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Bianchi modular forms and the rationality
of periods

Gradin Anderson, Peter Harrigan, Louisa Hoback, McKayah Pugh,
and Tian An Wong

Abstract. Using an explicit Eichler-Shimura-Harder isomorphism, we establish the analog of Manin’s
rationality theorem for Bianchi periods and hence special values of L-functions of Bianchi cusp forms.
This gives a new short proof of a result of Hida in the case of Euclidean imaginary quadratic fields.
In particular, we give an explicit proof using the space of Bianchi period polynomials constructed by
Karabulut and describe the action of Hecke operators.

1 Introduction

1.1 Bianchi period polynomials

An important method of studying classical modular forms is through their period
polynomials. Let k > 0 be an integer and let f be a cusp form of weight 2k + 2 on
SL,(Z). Then the period polynomial of f is defined to be

ico 2k
r(f)(X) = /(; f(2)(X - Z)dez = Z s (znk) o (f)XZk—n’

n=0

and
ro(f) = /Ooof(it)t”dt -l 2n) " L(fn 4 1), 0<n<2k,

is called the n-th period of f. The map r(f) explicitly realizes the Eichler-Shimura
isomorphism, identifying the space of cusp forms with the space of period polyno-
mials. The rationality of periods provides a rich connection between modular forms
and arithmetic, e.g., [KZ84], and remains an active area of study.

Now consider K = Q(\/-D), an imaginary quadratic number field and O its ring
of integers. From an analytic point of view, Karabulut [Kar22] recently constructed
a space of Bianchi period polynomials over Euclidean K, relating it to the cuspidal
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cohomology of SL, (O ). Combes [Com24] further defined a Hecke action on period
polynomials by relating it to the space of Bianchi modular symbols. On the other
hand, the algebraic theory of Bianchi modular forms has also seen new developments,
such as [Will7, BSW21, Pal23] and many others extending earlier works of Hida
[Hid94] and Ghate [Gha99] into the p-adic setting for general K.

Main results

In this article, we build on these recent advances to study the rationality of periods
of Bianchi modular forms. Let F be a Bianchi cusp form of parallel weight (k, k) on
SL,(Ok), we construct the Bianchi period polynomial realizing the Eichler-Shimura-
Harder isomorphism in Theorem 3.3,

(B XT) = [ 5

(k)(k)rp,q(F)X"‘P yrxX Iy,
P,q=0 9

P

where wp is the differential 1-form associated with F and ), ;(F) is defined in (4.1) as
a period of the Bianchi modular form

-1

) (—1)"”1“/0 tP s p_ge1(0, 1)dt.

The latter encodes the special values of the L-function of F by [Will7, Theorem 1.8].
When K is Euclidean, we can identify the image of r(F) with the space of period
polynomials Wy ¢, which is a specific quotient of the space W x described by [Kar22].
In particular, we explicitly construct for the first time the Bianchi period polynomial
in Wy x associated with a given Bianchi cusp form F.

As an application of this construction, we establish the rationality of these periods,
and hence the rationality of special values of L-functions of Bianchi cusp forms. This
can be seen as a short proof of a special case of a theorem of Hida [Hid94, Theorem
8.1]. It is the analog of Manin’s rationality theorem for periods of classical modular
forms.

2( 2k +2
k+p-q+1

Theorem 1.1 Let K be a Euclidean imaginary quadratic field, F be a normalized Hecke
eigenform, and let K(F) be the number field generated by K and the Fourier coefficients
of E. Then there exists some Q € C* such that

érp,q(p) ¢ K(F)

forall0< p,q<k.

Our proof is explicit, following the classical methods such as laid out in [Lan95,
CS17], generalized to the Bianchi case using the explicit description of the space of
period polynomials W ;. Namely, we compute the action of Hecke operators on
Bianchi periods, then use this to obtain integral formulas for the periods from which
we deduce the main theorem. In fact, most of the article is dedicated to developing the
tools in this special case. A short proof for the case of general K was suggested to us by
an anonymous referee, the key observation being that it is enough to use the rational
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Bianchi modular forms and the rationality of periods 3

structure of the space of polynomials Vj ; occurring in the Eichler-Shimura-Harder
isomorphism, given in Remark 6.3.

1.3 Outline of article

We conclude with a brief outline of the contents of the article. In Section 2, we
introduce notation and the properties of Bianchi modular forms that we will need.
In Section 3, we recall the integration map into the associated first cohomology space
and formulate the period map using the Eichler-Shimura-Harder isomorphism in
Theorem 3.3. In Section 4, we express general periods as integral linear combinations
of more basic periods using Hurwitz continued fractions, and use this to compute the
action of Hecke operators on the periods in Section 5. Finally, in Section 6, we apply
these results to prove Theorem 1.1.

