Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T11:49:04.295Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  25 October 2017

J. S. Milne
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Algebraic Groups
The Theory of Group Schemes of Finite Type over a Field
, pp. 627 - 636
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. 2013. Galois cohomology of real groups. arxiv:1310.7917.
Adams, J. F. 1969. Lectures on Lie groups. W. A. Benjamin, Inc., New York and Amsterdam.
Allcock, D. 2009. A new approach to rank one linear algebraic groups. J. Algebra 321:2540–2544.CrossRef
Balaji, V., Deligne, P., and Parameswaran, A. J. 2016. On complete reducibility in characteristic p. arxiv:1607.08564.
Barsotti, I. 1953. A note on abelian varieties. Rend. Circ. Mat. Palermo (2) 2:236–257.CrossRefGoogle Scholar
Barsotti, I. 1955. Un teorema di struttura per le variet`a gruppali. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 18:43–50.Google Scholar
Bate, M., Martin, B., Röhrle, G., and Tange, R. 2010. Complete reducibility and separability. Trans. Amer. Math. Soc. 362:4283–4311.CrossRefGoogle Scholar
Bergman, G. M. 1978. The diamond lemma for ring theory. Adv. in Math. 29:178–218.CrossRefGoogle Scholar
Berrick, A. J. and Keating, M. E. 2000. An introduction to rings and modules with K-theory in view. Cambridge Studies in Advanced Mathematics, Vol. 65. Cambridge University Press, Cambridge.
BiałYnicki-Birula, A. 1973. Some theorems on actions of algebraic groups. Ann. of Math. (2) 98:480–497.CrossRefGoogle Scholar
BiałYnicki-Birula, A. 1976. Some properties of the decompositions of algebraic varieties determined by actions of a torus. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 24:667–674.Google Scholar
Birkhoff, G. 1937. Representability of Lie algebras and Lie groups by matrices. Ann. of Math. (2) 38:526–532.CrossRefGoogle Scholar
Borel, A. 1956. Groupes linéaires algébriques. Ann. of Math. (2) 64:20–82.CrossRefGoogle Scholar
Borel, A. 1970. Properties and linear representations of Chevalley groups, pp. 1– 55. In Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, NJ, 1968/69), Lecture Notes in Mathematics, Vol. 131. Springer-Verlag, Berlin.
Borel, A. 1975. Linear representations of semi-simple algebraic groups, pp. 421–440. In Algebraic geometry (Proceedings of Symposia in Pure Mathematics, Vol. 29, Humboldt State University, Arcata, Calif., 1974). American Mathematical Society, Providence, RI.
Borel, A. 1985. On affine algebraic homogeneous spaces. Arch. Math. (Basel) 45:74–78.CrossRefGoogle Scholar
Borel, A. 1991. Linear algebraic groups. Graduate Texts in Mathematics, Vol. 126. Springer-Verlag, Berlin.
Borel, A. and Harder, G. 1978. Existence of discrete cocompact subgroups of reductive groups over local fields. J. Reine Angew. Math. 298:53–64.Google Scholar
Borel, A. and Springer, T. A. 1966. Rationality properties of linear algebraic groups, pp. 26–32. In Algebraic Groups and Discontinuous Subgroups (Proceedings of Symposia in Pure Mathematics, Boulder, CO, 1965). American Mathematical Society, Providence, RI.
Borel, A. and Springer, T. A. 1968. Rationality properties of linear algebraic groups. II. Tˆohoku Math. J. (2) 20:443–497.CrossRefGoogle Scholar
Borel, A. and Tits, J. 1965. Groupes reductifs. Inst. Hautes Etudes Sci. Publ. Math. 27:55–150.CrossRef
Borel, A. and Tits, J. 1972. Compléments à l'article: “Groupes réductifs”. Inst. Hautes Études Sci. Publ. Math. 41:253–276.CrossRef
Borel, A. and Tits, J. 1978. Théorèmes de structure et de conjugaison pour les groupes algébriques linéaires. C. R. Acad. Sci. Paris Sér. A-B 287:A55–A57.Google Scholar
Borovoi, M. 2014. Galois cohomology of reductive algebraic groups over the field of real numbers. arxiv:1401.5913.
