Published online by Cambridge University Press: 15 August 2019
We investigate existence, uniqueness and regularity of time-periodic solutions to the Navier-Stokes equations governing the flow of a viscous liquid past a three-dimensional body moving with a time-periodic translational velocity. The net motion of the body over a full time-period is assumed to be non-zero. In this case, the appropriate linearization is the time-periodic Oseen system in a three-dimensional exterior domain. A priori L^q estimates are established for this linearization. Based on these "maximal regularity" estimates, existence and uniqueness of smooth solutions to the fully nonlinear Navier-Stokes problem is obtained by the contraction mapping principle.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.