2 Definitions
2.1 Notation

Let K = Q(+/-D) be an imaginary quadratic number field with class number 1 and let
Ok represent its ring of integers with associated norm N () = ao. In later definitions,
we will also refer to a Euclidean imaginary quadratic number field K, where D is
1,2,3,7, or 11. We let

H;={(z,t) eCxR|t>0}

designate hyperbolic 3-space, the unique simply-connected Riemannian manifold of
dimension 3 and constant sectional curvature —1. Additionally, we define the standard
action of GL, (C) on H;. Explicitly, for a matrix in GL, (C) of determinant A, we have

(a b) (1) = ((az+ b)(cz+d) +act? |Alt )

c d lcz+d|? +|ct2 ez +d|]F + |2

Alternatively, we may view elements of J(; as elements of the Hamiltonians H via the
map (z, t) — z + tj. In this case, for u € H, the action of GL,(C) is given by

a b . au+b
c d Ccu+d
2.2 Bianchi modular forms

Let k be a non-negative integer. Then denote V;4,,(C) as the complex vector space of
homogeneous polynomials of degree 2k + 2 in variables X, Y. Define the multiplier
system

](y;(z,t)):(cz+d —ct ), y

a b
it cz+d _(C d)ESLz(C), (z,t) € Hs.
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4 G. Anderson et al.

Given a function F : H3 — V344, (C), fixing (z, t) we may represent it as a polynomial
as F(z,t) = P(X,Y) in Vy442(C), equipped with the action

F(zt) (y ();)) -p (y (};)) ~ P(aX +bY,cX +dY).

Following [Pal23], for example, given y € SL,(C) and a function F : H3 - V341, (C),
we define the slash operator as

2.1) F|y(Z,t)();):|det(V)|_kF()/-(Z,t)) ](\/d:tw;(z,t)) ()}f) ,

where we note that our J is transposed from that of Palacios. Although we may
define Bianchi cusp forms for any congruence subgroup of SL,(O), we will only
be concerned with those of full level SL,(O). For the remainder of our exposition,
we set I' = SL,(Ok). A more general definition is given by [Will7, Definition 1.2].

We say that a function F : H3 — Vy41,(C) is a cuspidal Bianchi modular form of
weight (k, k) and level T if it satisfies the following properties:

(i) F|, =Fforeveryyel.

(i) WF=0and ¥'F = 0.

(iii) F has at worst polynomial growth at each cusp of T.
(V) Jcjo, Fly(z,t)dz = 0 forevery y € T.

Here ¥, ¥’ represent the Casimir operators, which are two elements generating the
center of the universal enveloping algebra of the Lie algebra associated with the real
Lie group PSL,(C). If we do not impose (iv) in the above definition, then we say F is
a Bianchi modular form of weight (k, k) and level T, although we will not be making
use of Bianchi modular forms which are not cuspidal. Finally, we denote by Sy x(T")
to be the space of such Bianchi cusp forms.

2.3 Fourier-Bessel expansion

Let K,,(x) be the modified Bessel function that solves the differential equation

d’K, 1dK, ?
+ — —(1+n)Kn:0.

dx?  x dx x2

It is well established (see [Gha99, Pal23]) that a cuspidal Bianchi form F has a Fourier—
Bessel expansion given by

X 2k+2
F(z, 1) (Y) = Z Fu(z, t)X2k+2_”Y”,
n=0
where
k+1-n
2k +2 P
F,(z,t):= t( ) Z c(ad) (“) Kn_k_1(47T|06|t)ezm(“z+“z),
N ) gekx ial
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Bianchi modular forms and the rationality of periods 5

8 = V/-D, and the Fourier coeflicient ¢(I) is a function on the fractional ideals of K
with ¢(I) = 0 for I non-integral.

3 The period integral

3.1 The Eichler-Shimura-Harder isomorphism

Let Vi i = Vix(C) denote the complex vector space of polynomials in X, Y, X,Y
which are homogeneous of degree k in X, Y and homogeneous of degree k in X, Y.
Denote by Vi i the locally constant sheaf on Yr = I'\H associated with Vj x. Let
H lusp (Yr, Vi k) denote the cuspidal cohomology of Yr. The Eichler-Shimura-Harder
isomorphism [Har87] shows that

(3.1) Sk,k(l“) = Hiusp(Yﬁvk,k)’

while work by Ghate [Gha99, Section 5] gives an explicit form of this isomorphism,
which we shall describe.