Borovoi, M. and Timashev, D. A. 2015. Galois cohomology of real semisimple groups. arxiv:1506.06252.
Bosch, S., Lütkebohmert, W., and Raynaud, M. 1990. Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 21. Springer-Verlag, Berlin.
Bourbaki, N. 1958. Algèbre. Chapitre 8: Modules et anneaux semi-simples. Hermann, Paris.
Bourbaki, N. 1968. Groupes et algèbres de Lie. Chapitres 4, 5 et 6. Hermann, Paris.
Bourbaki, N. 1972. Groupes et algèbres de Lie. Chapitres 2 et 3. Hermann, Paris.
Bourbaki, N. 1975. Groupes et algèbres de Lie. Chapitres 7 et 8. Hermann, Paris.
Brion, M. 2009. Anti-affine algebraic groups. J. Algebra 321:934–952.CrossRefGoogle Scholar
Brion, M. 2015a. On extensions of algebraic groups with finite quotient. Pacific J. Math. 279:135–153.Google Scholar
Brion, M. 2015b. Some structure theorems for algebraic groups. arxiv:1509.03059.
Brion, M. 2016. Epimorphic subgroups of algebraic groups. arxiv:1605.07769.
Brion, M., Samuel, P., and Uma, V. 2013. Lectures on the structure of algebraic groups and geometric applications. CMI Lecture Series in Mathematics, Vol 1. Hindustan Book Agency, New Delhi.
Brochard, S. 2014. Topologies de Grothendieck, descente, quotients, pp. 1–62. In Autour des schémas en groupes Vol. I, Panoramas et Synthèses, Vol. 42/43. Société Mathématique de France, Paris.Google Scholar
Brosnan, P. 2005. On motivic decompositions arising from the method of Białynicki- Birula. Invent. Math. 161:91–111.CrossRef
Bruhat, F. and Tits, J. 1987. Groupes algébriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie galoisienne. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34:671–698.Google Scholar
Cartier, P. 1962. Groupes algébriques et groupes formels, pp. 87–111. In Colloque sur la Théorie des Groupes Algébriques (Bruxelles, 1962). Librairie Universitaire, Louvain.
Cartier, P. 2005. Sur les problèmes de classification des groups, pp. 266–274. In Classification des groupes algébriques semi-simples (Collected works, Vol. 3). Springer- Verlag, Berlin.
Casselman, B. 2015. On Chevalley's formula for structure constants. J. Lie Theory 25:431–441.Google Scholar
Cayley, A. 1846. Sur quelques propriétés des déterminants gauches. J. Reine Angew. Math. 32:119–123.CrossRefGoogle Scholar
Chernousov, V.I. 1989. The Hasse principle for groups of type E8. Dokl. Akad. Nauk SSSR 306:1059–1063.Google Scholar
Chevalley, C.C. 1955a. Sur certains groupes simples. Tôhoku Math. J. (2) 7:14–66.Google Scholar
Chevalley, C.C. 1955b. Théorie des groupes de Lie. Tome III. Théorèmes généraux sur les algèbres de Lie. Actualités Scientifiques et Industrielles no. 1226. Hermann, Paris.
Chevalley, C.C. 1956–58. Classification des groupes de Lie algébriques, Seminaire ENS, Paris. mimeographed. Reprinted by Springer-Verlag, Berlin, 2005.
Chevalley, C.C. 1960. Une démonstration d'un théorème sur les groupes algébriques. J. Math. Pures Appl. (9) 39:307–317.Google Scholar
Chevalley, C.C. 1961. Certains schémas de groupes semi-simples, pp. 219–234. In Séminaire Bourbaki, Vol. 6 Exp. No. 219. Société Mathématique de France, Paris.
Conrad, B. 2014. Reductive group schemes, pp. 93–444. In Autour des schémas en groupes. Vol. I, Panoramas et Synthèses, Vol. 42/43. Société Mathématique de France, Paris.
Conrad, B., Gabber, O., and Prasad, G. 2015. Pseudo-reductive groups. New Mathematical Monographs, Vol. 26. Cambridge University Press, Cambridge, second edition.
De Graaf, W. A. 2007. Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2. J. Algebra 309:640–653.CrossRefGoogle Scholar
Deligne, P. 1990. Catégories tannakiennes, pp. 111–195. In The Grothendieck Festschrift, Vol. II, Progress in Mathematics. Birkhäuser Boston, Boston, MA.
Deligne, P. 2014. Semi-simplicité de produits tensoriels en caractéristique p. Invent. Math. 197:587–611.CrossRef
Deligne, P. and Lusztig, G. 1976. Representations of reductive groups over finite fields. Ann. of Math. (2) 103:103–161.CrossRefGoogle Scholar
Deligne, P. and Milne, J.S. 1982. Tannakian categories, pp. 101–228. In Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, Vol. 900. Springer-Verlag, Berlin.
Demazure, M. 1965. Schémas en groupes réductifs. Bull. Soc. Math. France 93:369– 413.CrossRefGoogle Scholar
Demazure, M. 1972. Lectures on p-divisible groups. Lecture Notes in Mathematics, Vol. 302. Springer-Verlag, Berlin.
Demazure, M. and Gabriel, P. 1966. Séminaire Heidelberg–Strasbourg 1965–66 (Groupes Algébriques). Multigraphié par l'Institut de Mathématique de Strasbourg, 406 pages. Cited as SHS.
Demazure, M. and Gabriel, P. 1970. Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. Masson, Paris. Cited as DG.
Demazure, M. and Grothendieck, A. 1964. Schémas en groupes (SGA 3). Séminaire de Géométrie Algébrique du Bois Marie 1962–64. Dirigé par M., Demazure et A., Grothendieck. Multigraphié par I.H.E.S; reprinted by Springer-Verlag, Berlin: Lecture Notes in Mathematics, Vols 151, 152, 153 (1970).
Demazure, M. and Grothendieck, A. 2011. Schémas en groupes (SGA 3). Séminaire de Géométrie Algébrique du Bois Marie 1962–64. Dirigé par M., Demazure et A., Grothendieck. Documents Mathématiques, Vol. 7,8. Société Mathématique de France, Paris. Revised edition of Demazure and Grothendieck 1964. Annotated and edited by Gille, P., and Polo, P.. Cited as SGA 3.
DokovíC, D.Z. 1988. An elementary proof of the structure theorem for connected solvable affine algebraic groups. Enseign. Math. (2) 34:269–273.Google Scholar
Fogarty, J. 1973. Fixed point schemes. Amer. J. Math. 95:35–51.CrossRefGoogle Scholar
Fogarty, J. and Norman, P. 1977. A fixed-point characterization of linearly reductive groups, pp. 151–155. In Contributions to algebra (collection of papers dedicated to Ellis Kolchin). Academic Press, New York.
Fossum, R. and Iversen, B. 1973. On Picard groups of algebraic fibre spaces. J. Pure Appl. Algebra 3:269–280.CrossRefGoogle Scholar
Garibaldi, R.S. 1998. Isotropic trialitarian algebraic groups. J. Algebra 210:385–418.CrossRefGoogle Scholar
Garibaldi, R.S. 2001. Groups of type E7 over arbitrary fields. Comm. Algebra 29:2689–2710.CrossRefGoogle Scholar
Garibaldi, S. 2016. E8, the most exceptional group. Bull. Amer. Math. Soc. (N.S.) 53:643–671.CrossRefGoogle Scholar
Geck, M. 2016. On the construction of semisimple Lie algebras and Chevalley groups. arxiv:1602.04583.
Grothendieck, A. 1967. Eléments de géométrie algébrique. Publ. Math. IHES 4, 8, 11, 17, 20, 24, 28, 32. (1960–67) En collaboration avec J. Dieudonné. Cited as EGA.
Grothendieck, A. 1972. Groupes de monodromie en géométrie algébrique. I. Lecture Notes in Mathematics, Vol. 288. Springer-Verlag, Berlin. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I).
Harder, G. 1965. Über einen Satz von E. Cartan. Abh. Math. Sem. Univ. Hamburg 28:208–214.CrossRefGoogle Scholar
Harder, G. 1966. Über die Galoiskohomologie halbeinfacher Matrizengruppen. II. Math. Z. 92:396–415.CrossRefGoogle Scholar
Harder, G. 1975. Über die Galoiskohomologie halbeinfacher algebraischer Gruppen. III. J. Reine Angew. Math. 274/275:125–138.Google Scholar
Harebov, A. and Vavilov, N. 1996. On the lattice of subgroups of Chevalley groups containing a split maximal torus. Comm. Algebra 24:109–133.CrossRefGoogle Scholar
Hartshorne, R. 1977. Algebraic geometry. Graduate Texts in Mathematics, Vol. 52. Springer-Verlag, Berlin.
Herpel, S. 2013. On the smoothness of centralizers in reductive groups. Trans. Amer. Math. Soc. 365:3753–3774.CrossRefGoogle Scholar
Hesselink, W.H. 1981. Concentration under actions of algebraic groups, pp. 55–89. In Paul Dubreil and Marie-Paule Malliavin Algebra Seminar, 33rd Year (Paris, 1980), Lecture Notes in Mathematics, Vol. 867. Springer-Verlag, Berlin.
Hochschild, G.P. 1981. Basic theory of algebraic groups and Lie algebras. Graduate Texts in Mathematics, Vol. 75. Springer-Verlag, Berlin.
Humphreys, J.E. 1972. Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, Berlin.
Humphreys, J.E. 1975. Linear algebraic groups. Graduate Texts in Mathematics, No. 21. Springer-Verlag, Berlin.
Humphreys, J.E. 1990. Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics, Vol. 29. Cambridge University Press, Cambridge.
Humphreys, J.E. 1995. Conjugacy classes in semisimple algebraic groups. Mathematical Surveys and Monographs, Vol. 43. American Mathematical Society, Providence, RI.
Iversen, B. 1972. A fixed point formula for action of tori on algebraic varieties. Invent. Math. 16:229–236.CrossRef
Iversen, B. 1976. The geometry of algebraic groups. Advances in Math. 20:57–85.CrossRefGoogle Scholar
Jacobson, N. 1962. Lie algebras. Interscience Tracts in Pure and Applied Mathematics, No. 10. Interscience Publishers, Inc., New York and London. Reprinted by Dover, New York, 1979.
Jacobson, N. 1985. Basic algebra. I. W. H. Freeman and Company, New York, second edition.
Jacobson, N. 1989. Basic algebra. II. W. H. Freeman and Company, New York, second edition.
Jantzen, J.C. 1997. Low-dimensional representations of reductive groups are semisimple, pp. 255–266. In Algebraic groups and Lie groups, Australian Mathematical Society Lecture Series., Vol. 9. Cambridge University Press, Cambridge.
Jantzen, J.C. 2003. Representations of algebraic groups. Mathematical Surveys and Monographs, Vol. 107. American Mathematical Society, Providence, RI, second edition.
Kambayashi, T., Miyanishi, M., and Takeuchi, M. 1974. Unipotent algebraic groups. Lecture Notes in Mathematics, Vol. 414. Springer-Verlag, Berlin.
Kambayashi, T. and Russell, P. 1982. On linearizing algebraic torus actions. J. Pure Appl. Algebra 23:243–250.CrossRefGoogle Scholar
Kempf, G.R. 1976. Linear systems on homogeneous spaces. Ann. of Math. (2) 103:557– 591.CrossRefGoogle Scholar
Kneser, M. 1969. Lectures on Galois cohomology of classical groups. Tata Institute of Fundamental Research, Bombay.
Knus, M.-A., Merkurjev, A., Rost, M., and Tignol, J.-P. 1998. The book of involutions. American Mathematical Society Colloquium Publications, Vol. 44. American Mathematical Society, Providence, RI.
Kohls, M. 2011. A user friendly proof of Nagata's characterization of linearly reductive groups in positive characteristics. Linear Multilinear Algebra 59:271–278.CrossRefGoogle Scholar
Kolchin, E.R. 1948. Algebraic matric groups and the Picard–Vessiot theory of homogeneous linear ordinary differential equations. Ann. of Math. (2) 49:1–42.CrossRefGoogle Scholar
Kostant, B. 1966. Groups over Z, pp. 90–98. In Algebraic Groups and Discontinuous Subgroups (Proceedings of Symposia in Pure Mathematics, Vol. 9, Boulder, CO, 1965). American Mathematical Society, Providence, RI.
Lang, S. 1956. Algebraic groups over finite fields. Amer. J. Math. 78:555–563.CrossRefGoogle Scholar
Lang, S. 2002. Algebra. Graduate Texts in Mathematics, Vol. 211. Springer-Verlag, Berlin.
Lazard, M. 1955. Sur les groupes de Lie formels à un paramètre. Bull. Soc. Math. France 83:251–274.CrossRefGoogle Scholar
Lemire, N., Popov, V.L., and Reichstein, Z. 2006. Cayley groups. J. Amer. Math. Soc. 19:921–967.CrossRefGoogle Scholar
Luna, D. 1999. Retour sur un théorème de Chevalley. Enseign. Math. (2) 45:317–320.Google Scholar
Lusztig, G. 2009. Study of a Z-form of the coordinate ring of a reductive group. J. Amer. Math. Soc. 22:739–769.CrossRefGoogle Scholar
Mac Lane, S. 1969. One universe as a foundation for category theory, pp. 192–200. In Reports of the Midwest Category Seminar. III, Lecture Notes in Mathematics, Vol. 195. Springer-Verlag, Berlin.
Mac Lane, S. 1971. Categories for the working mathematician. Graduate Texts in Mathematics, Vol. 5. Springer-Verlag, Berlin.
Magid, A. 2011. The Hochschild–Mostow group. Notices Amer. Math. Soc. 58:1089– 1090.Google Scholar
Malle, G. and Testerman, D. 2011. Linear algebraic groups and finite groups of Lie type. Cambridge Studies in Advanced Mathematics, Vol. 133. Cambridge University Press, Cambridge.
Matsumura, H. 1986. Commutative ring theory. Cambridge Studies in Advanced Mathematics, Vol. 8. Cambridge University Press, Cambridge.
Matsusaka, T. 1953. Some theorems on Abelian varieties. Nat. Sci. Rep. Ochanomizu Univ. 4:22–35.Google Scholar
Mcninch, G. 2013. On the descent of Levi factors. Arch. Math. (Basel) 100:7–24.CrossRefGoogle Scholar
Mcninch, G.J. 1998. Dimensional criteria for semisimplicity of representations. Proc. London Math. Soc. (3) 76:95–149.CrossRefGoogle Scholar
Mcninch, G.J. 2005. Optimal SL.2/-homomorphisms. Comment. Math. Helv. 80:391– 426.CrossRefGoogle Scholar
Mcninch, G.J. 2010. Levi decompositions of a linear algebraic group. Transform. Groups 15:937–964.CrossRefGoogle Scholar
Mcninch, G.J. 2014a. Levi factors of the special fiber of a parahoric group scheme and tame ramification. Algebr. Represent. Theory 17:469–479.Google Scholar
Mcninch, G.J. 2014b. Linearity for actions on vector groups. J. Algebra 397:666–688.Google Scholar
Milne, J.S. 1986. Abelian varieties, pp. 103–150. In Arithmetic geometry (Storrs, Conn., 1984). Springer-Verlag, Berlin.
Milne, J.S. 2007. Semisimple algebraic groups in characteristic zero. arxiv:0705.1348.
Milne, J.S. 2013. A proof of the Barsotti–Chevalley theorem on algebraic groups. arxiv:1311.6060.
Milne, J.S. 2017. A primer of commutative algebra, v4.02. Available at www.jmilne.org/math and http://hdl.handle.net/2027.42/136228. Cited as CA.
Milne, J.S. and Shih, K.-Y. 1982. Conjugates of Shimura varieties, pp. 280–356. In Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, Vol. 900. Springer-Verlag, Berlin.
MirkovĆ, I. and Vilonen, K. 2007. Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. of Math. (2) 166:95–143.CrossRefGoogle Scholar
Müller, P. 2003. Algebraic groups over finite fields, a quick proof of Lang's theorem. Proc. Amer. Math. Soc. 131:369–370.CrossRefGoogle Scholar
Mumford, D. 1970. Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, Vol. 5. Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London.
Mumford, D., Fogarty, J., and Kirwan, F. 1994. Geometric invariant theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (2), Vol. 34. Springer-Verlag, Berlin, third edition.
Nagata, M. 1960. On the fourteenth problem of Hilbert, pp. 459–462. In Proceedings International Congress of Mathematics 1958. Cambridge University Press, Cambridge.
Nagata, M. 1961/1962. Complete reducibility of rational representations of a matric group. J. Math. Kyoto Univ. 1:87–99.Google Scholar
Nielsen, H.A. 1974. Diagonalizably linearized coherent sheaves. Bull. Soc. Math. France 102:85–97.CrossRefGoogle Scholar
Nori, M.V. 1987. On subgroups of GLn.Fp/. Invent. Math. 88:257–275.CrossRef
Oesterĺe, J. 1984. Nombres de Tamagawa et groupes unipotents en caractéristique p. Invent. Math. 78:13–88.CrossRef
Oort, F. 1966. Algebraic group schemes in characteristic zero are reduced. Invent. Math. 2:79–80.CrossRef
Pink, R. 2004. On Weil restriction of reductive groups and a theorem of Prasad. Math. Z. 248:449–457.CrossRefGoogle Scholar
Platonov, V. and Rapinchuk, A. 1994. Algebraic groups and number theory. Pure and Applied Mathematics, Vol. 139. Academic Press Inc., Boston, MA.
Popov, V.L. 2015. On the equations defining affine algebraic groups. Pacific J. Math. 279:423–446.CrossRefGoogle Scholar
Prasad, G. and Rapinchuk, A.S. 2006. On the existence of isotropic forms of semi-simple algebraic groups over number fields with prescribed local behavior. Adv. Math. 207:646–660.CrossRefGoogle Scholar
Prasad, G. and Yu, J.-K. 2006. On quasi-reductive group schemes. J. Algebraic Geom. 15:507–549. With an appendix by Brian Conrad.CrossRefGoogle Scholar
Raghunathan, M.S. 2015. On Chevalley's Z-form. Indian J. Pure Appl. Math. 46:695–700.CrossRef
Raynaud, M. 1970. Faisceaux amples sur les schémas en groupes et les espaces homogènes. Lecture Notes in Mathematics, Vol. 119. Springer-Verlag, Berlin.
Ree, R. 1964. Commutators in semi-simple algebraic groups. Proc. Amer. Math. Soc. 15:457–460.CrossRefGoogle Scholar
Richardson, R.W. 1977. Affine coset spaces of reductive algebraic groups. Bull. London Math. Soc. 9:38–41.CrossRefGoogle Scholar
Rosenlicht, M. 1956. Some basic theorems on algebraic groups. Amer. J. Math. 78:401–443.CrossRefGoogle Scholar
Rosenlicht, M. 1957. Some rationality questions on algebraic groups. Ann. Mat. Pura Appl. (4) 43:25–50.CrossRefGoogle Scholar
Rosenlicht, M. 1961. Toroidal algebraic groups. Proc. Amer. Math. Soc. 12:984–988.CrossRefGoogle Scholar
Rosenlicht, M. 1963. Questions of rationality for solvable algebraic groups over nonperfect fields. Ann. Mat. Pura Appl. (4) 61:97–120.CrossRefGoogle Scholar
Russell, P. 1970. Forms of the affine line and its additive group. Pacific J. Math. 32:527–539.CrossRefGoogle Scholar
Saavedra Rivano, N. 1972. Catégories Tannakiennes. