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ENRICHED CONCEPTS OF REGULAR LOGIC

JIŘÍ ROSICKÝ AND GIACOMO TENDAS

Abstract. Building on our previous work on enriched universal algebra, we define a notion of enriched
language consisting of function and relation symbols whose arities are objects of the base of enrichment
V . In this context, we construct atomic formulas and define the regular fragment of our enriched logic by
taking conjunctions and existential quantification of those. We then characterize V-categories of models
of regular theories as enriched injectivity classes in the V-category of structures. These notions rely on the
choice of an orthogonal factorization system (E ,M) on V which will be used, in particular, to interpret
relation symbols and existential quantification.

§1. Introduction. After considering a notion of enriched equational logic in
[23], we now proceed to introduce the regular fragment of enriched logic. More
precisely, we go beyond [23] by allowing our enriched languages to involve function
and relation symbols whose arities are objects of the base of enrichment. Then,
we introduce corresponding enriched notions of atomic formulas, as well as
conjunctions and existential quantifications of such.

To achieve this, we equip the base V of enrichment with an enriched factorization
system (E ,M). We use the class M to interpret the relation symbols R, of a given
language L, as M-subobjects

RA AX ,
M

where X is the arity of R, and A is an object of V that we are endowing with an
L-structure.

Building on [23], we define the V-category Str(L) of L-structures, prove that
it is locally �-presentable as a V-category (when L is �-ary), and characterize its
�-presentable objects.

Given a language L, we form atomic formulas out of terms, equations, and
relations symbols. Then, for the fragment of logic we consider in this paper, we allow
to take conjunctions and existential quantifications on these. For any L-structure A
and formula ϕ(x) of arity X, we define its interpretation as an M-subobject

ϕA AX ;
M

this is done recursively on the construction of ϕ.
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2 JIŘÍ ROSICKÝ AND GIACOMO TENDAS

The chosen factorization system is particularly important for the interpretation
of existential quantification: given a formula �(x, y) of arity X + Y , we define the
interpretation of ϕ(x) := (∃y)�(x, y) as the (E ,M)-factorization below.

�A AX × AY AX

ϕA

p1

E M

This generalizes the interpretation of existential quantification within a topos [16].
In fact, in the case whereV is a Grothendieck topos with its cartesian closed structure
and equipped with the (epi, mono) factorization system, our enriched logic extends
the internal logic of the topos to the case where arities are non-discrete (meaning
that they are not coproducts of the terminal object in general).

Then we define sequents

(∀x)(ϕ(x) � �(x)),

of formulas of the same arity X, and say that an L-structure A satisfies them if
ϕA ⊆ �A as M-subobjects of AX . Ordinarily, regular theories are defined as set
of sequents as above where ϕ is a conjunction of atomic formulas and � is a
positive-primitive formula; that is, obtained by applying existential quantification
to conjunctions of atomic formulas. Equivalently, one can take also ϕ to be positive-
primitive without changing the power of the fragment; both these notions have
occurred in the literature. In the finitary setting, models of such regular theories
are known to characterize finite injectivity classes in locally finitely presentable
categories [1, Chapter 4], as well as those full subcategories that are closed under
products, filtered colimits, and pure subobjects [19].

In the enriched context, injectivity classes were first introduced in [11] and studied
for instance in [2, 5, 13]. The notion relies on a class of maps E generalizing that of
surjections; in our case this corresponds to the left class of the chosen factorization
system on V . Then, more recently, we introduced an enriched notion of purity [22]
depending on a factorization system on V , as in the current setting. The aim was
to characterize enriched E-injectivity classes as those closed under a certain class of
limits, filtered colimits, and E-pure subobjects [22, Theorem 5.5].

In this paper we shall see that, under some hypothesis on (E ,M) and on the
given language L, the E-pure morphism from [22] in the V-category Str(L) can
be characterized in a model theoretic way as those homomorphisms of structures
f : K → L with are elementary with respect to every positive-primitive formula ϕ
(Section 6).

After this, we complete the connection with the enriched notion of injectivity, by
defining our enriched regular theories to be sets of sequents of the form

(∀x)(ϕ(x) � (∃y)(�(x, y) ∧ ϕ(x)))

where ϕ and � are conjunctions of atomic formulas (Definition 7.1). This slightly
unusual choice is dictated from the fact that, unlike in the ordinary case or the case
internal to a topos, our class E may not be stable under pullbacks; making certain
deduction rules of ordinary regular logic fail. In particular, the sequent above is
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ENRICHED CONCEPTS OF REGULAR LOGIC 3

not equivalent to the same sequent where ϕ is omitted from the right-hand-side
(Remark 4.14).

Then we can prove.

Theorem 7.6. Under Assumption 6.1, the following are equivalent for a full
subcategory A of Str(L):

(1) A is a (�, E)-injectivity class in Str(L);
(2) A ∼= Mod(T) for a regular L��-theory T.

The key tool for capturing E-injectivity in the theorem above, is proving the
existence of presentation formulas for given L-structures (see [1, Remark 5.5] for the
ordinary version): we say that a conjunction of atomic formulas ϕ is a presentation
formula for A ∈ Str(L) if homming out of A is isomorphic to the evaluation
V-functor

ϕ(–) : Str(L) −→ V .
The fact that these exist for any A ∈ Str(L) under Assumption 6.1, is discussed in
Section 5.

When we are in the context of [22], so that E-injectivity classes can be characterized
under certain closure properties, then the theorem above implies the following.

Theorem (part of Theorem 7.10). The following are equivalent for a full
subcategory A of Str(L):

(1) A ∼= Mod(T) for a regular L��-theory T;
(2) A ∼= Mod(T) for a theory T with sequents of the form

(∀x)(ϕ(x) � �(x))

where ϕ and � are positive-primitive L��-formulas;
(3) A is closed under products, powers by E-stable objects, �-filtered colimits, and
�-elementary subobjects.

The �-elementary morphisms are defined in Section 6, and are a natural
generalization of the ordinary pure ones to the enriched context. It follows from the
theorem that, in this case, one can still consider the more traditional kind of regular
theories (with positive-primitive formulas on both sides of the sequents) and at the
same time characterize models of such theories in terms of closure under specific
limits, filtered colimits, and elementary embeddings.

Beside Grothendieck toposes, our examples of bases of enrichment include the
symmetric monoidal closed categories Met of generalized metric spaces with non-
expanding maps, Ban of Banach spaces and linear maps of norm ≤ 1 with the
factorization systems (dense, closed isometry) and (dense, isometry) respectively.
In the second case, our enriched logic is related to the logic of positive bounded
formulas and approximate semantics [8] (see Example 4.16).

Other cases of particular interest that are covered by our theory, are those bases of
enrichment for which V0 is a quasivariety [1] equipped with the (regular epi, mono)
factorization system. Examples include the category Ab of abelian groups, R-Mod
of modules over a ring R, and DGAb of differentially graded abelian groups.

We shall also discuss the case where V = Cat with the (surjective on objects,
injective on objects and fully faithful) factorization system. In this setting, we can
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4 JIŘÍ ROSICKÝ AND GIACOMO TENDAS

describe sketches, categories with limits of some type, as well as categories equipped
with an abelian group bundle and small tangent categories (see [6, 20]).

§2. Preliminaries. As in the setting of enriched universal algebra [23], our base of
enrichment is a symmetric monoidal closed category V = (V0,⊗, I ) which is locally
�-presentable as a closed category [9], for some �. This means that V0 is locally
�-presentable and the full subcategory V� spanned by the �-presentable objects
contains the unit and is closed under the monoidal structure of V0. As in [23], for
notational simplicity we denote by

AX := [X,A]

the internal hom in V . For any set X, coproducts X · I :=
∑
x∈X I of copies of I are

called discrete objects of V . Note that, for every object V of V there is the induced
morphism �V : V0 → V where V0 = V0(I, V ) · I .

We will make use of the enriched notions of weighted limits and colimits, for
which we direct the reader to [9]. In particular we will mostly consider conical limits
and colimits, as well as powers and copowers (which together generate all weighted
limits and colimits).

Finally, we assume our base of enrichment V to come equipped with an enriched
(orthogonal) factorization system (E ,M) in the sense of [14]; this means that (E ,M)
is an ordinary factorization system on V0 for which the class E is closed in the arrow
V-category V→ under copowers (or equivalently, M is closed under powers). We
shall need the following result about such factorization systems.

Lemma 2.1. If M is closed in V→ under �-filtered colimits, then M is locally �-
presentable as aV-category and the inclusionJ : M ↪→ V→ has a left adjointL : V→ →
M given pointwise by sendingf : X → Y to the M-subobjectLf : LX � Y induced
by the (E ,M)-factorization

X
E
� LX

M
� Y

of the map f.

Proof. The V-category of arrows V→ is locally �-presentable because V is.
Moreover M is closed in V→ under all conical limits and powers (since (E ,M)
is enriched); thus is closed under all weighted limits. By [1, Theorem 2.48] J0 has a
left adjoint, and, since J preserves powers, the ordinary left adjoint is actually an
enriched one. Thus M is locally �-presentable. It is easy to see that the left adjoint
acts as described in the statement. �

From Section 5 this factorization system will be assumed to be proper; that is, we
will assume every element of E to be an epimorphism and every element of M a
monomorphism. It will also be useful to recall the following notation from [22]

Definition 2.2. An object X ∈ V is called E-projective if V0(X, –) : V0 → Set
sends maps in E to epimorphisms. While, X is called E-stable if eX : AX → BX is in
E whenever e : A→ B is.

It is easy to see that if the unit is E-projective, every E-stable object is E-projective.
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ENRICHED CONCEPTS OF REGULAR LOGIC 5

A morphism f : A→ B in V is called a surjection if V0(I, f) is surjective. A
morphism g : C → D is called an injection if it has the unique right lifting property
to all surjections morphisms (see [21]). In what follows, Surj will denote the class
of surjections and Inj the class of injections.

Examples 2.3. We now give a list of bases of enrichment, together with an
enriched factorization system, that will be relevant to the setting of the paper.

(1) V = Met where distances ∞ are allowed. The resulting category is locally ℵ1-
presentable as a closed category and symmetric monoidal closed (where A⊗
B is A× B with the metric d ((a, b), (a, b′)) = d (a, a′) + d (b, b′)). Discrete
objects are discrete metric spaces (because I is the one-point metric space).
As factorization systems we can take either (surjective, isometry) or (dense,
closed isometry) (see [2]). Both factorization systems are enriched and proper.
In the first case, I is E-projective while in the second case it is not E-projective.
In both cases, E is closed under products in Met→ and discrete objects are
E-stable. Note that the first factorization system is (Surj, Inj). We can also
consider V to be the category CMet of complete metric spaces. Here we only
consider one factorization system given by (dense, isometry) (see [2]).