When K is Euclidean, Karabulut [Kar22, Section 5] defines the parabolic group
cohomology Hy, (T, Vi k) = Hyg, (Yr, Vi k) which is the quotient of parabolic cocy-
cles on I" by parabolic coboundaries on I', which we present in the following section.

Karabulut then gives an isomorphism from H. (T, V} ) to a quotient of an explicit

par
subspace Wy x ¢ Vi x, which we denote W, ;. We will combine these results to obtain
amap
(3.2) Skk(T) = Wik,

generalizing the Eichler integral for classical modular forms into the space of period
polynomials.

Williams [Will7, Section 2] defines elements of the compactly supported coho-
mology group H.(Yr, V1) by identifying it with the space Symbr(Vj ;) of Bianchi
modular symbols, sending F to yp, where . is the map from pairs of cusps in P! (K)
to Vi x defined by

(33) yp(r,s) = [ " wr,

and wr is a Vi -valued differential form on JH; which is defined explicitly. Note that
the latter integral gives a perfect pairing between the relevant first homology and
cohomology groups. (Williams actually considers spaces V', the C-dual of Vj x, and
Vi o and the space Vj ; with I" acting from the right; we will use the latter.) The natural
image of Hi(Yr‘, Vk,k) in HI(YF, Vk,k) o HI(F, Vk,k) is often denoted H,I(Yr, Vk,k)
[AS86, Section 1.4] and contains H{,, (Yr, Vi k) [Hid94, Section 5] (cf. [R$13, Section
1] for a variation). Putting these together, we have

(3.4) Skk(T) = Hyyop (Y, Vi) = Hpo (T, Vier) = Wik

which we shall make explicit. That is, given a Bianchi modular form F, we can associate
to it a cuspidal cohomology class such that its image in Symbr (Vg &) is the modular
symbol yr above valued in Vi i, and its image in Vj ; can be identified with the
quotient Wy .
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6 G. Anderson et al.

We first give an expression for Y in a form useful to us. Set the binomial coefficient
() = Owhenever m < 0 and m > n.

Lemma 3.1 For k € K, we have
k P 4 e o ‘ '
we(oo)= 3 ((5)(5) 2 Lt Yy s (ST )BT )aroigr
pq=0 \ \P i=0 j=0 p-1/\q—]
yPxkory iyt
where

-1

) (_1)k+j+lﬂ ti+ij+i_j+1(l€,f)dt.

2k +2

35 cij(F) =2
(5 euynF) (k+i—j+1

Proof  This is essentially [Will7, Proposition 2.9], with the difference being that we
have Vj x in place of V;*;. We use the following definition of a slash operator on Vj .

For a polynomial P € V; ; and a matrix y = (? Z) € GL,(C), we define

(3.6) P(X,Y,X,Y)|,=P(aX+bY,cX+dY,aX +bY,cX +dY).
By [Will7, Proposition 2.7], we have y(r,s) = yr(yr, ys)|y, and in particular

y(o0) oo
(37) f WFE = / a)p‘ .
y(0) 0 y~!

Then, by [Will7, Proposition 2.9] we have

k
$r(r,00) = 3 cpql(s, F)(Y = kX)PAP(Y - 5X)*1X,
p-9=0

where ¢r = 770 yr and 7 is the natural isomorphism from V,/, to V[’ as given in

[Will7, Proposition 2.6], with X,Y,X,Y € Vi k- We note that the above equality is
corrected slightly as explained in [Pal23, Theorem 3.2].
Rewriting the latter summand as

33 ey )PS5 g oryrormgt,
i=0 j=0 p-t/\g—]

and undoing the isomorphism # via the inverse map
wrytrx g (B) (K)ot
p/\q
then gives the desired expression. [ ]
3.2 Bianchi period polynomials

For the rest of this section, we assume K =Q(v/-D) is Euclidean so that
D =1,2,3,7,11. For each value of D, define w = i, i\/2, —1%1\/5’ %ﬁ, and %ﬂ,
respectively. Furthermore, let
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0 -1 1 1 1 w
o0 (0 ) meflY). vens

w2

0

i

When D =1, letL:(O

_Ol.) ,when D=3,let L = ( 3)), and when D =11, let

E=T,'ST,ST.
Let C(T, Vi i) be the space of 1-cocycles on T" as in [Kar22, Section 5]. Then, we
define the subspace C,(T", Vi, i) of parabolic cocycles by

Cp(T, Vik) = {f € C(T, Vi, )| f(T) = f(T,) = f(L) = 0}
when D =1,3 and
Cp(T, Vi) = {f € C(T, Vi, I f(T) = f(T) = 0}

when D =2,7,11.

