Book contents
- Frontmatter
- Contents
- Contributors
- Preface
- 1 Remarks on recent advances concerning boundary effects and the vanishing viscosity limit of the Navier–Stokes equations
- 2 Time-periodic flow of a viscous liquid past a body
- 3 The Rayleigh–Taylor instability in buoyancy-driven variable density turbulence
- 4 On localization and quantitative uniqueness for elliptic partial differential equations
- 5 Quasi-invariance for the Navier–Stokes equations
- 6 Leray’s fundamental work on the Navier–Stokes equations: a modern review of “Sur le mouvement d’un liquide visqueux emplissant l’espace”
- 7 Stable mild Navier–Stokes solutions by iteration of linear singular Volterra integral equations
- 8 Energy conservation in the 3D Euler equations on T2 × R+
- 9 Regularity of Navier–Stokes flows with bounds for the velocity gradient along streamlines and an effective pressure
- 10 A direct approach to Gevrey regularity on the half-space
- 11 Weak-Strong Uniqueness in Fluid Dynamics
2 - Time-periodic flow of a viscous liquid past a body
Published online by Cambridge University Press: 15 August 2019
- Frontmatter
- Contents
- Contributors
- Preface
- 1 Remarks on recent advances concerning boundary effects and the vanishing viscosity limit of the Navier–Stokes equations
- 2 Time-periodic flow of a viscous liquid past a body
- 3 The Rayleigh–Taylor instability in buoyancy-driven variable density turbulence
- 4 On localization and quantitative uniqueness for elliptic partial differential equations
- 5 Quasi-invariance for the Navier–Stokes equations
- 6 Leray’s fundamental work on the Navier–Stokes equations: a modern review of “Sur le mouvement d’un liquide visqueux emplissant l’espace”
- 7 Stable mild Navier–Stokes solutions by iteration of linear singular Volterra integral equations
- 8 Energy conservation in the 3D Euler equations on T2 × R+
- 9 Regularity of Navier–Stokes flows with bounds for the velocity gradient along streamlines and an effective pressure
- 10 A direct approach to Gevrey regularity on the half-space
- 11 Weak-Strong Uniqueness in Fluid Dynamics
Summary
We investigate existence, uniqueness and regularity of time-periodic solutions to the Navier-Stokes equations governing the flow of a viscous liquid past a three-dimensional body moving with a time-periodic translational velocity. The net motion of the body over a full time-period is assumed to be non-zero. In this case, the appropriate linearization is the time-periodic Oseen system in a three-dimensional exterior domain. A priori L^q estimates are established for this linearization. Based on these "maximal regularity" estimates, existence and uniqueness of smooth solutions to the fully nonlinear Navier-Stokes problem is obtained by the contraction mapping principle.
Keywords
- Type
- Chapter
- Information
- Partial Differential Equations in Fluid Mechanics , pp. 20 - 49Publisher: Cambridge University PressPrint publication year: 2018
- 8
- Cited by