(2) V = Ban the category of Banach spaces with linear maps of norm ≤ 1. This
is symmetric monoidal closed where ⊗ is the projective tensor product, and
internal hom is the space [K,L] consisting of all bounded linear mappings
(not necessarily of norm at most 1) from K to L (see [4, Example 6.1.9h]).
Observe that Ban0(K,L) is the unit ball of [K,L]; moreover, Ban is locally
ℵ1-presentable [1, Example 1.48]. The factorization system (dense, isometry)
corresponds to the (epi, strong mono) factorization system, and hence it
is proper. It is also enriched because isometries are closed under powers.
The (strong epimorphism, monomorphism) factorization is described in [17,
Section 1]; monomorphisms are one-to-one maps and strong epimorphisms
are quotient maps X → X/Y where Y is a closed subspace of X. This
factorization system is also enriched. Strong epimorphisms coincide with
surjections. Discrete objects are coproducts of C (because I = C) and
they are strong epi-projective and strong epi-stable. The unit ball functor
Ban0(C, –) : Ban → Set has a left adjoint l1 sending X to the discrete object
X · C.

(3) V = Cat is cartesian closed and locally finitely presentable. The factorization
system (surjective on objects, injective on objects fully faithful) coincides with
(Surj, Inj). Note that this factorization system is enriched but not proper
(because 1 is not a generator). Discrete objects are discrete categories and
they are E-stable.

(4) V = Pos the cartesian closed category of posets and monotone maps, which is
locally finitely presentable as a closed category. This comes equipped with the
proper enriched factorization system given by (Surj, Inj). Discrete objects
are E-stable and E-projective.

(5) We can consider V to be any regular base of enrichment with the (regular epi,
mono) factorization system, which is enriched and proper. The E-projective
objects are the usual regular projectives; these are also E-stable if in additionV
is a symmetric monoidal quasivariety as in [12]. Examples of such a V include
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6 JIŘÍ ROSICKÝ AND GIACOMO TENDAS

the category Ab of abelian groups, R-Mod of modules of a ring R, GAb of
graded abelian groups, and DGAb of differentially graded abelian groups.

Within the last example falls also the case whereV is a Grothendieck topos with its
cartesian closed structure. The factorization system corresponds to the (epi, mono)
one; this is the only proper factorization system in a topos (since every epimorphism
is regular). The notion of regular logic we consider in this paper will extend that
of (single-sorted) regular logic internal to the topos [16], by allowing the use of
non-discrete arities.

Remark 2.4. We expect most of the results of this paper to generalize to the
setting of [15] where the base of enrichment V is assumed to be locally bounded
instead of locally presentable. This allows to capture other important examples of
enrichment that have a more topological flavour (such as enrichment over compactly
generated topological spaces). Nonetheless, we one still needs V to be monoidal
closed, as this is fundamental for the interpretation of our enriched arities (see for
instance Definition 3.4). We decided to restrict to the locally presentable case as
most of the results we rely on (such as [11, 22, 23]) assume that.

§3. Enriched languages. In this section we introduce the notion of language that
will be central in the development of our theory. This generalizes the concept
we considered in [23] by allowing the interpretation of relation symbols. Before
proceeding, we set the following assumption which is satisfied by all the examples
mentioned in the preliminaries.

Assumption 3.1. We fix an enriched factorization system (E ,M) on V whose
right class M is made of monomorphisms and is closed in V→ under �-filtered
colimits.

Remark 3.2. Note that we need to assume M to be contained in the class of
monomorphisms of V as this will imply the property of Remark 3.5 below and will
be needed in the proofs of Proposition 3.13 and Lemma 5.5.

As mentioned above, the following definition extends the notion of functional
languages from [23] to the case where also relation symbols are allowed.

Definition 3.3. A (single-sorted) language L (over V) is the data of:

(1) a set of function symbols f : (X,Y ) whose arities X and Y are objects of V ;
(2) a set of relation symbols R : X , with arity an object X of V .

The language L is called �-ary if all the arities appearing in L lie in V�.

For every language L there is an associated notion of L-structure.

Definition 3.4. Given a languageL, anL-structure is the data of an objectA ∈ V
together with:

(1) a morphism fA : AX → AY in V for any function symbol f : (X,Y ) in L;
(2) an M-subobject rA : RA � AX for any relation symbol R : X in L.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.83
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.218, on 19 Jun 2025 at 09:10:37, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.83
https://www.cambridge.org/core


ENRICHED CONCEPTS OF REGULAR LOGIC 7

A morphism of L-structures h : A→ B is determined by a map h : A→ B in V
making the following square commute

AX BX

AY BY

hX

fA fB

hY

for any f : (X,Y ) in L, and such that there exist a map hR : RA → RB completing
the diagram below

RA RB

AX BX

hR

rA rB

hX

for any relation symbol R : X in L.

Remark 3.5. Since M is made of monomorphisms, every map hR above is
uniquely determined by the morphism h.

So far L-structures and morphisms between them form just an ordinary category
Str(L)0. As we did in [23], we define a V-category Str(L) whose underlying ordinary
category (as the name suggests) will be the one just introduced. This will require
some steps.

Note that, given a �-ary language L, we can see it as L = F ∪ R the union of the
�-ary language F, with only the function symbols of L, and the �-ary language R,
with only the relation symbols of L. Then, the V-category Str(F) of F-structures was
constructed in [23, Section 3]. The next step is to construct Str(R) for the relational
part of the language R.

Let RV the discrete V-category on the set R, and let 2V be the free V-category on
the category 2 = {0 → 1}. We can consider the V-category

2V ⊗ RV ∼=
∑

R
2V

and the pushout in V-Cat

RV 2V ⊗ RV

Vop�
�

ΘR

j

i HR

�R
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8 JIŘÍ ROSICKÝ AND GIACOMO TENDAS

where i(R : X ) = X and j(R : X ) = (1, R : X ). Before defining the V-category of
R-structures, note that we have isomorphisms

[2V ⊗ RV ,V] ∼=
∏

R
[2V ,V] ∼=

∏
R
V→.

Thus we can construct Str(R) as follows.

Definition 3.6. TheV-category Str(R) on a �-ary languageR of relation symbols
is defined as the pullback

Str(R)
�

[ΘR,V]

V ×
∏

R
M [Vop� ,V] ×

∏
R
V→

VR

UR = (U 1
R
, U 2

R
) ([�R,V], [HR,V]′)

N ×
∏

RJ

where [HR,V]′ is the composite of [HR,V] with the isomorphisms given above,
N = V(HR –, 1) is fully faithful, and J : M ↪→ V→ is the inclusion.

Arguing as in [23, Remark 3.4] one can show that the definition of Str(R) does
not depend on the choice of � that makes R a �-ary language.

Proposition 3.7. Let R be a �-ary language of relation symbols; then:

(1) the underlying category of Str(R) has R-structures as objects and maps of
R-structures as morphisms;

(2) Str(R) is locally �-presentable as a V-category;
(3) UR : Str(R) → V ×

∏
R
M is a conservative right adjoint and preserves �-

filtered colimits.

Proof. (1) By construction, an object of Str(R) is a V-functor ΘR → V whose
restriction along �R is isomorphic to A(HR–) for some A ∈ V , and whose restriction
along HR lands pointwise in M. Now, by definition of �R, to give the data above is
equivalent to give an object A ∈ V together with an ordinary functor 2 × R → V0

which sends (1, R : X ) to AX , for any (R : X ) ∈ R, and sends every arrow in 2 × R

to a map in M. In other words, it is equivalent to give an objectA ∈ V together with
an assignment R → M sending a relationR : X to a map in M with codomain AX .
This is exactly the data of an R-structure. The same argument applies to morphisms
of the underlying category.

(2) The pullback defining Str(R) is a bipullback since ([�R,V], [HR,V]′) is an
isofibration. Moreover, the V-functors ([�R,V], [HR,V]′) and N ×

∏
R
J are both

continuous and �-filtered colimit preserving (by the lemma above), and the V-
categories involved are locally �-presentable (for M this follows from Lemma 2.1,
then use stability of locally �-presentable V-categories under products [3]). Thus
Str(R) is locally �-presentable (again by [3]), and bothUR andVR preserve all limits
and �-filtered colimits.

(3) We have already shown thatUR is continuous and preserves �-filtered colimits.
Since V ×

∏
R
M is locally presentable, then it also has a left adjoint. The fact that

UR is conservative follows from (1) and the definition of R-structure. �
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ENRICHED CONCEPTS OF REGULAR LOGIC 9

We can now define the V-category of L-structures for a general �-ary language L.

Definition 3.8. The V-category Str(L) on a �-ary language L is defined as the
pullback

Str(L)
�

Str(F)

Str(R) V

JF

JR UF

U 1
R

where L = F ∪ R has been written as the union of its sub-languages of function
and relation symbols respectively. We denote byU : Str(L) → V the diagonal of the
square.

Below we denote by V : Str(L) →
∏

R
M the composite U 2

R
◦ JR sending an

L-structure A to the family (RA � AX )(R:X ).

Theorem 3.9. Let L = F ∪ R be a �-ary language; then:
(1) the underlying category of Str(L) has L-structures as objects and maps of

L-structures as morphisms;
(2) the V-category Str(L) is locally �-presentable;
(3) the forgetfulV-functorU : Str(L) → V is a right adjoint and preserves �-filtered

colimits;
(4) the pair (U,V ) : Str(L) → V ×

∏
R
M is a conservative right adjoint which

preserves �-filtered colimits.

Proof. This is obtained simply by combining [23, Proposition 3.5] and 3.7 and
using the stability of locally �-presentable categories under bilimits [3] (sinceUF and
UR are isofibrations, the pullback above is also a bipullback). �

Let us show an example of V-category of structures.

Example 3.10. Let V = Cat with the (surjective on objects, injective on objects
fully faithful) factorization system. We define a relational language for the 2-category
of sketches with specified shape of cones and cocones.

Given aC ∈ Cat, denote by 0 ∗ C the category obtained by adding to C an initial
object 0, and let k : C → 0 ∗ C be the inclusion. Then, given another category A,
an element x ∈ A0∗C is a cone over some functor C → A, while an element y ∈ AC
is just a functor C → A. Dually, we can define C ∗ 1 by adding a terminal object,
so that an element x ∈ AC∗1 is a cocone over some functor C → A.