Karabulut [Kar22, Section 5] shows that the evaluation of a cocycle at S is an
isomorphism from the parabolic cocycles C,(I") to a subspace Wy i of Vi i defined
for each D as the subspace of polynomials P € Vj i satistying the given relations:

D=13: Pl(1+sy = Pl(1-1) = Plsusv?) = Pl(rst,sLe(rosr)?) = 0

D=2: Pl(1+sy = Pl(r+u+uv2) = Pl(resto+1o5+1515T, ) = 0
D=7: Pl(1+sy = Pl(i+u+v2) = Pl(rasto+1os1451508T,) = 05
D=11: Pl(1+sy = Plrsu+v2) = Pl(14sT,4TE+ST, B+ TusT4STS 15T, ) = 0-

More generally, we may define Wy ;. as the subspace of Vj j defined by the relations
amongst the generators of I'.

For the isomorphism with Hll,ar(F, Vk.k)> it is necessary to identify the image
of B,(T") of parabolic coboundaries, which Karabulut claims has dimension 1. We
will prove the explicit form of this image, which is also mentioned without proof in
[Com24].

Lemma3.2  Theimage of B,(T") in Wy i is spanned by the polynomial XKX* - YRy
Proof  Consideranelement f € B,(T"). [Kar22] shows f isa function from I' to Vi x
of the form y ~ P|, — P, where f(T) = f(T,) = 0, and additionally f(L) = 0 for the

cases where d = 1, 3. Let Q(X, X) = P(X,1,X,1). We will show that Q is constant.
For this to occur, we must, in particular, have

0=Qlr-Q=Q(X+1L,X+1)-Q(X,X),

0=Qlr, -Q=Q(X+w, X +a)-Q(X,X).

Thus, Q(0,0) = Q(n,n) = Q((a + bw)n, (a+bw)n) foralln ¢ Nand fixed a, b € N.
Thus, shows that Q(Z, Z) and Q((a + bw)Z, (a + b@)Z) are both constant polyno-
mials in Z since they attain the same value infinitely many times. In particular, they
are the same constant as seen when Z = 0. This shows that
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8 G. Anderson et al.

a+bw

Q(z.2) =Q( Z,z),

a+ba

so for all z € C*, Q(w, z) attains the same value infinitely many times aslong a, b € N

are chosen so that %€ s not a root of unity.
a+bao

Therefore, Q(X, X) is constant as a polynomial in X. An analogous argument
shows it is also constant as a polynomial in X, so Q is constant. This shows P is of the

form cYk?k, for some ¢ € C. Then, f(y) = P|, — P and its image under evaluation by
S is thus

—k —k —k —k
(cY*Y")|s = cYFY = —c(Y*Y - XFX"),
and so the result follows. [ ]

Hence, the evaluation at S map is an isomorphism from Hll,ar(F s Viek) to Wik

—k —k -
modulo the space generated by X*X* — Y*Y", which we denote by Wy ;. We sum-
marize this as follows.

Theorem 3.3  Let K be Euclidean. The map

o (k\(k k- ~k-d<4
Foyp(S)=-2 ), ( )( )cp,q(o,F)X Pyrx Y,
p,q=0 p q

where ¢, (0, F) is given in (3.5), is an isomorphism from Sy x(T') to Wi k.

Proof = We evaluate the Bianchi modular symbol yr in (3.3) at the pair of cusps
(r,s) = (0, 00) to obtain an element of Vj , whereby

l//p(0,00) = A WE.

Denoting this temporarily by P, we then form the 1-cocycle P|, — P and evaluate at
the element y = S to obtain

§7!(o0) oo oo
P|5—P:f wp—[ (A)F:—Z/ wF
$-1(0) 0 0

which is an element of W x. (This realizes the isomorphism (3.4), and note that the
latter integral is referred to as the canonical period polynomial associated with F in
[Com24, (5.1)].) Then expanding the integral as in Lemma 3.1 with k = 0 gives the
result. [

Remark3.4 Since we are interested in the integrality of this map, we will rescale and
omit the factor of -2 in the rest of the article for the convenience; it does not affect the
isomorphism in any material way. We shall refer to the image of F under this map as
the period polynomial of F. We also write y(F) = yr(S) when we wish to emphasize
the argument F.
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4 Period relations
4.1 An intermediate expression

Let 0 < p, g < k be integers. Then, from Lemma 3.1, we may write
k
yr(k,00) = ) (k)(k)rp,q(n,F)YPX"*P?‘ZX""Z,
p,9=0 p/\q

where we denote here

LA (k= i\(k=F\ poi o
(4.1) 7pq(K: F) = ZZci,j(/i,F)(—l)P+q_1_’( )( .)ffp_l/%q_]

i=0 j=0 p-1/\g—]

and ¢; j(x, F) is given in (3.5). We wish to write the coefficients r, ,(#, F) as an
Ok-linear combination of c;,;(0, F). Notice that when = 0, 7, 4(0, F) = ¢, 4(0, F).
When the context is clear, we will denote 7 4 = 1) 4(F) = 75,4(0, F) = ¢ 4(0, F) and

Tpq = p.q (K> F).
We first compute more general period polynomials.

Lemma4.1 Lety= (i Z) € I such that y(o0) = oo. Then

Ye (20, y(0)) = pi (f})(’;)pw F)YP X YIX

where s, 4(y, F) is equal to
k . . p
Z (_1)P+Q*I*Jei”jqri’j(0,F),
i,j=0

and

61-)’-‘1 _ Z (p)(k - p)aubp—uci—udkfp—iﬂ,t(q)(k - q)dv[)q—vc-jfvdk—q—jﬂ/.
b u/\i-u vI\j-v

u,vez

i p-q
In particular, e € Ok.

Proof  Using the identity (3.7), we obtain

pr(rO) oo = [ = ([ ar)

Expanding the second integral and applying the y action, we have

y—l

3 (;)(’;)rp,q(o, F)(=cX +aY)?(dX - bY)*P(<cX + a¥)(dX - bY)* 1.
P-9=0
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The summand can also be written by evaluating the first integral as

Zk: (k)(z)rp,q(y(o), F) vexkrTIEE

p,9=0 p

Comparing coefficients, the identity follows. u

4.2 Continued fractions

In order to transform the endpoints of the period integral as desired, we turn to
the Hurwitz continued fractions algorithm for Euclidean imaginary quadratic fields,
given in [Kar22]. Let € K, and let | x,,] denote the element of Ok nearest to «, in
the complex plane with respect to Euclidean distance; to break ties, we round down
in both the real and imaginary components. Then, our continued fraction algorithm
is of the form

1
Rp — /3n ’
with 8, € Ok, and for any & € K is guaranteed to eventually terminate at some point

where K, = f3;, for some m. We define the n-th convergent of the continued fraction
for k as gn/va = [B1, B2 - - -» Bn], where

U-2 = 0, H-1= 1 Un = /—’)n,un—l + Un—2
v, =1, V_1 = 0, YV = ﬁnvn—l +Vn-2

Ko =K B =|Knls Kns1 =

(4.2)

and lim,_, oo % = k. Hence, for k = iy, /vy, also denoted as k = u/v, we express
n

by — B Bare ]
A e g LR

T
L

Analogous to the classical algorithm as in [CS17], we find it useful to express the
recursion relations of (4.2) in matrix form, with

(1 Bo (D ~ 0 (-1
Note that det(g,) =1, and hence g, € T, for all n. Because we retain the same recur-

sion matrices as the classical algorithm with g, (0) = p,, /v, and g,(00) = py_1/vn-1 =
gn-1(0), we can immediately conclude

Bl

M gu(o0) o0
(43) Z Wrp = ]l: W = ﬂ WE.
n=0 v

&n(0) om

4.3 Integral formulas

We now show that the coefficients r, 4(#, F) can be given as an Og-linear combina-
tion of periods r; ;(0, F). From there, we also show that the ¢, 4 (&, F) coefficients can
be given as a linear combination of the ,, ,(k, F) coefficients.
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Bianchi modular forms and the rationality of periods 1

Lemma 4.2 For k € K, we have

SIAYL P
yr(k,00) = > ( )( )rp,q(m,F)YPX PY'X
p-9=0 p/\q

where rp, 4 (k, F) is an Og-linear combination of r; ;(0, F).

Proof By (4.3), we can write yr(x, c0) as

(0) n=0p

f “rs ngmo) » qio( )( )Spq(gn,F)YPX"‘P?qY"’q
Péo( )( )rm(% F)YPXry'xX,

equating coefficients and using Lemma 4.1 shows r, 4 (, F) is equal to

M»

(4.4) i:: (=11 (0, F) (el ),

0

0i,j

where (ef”jq)n € Ok is equal to
Z ( n(z+])( ).un— .un (l?_p)vi;tiv]n(—l’—ﬂu
i-u

u,veZ
_ k-
(s (-
]—V

Recalling from (4.2) that y,,, v, € Ok for all n, we have that r, ,(k, F) is an Og-linear
combination of the periods r; ; (0, F). ]

j—vﬁk—q—j+v'

We can now give a formula for the coefficients ¢, 4(k,F) in terms of periods
ri,j(k, F) as follows.

Lemma 4.3  For k € Ok (alternatively K), the coefficients ¢, 4(r, F) are an Ok-linear
(K-linear) combination of periods r; j(x, F), given explicitly by the formula

eraeP) =332 71) (s,

Proof By (4.1), we have

k—j
q-j

7pq(k, F) = ZZC,] ,%F)( )(

i=0 j=0

)i
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12 G. Anderson et al.

To invert this linear transformation, consider the polynomial

k
S rpg (ks F)YP X5 PYIX"
pe

=]

P>

ps

O(ZZC:J(H F)( i)(z ])( k)P (-R)T f) yP Xk Py ixt

i=0 j=0

M= ‘ﬁM*

Cpq(F F)(X = Y)PYP(X - RY)F17".

p-9=0

=

Mapping X = X + kY and X + X + &Y yields
k k-4

3 cpq(r F)XPYPX Y

p,q=0

k
= Z rp,q(li,F)(X+[iY)k_PYP(y+R?)k_q?q

p-9=0
Z Z Z ( 1)(k ) ].)Hp_i/%q_jri,j(/f,F) YPXk—p?qu—q’
p,q=0 \i=0 j=0 \P ~ 1/ \d — ]
from which equating coefficients gives the desired result. -

Remark 4.4 The results and methods of this section easily generalize to K of class
number one by the generalized Euclidean algorithm due to Whitley [Whi90, Section
2.7], simply noticing that Whitley’s algorithm also produces a sequence of matrices in
SL,(Ok).

5 Hecke operators

Now let K be Euclidean and let p = () be a prime ideal of Og. Define the Hecke
operator Ty, acting on Bianchi modular forms (at full level) as

Fl|r, = |n** F| +F| n
RV (PR (1)

and extend multiplicatively to all of Ok (e.g., [CW94, Pal23]). Thus, for a Hecke
operator T, for a nonzero integral ideal n = nOk, we have

k
(5.1) T.F = | det(y)[? ZB: Fly,
Y€DBn

where

B, = {(g d)|ad—n andbmodd}

and the slash operator is defined in (2.1).
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Bianchi modular forms and the rationality of periods 13

Theorem 5.1  Let n € Ok. Then, 1) 4(0, T, F) is an Ok-linear combination of periods
of F given by

2>

dln

(ol v g
0 b mod p- q-J o=y
) e d 1e2=7

where rp, o(b/d, F) is given in (4.4).

Proof  Using Theorem 3.3, we first compute

Y(ToF) = [n* 30 w(Fly),

y€B,
by expanding the inner summand as
2k+2 7 2k+2-m 7a m
(i X (V) (VE) mote o).
m=0 d d
Then applying the map y and simplifying, we have the K-linear sum

-1

o 3 (e ) ()

P,q=0

o a a |d|\T? —k-
./0 tp+q( 5 k+1 (E - ) Fk+p_q+1()/(0,t))))YPXk ryix 1
Then using the change of variables ¢ = Idl‘zt’ so that y(0, t) = ( Z ‘ldl‘zt) we can write

d

a

k+1(g_ )"“’

d

2k+2 \' . o0 b |nt

12 -1 ‘f“f Prap = o :
[(k+p—q+1) ( ) 0 t k+pq+1(d |d|2 dt

By Lemma 4.3, the expression in brackets is equal to

eSS (EENE (G

i=0 j=0

rp,q(TnF) = |n|k Z ( a

y€Ba

d2

p+qripb/d . _
n RP»q o

We thus have a K-linear expression, which we shall show can be rewritten as an
Ok-linear one.

Now let x(z) = ( o )q_p which is totally multiplicative. Using the definition of B,,,
we get

bd
rpa(TaF) = [nPA70 S 50 (dPEr SR
d|n b mod d
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where we say that d|n if there exists some e € Og such that n = de. Writing b — be,
d ~ de where gcd(b, d) = e, the inner sum becomes

Y |deferah (dznz)Rb/d

el”bmodd
d (b,d)=1

Rearranging, we see 1, 4(0, T, F) is equal to

PPy (n) 3 [dPP 7R y(d72) z|e|2<P+q Dxe® S RV,

dln o b mod d
d (b,d)=1

where the expression in brackets can be rewritten as

d—pd—q Z |e|2(p+q—k)X(e—2) zpzzq: (k )(k ])bp td bq ]d] b/d )
ot i=0 j=0 b mod d 9-J

Notice that the second term

tpq(d) = EP:Z (k )(k ])bP idina-ijiy b/d
j d

-]
is an O-linear combination of periods of F. We then see that the first term is equal to

-2
_ 5| | 2(pra-h) (i)
L de X( de ’

Z |e|2(p+q—k)X(e
e\%

From this, we find
rp.q(TaF) = [nP*Ix(n™") Y d™Pd 1ty o(d) Y. le2k=P=) (%)
d|n e|§
= np—q|n|2q zd_Pd_qtp,q(d) Z |e|2(k_2q)ez(q_P)
dln e|g
=Sty (d) > nPald Pd ek 2p k=24,
d|n 3|%

Since the inner sum of the above is equal to
S () () ree 3 e
— [ = e’eler
= \de de ! 2
e\g elez—g

which is an element of O, we find r, 4 (T F) is an O linear combination of rb/ 4 (F)
and hence the periods r; j(F) by Lemma 4.2. |
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Bianchi modular forms and the rationality of periods 15
6 Rationality of periods
6.1 Combinatorial lemmas

We make use of our previous discussion on Hecke operators to prove an analog
of Manin’s rationality result for periods of classical modular forms. We will prove
the main Theorem 1.1 following the strategy of the proof of the classical case [CS17,
Theorem 11.11.2]. First, for a cusp form F, we define

r(F) = (r0.0(F)» r01(F)sro2(F)s ..., ek (F)T,

where we interpret (F) as a column vector mapping S (") to C**D*, For any
n = n0Og, note that since r, 4(T,F) is an Og-linear combination of r; ;j(F), then
there exists some matrix A(n) with entries in Ok such that r(T,,F) = A(n)r(F).

Additionally, let
G (n) = 3 |dl*
d|n

similar to the standard sum of divisors function.
First, we note some observations about r o ( T,, F) in terms of the following lemma.

Lemma 6.1  The first component of A(n)(1,0,...,0,-1)" is Gyp12(n).

Proof By Theorem 5.1, we have

b/d — ~ n b/d
roo(TaF) =201 2 ro,/o > ekt =3 ou (E) 2 ro,/o :
d|n bmodril d|n b mod d

n
(bod)= elg (bod)=1

Let by/d; represent the (th convergent of b/d and let m be the index such that
bu/dm =b/d. When p = g = 0, the proof of Lemma 4.2 gives

m k D k ; » K\ i ki
rg)/(f _ z Z [(_1)0: 1)( 1)( .)d5—1dé( ( .)dg_ljdg ]] ri,j(F);
£=0,j=0 1 J
putting these results together gives that ry o ( T, F) is equal to
. (n mo K a G (K i ki (K \—i—k—j
ZGZk(E) IEDIDS [(—1)( R +J)( )dé—ldg ( )dé—ljdé ]] rij(F)-

dln b mod d £=0 i, j=0 1 J
(b,d)=1

In particular, the coeflicient of rg o (F) within the linear combination for rg o ( Ty F)
is given by
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16 G. Anderson et al.

and the coefficient of r x (F) within the linear combination for ro (T, F) is given by

Sou(5) X3l
d|n b mod d =0
(b.d)=1

Finally, note that since y/(F) € Wy x, we have y/(F)|(1,s) = 0. This implies ro o (F) =
rr.x (F) and so the difference between the coefficients are given by

. (n n . (n
San (L) T S -l - S (t) 3
d|n b mod d £=0 dln b mod d
(b,d)=1 (b,d)=1
At this point, let
¢(n) =|{meOg:N(m) < N(n),(m,n)=1}|.

Note that since O is a Euclidean domain, ¢(#) is also equal to |(Ox/nOk)*|, and
hence, is multiplicative by the Chinese Remainder Theorem for number fields. We
claim that

>, 6(d) = N(n) =n].
d|n
Let 7 denote a prime of Ok, and e, the largest power of 7 dividing n. We have
2 () =TT 2 é(=").
d|n ntln v=0

Since the norm is multiplicative, it suffices to show that Y77, ¢(n") = N(n"). We
then compute ¢(7") by

|{m € Ok : N(m) < N(T[V)H - |{m €Ok N(m) < N(T[v),ﬂ'|m}|
= [{m € O : N(m) < N(w")}| ~|{m € O : N(m) < N(z' ™)}
=N(z") - N(n"™),

and so
>, (") =3 (N(z") - N("™)) = N(n*).
v=0 v=0

Using this, we get our desired result as

S () T 4P~ T () 6(0) - 5 5 e o)
dln mo d|n dne|ﬂ
(b,d)=1 d

=2 IDPE Y §(d) = 3 IDP*? = Gagra(n). -

Din d|D Din
6.2 Proof of Theorem 1.1

We are now ready to prove the rationality theorem for the Bianchi case. Let F be
a normalized Hecke-eigenform. It follows that T, (F) = ¢(nd)(F), with § = /-D.
Thus,
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Bianchi modular forms and the rationality of periods 17
r(F)eEp= () Ker(A(n)-c(nd)I),
ne0\{0}

defined over K(F). We shall identify the algebraic closure of K with a subset of C,

so that r maps Sy x(T") to a subspace Ry of C*+*, where the relations defining this
subspace are completely determined by the action of I on periods. It follows then that
we can identify Ry with Wy x, and moreover r(F) € Er n Wy x, a C-vector space.

