each x ∈ R

p,f(x) =[
f1(x1),...,fp(xp)

]′, q(x) = [
q1(x1),...,qp(xp)

]′ where fi and qi (i = 1,...,p) are measurable

functions. Furthermore, let F(x) = [
1,f(x)′

]′ and Q(x) = [
1,q(x)′

]′, and set, for l ∈N, 0 <

τ1 < ... < τl < 1 and m = {0,2},

S(m)
1n,l := cn

n

n∑
k=1

F(xk−1)F(xk−1)′σm
k

⎧⎨
⎩1

l

l∑
j=1

K
[
cn(k/n− τj)

]⎫⎬⎭,

M1n,l :=
√

cn

n

n∑
k=1

F(xk−1)

⎧⎨
⎩ 1√

l

l∑
j=1

K
[
cn(k/n− τj)

]⎫⎬⎭σkuk,

S(m)
2n,l := cn

n

n∑
k=1

F(Xn,k−1)F(Xn,k−1)′σm
k

⎧⎨
⎩1

l

l∑
j=1

K
[
cn(k/n− τj)

]⎫⎬⎭,

S(m)
3n,l := cn

n

n∑
k=1

Q(Xn,k−1)σm
k

⎧⎨
⎩1

l

l∑
j=1

K
[
cn(k/n− τj)

]⎫⎬⎭,

M2n,l :=
√

cn

n

n∑
k=1

F(Xn,k−1)

⎧⎨
⎩ 1√

l

l∑
j=1

K
[
cn(k/n− τj)

]⎫⎬⎭σkuk,

where cn is a sequence of positive constants, l is either fixed or l → ∞ as n → ∞, and uk
together with an appropriate filtration {Fk} forms a martingale difference sequence so that
Xn,k, xk are Fk-measurable and σk is Fk−1-measurable (cf. Assumptions A1−A3).
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The asymptotics of the functionals given above are utilized in Sections 3–5 for
the analysis of the CTLS estimators and various test statistics. In particular, the limit

theory for
{

S(m)
1n,l,M1n,l

}
is relevant for stationary regressions, while asymptotics for{

S(m)
2n,l,S

(m)
3n,l,M2n,l

}
are relevant for nonstationary regressions. It is worth mentioning that

the terms S(0)
1n,1 and S(0)

2n,1 resemble certain functionals considered by Hu et al. (2024) and
Phillips et al. (2017) respectively. The latter article studies cointegrated TVP models, while
the former considers TVP models with stationary covariates. More specifically, Phillips
et al. (2017) utilize statistics of the form

cn

n

n∑
k=1

Xn,kX′
n,kK [cn(k/n− τ)], 0 < τ < 1,

where Xn,k is an I(1) vector process normalized by
√

n. Under our assumptions, Xn,k can
be an appropriately normalized I(d), d > 1/2, process or a NI array possibly driven by
fractional errors, see, e.g., (4). Therefore, the limit theory of this section is also relevant for
the estimation of TVP models with stationary and nonstationary covariates.

We have the following Theorems A.1 and A.2, providing the limit results for stationary
and nonstationary functionals, respectively.

Theorem A.1. Suppose A2 and A4 or A4∗ hold. Then, as n → ∞,

S(m)
1n,ln

= E[σm
2 F(x1)F(x1)′]

∫
K +oP(1). (A.1)

If in addition A1 holds, then as n → ∞,

M1n,ln →d N
(

0, E
[
σ 2

2 F(x1)F(x1)′
]∫

K2
)

. (A.2)

Theorem A.2. Suppose that A3 and A4 or A4∗ hold, and f(.), q(.) are continuous. Then,
as n → ∞,

[
S(m)

2n,ln
,S(m)

3n,ln

]
=
[∫ 1

0
F(Xn,[nt])F(Xn,[nt])

′dt,
∫ 1

0
Q(Xn,[nt])dt

]
E(σm

1 )

∫
K +oP(1)

→d

[∫ 1

0
F(Xt)F(Xt)

′dt,
∫ 1

0
Q(Xt)dt

]
E(σm

1 )

∫
K. (A.3)

If in addition A1 holds, we have jointly with (A.3)

M2n,ln →d MN

(
0, E

(
σ 2

1

) ∫ 1

0
F(Xt)F(Xt)

′dt
∫

K2

)
. (A.4)

Remark A.1. If we are only interested in the limit behavior of S(m)
1n,ln

and S(m)
2n,ln

,
conditions A2 and A3 can be relaxed. For instance, the result of (A.3) still holds, if (7)
is replaced by Xn,[nt] ⇒ Xt on DRp [0,1].
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Remark A.2. The continuity requirement for f in Theorem A.2 is not essential for (A.3)
and (A.4). These results can be extended to the case where f is locally Lebesgue integrable
if we impose more smoothness conditions on Xn,k. See Remark 1 for further discussion.

Remark A.3. It is easy to see from the proof of Theorem A.1 that (A.1) and (A.2) still
hold, if A4 (c) or A4∗ (c) is replaced by τj = j/(l+1), where j = 1,...,l (i.e., ln ≡ l is fixed).
As for (A.3) and (A.4), if A4 (c) or A4∗ (c) is replaced by τj = j/(l + 1) (j = 1,...,l), we
have

[
S(m)

2n,l, M2n,l

]

→d

⎡
⎣E

(
σm

1

)
l

l∑
j=1

F(Xτj)F(Xτj)
′
∫

K, MN
(

0,
E
(
σ 2

1

)
l

l∑
j=1

F(Xτj)F(Xτj)
′
∫

K2
)⎤⎦ .

Remark A.4. Theorem A.1 provides a generalization of the limit theory of Hu et al.
(2024) who consider kernel functionals with a single chronological point. Furthermore,
Theorem A.2 provides a generalization of a comparable result as in Phillips et al. (2017)
who consider kernel functionals of time trend weighted by I(1) processes. Theorem A.2 is
more general than the existing limit results in several ways:

(i) We consider more general nonstationary processes. In fact, our assumptions on Xn,k

are minimal and are not model specific. The main requirement is that Xn,k converges
in the DRp [0,1] space.

(ii) We allow for nonlinear transformations of Xn,k.
(iii) The S(m)

2n,l,M2n,l functionals entail both stationary and nonstationary processes. This
is relevant, for example, for the asymptotic analysis of TVP models that have both
stationary and nonstationary covariates. Further, the assumptions for the stationary
process σm

k are quite general—e.g., σm
k is allowed to be a strictly stationary long

memory process.
(iv) The kernel functionals allow for multiple chronological points.

Theorem A.2 provides a limit theory for rescaled functionals of nonstationary processes
(i.e., Xn,k = D−1

n xk as in A3). For the purposes of regression analysis, limit theory for
nonrescaled processes (i.e., Xnk is replaced by xk) is more relevant. Following Park and
Phillips (1999, 2001), we next assume that f(.) and q(.) are vectors of AHFs. Recall that
Kkn :=∑ln

j=1 K
[
cn
(
k/n− τj

)]
. The following result is the counterpart of Theorem A.2 for

transformations of nonrescaled sequences.

Theorem A.3. Suppose that:

(a) A1, A3 and A4 or A4∗ hold.
(b) For each i = 1,...,p, fi is an AHF with limit homogeneous function Hfi and asymp-

totic order πfi . Further, for x ∈ R
p, HF(x) := [

1,Hf1(x1),...,Hfp(xp)
]′

, and Ln :=
diag

{
1,πf1(d1n),...,πfp(dpn)

}
.

(c) For each i = 1,...,p, qi is an AHF with limit homogeneous function Hqi and

asymptotic order πqi . Further, for x ∈ R
p, HQ(x) := [

1,Hq1(x1),...,Hqp(xp)
]′

, and
Cn := diag

{
1,πq1(d1n),...,πqp(dpn)

}
.
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Then, as n → ∞, the following weak limits hold jointly

cn

nln

n∑
k=1

C−1
n Q(xk−1)σm

k Kkn = cn

nln

n∑
k=1

HQ(Xn,k)σ
m
k Kkn +oP(1)

→d E
(
σm

k
)∫ 1

0
HQ(Xt)dt

∫
K, (A.5)

cn

nln

n∑
k=1

L−1
n F(xk−1)F(xk−1)′L−1

n σm
k Kkn = cn

nln

n∑
k=1

HF(Xn,k)HF(Xn,k)
′σm

k Kkn +oP(1)

→d E
(
σm

k
)∫ 1

0
HF(Xt)HF(Xt)

′dt
∫

K, (A.6)

√
cn

nln

n∑
k=1

L−1
n F(xk−1)σkukKkn =

√
cn

nln

n∑
k=1

HF(Xn,k)σkukKkn +oP(1)

→d MN

[
0, E

(
σ 2

k

)∫ 1

0
HF(Xt)HF(Xt)

′dt
∫

K2

]
.

(A.7)

The proof of Theorem A.3 follows easily from Theorem A.2 and the AHF assumption.
Proofs are provided in the Online Supplement.

B. Asymptotics for a General Class of Sample Functionals

This section provides a significant extension to Lemma 5.1 of Hu et al. (2021b), establishing
asymptotics for a general class of sample functionals. This extension includes Theorems 5
and 6 as corollaries. We start with some notation:

• {Xn,k}k≥1,n≥1 is a random q-dimensional vector array;
• {vk}k≥1 is a q×q random matrix sequence;
• G : Rq → R

q×q is a continuous matrix function, i.e., for every r,s = 1,2, · · · ,q, the
function [G(x)]rs is continuous on R

q;
• K : R → R is a Borel function; and
• for 0 < τ1 < ... < τl < 1, set

Sn,l = cn

n

n∑
k=1

G(Xn,k)vk
1

l

l∑
j=1

K
[
cn(k/n− τj)

]
,

where {cn}n≥1 is a sequence of positive constants.

For the asymptotic behavior of Sn,l, we have the following result.
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Lemma B.2. Suppose that

(a) there is a continuous process Xt such that Xn,[nt] ⇒ Xt on DRq [0,1];
(b) supk≥1 E‖vk‖ < ∞ and there exist A0 ∈ R

q×q and 0 < m := mn → ∞ satisfying

n/m → ∞ so that maxm≤j≤n−m E
∥∥∥ 1

m

∑j+m
k=j+1 vk −A0

∥∥∥= o(1);
(c) K(x) has a compact support or K(x) is eventually monotonic, so that

∫ |K| < ∞.

Then, for any fixed l ≥ 1, cn → ∞ and cn/n → 0, we have

Sn,l = 1

l

l∑
j=1

G(Xn,[nτj])A0

∫
K +oP(1)

→d
1

l

l∑
j=1

G(Xτj)A0

∫
K. (B.2)

If in addition τj = j/(ln +1),j = 1,2,...,ln, where l−1
n + ln/cn → 0, then

Sn,ln =
∫ 1

0
G(Xn,[nt])dt A0

∫
K +oP(1) →d

∫ 1

0
G(Xt)dt A0

∫
K. (B.3)

Remark B.2. In view of the weak convergence requirement in (a), the continuity of G
is sufficient for this result, but not necessary. The result can be extended to the case where
G is locally Lebesgue integrable if we impose additional smoothness conditions on Xn,k.
However, this generalization would involve more complicated calculations. We will not
pursue this extension in this article. It is worth mentioning that no relationship is imposed
between vk and Xn,k. Moreover, condition (b) is satisfied with A0 = Ev1 whenever vk is

(strictly) stationary and ergodic satisfying E‖v1‖ < ∞, and 1
n
∑n

k=1 vk →L1 Ev1. This fact
will be used in the proofs of the main results.

If we are only concerned with the boundedness of Sn,l, weaker conditions are required
compared to those used in the previous lemma.

Lemma B.3. Suppose that conditions (a) and (c) of Lemma B.2 hold, and {vk}k≥1 is an
arbitrary random sequence satisfying supk≥1 E‖vk‖ < ∞. Then for any l ≥ 1 (allowing for
l = ln → ∞), cn → ∞ and cn/n → 0, we have

cn

n

n∑
k=1

∥∥G(Xn,k)
∥∥ ‖vk‖ 1

l

l∑
j=1

K
[
cn(k/n− τj)

]= OP(1). (B.4)

If in addition τj = j/(ln +1),j = 1,2,...,ln, where ln log ln/cn + l−1
n → 0, then

cn

n

n∑
k=1

∥∥G(Xn,k)
∥∥ ‖vk‖ 1

ln

∑
1≤i<j≤ln

K
[
cn(k/n− τi)

]
K
[
cn(k/n− τj)

]= oP(1), (B.5)

cn

n

n∑
k=1

∥∥G(Xn,k)
∥∥ ‖vk‖

( 1√
ln

ln∑
j=1

K
[
cn(k/n− τj)

])2 = OP(1), (B.6)
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(cn

n

)2 n∑
k=1

∥∥G(Xn,k)
∥∥ ‖vk‖

( 1√
ln

ln∑
j=1

K
[
cn(k/n− τj)

])4 = oP(1). (B.7)

Remark B.3. The results of Lemmas B.2 and B.3 hold true, if K(x) is replaced by
xaKb(x) for any a ≥ 0 and any b ≥ 1 under the additional condition

∫ |xaKb| < ∞. This
claim is obvious from the proofs of the aforementioned lemmas and will be used in the
proofs of the main results. Let K∗ be another kernel function, possibly different from K,
that satisfies the same conditions as K does. Then the same argument used for the proof of
(B.5) yields

cn

n

n∑
k=1

∥∥G(Xn,k)
∥∥ ‖vk‖ 1

ln

∑
1≤i<j≤ln

K
[
cn(k/n− τi)

]
K∗[cn(k/n− τj)

]= oP(1).

This, together with Lemma B.2, implies that

cn

n

n∑
k=1

G(Xn,k)vk
1

ln

ln∑
j=1

K
[
cn(k/n− τj)

] ln∑
j=1

K∗ [cn(k/n− τj)
]

=
∫ 1

0
G(Xn,[nt])dt A0

∫
KK∗ +oP(1) →d

∫ 1

0
G(Xt)dt A0

∫
KK∗.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at https://doi.org/10.1017/
S0266466624000367.
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