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Abstract
We measured the harmonic-space power spectrum of Galaxy clustering auto-correlation from the Evolutionary Map of the Universe Pilot
Survey 1 data (EMU PS1) and its cross-correlation with the lensing convergence map of cosmic microwave background (CMB) from Planck
Public Release 4 at the linear scale range from � = 2 to 500.We applied two flux density cuts at 0.18 and 0.4mJy on the radio galaxies observed
at 944MHz and considered two source detection algorithms. We found the auto-correlation measurements from the two algorithms at the
0.18 mJy cut to deviate for �� 250 due to the different criteria assumed on the source detection and decided to ignore data above this scale.
We report a cross-correlation detection of EMUPS1 with CMB lensing at∼5.5σ , irrespective of flux density cut. In our theoretical modelling
we considered the SKADS and T-RECS redshift distribution simulation models that yield consistent results, a linear and a non-linear matter
power spectrum, and two linear galaxy bias models. That is a constant redshift-independent galaxy bias b(z)= bg and a constant amplitude
galaxy bias b(z)= bg/D(z). By fixing a cosmology model and considering a non-linear matter power spectrum with SKADS, we measured
a constant galaxy bias at 0.18 mJy (0.4 mJy) with bg = 2.32+0.41

−0.33 (2.18
+0.17
−0.25) and a constant amplitude bias with bg = 1.72+0.31

−0.21 (1.78
+0.22
−0.15).

When σ8 is a free parameter for the same models at 0.18 mJy (0.4 mJy) with the constant model we found σ8 = 0.68+0.16
−0.14 (0.82± 0.10), while

with the constant amplitude model we measured σ8 = 0.61+0.18
−0.20 (0.78+0.11

−0.09), respectively. Our results agree at 1σ with the measurements
from Planck CMB and the weak lensing surveys and also show the potential of cosmology studies with future radio continuum survey data.
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1. Introduction

A primary goal of large-scale structure experiments probing the
late Universe is to provide answers on the history of the growth
of cosmic structures and also discover the nature of the unknown
components that dominate in the universe leading it to its recent
accelerated expansion (e.g. Huterer 2023). To achieve this, the
tracers we choose should be able, on one hand, to cover a large
patch of the observed sky, accessing this way both large and small
cosmological scales and, on the other hand, to be deep enough so
that we can reconstruct the growth of structure history as a func-
tion of time. However, these probes alone, are not able to address
these aspects simultaneously. For instance, probes like weak
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gravitational lensing on galaxies, which is the effect of the dis-
tortions of galaxy shapes caused by the underlying matter field
between us and the galaxies, or on the cosmic microwave back-
ground (CMB) (Bartelmann & Schneider 2001), is an unbiased
tracer of the matter field in the Universe. Nonetheless, it pro-
vides poor information on the redshift evolution of the galaxies
and also has lower statistical power compared to the other large-
scale structure probe, called galaxy clustering. This probe, though,
is a biased tracer of the total matter field and the modelling
needed to connect the two has been proven to be quite complex
(Kaiser 1987; Sánchez et al. 2016; Abbott et al. 2018; Desjacques,
Jeong, & Schmidt 2018). One way to overcome this and recon-
struct the growth of structures, is to use redshift-space distortions
in case there are accurate redshift estimates which are obtained
spectroscopically (Guzzo et al. 2008; Blake et al. 2013; Howlett
et al. 2015; Pezzotta et al. 2017; Alam et al. 2021). Another way
to overcome the limitations from the individual experiments, is
to combine weak lensing and galaxy clustering data measure-
ments (Hu 2002; de la Torre et al. 2017; Peacock & Bilicki 2018;
Wilson & White 2019; Heymans et al. 2021; White et al. 2022;
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García-García et al. 2021; Alonso et al. 2023). In addition, this
multi-tracing increases the statistical power by accessing as much
information as possible in the different cosmological scales as well
as in redshift.

In this framework, there has been a growing interest in deep
radio continuum galaxy surveys. These surveys have the ability
to scan enormous patches of the sky thanks to the large field
of view of modern radio interferometers operating at low fre-
quencies. There has been a variety of forecasting analyses in the
literature arguing for their cosmological potential using the Square
Kilometer Array (hereafter SKAO Raccanelli et al. 2012; Jarvis
et al. 2015; Maartens et al. 2015; Bacon et al. 2020) and also
the benefit reaped when different radio populations are com-
bined in a multi-tracer approach. In particular, several ultra-large
scale effects can be detected with multi-tracing such as relativis-
tic effects and the primordial non-Gaussianity (Ferramacho et al.
2014; Alonso et al. 2015; Fonseca et al. 2015; Bengaly et al. 2019;
Gomes et al. 2019).

When observing the universe at frequencies between 0.1–10
GHz, wavelengths larger than those in optical and infrared, the
main radio continuum emission mechanism is synchrotron radi-
ationa (e.g. Condon 1992). This is caused by relativistic electrons
as they spiral in the magnetic fields. For this reason, the domi-
nant populations of the radio galaxies are active galactic nuclei
(hereafter AGNs), and star forming galaxies (hereafter SFGs).
Regarding AGNs, there is a variety in the origin of sources as well
as in their classifications. This includes the accretion mechanism
of infalling material into central supermassive black holes (e.g.
Best & Heckman 2012; Heckman & Best 2014), AGN orientation
with respect to the observer (Antonucci 1993; Urry & Padovani
1995) and also their morphology (e.g. Type I & II, Fanaroff &
Riley 1974). As for SFGs, these are mainly spiral galaxies and
they fall into two main categories. First is starburst galaxies, in
which intensive star formation is present (star formation rate �
100 M�yr−1). The other category is normal star forming galaxies
(star formation rate � 100 M�yr−1) (e.g. Wynn-Williams 1986).
One of the main advantages of observations at these frequen-
cies is that dust contamination is negligible in the line-of-sight
direction as well as in the intergalactic medium due to the long
wavelengths at radio frequencies. This is especially relevant for
SFG studies where their radio emission is an unbiased probe of the
star formation rate (e.g. Bell 2003; Davies et al. 2016; Gürkan et al.
2018).

There have been a number of past large-area radio contin-
uum experiments like the NRAO VLA Sky Survey (NVSS at 1.4
GHz, Condon et al. 1998; Hotan et al. 2021), the TIFR GMRT
Sky Survey (TGSS-ADR at 150 MHz, Intema et al. 2017) and the
Sydney University Monongolo Sky Survey (SUMSS, Mauch et al.
2003). However, the current generation of radio surveys like the
Australian Square Kilometre Array Pathfinder (hereafter ASKAP,
Johnston et al. 2007), the Meer Karoo Array Telescope (hereafter
MeerKAT, Jonas 2009) and the Low Frequency ARray (hereafter
LOFAR, van Haarlem et al. 2013), all of them precursors of SKAO,
make an advance throughmuch deeper observations together with
the large sky coverage. In particular, ASKAP has a field of view of
∼ 30 deg2 operating at 700–1 800 MHz thanks to its phased array
feeds. LOFAR, similarly, has a field of view of ∼ 30 deg2 at 150

aAlthough, at 5–10GHz free-free emission starts to be also important.

MHz, while MeerKAT has a field of view of ∼ 1 deg2 at 1.2 GHz.
With these large fields of view achieved with radio interferometers,
large and contiguous patches of the sky can be observed, accessing
in this way large-scale structure information at very large scales
(angular separations).

In this work we use the Pilot Survey 1 of the Evolutionary Map
of the Universe (hereafter EMU PS1, Norris et al. 2011, 2021)
which uses ASKAP at 944 MHz, covering a contiguous patch of
∼ 270 deg2 at a depth of 25–30 µJy/beam rms (root mean square)
and with a spatial resolution of 11–18 arcsec. By the end of its
operation, EMU will cover the whole of the southern sky.

As already mentioned, the radio continuum emission mech-
anism is synchrotron radiation, whose spectrum typically lacks
strong emission or absorption lines which renders redshift
measurements impossible.b This results in large uncertain-
ties on the redshift distribution of the galaxy sample and its
properties, like the mass of host halos and galaxy bias. To
shed light on radio sources’ clustering properties, one solu-
tion is to cross-match with optical sources (e.g. Lindsay et al.
2014; Hale et al. 2017; Mazumder, Chakraborty, & Datta
2022).

Radio continuum sources overlap in redshift with the CMB
lensing convergence field. This probe is sensitive to inhomo-
geneities of the matter distribution at high redshifts (peaking at
z ∼ 2) and at comparable large volumes, making it ideal for cross-
correlations with radio galaxies (e.g. Planck Collaboration et al.
2014; Allison et al. 2015) and also in the context of de-lensing stud-
ies (Namikawa et al. 2016). Previous works on cross-correlation of
radio galaxies with CMB lensing include Smith et al. (2007), where
this combination was used to make the first CMB lensing detec-
tion and also Allison et al. (2015) and Piccirilli et al. (2023) to infer
the galaxy bias of radio galaxies. Furthermore, the first and sec-
ond data releases of the LOFAR Two-metre Sky Survey (LoTSS;
Shimwell et al. 2019, 2022) radio catalogues were cross-correlated
with CMB lensing from the Planck satellite (Planck Collaboration
et al. 2020a), in order to constrain the redshift distribution and
the galaxy bias of the sample (Alonso et al. 2021; Nakoneczny et al.
2024). These works have also shown that this cross-correlation can
lift the degeneracy between the galaxy bias and the amplitude of
the matter fluctuations. Here, we explore the auto-correlation and
the cross-correlation of EMUPS1with the latest CMB lensing con-
vergence data (PR4) from Planck (Carron, Mirmelstein, & Lewis
2022) to place constraints on the galaxy bias of the sample and
on the matter fluctuations amplitude and leave the redshift distri-
bution parameterisation of radio sources with the help of optical
surveys for a future work.

The paper is structured as follows: In Section 2, we describe
the theoretical observables we use in our modelling. Then, in
Section 3, we present the data we use in our analysis. In Section 4,
we introduce the method used to construct the auto-correlation
and cross-correlation measurements from the data, and also dis-
cuss the models and the error estimates we assume for our
statistical analysis. The main results concerning the detection sig-
nificance and the constraints on the galaxy bias and cosmology
are shown in Section 5. Finally, we discuss our conclusions in
Section 6.

bTechnically, some sources can have spectral lines and the issue is that any potential
frequency information is collapsed down.
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2. Theory

The harmonic-space power spectrum signal SXY� between the pro-
jected quantities X and Y , can be defined as〈

X�m Y∗
�′m′
〉= SXY� δK��′ δ

K
mm′ , (1)

where X�m and Y�m denote the coefficients of the harmonic expan-
sion for the statistically isotropic fields of interest X and Y , while
δK is the Kronecker symbol. In this work we focus on the fluc-
tuations of the galaxy number counts δg and the convergence
field κ . Both are later discussed in detail in Sections 2.1 and 2.2,
respectively.

For broad redshift distributions, as is the case in radio contin-
uum surveys (e.g. Tanidis et al. 2019), the harmonic-space power
spectrum between the two quantities X and Y can be written in the
Limber approximation (Limber 1953; Kaiser 1992) as

SXY�,th =
∫ χh

0

dχ
χ 2 WX(�, χ)WY (�, χ)

× Pmm

(
k= � + 1/2

χ
, χ
)
, (2)

where χ(z) is the comoving distance at a given redshift z for flat
cosmologies, χh the co-moving distance at the horizon, Pmm is the
matter power spectrum and k= |�k| with �k the wave vector. We
use the notation Sth for the model harmonic-space spectrum to
distinguish it from S which is the measured harmonic-space spec-
trum signal from definition in Equation (1). The general redshift
and scale-dependent kernel WX(�, χ) can take different expres-
sions depending on the desired observable. These observables are
described in Sections 2.1 and 2.2.

2.1. Galaxy clustering

Galaxies are well-known biased tracers of the dark matter field
(Kaiser 1987). In general, this bias can be considered to be red-
shift and scale dependent. Assuming Gaussian initial curvature
perturbations, this scale dependence is especially relevant at non-
linear scales, where the bias is non-local (e.g. Sánchez et al. 2016;
Desjacques et al. 2018). Nevertheless, at sufficiently large scales as
we probe here (k � 0.2 hMpc−1), we can assume that it is only
redshift dependent (e.g. Abbott et al. 2018). Thus, the projected
quantity defined as the observed fluctuations of the galaxy number
counts at a given sky position n̂ is related to the three-dimensional
matter density fluctuations δm(z, χ n̂) as

δg(n̂)=
∫ χh

0
dχb(χ)n(χ)δm(z(χ), χ n̂), (3)

where b(χ) is the galaxy bias and n(χ) the normalised distribution
of galaxies. Then, the kernel in Equation (2) takes the form

Wδg (�, χ)≡Wδg (χ)= n(χ)b(χ) . (4)

We do not consider any other correcting term on top of
the galaxy density field, like magnification bias or redshift-space
distortions which both are subdominant in our analysis and
are relevant for tomographic analysis and narrow redshift bins,
respectively (Tanidis et al. 2019).

2.2. CMB lensing

The convergence field κ(n̂) is defined as the distortion of the CMB
photon trajectories due to the gravitational potential caused by

the underlying dark matter field (Lewis & Challinor 2006). This is
proportional to the divergence of the deflection in the photon
arrival angle �α as: κ ≡ −∇ · �α/2. Thus, κ is an unbiased tracer of
thematter density fluctuations δm(z, χ n̂) and is related to them as

κ(n̂)=
∫ χ�

0
dχ

3	m,0H2
0

2c2
[1+ z(χ)]χ

χ� − χ

χ�

δm(z(χ), χ n̂), (5)

with c the speed of light, 	m,0 the matter fraction at present,
H0 the Hubble constant in units of km s−1 Mpc−1, and χ� the
comoving distance at the last scattering surface corresponding to
z� ≈ 1 100. The radial kernel in this case takes the form

Wκ (�, χ)= L(�)
3ΩmH2

0
2c2

[1+ z(χ)]χ
χ� − χ

χ�

, (6)

where the factor L(�) reads

L(�)= �(� + 1)
(� + 1/2)2

, (7)

which is only relevant (starts to deviate from unity) at �� 10. This
term accounts for the fact that κ is related to δm through the angu-
lar Laplacian of the lensing potential φ as: κ(n̂)= −∇2φ(n̂)/2.

3. Data

3.1. EMU Pilot Survey 1

The radio continuum galaxy sample used here is the Pilot Survey
1 of the Evolutionary Map of the Universe (EMU PS1; Norris et al.
2021). EMUwill cover the complete southern sky within five years
and will observe several tens of million sources (Norris et al. 2011;
Johnston et al. 2007, 2008). Here we use the first pilot data cov-
ering a contiguous patch of ∼ 270 deg2, observed at 944 MHz, at
a spatial resolution of 11–18 arcsec and reaching a depth of 25–
30 µJy/beam rms. The resulting catalogue corresponds to roughly
∼ 200 000 sources for the full sample. The exact number slightly
differs depending on the source finding algorithm used and it is
further reduced after applying flux density cuts as we discuss in
Section 3.1.1.

3.1.1. Source finding algorithms and flux density cuts

The first source finding algorithm output we used is from the
Selavy software (Whiting & Humphreys 2012; Whiting et al.
2017). The tool identifies pixels that have emission above a cer-
tain threshold, in this case 5 sigma (5 times the local rms in the
image, Selavy variable snrCut=5) using the flood-fill technique,
and groups the pixels that lie next to each other together into a sin-
gle ‘island’. Then, if there are nearby pixels that lie above a lower
threshold (in our case 3 times the rms, growthThreshold=3),
the island can be ‘grown’ to encompass these pixels also. As dis-
cussed in Whiting & Humphreys (2012), this ‘growing’ can lead to
nearby sources beingmergedwith the source under-consideration.
Finally then, it fits Gaussian components to peaks of emission
within the islands (Fitter.doFit=true). We note that we use
the estimate of the total flux density of each source by summing
over theGaussians that have been fit to the components, for amore
accurate integrated flux density estimate.

At this point we note that we consider only the Selavy island
sample and not the Selavy component sample for the cosmolog-
ical analysis described in Section 5. We make this choice due to
the fact that as sources can be quite extended in the images, differ-
ent components can be generated by the same radio galaxy. This
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can affect the clustering statistics at small scales < 0.1◦ (see again
Norris et al. 2021). Even though we use the islands catalogue, there
still may exist residual biases we need to account for (see dis-
cussion in Section 4.3). We also cross-check that the clustering
measurements we discuss in Section 5.2 using the Selavy island
catalogue are in good agreement with the machine-learning based
morphological classification of EMU-PS radio catalogue compiled
with the Gal-DINO pipeline (Gupta et al. 2024).

The other source finder algorithm we used to generate the
catalogue is PyBDSFc (Mohan & Rafferty 2015). To do this, we
set a threshold which determines which pixels contribute to an
island of emission (thresh_isl) to be 3σ and the threshold for
source detection (thresh_pix) to 5σ . We additionally include
a specification that the background mean level should be zero
(mean_map=‘zero’) and specify the box size and step size used
to generate the rms map (rms_box = (150,30)). From run-
ning PyBDSF over the image we record the rms map, to generate
random sources, alongside the output source and Gaussian cata-
logues.

In addition, we consider only the galaxies with flux density
brighter than 0.18 mJy. The choice is based on the fact that for
sources brighter than this value, the source counts in the previous
models and simulations (Mancuso et al. 2017; Bonaldi et al. 2018)
are in agreement with the EMU PS1 island catalogue (Norris et al.
2021). In order to test the robustness of our cosmological analysis
on the galaxy sample, we also consider a more rigorous flux den-
sity cut at 0.4 mJy. We perform these cuts both on Selavy and
PyBDSF catalogues. The number of galaxies after the flux density
cuts and the maps are discussed in Section 4.1.

3.1.2. Redshift distributions

As we can appreciate from Equation (4), to estimate the ker-
nel of the radio continuum galaxy sample we need to obtain an
accurate model for the galaxy number distribution as a function
of redshift. To achieve that, we make use of two of the largest
extragalactic radio galaxy simulations; the European SKA Design
Study (hereafter SKADS) Simulated Skies (Wilman et al. 2008), and
the Tiered Radio Extragalactic Continuum Simulation (hereafter
T-RECS; Bonaldi et al. 2018). Also, we consider for both simula-
tions AGNs and SFGs contributions, which constitute the main
tracers of the galaxy populations in the radio surveys. In Fig. 1,
we show the redshift distributions for SKADS and T-RECS and for
the flux density cuts at 0.18 and 0.4 mJy. The distributions are not
affected considerably by the flux density cuts and both SKADS and
T-RECS are peaked at z ∼ 0.5, after which they fall slowly up to
high redshifts. Nonetheless, we can appreciate that the SKADS has
longer tail at high redshift, while the T-RECS is more localized at
z ∼ 0.5. This can affect power spectra fits to the data, since samples
with broader redshift distributions wash out their structure infor-
mation, decreasing in this way the power amplitude and in turn
increasing the galaxy bias bg . However, as we discuss in Section
5.3, this difference does not affect the results significantly (shift of
∼ 0.2σ ). Thus, for our baseline results of Sections 5.3 and 5.4, we
use the SKADS distribution.

It is important to stress at this point that SKADS and T-RECS
have both similarities (all of them considering AGNs and SFGs)
and differences (empirical models for the former and more
detailed population models for the latter) and therefore, it should

chttps://pybdsf.readthedocs.io/en/latest/index.html.

Figure 1. The normalised redshift distributions of radio continuum galaxies as esti-
mated from the simulations SKADS (blue) and T-RECS (red) at the flux density cuts 0.18
(solid) and 0.4 mJy (dashed).

not be surprising that the redshift distributions look similar. The
comparison we make between them in this work (Appendix C)
certainly should not be seen as a robustness systematic test but
rather as an indicative comparison between the state-of-the art
radio continuum simulation codes given the large uncertainty in
the redshift distribution of the radio galaxies. In fact, there is a
series of ongoing parallel works aimed to constrain both the peak
and the tail of the redshift distribution of the EMU radio sam-
ple by using cross-correlation with the Dark Energy Survey (DES,
Abbott et al. 2016) optical galaxies (Saraf et al. 2025) and the Euclid
telescope (Mellier et al. 2024) deep fields (Bahr-Kalus et al., in
preparation). Also, a cross-matching study that will further help in
the modelling of the redshift distribution is planned in the future.

3.2. Planck PR4

We use the publicly available CMB lensing convergence map
κ from the Planck PR4 data (Carron et al. 2022). This map is
constructed using an improved lensing quadratic estimator and
contains ∼8% more data than the previous release of 2018 Planck
PR3 (Planck Collaboration et al. 2020b). The harmonic coeffi-
cients of the κ mean-field subtracted map are transformed to a
HEALPix map with Nside = 512 corresponding to a pixel size of
∼6.9 arcmin. This resolution is also used for the galaxy overden-
sity maps which is discussed in Section 4.1, and it is considered
to be accurate enough for the scales we probe in this work. The
convergence map covers ∼67% of the sky and fully overlaps with
the footprint of the EMU PS1 map. The convergence map has a
few holes that remove less than 1% of the EMU-PS1 footprint (see
Fig. 2).

4. Methodology

4.1. Pseudo-C�s

The harmonic-space coefficients and the spectrum of Equation (1)
are defined under the full-sky assumption. In reality, we are able
to observe only a part of the sky. This is true both for the radio
continuum galaxy maps and the CMB lensing convergence map
as we have seen in Sections 3.1 and 3.2. Thus, the measured values
of harmonic coefficients differ from the full-sky ones leading to
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Figure 2. A list of maps that was used in our work. Top left: The weights mask for Selavy. Top right: The galaxy overdensity map for Selavy. Middle left: The weights mask for
PyBDSF. Middle right: The galaxy overdensity map for PyBDSF. Bottom: The CMB convergence map. All the galaxy maps here are for the flux density cut at 0.18 mJy, while for the
cut at 0.4 mJy, they look similar. In the overdensities and convergence panels, the mask is shown with grey color.

the pseudo-C� spectrum which accounts for the partial sky. We do
this by using the python package NaMaster (Alonso et al. 2019).

To construct the weight maps for EMU-PS1, we create a mask
that accounts for the rms of the EMU PS1 mosaic. To do so,
we create a galaxy random catalogue by following the method
described in Hale et al. (2017). We start by drawing uniform
random angular positions, and random flux densities from the
SKADS simulation (Wilman et al. 2008) at a frequency of 1.4 GHz,
scaled to 944 MHz. For each of the catalogs (Selavy or PyBDF),
an rms image is produced respectively. These RMS images allow
us to include the observational noise in each position of the map.
We then only select random galaxies with flux densities with a
significance 5σ above the rms level, given by each catalogue rms
map, of the corresponding angular position. Once we have a ran-
dom catalogue, we apply a flux density cut for the corresponding
galaxy sample. The weightsmask is just the ratio between the num-
ber of random galaxies in a given HEALPix pixel and the number
of random galaxies from the original uniform randoms (before
the rms flux density cut). The randoms are created in a set of
realizations, producing 20 000 uniform randoms for each realisa-
tion. The final number of random galaxies used was selected by

checking the stability of the spectra measurements for a given
number of realizations. We found that the pseudo-C�s spectra are
robust when the number of realisations to produce the randoms is
above 500.

The definition of the observed fluctuations in the galaxy num-
ber counts now becomes,

δg(n̂)= Ng(n̂)
N̄gwg(n̂)

− 1, (8)

with Ng(n̂) the number of galaxies in the pixel position n̂ and
wg(n̂) the weights in the same pixel position. N̄g is the weighted
mean number of sources per pixel in our samples and reads:
N̄g = 〈

Ng(n̂)
〉
n /
〈
wg(n̂)

〉
n, with 〈.〉n denoting the mean over all the

pixels in the map. We also avoid heavily masked pixels by setting
wg(n̂) and δg(n̂) pixels to zero where wg(n̂)< 0.5. The final num-
ber of galaxies for the Selavy catalogue is 166 801 at > 0.18 mJy
and 83 222 at > 0.4 mJy, while for PyBDSF are 188 034 and 89 320,
respectively. The weight footprints and galaxy overdensity maps
for Selavy and PyBDSF are shown in Fig. 2 with the latter having
2% larger footprint than the former. This is due to the fact that
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Selavy has a stricter limit on the acceptable weights at the edges
of the footprint truncating slightly the coverage.

After the construction of the overdensity maps, we transform
the weight maps to binary masks and we couple the spectra with
them using NaMaster. We verify that our results are stable when
we perform this. The pseudo-C� harmonic-space spectrum (Hivon
et al. 2002) is defined as

C̄XY
�,s+n = 1

2� + 1

�∑
m=−�

X̄�mȲ∗
�m, (9)

where X̄�m and Ȳ�m denote the partial sky harmonic coefficients
of the fields receiving contributions from signal and noise s+ n.
The observed harmonic-space spectrum is the ensemble average
C̃XY

�,s+n = 〈C̄XY
�,s+n〉 and is related to the true signal S� (see again

Equation 1) via

C̃XY
�,s+n =

∑
�′

MXY
��′ SXY�′ + ÑXY

� , (10)

where ÑXY
� = δKXYΩpw̄g/N̄X is the shot noise (Nicola et al. 2020)

with w̄g the average value of the mask across the sky (see
Equation 8) and Ωp the pixel area in units of steradians. The
noise needs to be subtracted for auto-correlations to obtain the
masked signal C̃XY

�,s = C̃XY
�,s+n − ÑXY

� . By rescaling it with the survey
sky fraction fsky, we can get an estimate of the true spectrum as
C̃XY

� ≡ SXY� = C̃XY
�,s /fsky, which is a good approximation for fairly flat

power spectra, as we consider here (Nicola et al. 2021). The quan-
tity M��′ is the mode coupling matrix (Peebles 1973) due to the
masked area and it is defined as,

MXY
��′ = 2�′ + 1

4π
∑
�′′

(2�′′ + 1)WXY
�′′

⎛
⎜⎜⎝

� �′ �′′

0 0 0

⎞
⎟⎟⎠

2

, (11)

withWXY
� the spectra of the masks which read,

WXY
� = 1

2� + 1

�∑
m=−�

wX
�mw

Y∗
�m, (12)

where wX
�m and wY

�m are the spherical harmonic coefficients of the
masks of the fields under study.

As we elaborate in Section 4.3 we need to compare the mea-
sured spectra with the model spectra from theory that we saw
in Equation (2). To do this, we also account for the partial sky
effect in the theory spectra by applying the same coupling matrix
convolution and the rescaling correction as,

S̃XY� =
(∑

�′
MXY

��′ SXY�′ ,th

)
/fsky. (13)

4.2. Matter spectrum and galaxy bias models

We consider both a linear and a non-linear matter power spec-
trum Pmm for the theory harmonic-space spectrum of Equation
(2). To obtain the linear model we use the Boltzmann solver CAMB
(Lewis, Challinor, & Lasenby 2000) and we get the non-linear
model from it with HALOFIT (Smith et al. 2003; Takahashi et al.
2012). Unless otherwise stated, we use the fiducial cosmology best-
fit values by Planck Collaboration et al. (2020a), which are: present
day cold dark mater fraction, 	c,0 = 0.26503; present day baryon

fraction,	b,0 = 0.04939; rms variance of linear matter fluctuations
at present in spheres of 8 h−1 Mpc, σ8 = 0.8111; dimensionless
Hubble constant h≡H0/(100 km s−1 Mpc−1)= 0.6732 and pri-
mordial power spectrum spectral index, ns = 0.96605. The theo-
retical calculations in this work are done using the code CosmoSIS
(Zuntz et al. 2015).

Regarding the galaxy bias redshift evolution we consider two
models (Alonso et al. 2021):

• A constant galaxy bias model with b(z)= bg which repre-
sents a simple scenario, where the growth evolution with
time of the galaxy clustering follows that of the matter
fluctuations.

• A constant amplitude galaxy bias model with b(z)=
bg/D(z) which evolves with the inverse of the linear
growth factor defined as: D(z)= [Plin

mm(k, z)/Plin
mm(k, 0)]1/2

in the linear regime k→ 0. This model, though still simple
with one parameter as well, preserves its large-scale prop-
erties unchanged and remains fixed at early times (since at
linear scales δm ∝D). At the same time, it is able to repro-
duce the expected rise in b(z) at high redshift for a flux
density-limited galaxy sample (e.g. Bardeen et al. 1986; Mo
&White 1996; Tegmark & Peebles 1998; Coil et al. 2004).

On top of these models, we also test another more flexible
case, that of a quadratic galaxy bias model: b(z)= b0 + b1z + b2z2
with three parameters {b0, b1, b2}. However, as we later discuss in
Appendix A the results of this model are consistent with those
of the constant galaxy bias and, therefore we do not use it in our
fiducial analysis of Section 5.

Finally, in our pipeline we consider scales up to �max = 500.
This corresponds to kmax ∼ 0.15 Mpc−1 at zmed ∼ 1 which is the
rough median redshift for both distributions (in particular, zmed ∼
0.98 for T-RECS and zmed ∼ 1.1 for SKADS). In this mildly non-
linear regime, the linear galaxy bias model is a good approxi-
mation, while we can neglect non-Gaussian contributions to the
covariance matrix (e.g. Smith et al. 2007; Cooray 2004).

4.3. Covariance matrix and likelihood

Assuming that κ and g are random variables, we can write the ana-
lytical covariance matrix K terms for the auto-correlation gg and
the cross-correlation gκ spectra as follows,

K=
⎡
⎣Kgg,gg Kgg,gκ

(Kgg,gκ )T Kgκ ,gκ

⎤
⎦ , (14)

with each sub-block taking the form,

KgX,gY
��′ = δ��′

(2� + 1)Δ�f gX,gYsky

[(C̃gg
� +Ngg

� )(C̃XY
� +NXY

� )

+ (C̃gX
� +NgX

� )(C̃gY
� +NgY

� )], (15)

where X and Y can both be g or κ and Δ� the multipole bin-
width. The sky fractions read: f gX,gYsky =

√
f gXsky · f gYsky and f ggsky ≈ f gκsky.

We also bin the measured masked and rescaled C̃XY
� as well as the

theory S̃XY� power spectra with N�=11 multipoles, linearly fromd

dThe validity of the Limber approximation at �min=2 for a single redshift bin of an
EMU-like survey has been confirmed by Tanidis et al. (2019) and Bahr-Kalus et al. (2022)
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�min = 2 to �max = 500. In addition, we verify that our results
using the analytical covariance in Section 5 are robust by com-
paring them with the numerical covariance which is described in
Appendix B.

Assuming that the spectra follow a Gaussian distribution, we
can use the log-likelihood,

χ 2(q)=
∑
�,�′

[d� − t�(q)]T K−1
��′ [d�′ − t�′ (q)], (16)

where d� = {C̃gg
� , C̃gκ

� } and t� = {S̃gg� , S̃gκ� } denote the data and the-
ory model vectors and q the parameter set of interest we want to
fit. In our analysis we aim to constrain the galaxy bias bg and σ8.
For both parameters, we assume flat priors bg ∈ (0.01, 10) and σ8 ∈
(0.01, 1.6). To estimate the posterior distributions of the param-
eters we use publicly available Bayesian-based sampler emcee
(Foreman-Mackey et al. 2013).

5. Results

5.1. Differences between the source finding algorithms and
deviations from shot noise

As discussed in Section 3.1.1 radio surveys can have multi-
component structures that could affect the power spectrum and
the Poissonian shot noise. At this point, we discuss the main dif-
ference between the two source finding algorithms, namely, the
Selavy and PyBDSF, which we introduced in Section 3.1.1. In
the island catalogue of Selavy, the algorithm categorises as sin-
gle objects, structures that are quite large. However, these large
objects could, in fact, contain smaller sub-structures which could
be part of the same extended object (multi-component object) or
could belong to different sources. The PyBDSF algorithm is able to
find these structures and categorise them as different sources. This
can result, of course, in a larger power spectrum (more cluster-
ing) as measured by PyBDSF at small scales, where many smaller
sources could correspond to a single large source for Selavy.
Indeed, this is what we find for the measurements from the two
catalogues in Section 5.2 Finding more clustering with the PyBDSF
is not necessarily the correct thing, as the algorithm can incor-
rectly consider small sub-structures that may belong to a single
galaxy, as different galaxies. Furthermore, there are additional
effects like halo exclusion, and non-local and stochastic effects
in galaxy formation (Blake, Ferreira, & Borrill 2004, Tiwari et al.
2022).

All of these contributions can also induce deviations from
Poissonian shot noise. To account for these contributions, we
marginalise over an extra free amplitude parameter for the shot
noise Asn (Nakoneczny et al. 2024) when we subtract it in the
data auto-correlation gg as C̃XY

�,s = C̃XY
�,s+n −AsnÑXY

� , making the
galaxy clustering auto-correlation sensitive to non-flat contribu-
tions. Based on the ∼20% difference that was found between the
island and component number of sources by Norris et al. (2021)
and as we consider other potential biases as described above, we
deem reasonable to consider an informative prior in the range
Asn ∈ (0.8, 1.2), while we keep it fixed in the analytical covariance
in Equation (14).

5.2. Measurements and detection significance

In the top left panel of Fig. 3, we show the measured signal for
the auto-correlation spectra gg from the Selavy and PyBDSF

catalogues for the flux density cut at 0.18 mJy. With red points we
denote Selavy and with blue points PyBDSF data, while the error-
bars correspond to 1σ uncertainties from the analytical covariance
in Equation (15). The two catalogues are in agreement (within 1σ )
until the scale � ∼ 250, after which they start to deviate from each
other. At �� 250, the PyBDSF data havemore power than Selavy.
This can be attributed to the existence of multi-structures at small
scales which are considered to be different objects by PyBDSF, and
if they are close enough, as a single larger object by Selavy, as
already explained in Section 4.3. Therefore, we choose to apply a
scale cut at � ≤ 250, where the measurements from the two cata-
logues agree within 1σ , and neglect smaller scales, in which the
two algorithms start to deviate and the disentangling between
the multi-sources and multi-components is really hard. Then we
use a theory model using the SKADS redshift distribution and the
HALOFIT non-linear matter power spectrum leaving free the bg
and Asn parameters and fixing σ8 in order to fit the Selavy and
PyBDSF gg spectra alone (the theory fits are with orange and green
curves, respectively). It turns out the models fitting the two cata-
logues agree very well with each other (with both models’ best-fit
values differ at < 0.1σ within their posteriors).

In the bottom panel of Fig. 3 we see the gκ cross-spectra
between the radio galaxies and the CMB convergence κ again for
the two catalogues in a separate fit with gκ data alone. It is evi-
dent that the data agree at all scales now up to � = 500 (well within
1σ ) and the theory models agree as well (again with both models’
best-fit values differ at < 0.1σ within their posteriors).

Thus, in the main analysis of Sections 5.3 and 5.4 with the 0.18
mJy flux density cut, we opt to use the scale range � ∈ (2, 250)
for the auto-correlation gge and the full range � ∈ (2, 500) for the
cross-correlation gκ . Also, since Selavy and PyBDSF agree at the
scales we mentioned (as we saw at 1σ ), we proceed in the anal-
ysis of the main results of Sections 5.3 and 5.4 using the Selavy
catalogue alone.

We quantify the significance of detection as: SNR=√
χ 2
null − χ 2

b.f ., in terms of σ , where χ 2
null is the χ 2 of the null

hypothesis (zero theory vector) and χ 2
b.f. the best-fit model χ 2.

Regarding the scale cut at � = 250 for gg, most of the signal is at
� < 250, since there, we obtain a detection of 11σ , while at the
full scale range the detection is 14σ . The cross-correlation gκ
detection significance up to � = 500 is 5.5σ .

We repeat the same for the more conservative flux density cut
at 0.4 mJy and show the results for the gg in the top right panel of
Fig. 3. Now, the catalogues agree with each other at the full scale
range up to � = 500 always within 1σ , even though PyBDSF has
again slightly (∼ 0.5σ ) more power than Selavy at small scales.
This is further confirmed by the theoretical models which yield
consistent results. Therefore, we opt to use the full scale range
for gg and use the Selavy catalogue alone for the galaxy bias
and cosmology analysis of Section 5. At this point, we mention
that the agreement we see now at the flux density cut 0.4 mJy
between the catalogues can be attributed to the fact that we con-
sider a more conservative galaxy sample which at the same time
contains less galaxies (and in turn, larger uncertainties inflating

eAlternative ways to deal with the small-scale offset between the Selavy and PyBDSF
spectra, are to take the difference of the two and introduce an extra nuisance amplitude
parameter added in the data covariance to be marginalised over, or to take the cross spec-
trum between the two catalogues. Nonetheless, we are being conservative in this work and
apply a scale cut, while we leave the other alternatives to be investigated in a future work.
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Figure 3. The auto-correlation C̃gg� for the flux density cut at 0.18 (top left panel) and 0.4mJy (top right panel). Red and blue points alongwith their 1σ uncertainties, correspond to
the Selavy and PyBDSF catalogues. Their corresponding fitted theory models are denoted with orange and green curves, respectively, which are estimated assuming the Planck
best-fit values (Planck Collaboration et al. 2020a), the SKADS redshift distribution and HALOFIT power spectrum. The colourful horizonal dashed lines are shot noise estimates for
the two catalogues, and the grey shaded area (top left panel) denotes the scale cut at � = 250 for the flux density cut at 0.18mJy. The bottom panel shows the cross-correlation of
galaxies with the CMB lensing convergence C̃gκ� at the flux density cut 0.18 mJy.

the errorbars) than the sample with flux density cut at 0.18 mJy
(see Section 3.1.1). Regarding, the cross-correlation spectra gκ for
the flux density cut at 0.4 mJy, we find very similar results at
the whole scale range with those obtained at 0.18 mJy and there-
fore we do not show them in the panel to avoid repetition. The
cross-correlation detection significance for 0.4 mJy is 5.4σ

5.3. Constraints on galaxy bias

By using the measurements and scale cuts discussed in Section
5.2, first we present the constraints on the galaxy bias bg while
we fix the cosmological parameters, including σ8, to the Planck
Collaboration et al. (2020a) best-fit values (see again Section 4.2).
The results are shown in the left panel of Fig. 4 and the values are in
Tables C1–C4. For our baseline results here we assume the SKADS
distribution. We also repeated the analysis with the T-RECS dis-
tribution and the results are in agreement with those using SKADS
finding a shift at most of ∼ 0.5σ for the 0.18 mJy flux density cut
and the constant galaxy bias (lower galaxy bias values and higher
σ8 values with T-RECS) and even less for the rest of the cases.

Therefore, we show the T-RECS results and how they compare to
SKADS ones in detail in Appendix C.

In the left panel of Fig. 4, we report the constant galaxy bias
best fit and 68% confidence interval model constraints with blue
solid lines for the flux density cut at 0.18 mJy. We find that the
auto-correlation gives higher bias than the cross-correlation by
∼ 1σ , while the combination of the two gives intermediate esti-
mates. In all these results the linear model yields higher bias values
than HALOFIT by ∼ 0.5σ to compensate for the smaller power
at the mildly non-linear regime. Also, we do not observe devia-
tions from the shot noise estimates given the reported constraints
on the nuisance amplitude parameter Asn, verifying in this way
that there is no evidence of multi-component contamination in
the Selavy island catalogue we use. Additionally, it could mean
that our low density sample is not affected by other contribu-
tions like halo exclusion. Regarding the goodness of fit, we report
reduced χ 2 (χ 2

ν ), defined as, χ 2
ν = χ 2

min/ν, with χ 2
min the χ 2 of the

best-fit value and ν the degrees of freedom which is the num-
ber of our measurements minus the number of fitted parameters.
We also report the ‘probability to exceed’ which is defined as
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Figure 4. Left: The best-fit values along with their 68% confidence intervals on the galaxy bias parameter bg for the auto-correlation C̃gg, the cross-correlation C̃gκ and their
combination C̃gg + C̃gκ , assuming the redshift distribution SKADS, a linear (denoted with ‘lin’) and HALOFIT power spectrum (denoted with ‘nl’), and fixing the cosmology to the
fiducial values. Blue (orange) errorbars correspond to the flux density cut 0.18 (0.4) mJy and solid (dashed) lines to the constant bias model (constant amplitude model). Right:
Same as in the left panel but now for the σ8 constraints on the combined spectra. The bottom lines present the Planck (Planck Collaboration et al. 2020a), DES (Abbott et al. 2022)
and KiDS (Heymans, Catherine et al. 2021) measurements with red, magenta and green color, respectively.

PTE(χ 2, ν)= 1−CDF(χ 2, ν), where CDF is the cumulative dis-
tribution of χ 2. Overall, all the measurements provide good fits to
the data at χ 2

ν ∼ 1 (or equialently a PTE of 10–90%) with the auto-
correlation results giving worse χ 2

ν than the cross-correlation and
the combined ones (see Table C1). We opt to report in the text
for clarity (and do so for the rest of the galaxy models and flux
density cuts in the paragraphs below) only the combinedmeasure-
ments (gg + gκ) galaxy bias values from SKADS for the HALOFIT
model, which is bg = 2.32+0.41

−0.33. The rest of the results are shown
Table C1.

Turing our attention to the constant amplitude model results
(see values at Table C2), which are shown with dashed blue lines
of the left panel of Fig. 4, the aspects we discussed for the constant
galaxy bias model, apply similarly here. However, the constraints
on the amplitude parameter are lower than the simple constant
bias, as expected, since we now take into account the growth evo-
lution with redshift in the bias model (see again Section 4.2). We
quote here the combined measurement galaxy bias estimate from
SKADS for HALOFIT as bg = 1.72+0.31

−0.21.
The same picture concerning the differences between the lin-

ear and non-linear power spectrum recipes also applies for the
constant galaxy bias model constraints at the more conservative
flux density cut of 0.4 mJy (see Table C3) presented with the solid
orange lines in the left panel of Fig. 4. Although in this sample we
have fewer radio galaxies than for the flux density cut at 0.18 mJy
(see again Section 3.1.1 for the reported number of sources), at
the same time at the 0.4 mJy flux density cut we consider scales
up to � = 500 and do not cut at � = 250 as we do for the less
conservative cut, gaining in this way more constraining power.
Thus, the resulting constraints shrink by up to ∼30% for the auto-
correlation. It is noteworthy that this increase of the constraining
power that we see in the galaxy bias using the brighter and less
dense sample (0.4 mJy) compared to the fainter one (0.18 mJy)
may be a critical point for future radio continuum data which con-
sider auto-correlations. This can be clearly seen by the fact that
the increase of uncertainty of the power spectrum per multipole
can be overcompensated by pushing more towards smaller scales
which we can still trust given the agreement between the differ-
ent catalogues (Selavy and PyBDSF, see again Fig. 3), leading this

way to tighter parameter constraints.f We should also mention
that apart from the larger errorbars in the brighter sample, also
the measurements themselves are in better agreement (between
Selavy and PyBDSF at � > 250), which could be indicative of a
possible mitigation of the source finding problem for brighter and
denser radio samples. Going now back to the results, for this flux
density cut, the auto-correlation and the combined measurements
galaxy bias estimates are now lower, while the cross-correlation
alone estimates are larger than the results with the previous less
conservative flux density cut. Here, the reported combined mea-
surement estimate of the galaxy bias from SKADS for HALOFIT
reads bg = 2.18+0.17

−0.25.
Finally, we display the constraints for the constant amplitude

galaxy bias at 0.4 mJy (see Table C4) which correspond to the
dashed orange lines of the left panel of Fig. 4. The trends in the
results here for the various modelling assumptions are again con-
sistent with the picture seen for the same galaxy model at 0.18
mJy, with two noteworthy differences. The first is that the auto-
correlation constraints remain about the same irrespective of the
flux density cut and the combined spectra results give slightly
higher bias at the 0.4 mJy cut. Now, the combined data assuming
SKADS and HALOFIT give bg = 1.78+0.22

−0.15.
In Fig. 5 we show the best-fit and the 68% confidence intervals

on the constant galaxy bias and the constant amplitude model as a
function of redshift for our combined spectra with the linear and
HALOFIT power spectrum and assuming a SKADS redshift distri-
bution at the flux density cut of 0.18 mJy (the results are also very
similar with the other flux density cut at 0.4 mJy). We also illus-
trate the bias measurements from different andmixed populations
of galaxies found in other radio continuum works in the literature
(Nusser & Tiwari 2015; Hale et al. 2017; Alonso et al. 2021; Hale
et al. 2023; Nakoneczny et al. 2024, see caption for details), though
a direct comparison with them is impossible due to the different
combinations of spectra assumed as well as the different effective

fAnother point we should mention is that by looking at the top right panel of Fig. 3
for the auto-correlation of the brighter sample, we can appreciate that although the shot-
noise starts to be more important than the signal at � > 200, the SNR keeps increasing up
to ∼ 3σ until � = 500 and as a result further improves the constraining power.
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Figure 5. Best-fit values alongwith the 68%confidence interval constraints on the con-
stant bias (green and blue) and constant amplitude (magenta and red) model for the
combined spectra C̃gg + C̃gκ assuming a SKADS distribution, a HALOFIT (filled intervals)
as well as a linear (empty intervals) spectrum and a flux density cut at 0.18 mJy. The
errorbars with the different marker styles represent galaxy bias measurements from
different radio galaxy surveys in the literature. Grey and blue triangular markers cor-
respond to AGN and SFG constraints as from H18 (Hale et al. 2017) while the black
triangular marker to the combined sample in the same work. The rest of the different
shape black markers show mixed populations from the works (Nusser & Tiwari 2015;
Hale et al. 2017; Alonso et al. 2021; Hale et al. 2023; Nakoneczny et al. 2024). The vertical
dashed line is the median redshift of the sample.

flux density limits. However, the results slightly hint that the our
constant amplitude model for the galaxy bias is a better descrip-
tion for the deep radio continuum galaxy data compared to the
constant redshift-independent model. In order to compare the
galaxy bias values of the constant galaxy bias and the constant
amplitude model we estimate the constant amplitude constraints
at the effective redshift of the SKADS and T-RECS distributions
and report them as an extra column (see second column of Tables
C2 and C4). By comparing the results of the constant amplitude
model at the effective redshift with the constant one, we see that
the values are higher. This is not surprising given that the con-
stant amplitudemodel accounts for the linear growth factor whose
inverse is greater than unity at high redshifts.

Additionally, it is important to note that one would expect
a higher galaxy bias value for a brighter sample (0.4 mJy) than
a fainter one (0.18 mJy) given that the brighter more luminous
sources reside in more massive halos which have larger bias.
However, it could be that the fainter sample contains more high-
redshift sources which naturally have larger galaxy bias. The latter,
could explain our findings here and they agree with the results of
Nakoneczny et al. (2024). In any case, further studies would be
needed to investigate this.

A crucial point here is that similarly to the uncertainties in the
redshift distribution, there exist uncertainties on the validity of
the linear galaxy bias models we employ (constant galaxy bias and
constant amplitude). These stem from the fact that the redshift dis-
tribution of radio samples, though broad enough and extending to
high redshift with long tails where linearity can be assumed, they
still start near redshift zero, where non-linearities enter even in the
larger scales (since smaller physical scales of nearby structures look
larger in the sky). This should be kept in mind given the slight dif-
ferences we see when we compare results from the different galaxy
bias models and the linear and the non-linear matter power spec-
trum recipes we use. Nevertheless, we can safely assume that the

impact of non-linearities in our analysis is small, a fact that can be
supported by the agreement of the constraints within 1σ (see again
Fig. 5). In subsequent future works, and as the number density of
the EMU sample will increase as well as its sky coverage and con-
straining power, we will investigate these effects in more detail by
considering non-linear galaxy bias models and pushing to smaller
angular scales (� > 500).

5.4. Constraints on σ8

Now, we place constraints on the σ8 parameter by leaving it free
during the fitting, and we do this for the combined measurements
gg + gκ in order to break the degeneracy between the galaxy bias
bg and σ8. We assume for our baseline the SKADS distribution.
Also, we consider the different cuts and the models we discussed
in Section 5.3. The results are shown from Tables C1 to C4 in
the row denoted with ‘gg + gκ(σ8 free)’ and in the right panel of
Fig. 4. For completeness, in Fig. C2 of the Appendix C, we present
the marginalised posterior contours along with their 68% and 95%
confidence intervals and the one-dimensional posteriors for the
bg , σ8 and Asn.

Overall, the constraints are not competitive due to the low den-
sity sample we consider here, the small sky coverage and the large
uncertainties in the redshift distribution. Nonetheless, this work
serves as a sanity check and a complementary cosmological con-
straint on one hand and on the other hand, it demonstrates the
potential of the full EMU survey and also of other radio contin-
uum galaxy surveys for cosmological studies (similar to Alonso
et al. 2021; Nakoneczny et al. 2024 and Piccirilli et al. 2023).

Regarding the results themselves and focusing on the flux den-
sity cut at 0.18 mJy and the constant bias model, we show its
constraints with solid blue lines in the right panel of Fig. 4 (see
also top left figure of the contour plot in Fig. C2). We report
here the best-fit value using HALOFIT and SKADS, which gives
σ8 = 0.68+0.16

−0.14. The measurements obtained with the linear and
the non-linear HALOFIT are in agreement with each other. Also,
they agree with the Planck (Planck Collaboration et al. 2020a),
DES (Abbott et al. 2022) and KiDS (Heymans et al. 2021) mea-
surements. We note that we observe a trend for lower σ8 values,
although they are consistent with the other surveys’ results at 1σ .
The linear model estimates can be found in Table C1.

Turning now to the dashed blue lines of the right panel of Fig. 4,
we see the constant amplitude model constraints at the same flux
density cut. Here the σ8 estimates are sightly lower compared to
the constant bias results enhancing marginally the preference for
lower σ8, but again remain consistent within 1σ with the estimates
from the other surveys. The result for HALOFIT is σ8 = 0.61+0.18

−0.20.
The exact values for the rest of the models are shown in Table C2
and the marginalised contours are presented in the top right panel
of Fig. C2.

Concerning the results of the constant galaxy bias model at 0.4
mJy, these are shown with solid orange lines in the right panel of
Fig. 4 (see Table C3 and bottom left panel of Fig. C2 for the results
of all the models). Now, the most striking difference compared to
the results obtained at 0.18 mJy, is that the σ8 is higher, although
still consistent at 1σ . We report the σ8 result with HALOFIT which
is 0.82± 0.10, centered on the Planck result.

Finally, the picture for the constant amplitude model at the
0.4 mJy flux density cut is as expected and consistent with what
we described for the variety of models before. These constraints
are shown with dashed orange lines in the right panel of Fig. 4.
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The SKADS result for HALOFIT is σ8 = 0.78+0.11
−0.09 (linear model val-

ues in Table C4 and the variety of models again shown in the
bottom right panel of Fig. C2). The higher estimated value and
the increased constraining power for σ8 when a more conserva-
tive flux density cut is applied are related to the opposite behavior
of the galaxy bias and the reasons we discussed, respectively in
Section 5.3. The higher galaxy bias values for brighter samples has
also been seen by Nakoneczny et al. (2024), however, we cannot
make a direct comparison with their work, since it concerned an
analysis using a denser radio continuum sample of the LoTSS sur-
vey (Shimwell et al. 2019) and also applied different flux density
cuts.

Another important point, is the performance of T-RECS com-
pared to the SKADS. Although we discuss the comparison between
them in detail in Appendix C, it is interesting tomention here, that
similarly to what we saw for the galaxy bias also applies on σ8 but
with an opposite behavior. By looking at the right panel of Fig. C1,
it is evident that the different redshift distributions can yield up
to ∼ 0.5σ parameter shift, assuming a constant galaxy bias model
and the 0.18 mJy flux density cut.

6. Conclusions

In this work we measured the galaxy clustering auto-correlation
harmonic-space power spectrum of the EMU PS1 data and its
cross-correlation with the CMB lensing convergence from Planck
PR4. Then we used these spectra in order to place constraints on
the galaxy bias bg and the amplitude of matter fluctuations σ8.

We studied this for a variety of models. First, we included
in our theoretical modelling a linear and a non-linear matter
power spectrum using HALOFIT and linear to mildly non-linear
scale range from � = 2 to 500. We also used the redshift distri-
bution from the SKADS simulation in our baseline analysis since
we found that using the T-RECS distribution gives consistent
results. Then, we assumed two galaxy bias models: a constant
redshift-independent galaxy bias b(z)= bg , and a constant ampli-
tude galaxy bias b(z)= bg/D(z), withD(z) the linear growth factor,
which accounts for the redshift evolution of the clustering of radio
galaxies.

For the data, we considered a flux density cut at 0.18 mJy and
an alternative more strict cut at 0.4 mJy, while we used the Selavy
and PyBDSF as our source detection algorithms. After we con-
structed the weight maps for the two catalogues and propagated
their effect in a pseudo-C� analysis, we fitted our data with our
theory models in order to put constraints on bg and σ8. This was
achieved with an MCMC analysis and using a Gaussian covari-
ance matrix. Below we summarise the most important results
we found:

• The auto-correlation spectra for EMU PS1 using the
Selavy and PyBDSF detection algorithms start to devi-
ate significantly (more than our measurement errors) for
�� 250 at the 0.18 mJy flux density cut. This is due to the
fact that the former algorithm categorises large structures
as single objects, while the latter categorises possible sub-
structures near amain object as different objects. This way,
more detected sources lead to a higher power spectrum as
measured by PyBDSF. Nonetheless, since both algorithms
could be right or wrong on this aspect (finding false neg-
atives or false positives), we ignore scales above 250. To

account for any residual uncertainty remaining on the
number of sources, we add an extra shot-noise parame-
ter Asn in our modelling. We did not report any difference
for the 0.4 mJy flux density cut where we kept all the
scale range a fact that resulted later in increasing the
constraining power by ∼ 30% on galaxy bias and σ8.

• We found a ∼5.5 σ detection between the EMU PS1 and
the CMB lensing independent of flux density cut.

• At the scale regime where our algorithms agreed, we chose
Selavy for our baseline analysis and we placed constraints
on the galaxy bias by fixing the cosmological parame-
ters using auto-correlation, cross-correlation spectra and
their combination. All the different models and flux den-
sity cuts yield consistent results. We found that there is
a shift of ∼ 0.5σ depending on the linear and non-linear
HALOFIT matter power spectrum which is a systematic
effect, related to the non-linear galaxy bias modelling.
Assuming a HALOFIT model and the 0.18 mJy (0.4 mJy)
flux density cut on the combined spectra, we report a
constant galaxy bias of bg = 2.32+0.41

−0.33 (bg = 2.18+0.17
−0.25) and

a constant amplitude galaxy bias of bg = 1.72+0.31
−0.21 (bg =

1.78+0.22
−0.15).

• After freeing σ8 for the same theory model and flux den-
sity cut choices we found σ8 = 0.68+0.16

−0.14 for the constant
bias and σ8 = 0.61+0.18

−0.20 for the constant amplitude model.
These values increase slightly for the 0.4 mJy flux den-
sity cut at σ8 = 0.82± 0.10 and σ8 = 0.78+0.11

−0.09, respectively.
These values are in very good agreement with the Planck
CMB measurements (Planck Collaboration et al. 2020a),
and the weak lensing surveys of Dark Energy Survey
(DES; Abbott et al. 2022) and Kilo Degree Survey (KiDS;
Heymans et al. 2021).

This paper highlights the possibility to break the degeneracy
between the galaxy bias bg and the amplitude of the matter fluc-
tuations σ8 by using auto-correlation and cross-correlation of the
radio continuum galaxy sample from the EMU PS1 with the CMB
lensing convergence as from Planck PR4. The largest bottleneck
for the deep radio continuum samples remains the insufficient
information on their redshift distribution. There is ongoing work
on the cross-correlation of EMU PS1 data with optical galaxies
from DES dealing with the modelling of the redshift distribution
(Saraf et al. 2025). In coming years there will bemore data covering
a larger fraction of the sky (∼ 50%), which will certainly reduce the
uncertainties on the galaxy bias and the cosmological parameters.
In addition, large optical surveys like Euclid can help in reduc-
ing the uncertainties on the redshift estimates of the radio galaxy
sample (Bahr-Kalus et al., in preparation). This will be achieved
by cross-matching radio galaxies with their optical counterparts at
known redshifts. This work is only a first step of what EMU survey
can achieve even with the pilot survey data covering a relatively
small and contiguous patch of sky (∼ 270 deg2). Eventually, by
combining its deep observations with the large sky area, EMU will
manage to probe the matter distribution of the large-scale struc-
ture at huge volumes, which will be ideal for studies on extensions
to the �CDM model (e.g. Alonso et al. 2015; Camera et al. 2012;
Bernal et al. 2019).
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Appendix A. Quadratic galaxy bias model

Here, we test the quadratic galaxy bias model, which as we saw in
Section 4.2 is a polynomial function in redshift b(z)= b0 + b1z +
b2z2 that has three free parameters: b0, b1 and b2. We assume a
positive flat prior for b0, while we allow both negative and positive
values for the flat priors of b1 and b2, which correspond to the red-
shift dependence and the evolution of the galaxy bias. In Fig. A1
we show the constraints of the quadratic galaxy bias model param-
eters and keep σ8 to its fiducial value. These are shown with the
grey contours for which we assume only the auto-correlation C̃gg ,
a HALOFIT power spectrum, the redshift distribution of SKADS and
the flux density cut of 0.18 mJy. The results are similar, whether
we consider a linear power spectrum, a T-RECS distribution or

Figure A1. The 68% and 95% confidence intervals of the marginalised contours and
the one-dimensional posteriors for the galaxy bias parameters of the quadratic (grey),
the constant model (orange) and Asn. Also, the Selavy catalogue was used and we
considered a flux density cut at 0.18 mJy. We assumed a fixed cosmology, an SKADS
distribution and a HALOFIT power spectrum.

a flux density cut at 0.4 mJy. On top of these results, we present
the constraints of the same fiducial case for the constant galaxy
bias model, which are shown with the orange contour. We can
appreciate that the results we obtain with the considerably less
constraining quadratic model are consistent with those from the
constant galaxy bias. That is, the parameter b0, while poorly con-
strained, agrees with the bg estimate of the simple model and the
other higher order parameters (b1, b2) are consistent with the zero
value.

These results mean that the data are not constraining enough
to show any other preference for the galaxy bias apart from the
single parameter models. This is also verified by the large value
in the goodness-of-fit, which is found to be χ 2

ν ∼ 3. Therefore, we
opt not to consider the quadratic model for the fiducial analysis in
Section 5.

Finally, we note that another possibility could be to use an
intermediate linear model b(z)= b0 + b1z which is empirical, but
we do not opt to do so here, since we still have an extra parameter
compared to the constant bias and the constant amplitude models
we use in our fiducial analysis which have only a single parameter.
However, we plan to explore this intermediate model in a future
work using more data that will improve our constraining power.

Appendix B. Comparison with sample covariance

In order to test the robustness of our fiducial analysis against the
analytical covariance of Equation (14), we compare our pipeline
with one set of models using the sample covariance. We construct
1 000 mock realisations of correlated Planck PR4 CMB conver-
gence and galaxy density field using GLASS (Tessore et al. 2023).
The galaxy number density and survey area in simulations are
consistent with EMU PS1 (see Section 3.1). The redshifts of the
simulated set of galaxies follow the SKADS redshift distribution
with flux density cut at 0.18 mJy.
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Figure B1. Similar to Fig. A1 but only for the constant galaxy bias model between the
analytical Gaussian covariance (green) and the sample covariance (purple). The ver-
tical dashed black line marks the best-fit value as from Planck Collaboration et al.
(2020a).

We compute the pseudo-C� power spectra from simulations
with the samemethod described in Section 4.1. Then, we construct
the sample covariance as B

KWX,YZ
��′ = 1

Nm − 1

×
Nm∑
m=1

(
C̃WX,m

� − 〈
C̃WX

�

〉) (
C̃YZ,m

� − 〈
C̃YZ

�

〉)
, (B1)

where Nm is the total number of simulations, C̃WX,m
� is the power

spectrum estimated from themth simulation and

〈
C̃WX

�

〉= 1
Nm

Nm∑
m=1

C̃WX,m
� . (B2)

Although the numerical covariance can be an unbiased estima-
tor of the true covariance, its inverse is not and a correction must
be applied, known as the Anderson-Hartlap factor (Parvin 2004;
Hartlap, Simon, & Schneider 2007) which is

K−1 → Nm −Nd − 2
Nm − 2

K−1, (B3)

with Nd the size of the data vector. We find excellent agree-
ment between the results using the analytical Gaussian covariance
of Equation (14) with HALOFIT and the sample covariance of
Equation (B1) for the same fiducial cosmological model. These are
shown in Fig. B1.

Appendix C. Analysis with the T-RECS redshift distribution
and comparison with SKADS

As we can see in Figs. C1 and C2, the galaxy bias and σ8 results
obtained with the T-RECS redshift distribution are in total agree-
ment (very well within 1σ ) with those obtained in our baseline
analysis with the SKADS which we discussed in Sections 5.3 and

5.4. In addition, we can appreciate that the interplay between the
different flux density cuts, the galaxy bias models and the linear
and non-linear HALOFIT matter power spectra also applies for the
T-RECS. However, there is some systematic noticeable difference
compared to the results obtained with SKADS.

Regarding the galaxy bias constraints at fixed cosmology, we
note that for all the models with the T-RECS redshift distribu-
tion give lower galaxy bias results than SKADS to compensate for
its higher power. This is explained, as we already mentioned in
Section 3.1.2, due to the longer high-z tail of the SKADS, and
the more localized distribution of the T-RECS. Again, we choose
to report here only the values of the constant galaxy bias model
for the combined measurements (gg + gκ) of T-RECS with the
HALOFIT power spectrum. For the rest of the models we refer the
reader again to see from Tables C1 to C4. For the flux density cut
at 0.18 mJy, the constant model gives bg = 2.12+0.31

−0.26, while for the
constant amplitude model we find 1.64+0.27

−0.17. As for the flux density
cut at 0.4 mJy, T-RECS gives a constant bias of bg = 1.82+0.18

−0.15 and a
constant amplitude bias of 1.57± 0.21.

Focusing on the bg − σ8 results we shall discuss them in slightly
more detail here. Starting for the flux density cut at 0.18 mJy and
the constant bias model in the top left panel of Fig. C2 (and with
solid blue lines in the right panel of Fig. C1), we see that the SKADS
model gives larger bias estimates compared to the T-RECS model,
which was also found to be the case in the fixed cosmology case we
discussed in the previous paragraph, Now, in turn, this affects the
σ8 constraint which has a slightly opposite behavior (being larger)
to balance the effect. We can also notice here that the linear model
has a similar effect when it is compared to HALOFIT but to a lesser
extent. We report again here the best-fit values using HALOFIT
and SKADS for comparison, which gave σ8 = 0.68+0.16

−0.14, while now
T-RECS gives σ8 = 0.76± 0.15. It is evident that these measure-
ments are in great agreement with each other as well as with the
Planck best-fit value (vertical dashed black line in the panel), while
we observe a trend for lower σ8 values in the degeneracy direction
of the bg − σ8 space. The linear model estimates can be found in
Table C1.

As for the constraints of the constant amplitude model for the
same flux density cut (shown with dashed blue lines in the right
panel of Fig. C1), we can appreciate a similar behavior between
the different models but now at a smaller extent, while the whole
contour set (top right panel of Fig. C2) moves below and slightly
to the left from the contours we found for the constant bias model
(top left panel of Fig. C2) in the bg − σ8 plane, as expected due to
the lower values found for the amplitude bias. Similarly to what
we saw with the SKADS, there is a preference for lower σ8 values
in the degenerate direction and the best-fit value for T-RECS and
HALOFIT is σ8 = 0.65± 0.18, in agreement at 1σ with Planck (also
see linear model results are in Table C2).

Then, the results for the 0.4 mJy flux density cut and the con-
stant galaxy bias are along the same line concerning the interplay
between the linear and non-linear models, similarly to what we
showed for SKADS. As we discussed in Section 5.4, themost impor-
tant difference is the fact that in all the cases the galaxy bias values
are lower than those at the 0.18 mJy flux density cut and the σ8
constraints are higher. The HALOFIT model estimate for T-RECS
is σ8 = 0.82± 0.10 (again for the results of the linear model see
Table C3 and all the relevant models with the solid orange lines in
the right panel of Fig. C1). It is clear that now there is no prefer-
ence for lower values for σ8 and the Planck best-fit value is at the
centre of our contours.
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Figure C1. Same as Fig. 4 but now showing on top also the constraints using the T-RECS redshift distribution.

Finally, the constant amplitude bias values for T-RECS follow
the rational of what we have found for SKADS in Section 5.4. For
HALOFIT we get σ8 = 0.80+0.11

−0.09 (see Table C4 and dashed orange
lines in the right panel of Fig. C2).
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Figure C2. The 68% and 95% confidence intervals of the marginalised contours and the one-dimensional posteriors for the parameters bg, σ8 and Asn for the Selavy catalogue.
Top and bottom panels show the results for the flux density cut of 0.18 and 0.4mJy, while left and right panels correspond to the constant galaxy bias and the constant amplitude
model, respectively. Filled contours show constraints from SKADS and empty contours from T-RECS. Cold colours (black and green) denote the linear and warm colours (red and
orange) the HALOFIT power spectrum. Again, we remind the reader that the vertical dashed black line marks the best-fit value as from Planck Collaboration et al. (2020a).
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Table C1. Summary of the best-fit values and their 68% confidence intervals for the constant galaxy bias parameter
bg, the amplitude shot noise parameter Asn and the cosmological parameter σ8, at the flux density cut of 0.18 mJy.
The last two columns show the χ2ν and the PTE, respectively. These results concern gg, gκ and their combination
gg+ gκ assuming the redshift distributions SKADS and T-RECS and the linear and HALOFITmatter power spectrum.
(denoted in the table with ‘lin’ and ‘nl’, respectively.)

b(z)= bg at flux density cut 0.18 mJy

bg Asn σ8 χ2ν PTE

SKADS gg lin 2.67+0.52−0.45 0.99± 0.03 1.72 14%

nl 2.46+0.45−0.40 1.00± 0.03 1.66 16%

gκ lin 2.23± 0.40 1.11 35%

nl 2.03± 0.36 1.07 38%

gg+ gκ lin 2.51+0.25−0.42 1.00± 0.03 0.92 54%

nl 2.32+0.41−0.33 1.00± 0.03 0.96 49%

gg+ gκ(σ8 free) lin 3.29+0.90−1.40 1.01± 0.04 0.68+0.19−0.15 1.58 7.6%

nl 3.10+0.81−1.20 1.00± 0.04 0.68+0.16−0.14 1.34 17%

T-RECS gg lin 2.32+0.24−0.33 1.00± 0.03 1.78 13%

nl 2.20± 0.26 1.00± 0.03 1.74 14%

gκ lin 2.16± 0.39 1.19 29%

nl 1.95± 0.35 1.12 34%

gg+ gκ lin 2.28+0.21−0.29 0.99± 0.03 1.20 26%

nl 2.12+0.31−0.26 1.00± 0.03 1.15 30%

gg+ gκ(σ8 free) lin 2.61+0.65−0.91 1.00± 0.03 0.75± 0.15 1.43 13%

nl 2.36+0.58−0.78 1.00± 0.03 0.76± 0.15 1.37 16%

Table C2. Same as Table C1 but for the constant amplitude galaxy bias model. Note that we also add an extra column
that shows the galaxy bias constraints at the effective redshift zeff =

∫
zn(z)dz/

∫
n(z)dz given the SKADS and T-RECS n(z)

distributions.

b(z)= bg/D(z) at flux density cut 0.18 mJy

bg b(zeff) Asn σ8 χ2ν PTE

SKADS gg lin 2.00+0.31−0.27 3.75 1.00± 0.03 1.57 17%

nl 1.82+0.28−0.17 3.41 1.00± 0.03 1.52 19%

gκ lin 1.36± 0.23 2.55 0.96 47%

nl 1.26± 0.22 2.36 0.97 46%

gg+ gκ lin 1.85+0.28−0.23 3.47 1.00± 0.03 1.22 24%

nl 1.72+0.31−0.21 3.22 1.00± 0.03 1.36 15%

gg+ gκ(σ8 free) lin 2.83+0.94−1.30 5.30 1.00± 0.04 0.62± 0.19 1.28 21%

nl 2.66+0.96−1.30 4.99 1.00± 0.03 0.61+0.18−0.20 1.35 16%

T-RECS gg lin 1.87+0.27−0.16 3.31 1.00± 0.03 1.62 16%

nl 1.72+0.26−0.23 3.04 1.00± 0.03 1.49 20%

gκ lin 1.35± 0.24 2.39 1.02 42%

nl 1.25± 0.22 2.21 1.01 43%

gg+ gκ lin 1.76+0.25−0.19 3.12 1.00± 0.03 1.14 31%

nl 1.64+0.27−0.17 2.90 1.00± 0.03 1.30 19%

gg+ gκ(σ8 free) lin 2.50+0.74−1.20 4.43 1.00± 0.04 0, 64± 0.18 1.30 19%

nl 2.34+0.74−1.10 4.14 1.00± 0.03 0.65± 0.18 1.30 19%
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Table C3. Same as Table C1 but for the flux density cut of 0.4 mJy.

b(z)= bg at flux density cut 0.4 mJy

bg Asn σ8 χ2ν PTE

SKADS gg lin 2.44+0.29−0.39 1.00± 0.01 1.43 16%

nl 2.21+0.15−0.29 1.00± 0.01 1.24 26%

gκ lin 2.57± 0.46 1.25 25%

nl 2.34± 0.42 1.23 26%

gg+ gκ lin 2.37+0.27−0.35 1.00± 0.01 1.51 6.6%

nl 2.18+0.17−0.25 1.00± 0.01 0.96 50%

gg+ gκ(σ8 free) lin 2.51+0.43−0.58 1.00± 0.02 0.80+0.12−0.10 1.28 18%

nl 2.24+0.35−0.45 1.00± 0.02 0.81± 0.10 1.13 31%

T-RECS gg lin 2.15± 0.19 1.00± 0.01 1.72 7.8%

nl 1.89± 0.18 1.00± 0.01 1.27 24%

gκ lin 2.37± 0.44 1.37 18%

nl 2.12± 0.39 1.32 21%

gg+ gκ lin 2.07+0.20−0.16 1.00± 0.01 1.73 2.2%

nl 1.82+0.18−0.15 1.00± 0.01 1.09 35%

gg+ gκ(σ8 free) lin 2.09+0.26−0.31 1.00± 0.02 0.82± 0.11 1.52 6.7%

nl 1.82+0.23−0.27 1.00± 0.02 0.82± 0.10 1.22 23%

Table C4. Same as Table C2 but for the flux density cut of 0.4 mJy.

b(z)= bg/D(z) at flux density cut 0.4 mJy

bg b(zeff) Asn σ8 χ2ν PTE

SKADS gg lin 2.00± 0.16 3.88 1.00± 0.01 0.99 44%

nl 1.84± 0.17 3.57 1.00± 0.01 0.99 44%

gκ lin 1.57± 0.28 3.04 1.08 37%

nl 1.47± 0.26 2.85 1.10 35%

gg+ gκ lin 1.93+0.16−0.11 3.75 1.00± 0.01 0.93 55%

nl 1.78+0.22−0.15 3.45 1.00± 0.01 1.04 41%

gg+ gκ(σ8 free) lin 2.01+0.28−0.39 3.90 1.00± 0.02 0.78+0.11−0.07 0.93 54%

nl 1.89+0.32−0.44 3.67 1.00± 0.02 0.78+0.11−0.09 1.05 40%

T-RECS gg lin 1.81+0.18−0.11 3.14 1.00± 0.01 1.23 27%

nl 1.63+0.23−0.19 2.83 1.00± 0.01 1.83 5.7%

gκ lin 1.53± 0.28 2.66 1.17 30%

nl 1.41± 0.25 2.45 1.17 30%

gg+ gκ lin 1.75+0.20−0.11 3.04 1.00± 0.01 1.06 38%

nl 1.57± 0.21 2.72 1.00± 0.01 1.55 5.5%

gg+ gκ(σ8 free) lin 1.79+0.22−0.28 3.11 1.00± 0.02 0.80+0.11−0.09 1.10 34%

nl 1.59+0.29−0.34 2.76 1.00± 0.02 0.80+0.11−0.09 1.46 8.8%
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