Lemma 6.2 Let K be Euclidean. If v € Ep n Wy i, then there exists a Bianchi cusp
form G € Sy ¢ (T) such that v = r(G).

Proof By Theorem 3.3, we have a map from S ; (I") to the space of period polyno-

. —k —k
mials Wy x = Wy /U, where U is spanned by X¥X~ — Y¥Y". This can be represented
by the coefficient vector (x,0,...,0,-x)" generated by the cocycle y ~ (1], —1).
Thus, if v € Ep n Wy t, then there exists a Bianchi cusp form G € Sy x(T") such that

v=r(G) + (x,0,...,0,-x)".
Consider the first component of the product
A(n)(x,0,...,-x)T = A(n)(v - r(G)).
From Lemma 6.1, this is equal to x4, (n). However, we also see that
A(n)(v-r(G)) = A(n)v - A(n)r(G) = a(n)v - r(T,G),

where a(n) is the n-th Fourier coeflicient and T, eigenvalue of G, and has the first
component

a(n)(ro,0(G) +x) —r0,0(TuG).
By the recent proof of the Ramanujan conjecture for cuspidal Bianchi eigenforms
[BCG+25], we have that |a(n)| = O(N(n)**)/2) (though any weaker nontrivial
bound suffices). Furthermore, it is known [Garl8, Theorem 2.6.2] that

G= A,’Fi

M

i=1

for F; normalized eigenforms. Therefore,

g g
r0,0(TaG) = Y. Airo,o(TuF;) = > Aiai(n)roo(Fi),

i=1 i=1

where a;(n) is the Fourier coefficient of F;, which shows that |ry¢(T,G)|=
O(N(n)**D/2) also. But since |x&x42(n)| = O(N(n)**'), this is a contradiction
unless x = 0. Therefore, v = r(G) for some G € Si ;(T). |

We now complete the proof of the main theorem. First, assume that K is Euclidean.
If v € Ep N Wy, then by Lemma 6.2 there exists a Bianchi cusp form G € Sy x(T")
such that v = r(G). Since v € E, we have by definition that A(n)v = ¢(nd)v, and by
the definition of A(n) that

r(ThG —¢c(nd)G) = 0.
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On the other hand, it follows from our realization of the Eichler-Shimura-Harder
in Theorem 3.3 and the proof of the previous lemma that Sy x (I") is isomorphic to a
codimension I-subspace of Ry not containing the vector (x,0,...,-x)T.In particular,
r is injective and thus

TwG = ¢(nd)G.

It follows by multiplicity one (e.g., [Hid94, p. 432]) that if two eigenfunctions for all
Ty, have the same eigenvalues, then they must be scalar multiples of one another, so
G = AF for some A € C. Thus, every element of Ef N Wj  has the form r(AF) = Ar(F)
by the definition of r and the properties of r; ;. But from this it follows that Ep n Wy x
has dimension one, and hence

(r(F))(c = Ep N Wk,k-

Note however that Er, Wy, and T,, are all defined over K(F). Thus, for each 7, 4 (F),
there exists O € C* such that

érp,q(F) €eK(F),V0<p,q<k.

Remark 6.3 Let K be an arbitrary imaginary quadratic field with class number h. We
briefly outline the idea of the proof of the main Theorem 1.1. Consider the intersection

Ep= (1 Ker(Ty-c(n))c Symbgy, (6,0 (Vik)
(0)#ncOg
in the space of modular symbols valued in Vj x, with notation as in [Will7, Sec-
tion 2]. Let Wy & be the subspace of V}  determined by the Eichler-Shimura-Harder
isomorphism, evaluating (3.3) at the pair of cusps (r,s) = (0, c0) as before. Again
by multiplicity one and Eichler-Shimura-Harder, E; n Wy x is one-dimensional and
spanned by ¥ = (yp1, ..., ¥ ), where F', ..., F), are the components of the Bianchi
modular form F as in [Will7, Proposition 2.7]. As before, the action of T;, on modular
symbols over K(F) is again defined over K(F), so the intersection

SYmbGLZ(GK)(Vk,k(K(F))) n E;“

is again one-dimensional and spanned by yr/Q for some fixed Q € C* (see [Will7,
Proposition 2.12]). We then obtain ¥z (0,00)/Q € V; (K(F)) foreachi=1,...,h.
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