Given small collections S and T of categories, consider the relational language
RS,T consisting of a relation symbolRC : 0 ∗ C for anyC ∈ S and a relation symbol
RD : D ∗ 1 for anyD ∈ T . Then, its is easy to see that anRS,T -structure is the data of
a category A together with a set of cones of shape C for each C ∈ S, and of cocones
of shapeD ∈ T . This is the same as a sketch whose specified cones and cocones have
shape in S and T respectively. Similarly, a morphism of RS,T -structures is the same
as a morphism of sketches: a functor A→ B that maps specified co/cones in A into
specified co/cones in B.
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10 JIŘÍ ROSICKÝ AND GIACOMO TENDAS

As a consequence Str(RS,T ) ∼= SktS,T is the 2-category of sketches with cones
of shape in S and cocones of shape in T ; the 2-cells in SktS,T are just natural
transformations between the underlying functor of a morphism of sketches. By
Theorem 3.9 above this is locally presentable, and in particular complete and
cocomplete.

We conclude this section by characterizing the �-presentable objects of Str(L).
We shall need first the following result.

Proposition 3.11. Given a language L = F ∪ R, the V-functor

JF : Str(L) → Str(F)

has both a left and a right adjoint which can be described as follows:

• The left adjoint F : Str(F) → Str(L) takes an F-structure A to the L-structure
obtained from A by interpreting the relations R : X in R with the M-subobject

F 0 � AX

induced by the (E ,M)-factorization of ! : 0 → AX .
• The right adjoint R : Str(F) → Str(L) takes an F-structure A to the L-structure

obtained from A by interpreting R : X in R with the M-subobject

1: AX � AX

given by the identity on AX .

Both F and R are fully faithful.

Proof. It is easy to see that F and R define respectively left and right adjoints to
the underlying ordinary functor of JF, and that they are fully faithful as ordinary
functors. To conclude, by [10, Theorem 4.85], it is enough to prove that JF preserves
powers and copowers by elements of V . The former follows by definition since
JF is obtained by pulling back continuous functors. For the latter, consider an L-
structure A and some Y ∈ V ; then the copower X · A of A by X can be constructed
by considering the copower X · JFA in Str(F), and by extending it to an L-structure
as follows: for any relation R : Y we define rX ·A : RX ·A � (X · A)Y as the M-
subobject obtained by taking the (E ,M)-factorization of the composite

X ·RA
X ·rA−−−→ X · (AY ) −→ (X · A)Y

in V . It follows that JF also preserves copowers. �

In the next proposition we characterize the �-presentable objects of Str(L). We
shall need the following definition.

Definition 3.12. We say that an elementA ∈ V is an E-quotient ofY ∈ V if there
exists a map Y � A in E .

Note that whenm : A� B is in M and A is an E-quotient of the initial object 0,
then m is induced by the (E ,M)-factorization of the unique map ! : 0 → B .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.83
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.218, on 19 Jun 2025 at 09:10:37, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.83
https://www.cambridge.org/core


ENRICHED CONCEPTS OF REGULAR LOGIC 11

Proposition 3.13. An L-structure A is �-presentable in Str(L) if and only if:

(i) JF(A) is �-presentable in Str(F);
(ii) for every R : X in L, its interpretation RA is an E-quotient of some Y ∈ V�;

(iii) all but a �-small number of the RA, for R : X in L, are E-quotients of 0.

Proof. It is enough to work at the level of the underlying ordinary category
Str(L)0 since enriched and ordinary finitely presentable objects coincide [10,
Proposition 7.5]. Let G be the full subcategory of Str(L)0 with objects those A
satisfying the three properties above. To conclude it is enough to show (1) that every
object of G is �-presentable, (2) that G is closed under �-small colimits in Str(L)0,
and (3) that G is strongly generating.

(1). Let A ∈ G and h : A→ L := colimi Li be a morphism into a filtered colimit
of objectsLi in Str(L)0, denote the colimiting cone by (ci : Li → L)i . Since JF(A) is
�-presentable and JF preserves �-filtered colimits, JF(h) factors through some JF(ci)
as a morphism k : JF(A) → JF(Li) of F-structures. We need to extend k to a map of
L-structures, maybe changing index i.

Going back in Str(L)0, for every relationR : X we have the solid part of diagram
below

Y RA RLi RL

AX LXi LX

q

kR

hR

rA

kX

(ci )R

rLi rL

cXi

with Y ∈ V�. Now, if Y = 0, then kR is the unique map into RLi induced by ! : 0 →
RLi and the orthogonality property of the factorization system. Otherwise, sinceRL
is the �-filtered colimit of theRLi , the map hRq factors through some (cj)R : RLj →
RL. Without loss of generality we can assume i = j and hence we have a map
s : Y → RLi such that rLi s = (kX rA)q. Since q is in E and and rLi in M, there is
an induced kR : RA → RLi making the square in the diagram above commute. Since
there are only a �-small number relations which are not E-quotients of 0, we can
repeat this argument and obtain a map k : A→ Li in Str(L)0 such that cik = h.
By construction, any two such factorizations k : A→ Li and k′ : A→ Lj of h must
coincide after composition with some maps i → l and j → l . This proves that A is
�-presentable in Str(L)0.

(2). Since JF is cocontinuous, the objects of Str(L)0 satisfying the first condition
are clearly closed under �-small colimits.

In general, given a �-small limitA := colimi(Ai) in Str(L)0 and a relation symbol
R : X in L, the M-subobject RA of AX is determined by the (E ,M)-factorization
of the induced map colimi(RAi ) → AX . It follows that RA is an E-quotient of
colimi(RAi ). Thus, if each RAi is an E-quotient of some Yi ∈ V�, then colimi(RAi )
is an E-quotient of Y :=

∑
i Yi , which is still in V�. It follows that RA is also an

E-quotient of Y. Thus the objects satisfying the second condition are clearly closed
under �-small colimits.
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12 JIŘÍ ROSICKÝ AND GIACOMO TENDAS

Since 0 is stable under �-small colimits, then also are its E-quotients (by the
arguments above); therefore also the objects satisfying the third condition are closed
under �-small colimits.

(3). Notice that, since the projections into Str(F) and into M (for any relation
in L) are jointly conservative, to show that G is a strong generator of Str(L)0 it
is enough to show the following for any L-structure L. (a) That any morphism
of F-structures B → JF(L), with B�-presentable, factors through some JF(A→ L)
with A ∈ G. (b) That, for any relation R : X , any morphism m → rL in M, with
m ∈ M�, factors through the R-component of some A→ L with A ∈ G.

Point (a) is trivial since, by definition JF(G) = Str(F)�. For (b), consider a relation
R : X and any morphism (u, v) : m → rL in M, with m : B � C in M�; so that
u : B → RL, v : C → LX , and rLu = vm. Note that m : B � C is �-presentable in
M if and only if C ∈ V� and B is an E-quotient of some Y ∈ V�.

Since we can write the F-structure JF(L) as a �-filtered colimit of �-presentable
F-structures, and this colimit is computed as in V , the map v factors through some
hX : AX → LX arising from an h : A→ L in Str(F). Therefore we have the solid
part of the diagram below

Y

C AX LX

B RA RL
E

m

E

hX

M rL

hR

u

v

and we define RA to be the (E ,M)-factorization of the composite B → AX and the
map hR : RA → RL is induced by orthogonality of E and M. It follows that we can
extend A to an L-structure in G by defining the interpretation ofR : X asRA (which
is an E-quotient of Y ∈ V�) and setting all the other relations to be E-quotients
of 0. By construction h extends to a morphism of L-structures which satisfies our
condition. �

§4. Formulas. Given a language L, we will introduce enriched atomic formulas
over L. Starting from these, we take conjunctions and existential quantifications and
define the regular fragment of our theory. Then we define their interpretation into
any L-structure using the given factorization system on V .

The assumptions for this section are the same as those in the previous one. Given
a language L = F ∪ R the terms we consider are the (X,Y )-ary extended F-terms
defined in [23, Section 4]; these include (but may not restrict to) the recursively
generated ones of [23, Definition 4.1].

Notation 4.1. Variables have arities which are objects of V and we denote them
as x : X , for X ∈ V ; as extended terms they correspond to the identity maps between
arities. Then, given an (X,Z)-ary term t we write t(x) to emphasize that t has input
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ENRICHED CONCEPTS OF REGULAR LOGIC 13

arity X. If t has input arity X + Y we write t(x, y) to specify that we have two input
variables; this helps notationally for existential quantification.

As mentioned before, for the purposes of this paper we shall not go further the
regular fragment of our logic.

Definition 4.2. Given a language L, the atomic formulas of L are defined as
follows:

(1) if s, t are (X,Y )-ary terms, then

ϕ(x) := (s(x) = t(x))

is an X -ary atomic formula;
(2) if R is a X -ary relation symbol, Y is an arity, and t an (Z,X ⊗ Y )-ary term,

then

ϕ(z) := RY (t(z))

is a Z-ary atomic formula.

General formulas are built recursively from atomic formulas by taking:

(3) conjunctions: if ϕj(x) are X -ary formulas, then

ϕ(x) :=
∧

j∈J
ϕj

is an X -ary formula;
(4) existential quantification: if �(x, y) is an X + Y -ary formula, then

ϕ(x) := (∃y)�(x, y)

is an X -ary formula.

If L is �-ary, the arities involved are �-presentable, and |J | < κ, we get Lκ�-
formulas.

Definition 4.3. A positive-primitive formula, also called pp-formula, is one of the
form

ϕ(x) ≡ (∃y)�(x, y)

where � is a conjunction of atomic formulas.

Next we define the interpretation of formulas in L-structures. The interpretation
of terms is defined in [23]: an (X,Y )-ary t term interprets on an L-structure A as a
morphism tA : AX → AY .

Remark 4.4. If V is semi-cartesian (that is, the unit I is terminal) we obtain
Y -ary constant symbols as function symbols of arity (0, Y ).

Definition 4.5. For any L-structure A and any X -ary formula ϕ(x) we define its
interpretation in A as an M-subobject

ϕA � AX .

We argue recursively as follows:
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14 JIŘÍ ROSICKÝ AND GIACOMO TENDAS

(1) If ϕ(x) ≡ (s(x) = t(x)), then the interpretation ϕA � AX is defined as the
(E ,M)-factorization of the the equalizer of sA and tA:

As,t AX

ϕA

eq(sA, tA)

E M

(2) If ϕ(z) ≡ RY (t(z)), then the interpretation ϕA � AZ is defined by the
pullback

ϕA
�

AZ

RYA AX⊗Y

tA

rYA

where we composed rYA with the isomorphism (AX )Y ∼= AX⊗Y (note, the top
arrow is still in M since it is closed under powers and pullbacks in V→).

(3) If ϕ(x) ≡
∧
j∈J ϕj , then ϕA � AX is the intersection (wide pullback) of all

the (ϕj)A � AX for j ∈ J . (Since M is closed under intersections, this map
is in M).

(4) If ϕ(x) ≡ ((∃y)�(x, y)), then ϕA � AX is given by the (E ,M)-factorization
below

�A AX+Y AX

ϕA

p1

E M

where the bottom composite is given by the M-morphism defining �A and
the projection on the first factor.

Remark 4.6. If (E ,M) is proper then M contains the regular monomorphisms
[7, Proposition 2.1.4(d)] so the interpretation of (s(x) = t(x)) in A coincides with
the equalizer of sA and tA.

Notation 4.7. If s and t are respectively (X,Z)-ary and (Y,Z)-ary terms, then we
denote by (s(x) = t(y)) the (X + Y )-ary atomic formula defined by

(s(x) = t(y)) := ( s(iX (x, y)) = t(iY (x, y)) )

where iX and iY are respectively the inclusions of X and Y inX + Y . It is easy to see that
the interpretation ϕA � AX+Y ∼= AX × AY is defined by the (E ,M)-factorization of
the map

Âs,t AX × AZ
h

induced by the pullback of sA along tA (meaning that h is the morphism induced into
the product).
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ENRICHED CONCEPTS OF REGULAR LOGIC 15

Lemma 4.8. The following properties hold:

(1) If E is closed under products in V→, then for every positive-primitive formula ϕ

ϕ∏
Ai

∼=
∏
ϕAi .

(2) If X ∈ V is an E-stable object, then for every positive-primitive formula ϕ

ϕAX
∼= (ϕA)X .

(3) If A ∼= colimAi is a �-directed colimit of L-structures, then

ϕA ∼= colimϕAi

for every �-ary positive-primitive formula ϕ.

Proof. These follow directly from how we defined interpretation starting from
atomic formulas, using that (E ,M)-factorizations are stable under the limits and
colimits considered in the statement (given the additional hypotheses). �

Now we turn to the notion of satisfaction.

Definition 4.9. Given an L-structure A, an X -ary formula ϕ(x), and an arrow
a : X → A in V (a generalized element of A), we say that A satisfies ϕ[a] and write

A |= ϕ[a]

if the transpose â : I → AX of a factors through ϕA � AX .

Then we have two possible approaches to satisfaction.

Definition 4.10. Given an X -ary formula ϕ(x), we say that A ∈ Str(L) satisfies
ϕ(x), and write

A |= ϕ,

if ϕA � AX is an isomorphism. We say that A satisfies ϕ(x) pointwise if A |= ϕ[a]
for any a : X → A.

Clearly, satisfaction implies pointwise satisfaction. For the converse, we need that
E contains the class of surjections. Indeed, if A satisfies ϕ(x) pointwise, then the
M-subobject ϕA � AX is (a surjection and thus) in E , so that ϕA ∼= AX .

We extend the satisfaction from formulas to sequents.

Definition 4.11. Given X -ary formulasϕ and�, we say thatA ∈ Str(L) satisfies
the sequent (∀x)(ϕ(x) � �(x)), and write

A |= (ϕ � �),

if ϕA ⊆ �A as M-subobjects of AX . We say that A satisfies the sequent pointwise if
for any a such that A |= ϕ[a], then A |= �[a].
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16 JIŘÍ ROSICKÝ AND GIACOMO TENDAS

Definition 4.12. Given a set T of sequents, we denote by Mod(T) the full
subcategory of Str(L) spanned by those L-structures that satisfy the sequents in T.

Remark 4.13. Note that the sequent (∀x)(ϕ(x) � �(x)) is not itself a formula
in our sense. Moreover, an L-structure A is such that A |= ϕ if and only if it satisfies
the sequent � � ϕ, where � is the empty conjunction.

Again, satisfaction implies pointwise satisfaction. While, if E contains the
surjections, the two notions are equivalent: consider the pullback below;

(ϕ ∧ �)A
�

ϕA

�A AX

f

if A satisfies the sequent pointwise, then f is a surjection and hence in E , but it is
also in M; thus f is an isomorphism and ϕA ⊆ �A.

The following remark shows that not all deduction rules of ordinary regular logic
apply in this context; the reason is that the class of maps E is not stable under
pullbacks in general.

Remark 4.14. Not all rules of predicate logic still apply in this enriched setting.
For instance, the Frobenius condition stating that the two formulas

(∃y)(ϕ(x) ∧ �(x, y)) and ϕ(x) ∧ (∃y)�(x, y)

are equivalent, might not hold in our setting. Indeed, given an X -ary formula ϕ and
an X + Y -ary formula �, the interpretation of (ϕ(x) ∧ �(x, y)) in an L-structure
A is given by the pullback:

(ϕ ∧ �)A
�

ϕA

�A AX+Y AX

Now, there are two ways in which one can take existential quantification over y : Y ;
we could consider either

ϕ(x) ∧ (∃y)�(x, y)

or

(∃y)(ϕ(x) ∧ �(x, y)).
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ENRICHED CONCEPTS OF REGULAR LOGIC 17

Their interpretation in an L-structure A is given as follows

(ϕ ∧ �)A
�

�A (∃y�)A

�
(ϕ ∧ ∃y�)A

(∃y(ϕ ∧ �))A

ϕA

AX

where (∃y�)A is the (E ,M)-factorization of the bottom row of the previous diagram,
and (∃y(ϕ ∧ �))A is the (E ,M)-factorization of the top row followed by the vertical
right one (which coincides with the (E ,M)-factorization of the top row). The dashed
arrow above exists by orthogonality of the factorization system.

It follows that in general any L-structure A satisfies the sequent

(∀x) (∃y)(ϕ(x) ∧ �(x, y)) � ϕ(x) ∧ (∃y)�(x, y),

but need not satisfy the other implication (see below for a concrete counterexample).
This will result in a non-standard choice of the notion of regular theories in Section 7.
However, it is easy to see that the inverse sequent

(∀x) ϕ(x) ∧ (∃y)�(x, y) � (∃y)(ϕ(x) ∧ �(x, y)),

and hence the full Frobenius condition, holds with the additional assumption that
E is stable under pullbacks.

Example 4.15. Let V = Met with the (dense, closed isometry) factorization
system, where dense maps are known to not be stable under pullbacks. Consider the
language L with two relation symbols R : 1 and S : 1 + 1, so that an L-structure is
a metric space M together with two closed subspacesRM ⊆M and SM ⊆M ×M .
Within the notations of the previous remark we consider the formulas ϕ(x) = R(x)
and �(x, y) = S(x, y).

Fix then the L-structure

M := (R, RM := {0}, SM := {(1/n, n)}n>0);

it is easy to see that

(∃y(R(x) ∧ S(x, y))M = ∅

while

(R(x) ∧ ∃yS(x, y))M = {0} ∩ ({1/n}n>0 ∪ {0}) = {0}

so that the interpretation of the two formulas is not the same.

In the next example we show how to (partially) capture Iovino’s languages over
Banach spaces [8] into our context.

Example 4.16. Fix V to be the category Ban of Banach spaces. Every enriched
language L over Ban contains a (C2,C)-ary term + induced by the diagonal
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18 JIŘÍ ROSICKÝ AND GIACOMO TENDAS

Δ : C → C
2 (see [23, 4.1]), as well as (C,C)-ary terms c· – for c ∈ C with |c| ≤ 1

induced by the morphisms c· –: C → C, and the (0,C)-ary term induced by C → 0.
For any t > 0, denote by Ct the Banach space given by C with norm t · | – | : C →

R. Then, given B ∈ Ban the space BCt is the same as B equipped with the norm
t–1· ‖–‖B . It follows that to give a morphism B = BC → BCt in Ban is the same as
giving an operator T : B → B of norm ‖T ‖ ≤ t.

The languages from [8] consists of sets of symbols for operators and symbols for
constants, each equipped with an upper norm bound. In our setting we can see the
operators as (C,Ct)-ary function symbols here, t is the upper bound for the norm.

Positive bounded formulas of [8] include ‖x ‖ ≤ r and ‖x ‖ ≥ r where r is a
positive rational number. In our setting, we automatically have ‖x ‖ ≤ r (by taking
x to be C-ary) so that ‖x ‖ ≤ r can be expressed as ‖ 1

r x ‖ ≤ 1 for r ≥ 1. For r < 1,
we get ‖x ‖ ≤ r by taking x to be Cr-ary. Formulas ‖x ‖ ≥ r, as well as constant
symbols, seem to be beyond our setting.

For positive bounded formulas, the satisfaction |= from [8] is our satisfaction with
respect to the factorization system (strong epimorphisms, monomorphisms) while
the approximate satisfaction |=A is our satisfaction with respect to (epimorphisms,
strong monomorphisms). The fact that |= is stronger than |=A corresponds to our
4.20.

Notation 4.17. Let�(x, y) be anX + Y -ary formula. We say that an L-structure
A satisfies (∃! y)�(x, y) if it satisfies the formula (∃y)�(x, y) and the sequent

(∀x)(∀y)(∀y′)(�(x, y) ∧ �(x, y′) � y = y′).

When considering a sequent of the form

(∀x)(ϕ(x) � (∃! y)�(x, y)),

we say that A satisfies it if it satisfies

(∀x)(ϕ(x) � (∃y)�(x, y)),

and

(∀x)(∀y)(∀y′)(ϕ(x) ∧ �(x, y) ∧ �(x, y′) � y = y′).

Example 4.18. Following Example 3.10, we considerV = Cat with the (surjective
on objects, injective on objects fully faithful) factorization system. Given C ∈ Cat�
we define a languageL and formulas expressing the existence of C-limits in a category
A. Since surjective on objects = surjections, satisfaction and pointwise satisfaction
coincide.

Similarly to 3.10, given C ∈ Cat� we define 2 ∗ C to be the category obtained by
adding to 0 ∗ C a morphism 1 → 0 with codomain the initial object of 0 ∗ C . We
have two inclusions: j0, j1 : 0 ∗ C → 2 ∗ C sending C to itself and picking out 0 and
1 respectively. Finally, define i ∗ C as 2 ∗ C where the added morphism is invertible,
this also has two inclusions l0, l1 : 0 ∗ C → i ∗ C .

Now, Consider the language L with just a relation symbol R : 0 ∗ C ; for each
L-structure A,RA should be thought of as the set of limiting cones over C. First, let
us define the formula �(x, z) : (0 ∗ C ) + (0 ∗ C ) as below

�(x, z) ≡ ∃! (w : 2 ∗ C ) (j0(w) = x ∧ j1(w) = z)
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ENRICHED CONCEPTS OF REGULAR LOGIC 19

stating the existence of a unique factorization of z through x. Now we define sequents

α ≡ (∀x : 0 ∗ C )(∀z : 0 ∗ C ) (R(x) ∧ (k(x) = k(z))) � �(x, z),

following the notation introduced above, then


 ≡ (∀y : C )(∃x : 0 ∗ C ) R(x) ∧ (k(x) = y),

and

� ≡ (∀w : i ∗ C ) R(l0(w)) � R(l1(w)).

Then α says that every element of R is a limiting cone, 
 says that every diagram
from C has a limiting cone in R, and � says that R contains all limiting cones.
Therefore, to give an element of Mod(α, 
, �) is the same as to give a category A
where every C → A has a limit in A; then RA is univocally determined as the full
subcategory of A0∗C spanned by the limiting cones. A morphism of models needs
to preserve such full subcategories; thus sends limiting cones to limiting cones. It
follows that Mod(α, 
, �) is the 2-category of small categories with C-limits, C-limit
preserving functors, and natural transformations.

Example 4.19. Let V = Cat and consider the functional language L0 with one
(1, 2)-ary function symbol � where 2 = {0 → 1} is the arrow category. Denote
T := i0 ◦ � and consider the equation i1 ◦ � = id where i0, i1 : 1 → 2 are inclusion.
Models of this theory E0 are categories A equipped with a functor T : A→ A and
a natural transformation � : T → idA (see [23, Example 5.10]).

Add (1, 2)-ary function symbols +, 1, 2, denote T2 := i0 ◦ + and add the
equations i1 ◦ + = i1 ◦ 1 = i1 ◦ 1 = T and i0 ◦ 1 = i0 ◦ 2 = T2. This yields
natural transformations +, 1, 2 : T2 → T . Using Example 4.18 above, we can
arrange that

T2 T

T id

1

2 �

�

is a pullback. In detail, let C be the category

·

· ·

giving the shape for pullbacks, and�(x, z) be the formula of arity (0 ∗ C ) + (0 ∗ C )
from Example 4.18; note that we have a term t := (1, 2, �, �) of arity (1, 0 ∗ C )
which picks out the cone of shape C that we want express as a limit. Given a structure
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20 JIŘÍ ROSICKÝ AND GIACOMO TENDAS

A, then T2 is the pullback of � along itself if and only if and only if for each a ∈ A
the cone t(a) : 0 ∗ C → A is a limit cone in A, if and only if

A |= �(tx, z),

where now �(tx, z) has arity 1 + (0 ∗ C ).
Using the category

·
·

· ·

we express that + is associative. This makes T a semigroup bundle; that is, a
semigroup in the category of functors over id. Hence models of the resulting theory
E are categories equipped with a semigroup bundle over id. Morphisms are functors
strictly preserving the semigroup bundles.

Similarly, we can describe categories equipped with a commutative group bundle
(see [20]) and categories equipped with additive bundle (= commutative monoid
bundle, [6]). In this way, we can get tangent categories (see [6, 20]) where morphisms
strictly preserve tangent structures. But right morphisms F of tangent categories
seem to preserve tangent structure up to an isomorphism, i.e., FT1

∼= T2F (see [6]).

Remark 4.20. For a functional language, L-structures do not depend on the
chosen factorization system (E ,M). However, for a general language they do.
Assume that we have factorization systems (E0,M0) and (E1,M1) such that E0 ⊆ E1,
hence M1 ⊆ M0. Then every L-structure with respect to M1 is an L-structure with
respect to M0, giving a fully faithful inclusion

Str(L)1 ↪→ Str(L)0,

where 1 and 0 denote the factorization systems used to define the L-structures. Note
that this reflects (but in general does not preserve) the �-presentable objects by 3.13.

For a conjunction ϕ(x) of atomic formulas and an L-structure A with respect to
M1 the satisfaction A |= ϕ does not depend on the factorization system. However,
if ϕ(x) is positive-primitive then satisfaction A |= ϕ with respect to E0 is stronger
than that with respect to E1.

§5. Presentation formulas. From this section our factorization system is assumed
to be proper.

Assumption 5.1. We fix a proper enriched factorization system (E ,M) on V
which is closed in V→ under �-filtered colimits.

In particular M contains the regular monomorphisms, and hence the interpreta-
tion of equations does not involve taking (E ,M)-factorizations (see Remark 4.6).
This will be relevant below.

With this definition we generalize the notion of presentation formula form [1].

Definition 5.2. Given a �-presentable L-structure A, we say that an X -ary
formula A(x) of L�� is a presentation formula of A if for every L-structure B
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ENRICHED CONCEPTS OF REGULAR LOGIC 21

we have a bijection, natural in B, between elements a : X → B for which B |= A[a]
and morphisms ā : A→ B of L-structures.

We shall now give a more categorical interpretation of this definition. Every
formula ϕ that is a conjunction of atomic formulas, induces a V-functor

ϕ(–) : Str(L) −→ V

defined by sending A to the interpretationϕA ofϕ. This can be constructed by taking
certain limits of the forgetful V-functorsU : Str(L) → V and V : Str(L) →

∏
R
M;

the limits are those involved in the definition of interpretation (which does not
involve (E ,M) factorizations). It follows in particular thatϕ(–) is always continuous.

Proposition 5.3. A conjunction of atomic formulas ϕ(x) is a presentation formula
for A if and only if

Str(L)(A, –) ∼= ϕ(–).

Proof. By definition of satisfaction, ϕ is a presentation for A if and only if

Str(L)0(A, –) ∼= V0(I, (ϕ(–))0).

But Str(L)0(A, –) is by definition V0(I,Str(L)(A, –)0), and both Str(L)(A, –)
and ϕ(–) preserve powers (being continuous); thus the existence of the natural
isomorphism above is equivalent to having

V0(X,Str(L)(A, –)0) ∼= V0(X, (ϕ(–))0)

naturally in X ∈ V0. And this is in turn equivalent to Str(L)(A, –) ∼= ϕ(–). �

Corollary 5.4. Let ϕ be a �-ary conjunction of atomic formulas in a language L.
Then ϕ is a presentation formula of some �-presentable object of Str(L).

Proof. The V-functor ϕ(–) : Str(L) −→ V is continuous and preserves �-filtered
colimits since it is defined by taking �-small limits of the forgetful V-functors U and
V. Thus ϕ(–) has a left adjoint, and is therefore a representable V-functor. It follows
that the representing object A is �-presentable and, by the proposition above, ϕ is a
presentation formula for A. �

Lemma 5.5. Let L = F ∪ R be a language whose functional part F has E-stable
input arities. Then:

(1) for any g : A→ B in Str(L), the (E ,M) factorization of the underlying
morphism Ug in V lifts to a factorization (e,m) of g in Str(L);

(2) U : Str(L) → V sends regular epimorphisms to maps in E .

Proof. (1). Consider a morphism g : A→ B in Str(L), and the (E ,M)
factorization (e : A→ E,m : E → B) of Ug in V . By [23, Lemma B.5(1)] we know
that E inherits a unique notion of F-structure making e and m morphisms in Str(F);
thus we are left to prove that E also inherits a compatible notion of R-structure.
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22 JIŘÍ ROSICKÝ AND GIACOMO TENDAS

For any X -ary relation symbol R in L, we can consider the solid part of the
diagram below in V .

AX EX BX

RA RE RB

eX

eR

mY

mR

rA rE rB

gR

Then we define RE , eR, and mR as the (E ,M)-factorization of gR, and rE as the
morphism induced by orthogonality. Following [7, Proposition 2.1.4], rE is in M.
This endows E with an L-structure that by construction makes e and m morphisms
in Str(L).

(2). Given a regular epimorphism g : A→ B in Str(L) we can consider the
factorization g = me as above. But m is a monomorphism and g is in particular
an extremal epimorphism; thus m is an isomorphism and g is therefore sent to a
map in E . �

In the proposition below we say that a set of objects P of V� is an E-generator for
V� if for any X ∈ V� there exists Y ∈ P and a map e : Y → X in E .

Lemma 5.6. Assume that V� has an E-generator of E-projective objects, and let F be
a functional language with E-stable input arities. Then every �-presentable F-structure
A can be presented as a coequalizer

FZ ′
f ��
g

�� FZ
h �� A

of morphisms between free algebras over �-presentable objects Z ′ and Z of V .

Proof. Let G be the full subcategory of Str(F) spanned by these objects. We need
to prove that it consists of all the �-presentable objects. Clearly G ⊆ Str(F)� and is a
strong generator of Str(F), since it contains the free �-presentable objects. Thanks
to [10, Theorem 7.2], to conclude it is enough to prove that G is closed under �-small
weighted colimits.

Since �-small coproducts and copowers of free �-presentable objects are still free,
it is easy to see that G is closed under these colimits. Thus we only need to consider
coequalizers. Consider a pair f, g : A→ B in G, then we can consider the solid part
of the diagram below

FZ A

FW BFW ′

r

q
h

k

f′ g′ f g

where the pair (h, k) presents B as a coequalizer of free �-presentable objects, while
Z is �-presentable E-projective and r an epimorphism (this exists by hypothesis since
A ∈ G and the E-projectives are an E-generator in V�). Now, by the lemma above,
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ENRICHED CONCEPTS OF REGULAR LOGIC 23

Uq ∈ E ; therefore using the E-projectivity of Z we find f′, g ′ : FZ → FW making
the square above commute. To conclude it is enough to notice that the coequalizer
of the pair

FWF (W ′ +Z)
(h, f′)

(k, g′)

coincides with the coequalizer of (f, g). �
Proposition 5.7. Assume that V� has an E-generator of E-projective objects. Let

L = F ∪ R be a �-ary language whose function symbols have E-stable input arities and
relation symbols have E-stable arities. Then every �-presentable L-structure A has a
presentation formula in L��.

Proof. Given a �-presentable L-structure A, we will construct its presentation
formula. Since the algebraic reduct JF(A) is a �-presentable, it is a coequalizer

FZ ′
f ��
g

�� FZ
h �� JF(A)

of morphisms f and g between free algebras over �-presentable objects Z ′ and Z of
V (see 5.6). Since f and g are (Z,Z ′)-ary terms, A satisfies the equation f = g.

Now, by 3.13 there are a �-small number of Xt-ary relations Rt such that (Rt)A
is an E-quotient qt : Yt � (Rt)A of some 0 �= Yt ∈ V�. Since by hypothesis V� has
an E-generator of E-projective objects, we can assume that each Yt is E-projective.
It follows that for each t we have the following diagram

UFZXt

Yt (Rt)A AXtqt (rt )A

U (h)Xt
�′t

in V , where �′t exists since U (h)Xt is in E (by 5.5 and since Xt is E-stable) and Yt
is E-projective. By transposition �′t corresponds to a map �′′t : F (Xt ⊗ Yt) → FZ,
and hence to a (Z,Xt ⊗ Yt)-ary term �t . Now for each t, consider the Z-ary atomic
formula RYtt (�t). We shall show that the formula

A := (f = g) ∧
∧

t

RYtt (�t)

is a presentation formula for A. We need to show that for every L-structure B we
have a bijection, natural in B, between elements a : Z → B for which B |= A[a]
and morphisms ā : A→ B of L-structures.

Notice first that (f = g)B is by definition the equalizer ofBf,Bg : BZ → BZ′
and

this, since B (–) ∼= F-Str(F –, JFB), is isomorphic to F-Str(JFA, JFB). Thus we have a
natural bijection between elements a : Z → B in V for which B |= (f = g)[a] and
morphisms of F-structures ā : JFA → JFB . To conclude it is enough to show that for
such an a : Z → B , we have B |= RYtt (�t)[a] for all t if and only if ā is actually a
morphism of L-structures.
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24 JIŘÍ ROSICKÝ AND GIACOMO TENDAS

Given a : Z → B , denote by a′ : I → BZ its transpose; by naturality, we know
that the transpose of the morphism

I
a′−−→ BZ B�−−→ BXt⊗Yt

with respect to Yt , is the composite

xt : Yt
qt−−→ (Rt)A

(rt )A−−−−→ AXt āXt−−→ BXt .

Now, since qt is in E , the map of F-structure ā extends to a map of L-structures if
and only if xt : Yt → BXt above factors through (rt)B : (Rt)B � BXt for any t (the
morphism (Rt)A → (Rt)B is induced by the orthogonality property).

On the other hand, the interpretation of RYtt (�t) in B is given by the pullback

RYtt (�t)B
�

BZ

(Rt)
Yt
B BXt⊗Yt

B�

(rt )
Yt
B

where we have identified BXt⊗Yt with (BXt )Yt . Thus a : Z → B is such that
B |= RYtt (�t)[a] if and only if B� ◦ a′ : I → BXt⊗Yt factors through (rt)

Yt
B . By

transposing with respect to Yt , that holds if and only if xt : Yt → BXt factors
through (rt)B : (Rt)B � BXt . By the argument above this holds for any t if and
only if ā extends to a map of L-structures, concluding the proof. �

Proposition 5.8. Let L = (∅,R) be a �-ary relational language. Then every �-
presentable L-structure A has a presentation formula in L��.

Proof. Since the functional part of the language is trivial, by Proposition 3.13, an
L-structure A is �-presentable if and only if A is �-presentable as an object of V and
there are a �-small number of Xt-ary relations Rt such that (Rt)A is an E-quotient
qt : Yt � (Rt)A of some 0 �= Yt ∈ V�.

Thus we a can argue exactly as in Proposition 5.7 above by taking f = g = 1A
and �′t = (rt)Aqt . �

Examples 5.9.

(1) The category Met with (surjective, isometry) factorization satisfies 5.1. For
� > �, discrete �-presentable objects form a Surj-generator because �X :
X0 → X are surjective. Since Surj is closed under discrete powers, eX is a
surjection provided that X is discrete and e is a surjection. Hence discrete
objects are Surj-stable. Therefore 5.7 applies to Met.

(2) Similarly, 5.7 applies to the category Pos with the (surjective, embedding)
factorization.

(3) The category Ban of Banach spaces and linear maps of norm ≤ 1 with the
(strong epimorphisms, monomorphism) factorization satisfies 5.1. Discrete
Banach spaces are coproducts of C. Since Ban is reflective in the monadic
category of totally convex spaces (see [18]), every Banach space is a regular
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ENRICHED CONCEPTS OF REGULAR LOGIC 25

quotient of a discrete space (l1 is the left adjoint to the forgetful functor from
totally convex spaces to sets). Thus discrete �-presentable objects for a (strong
epimorphism)-generator. Hence 5.7 applies to Ban.

(4) If V is a symmetric monoidal quasivariety as in [12], then V is locally finitely
presentable, and we can consider the (regular epi, mono) factorization system.
The regular projective objects form a regular generator, hence we can apply
5.7.

Remark 5.10. Assume that we have factorization systems (E0,M0) and (E1,M1)
such that E0 ⊆ E1, so that we have an inclusion

J : Str(L)1 ↪→ Str(L)0,

as in 4.20. If every L
0-structure has a presentation formula with respect to E0 then

every L
1-structure has it with respect to E1 as well. Indeed, it follows by 4.20,

that given A ∈ Str(L)0, if ϕ is a presentation formula for the L
1-structure JA,

then it is also a presentation formula for A. However, since J may not preserve
the �-presentable objects, if A is a �-presentable L

0-structure, the corresponding
presentation formula may not be �-ary (but just �-ary, where � is such that JA
is �-presentable). Note that there are always big enough � for which J preserves
�-presentable objects [1, Theorem 2.19].

The remark above allows us to consider presentation formulas in Met, CMet
and Ban for the factorization system (E1,M1)=(dense, isometry). Indeed, one takes
(E0,M0) = (Surj, Inj), and considers the presentation formulas obtained in that
setting by virtue of 5.7 and 5.8 (using that discrete objects are E0-projective and
E0-stable); by the remark above, these are also presentation formulas with respect
to the (dense, isometry) factorization system.

We conclude this section with the following lemma, which will be useful in
Section 6.

Lemma 5.11. In the setting of 5.7 or 5.8, let h : A→ B be a morphism between
�-presentable L-structures, then there exist formulas A(x), B(y), and �(x) in L��

such that:

(1) A and B are presentation formulas for A and B respectively;
(2) �(x) is a positive-primitive formula of the from

(∃y)(A(x) ∧ B(y) ∧ �(y) = ε(x));

(3) every L-structure K satisfies the sequent

(∀x)(�(x) � A(x));

(4) for any L-structure K the (E ,M) factorization of Str(L)(h,K) is given by

Str(L)(B,K) ∼= BK
E−−→ �K M−−→ AK ∼= Str(L)(A,K)

where the map in M is induced by (3), and the map in E is necessarily unique.

The same holds in the setting of 5.10 for structures and formulas defined with respect
to the factorization system (E1,M1), assuming that (E0,M0) satisfies the hypotheses
of 5.7 or 5.8 and that J preserves the �-presentable objects.
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26 JIŘÍ ROSICKÝ AND GIACOMO TENDAS

Proof. Assume first that L has non empty functional part (so that we are in the
setting of 5.7). Let

FZ ′
A

fA ��
gA

�� FZA
hA �� JF(A)

and

FZB ′
fB ��
gB

�� FZB
hB �� JF(B)

be the coequalizers from the proof of 5.7. There is an E-projective object X and a
morphism e : X → ZA in E . Then FX is projective with respect to hB (since UhB is
in E by 5.5). Thus, there is t : FX → FZB such that hBt = hhAF (e). Let � be the
(ZB,X )-ary term corresponding to t and ε be the (ZA,X )-ary term corresponding
to Fe. Then we take A and B as in 5.7 and define

�′(x, y) := (A(x) ∧ B(y) ∧ (�(y) = ε(x)) ).

and �(x) := (∃y)�′(x, y); here, x is a ZA-sorted variable, y is a ZB -sorted variable
and the equation �(y) = ε(x) is in the sense of 4.7.

When the functional part of L is empty (and we are in the setting of 5.8) we define
� in the same way, noting that by 5.8 the chosen coequalizers are trivial now, so we
do not need to consider an E-projective object covering ZA = A (hence e = 1A and
t = h).

By construction for each K we have Str(L)(A,K) ∼= AK and Str(L)(B,K) ∼= BK .
Consider the solid part of the diagram below, where the squares (I) and (II) are
pullbacks by definition, and �′′(x, y) := B(y) ∧ (�(y) = �(x)).

Str(L)(B,K) ∼= BK BK

Str(L)(A,K) ∼= AK

KZB

KX

KZA

(� = �)K�′′K�′K

�K

(I)

(II)

id
B
K

hK := Str(L)(h, K)

�K

Ke = εK

m

q

s

n

g

Note that, commutativity of the outer square, plus the fact that (I) is a pullback,
implies that the composite hKm factors through (� = �)K → KZA to give a map
r′ : BK → (� = �)K . Similarly, r′ factors through �′′K first, and then through �′K
providing a morphism r : BK → �′K for which nqr = mhK and sr = id. Since e ∈ E
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ENRICHED CONCEPTS OF REGULAR LOGIC 27

is (in particular) an epimorphism, then Ke is a monomorphism, and hence so is s
(being obtained by pulling back Ke and composing with a map in M). It follows
that s is an isomorphism with inverse given by r. Now, by orthogonality of the
factorization system there exists g : �K → AK in M making the relevant triangles
commute. This concludes the proof implying both points (3) and (4).

For the last statement of the lemma in the context of 5.10, one considers the
formulas A(x), B(y), and �(x) to be those obtained by applying the result above
with respect to the factorization system (E0,M0). By 5.10 these still satisfy (1) and
(2). Then points (3) and (4) can be proved as above. �

§6. Elementary morphisms and purity. In this section we study the connection
between the notion of pure morphism introduced in [22] and the purely model
theoretic notion of elementary morphism (Definition 6.3).

For this purpose presentation formulas will be essential, therefore we make the
assumption below. While this might seem a very restrictive set of conditions, it is
worth pointing out that many examples arise just by considering the empty language
over V or just some relational language (which are always allowed under 6.1 below).
We leave it to future work to understand whether these assumptions can be relaxed.

Assumption 6.1. We fix a proper enriched factorization system (E0,M0) on V
for which M0 is closed in V→ under �-filtered colimits, and we assume that either
of the following two conditions holds:

• L = R is a �-ary relational language;
• L = is a �-ary language whose function symbols have E0-stable input arities

and relation symbols have E0-stable arities. Moreover V� has an E0-generator
of E0-projective objects.

For the reminder of this section we fix an enriched factorization system (E ,M) as
in 5.1, such that E0 ⊆ E and for which the inclusion J : Str(L) ↪→ Str(L)0 preserves
�-presentable objects. Structures and formulas will be considered with respect to the
factorization system (E ,M).

This assumption holds for any V whenever the language is purely relational (one
takes (E0,M0) = (E ,M)). The second condition is valid whenever V is endowed
with the (Surj, Inj) factorization system by considering discrete arities (also in this
case the two factorization system coincide); or when V is a symmetric monoidal
quasivariety with the (regular epi, mono) factorization system and L has regular-
projective arities (again, the two factorization system coincide). Finally, the second
condition is valid in Met and Ban with (E ,M)=(dense, isometry) for languages
whose arities are discrete (here we choose (E0,M0) = (Surj, Inj) for Met and
(E0,M0) =(strong epi, mono) for Ban).

Remark 6.2. Following Remark 5.10 (based on Propositions 5.7 and 5.8), every
�-presentable L-structure A has a presentation formula in L��. This is the main
reason why Assumption 6.1 needed to be made.

We proceed by introducing a notion that generalizes that of elementary
embeddings from the ordinary context. See also [22, Definition A.5].
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28 JIŘÍ ROSICKÝ AND GIACOMO TENDAS

Definition 6.3. Let f : K → L be a morphism in Str(L). We say that f is
elementary with respect to a positive-primitive formula �(x) if the induced diagram
below

�K
�

�L

KX LX
fX

is a pullback. The morphism f is called �-elementary if it is elementary with respect
to each positive-primitive formula in L��.

The following proposition holds without Assumption 6.1 (just Assumption 3.1
is enough); however 6.1 will be important for the main result of the section
(Proposition 6.6)

Proposition 6.4. Let f : K → L be �-elementary. If L satisfies a sequent of the
form

(∀x)(ϕ(x) � �(x)),

where ϕ and � are positive-primitive formulas in L��, then K also satisfies the same
sequent.

Proof. Consider the solid part of the diagram below

ϕK ϕL

�K �L

KX LX
fX

where the two vertical squares are pullbacks since f is elementary with respect to ϕ
and �, and the arrow ϕL → �L is induced by the fact that L satisfies the sequent.
By the universal property of pullbacks, the dashed arrow above exists, showing that
also K satisfies the sequent. �

Ordinarily, the �-elementary morphisms of L-structures can be characterized
as those morphisms g : K → L that are �-pure (see [1]). The notion of purity
has recently been extended to the enriched context in [22], were was studied its
connection with enriched injectivity classes. We now recall this notion.

Given a V-category K and two morphisms f : K → L and g : A→ B in it, we
denote by P(g, L) the (E ,M) factorization below.

K(B,L)

P(g, L)

K(A,L)

E

K(g, L)

M
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ENRICHED CONCEPTS OF REGULAR LOGIC 29

Let then P(g, f) be the pullback of P(g, L) along K(A,f), then there is an induced
map r : K(B,K) → P(g, f) as depicted below.

K(B,K) K(B,L)

K(A,K) K(A,L)

P(g, f) P(g,L)

K(B, f)

r′

K(A, f)

K(g, K)

r

Definition 6.5 [22]. We say that f : K → L is E-pure with respect to g if the
map r above is in E . We say that f is (�, E)-pure if it is E-pure with respect to every
g : A→ B with A and B �-presentable.

Then, when V = Set with the (epi, mono) factorization system, one recovers the
ordinary notion of purity. The cases ofV = Met,Ban, �-CPO, with the factorization
system induced by dense maps, as well as the case where V is a symmetric monoidal
quasivariety, with the (regular epi, mono) factorization system, were all studied in
[22], where the definition above was unpacked to give a more approachable set of
conditions.

The following proposition proves that the correspondence between �-elementary
and (�, E)-pure morphisms still holds in the enriched framework.

Proposition 6.6. A morphism f : K → L in Str(L) is (E , �)-pure if and only if it
is �-elementary.

Proof. Letf : K → L be elementary with respect to positive-primitive formulas,
and g : A→ B a morphism between �-presentable objects. Consider A(x), B(y),
and �(x) as in Lemma 5.11 for g. Then the diagram defining the E-purity of f with
respect to g becomes as below

BK BL

AK AL

�K
�

�L

Bf

r′

Af


g
K

r

where we used Lemma 5.11(4) for the isomorphism P(g,L) ∼= �L, and that f is
elementary with respect to �(x) for P(g, f) ∼= �K . The morphisms Bf and Bf are
those induced in the sense explained at the beginning of Section 5. It follows that r
is in E again thanks to Lemma 5.11(4); thus f is E-pure with respect to g.
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30 JIŘÍ ROSICKÝ AND GIACOMO TENDAS

Conversely, assume that f : K → L is an (E , �)-pure morphism between L-
structures, and

�(x) := (∃y)ϕ(x, y)

be any positive-primitive X -ary formula, where ϕ is X + Y -ary and a conjunction
of atomic formulas. By Corollary 5.4 we find a �-presentable L-structure B such that
ϕ(x, y) is a presentation formula for B. Moreover the V-natural inclusions

Str(L)(B,K) ∼= ϕK −→ KX+Y ∼= Str(L)(FX + FY,K)

are induced from a morphism h : FX + FY → B in Str(L). Then we define g : A→
B to be the composite

A := FX
i1−−→ FX + FY h−→ B.

Consider now the diagram involved in the definition of purity. By construction of
B and A, the definition of ϕ with respect to �, and since by hypothesis f is E-pure
with respect to g, that diagram becomes.

ϕK ϕL

KX LX

P(g, f)
�

�L

ϕf

r′

fX

g∗

r

So that P(g,L) is the (E ,M) factorization of g∗, which by definition is given by the
composite

ϕK → KX+Y 1−→ KX .

Thus P(g,L) ∼= �K and hence f is elementary with respect to �. �

§7. Regular theories and injectivity. In this section we compare the subcategories
of models of enriched regular theories in Str(L) with those subcategories which arise
as enriched injectivity classes in the sense of [11]. We keep the assumptions of 6.1
on our base V and the enriched factorization system (E ,M) on V .

Definition 7.1. A regular theory T is a set of sequents of the form

(∀x)(ϕ(x) � (∃y)(�(x, y) ∧ ϕ(x)))

where ϕ and � are conjunctions of atomic formulas in L��. We call these sequents
regular.

Remark 7.2. As discussed in the introduction, these is not the most obvious
generalization of the notion of regular theory from ordinary logic. This choice was
made necessary by the fact that, since E may not be stable under pullbacks, certain
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ENRICHED CONCEPTS OF REGULAR LOGIC 31

deduction rules of ordinary regular logic do not hold any more. In particular the
sequent above is not in general equivalent to the sequent

(∀x)(ϕ(x) � (∃y)�(x, y))

(such equivalence holds whenever E is pullback stable, see Remark 4.14). In
Theorems 7.8 and 7.10 we give conditions so that a more natural notion of regular
theory can be considered; in 7.10 these condition still allow E not to be pullback-
stable.

Regular theories capture the following sequents.

Example 7.3. Any sequent of the form

(∀x)(ϕ(x) � �(x)),

with ϕ and � conjunctions of atomic formulas, can be seen as a regular sequent.
Indeed, � can be though as having arity X + 0, so that existential quantification

on the variable y : 0 is trivial. This way (∃y)(� ∧ ϕ) is the same as � ∧ ϕ; and it is
easy to see that A |= (ϕ � � ∧ ϕ) if and only if A |= (ϕ � �) (since no existential
quantification is involved).

Example 7.4. Note that the validity of the formula

(∀x)(∃y) �(x, y),

with� a conjunction of atomic formulas, is equivalent to that of the regular sequent
(∀x)(� � (∃y)(�(x, y) ∧ �)) where � is the empty conjunction. Hence this type of
sentences can be considered within the framework of regular theories. These include
also sentences of the form

(∀x)ϕ(x),

where ϕ is a conjunction of atomic formulas (taking existential quantification over
y : 0).

Recall from [11] that, given a morphism h : A→ B in a V-category K, an object
K is h-injective (over E) if the map

K(h,K) : K(B,K) → K(A,K)

lies in E .

Definition 7.5. Given a morphism h : A→ B between �-presentableL-structure
A and B, we say that a regular sequent �h of L�� is an injectivity sequent for h if a
L-structure K is h-injective if and only if K |= �h .

Given a set H of morphisms between �-presentable L-structures, an L-structure K
is H-injective if it is injective to every h ∈ H. Such classes of L-structures are called
�-injectivity classes, or (�, E)-injectivity classes if we want to stress E .

Theorem 7.6. Under Assumption 6.1, the following are equivalent for a full
subcategory A of Str(L):

(1) A is a (�, E)-injectivity class in Str(L);
(2) A ∼= Mod(T) for a regular L��-theory T.
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32 JIŘÍ ROSICKÝ AND GIACOMO TENDAS

Proof. (1) ⇒ (2). It is enough to show that every morphism between �-
presentable L-structures has an injectivity sequent.

Let h : A→ B be a morphism between �-presentable L-structures; then we can
consider A(x), B(y), and �(x) as in Lemma 5.11. We shall prove that the sequent

�h := (∀x)(A(x) � �(x))

is an injectivity sequent for h. This sequent is clearly regular. Note that the other
sequent is satisfied by any L-structure K by Lemma 5.11.

Let K be any L-structure; then K satisfies �h if and only if �K ∼= AK as M-
subobjects ofKZA (since K always satisfies the other sequent), if and only if the map
Str(L)(h,K) is in E (by point (4) of Lemma 5.11), if and only if K is injective with
respect to h.

(2) ⇒ (1). It is enough to prove that given any sequent

(∀x)(ϕ(x) � (∃y)(�(x, y) ∧ ϕ(x))),

where ϕ and � are conjunctions of atomic formulas of L��, there exists a morphism
g : A→ B between �-presentableL-structures for which: K isE-injective with respect
to g if and only if K |= ϕ � (∃y)(� ∧ ϕ), for any K ∈ Str(L).

By Corollary 5.4 there exists �-presentable L-structures A and C for which ϕ(x)
and�(x, y) are presentation formulas for A and C respectively; these come together
with maps e : F (X ) → A and e′ : F (X + Y ) → C . Consider now the pushout B of
e along e′F (iX ), as depicted below.

F (X ) A

F (X + Y ) C

BF (iX )

e

e′

g

By homming into an L-structure K, using the definition of presentation formula,
and taking the (E ,M) factorizations of the arrows corresponding to eF (i1) and
e′F (j1), we obtain the pullback diagram below.

Str(L)(B,K) ∼= (� ∧ ϕ)K

Str(L)(A,K) ∼= ϕK KX

Str(L)(C,K) ∼= �K KX+Y

(∃y)(� ∧ ϕ)K

Str(L)(g, K)

Note that by orthogonality we already have an inclusion (∃y)(� ∧ ϕ)K ⊆ ϕK .
Now, if K is E-injective with respect to g then Str(L)(g,K) is in E ; thus,

by orthogonality, there exists an arrow ϕK → (∃y)(� ∧ ϕ)K making the square
commute. This shows that K |= ϕ � (∃y)(� ∧ ϕ).
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Conversely, if K satisfies the sequent, then (∃y)(� ∧ ϕ)K = ϕK as M-subobjects
of KX (since we already had the other inclusion). Thus Str(L)(g,K) is in E . �

As a consequence we can characterize E-injectivity classes inV as classes of models
of regular theories:

Corollary 7.7. Let (E ,M) be an enriched proper factorization system on V ,
and let L∅ := ∅ be the empty language. Then, the following are equivalent for a full
subcategory A of V :

(1) A is a (�, E)-injectivity class in V ;
(2) A ∼= Mod(T) for a regular L∅

��-theory T.

Proof. Assumption 6.1 is always satisfied for L = ∅, and in that case Str(L) = V .
Thus the result follows from Theorem 7.6 above. �

In the ordinary case, regular theories are defined as sequents of the form

(∀x)(ϕ(x) � �(x))

where ϕ and � are positive-primitive formulas in L��. However, we have seen above
that these may not classify E-injectivity classes in Str(L). Below we shall give two
conditions on E so that such classification will be possible.

The first condition is simply stability of E under pullbacks. In this case the proof
of the following result is a direct applications of the constructions introduced in this
paper.

Theorem 7.8. Let E be stable under pullbacks. Under Assumption 6.1, the following
are equivalent for a full subcategory A of Str(L):

(1) A ∼= Mod(T) for a regular L��-theory T;
(2) A ∼= Mod(T) for a theory T with sequents of the form

(∀x)(ϕ(x) � (∃y)�(x, y))

where ϕ and � are conjunctions of atomic formulas in L��;
(3) A ∼= Mod(T) for a theory T with sequents of the form

(∀x)(ϕ(x) � �(x))

where ϕ and � are positive-primitive formulas in L��;
(4) A is a (�, E)-injectivity class in Str(L).

Proof. The implications (1) ⇒ (2) ⇒ (3) follow by definition, while (4) ⇒ (1)
follows from Theorem 7.6.

Thus, we only need to prove (3) ⇒ (4). For that it is enough to prove that given
any sequent

(∀x)(ϕ(x) � �(x)),

where ϕ and � are positive-primitive formulas of L��, there exists a morphism
g : A→ B between �-presentableL-structures for which: K isE-injective with respect
to g if and only if K |= ϕ � �, for any K ∈ Str(L).

Let us write ϕ(x) ≡ (∃y)ϕ′(x, y) and �(x) ≡ (∃z)�′(x, z) where ϕ′ and �′ are
conjunctions of atomic formulas. By Corollary 5.4 there exists �-presentable L-
structures A and C for which ϕ′ and �′ are presentation formulas for A and C
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respectively; these come together with maps e : F (X + Y ) → A and e′ : F (X +
Z) → C . Consider now the pushout B below.

FX

F (X + Y ) A

F (X +Z) C

B

F (i1)

F (j1)

e

e′

g

By homming into an L-structure K, using the definition of presentation formula,
and taking the (E ,M) factorizations of the arrows corresponding to eF (i1) and
e′F (j1), we obtain the pullback diagram below.

Str(L)(B,K)

Str(L)(A,K) ϕK

Str(L)(C,K) �K

KX

Str(L)(g, K)

?

Now, if K isE-injective with respect to g is follows that the composite Str(L)(B,K) →
ϕK above is in E ; thus, by orthogonality, there exists an arrow ϕK → �K making
the square commute. This shows that K |= ϕ � �.

Conversely, if K satisfies the sequent, we have a dashed arrow as in the diagram.
Hence Str(L)(B,K) can be seen as the pullback of the cospan

Str(L)(C,K) � �K ← Str(L)(A,K)

since every map in M is a monomorphism. But E is pullback stable, thus Str(g,K)
is in E and hence K is E-injective with respect to g. �

Pullback stability of E is quite restrictive, for instance dense maps in Met or CMet
do not satisfy it (see [22, Remark 4.5]).

The second set of conditions we present relies on the notion of purity introduced
in [22], and on the main result of the same paper which classifies injectivity classes
in terms of closure under certain constructs. First we need the following result:

Proposition 7.9. Assume that E is closed under products in V→ and T be a theory
consisting of sequents of the form

(∀x)(ϕ(x) � �(x))

where ϕ and � are positive-primitive formulas in L��.
Then Mod(T) is closed in Str(L) under products, powers by E-stable objects, �-

directed colimits, and �-elementary (equivalently, (�, E)-pure) subobjects.

Proof. Following Lemma 4.8, Mod(T) is closed under products, powers by
E-stable objects, and �-directed colimits. Closure under �-elementary subobjects
follows from Proposition 6.4, and this coincides with closure under (�, E)-pure ones
by Proposition 6.6. �
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Theorem 7.10. Suppose that Assumption 6.1 and the assumptions of [22, Theorem
5.5] hold. The following are equivalent for a full subcategory A of Str(L):

(1) A ∼= Mod(T) for a regular L��-theory T;
(2) A ∼= Mod(T) for a theory T with sequents of the form

(∀x)(ϕ(x) � (∃y)�(x, y))

where ϕ and � are conjunctions of atomic formulas in L��;
(3) A ∼= Mod(T) for a theory T with sequents of the form

(∀x)(ϕ(x) � �(x))

where ϕ and � are positive-primitive formulas in L��;
(4) A is closed under products, powers by E-stable objects, �-filtered colimits, and
�-elementary subobjects;

(5) A is closed under products, powers by E-stable objects, �-filtered colimits, and
(�, E)-pure subobjects;

(6) A is a (�, E)-injectivity class in Str(L).

Proof. The implications (1) ⇒ (2) ⇒ (3) follow by definition, (3) ⇒ (4) follows
by Proposition 7.9 above, and (4) ⇒ (5) by Proposition 6.4. Then, (5) ⇒ (6) is given
by [22, Theorem 5.5], and finally (6) ⇒ (1) follows from Theorem 7.6. �

This corollary applies both to Met and Ban for the factorization system induced
by the dense maps; as well as for any symmetric monoidal quasivariety V with the
(regular epi, mono) factorization system.

Let us explain now how existential quantification is interpreted for one particular
base of enrichment.

Remark 7.11. ConsiderV = Met and the factorization system given by the dense
maps. In this example we spell out what it means for an L-structure M to satisfy a
formula of the form

(∀x)(∃y) �(x, y),

with �(x, y) : X + Y a conjunction of atomic formulas. Since existential quantifi-
cation is not involved in the definition of �, we know that �M ⊆MX ×MY is
identified by all the pairs (a, b) for whichM |= �[a, b]. It follows that ((∃y)�)M is
given by the closure of the subspace

{a ∈MX | ∃b ∈MY M |= �[a, b]} ⊆MX

under limits of Cauchy sequences. As a consequence,M |= (∀x)(∃y) �(x, y) if and
only if

for each a ∈MX there is a Cauchy sequence (an)n≥0 ⊆MX
and (bn)n≥0 ⊆MY (not necessarily Cauchy) such that a = limn an

andM |= �[an, bn]for each n.

This can equivalently be expressed as follows

for each a ∈MX and for each � > 0 there exist a′ ∈MX and b′ ∈MY
such that d (a, a′) < � andM |= �[a′, b′].
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The same argument works in the case of V = CMet or V = Ban where the left class
of the factorization system is given again by the dense maps.

Example 7.12. Consider again V = Met with the factorization system given by
either the surjections or the dense maps. Let I := [0,∞] be the positive real line
with infinity included; we have two maps i0, i∞ : 1 → I which pick out 0 and ∞
respectively. Then to give an element p ∈M I is the same as to give a path (of
possibly length infinity) between two points in M.

We can then consider the following formula

(∀(x, y) : 1 + 1)(∃p : I)(p(i0)(x) = x ∧ p(i∞)(y) = y)

on the empty language over Met.
If E is the class of surjections, then a metric space M satisfies the sentence above

if and only if it is path connected. More interestingly, if E is the class of dense maps,
a metric space M satisfies the sentence above if and only if

for each a, b ∈Mand for any � > 0 there exist a′, b′ ∈Mwith d (a, a′), d (b, b′) < �
and a path p : I →M for which p(0) = a′and p(∞) = b′.

A space satisfying the condition above need not be path connected; one example is
given by the subspace of R2 given by

{(x, sin(1/x)) | x > 0} ∪ ({0} × [– 1, 1])

which is one of the canonical examples of a connected space which is not path
connected. However, it is easy to see that this space satisfies the condition above.

Example 7.13. Let us take V = DGAb, the monoidal category of differentially
graded abelian groups, with the (regular epi, mono) factorization system. The unit I
of DGAb is the chain complex with Z in degree 0 and trivial otherwise. Let P be the
chain complex with Z in degree 1 and 0, differential 1Z between those, and trivial
everywhere else. Then we have an inclusion i : I → P.

Consider now the sentence

(∀x)(∃y) (i(y) = x)

in the empty language, where x : I and y : P. It is easy to see that a chain complex
A satisfies the sentence above if and only if it forms a long exact sequence (that is,
if Im(dn+1

A ) = Ker(dnA) for each n).

Example 7.14. Given a small category C, consider the base of enrichment V =
[Cop,Set] with its cartesian closed structure and the (epi, mono) factorization system.
Recall that, if J is a Grothendieck topology on C, then there is an induced notion of
J-dense subobject U � V in V (see [16, Section V.1]). Consider the regular theory
T given by the sentences

(∀x) (∃! y) (my = x),

in the empty language over V , where m : A� C(–, C ) is any J-dense map
with representable codomain. Here the symbol ∃! is interpreted as explained in
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Notation 4.17. Then, using [16, Theorem V.4.2] and the fact that sheaves are stable
under powers, it is easy to see that

Mod(T) = Sh(C, J )

is the Grothendieck topos of sheaves over the site (C, J ).
More generally, one could start with V being any Grothendieck topos endowed

with the cartesian closed structure and the (epi, mono) factorization system. Then,
for any Lawvere–Tierney topology j on V , we can express the full subcategory ShjV
of V spanned by the j-sheaves as the V-category of models of a regular theory.
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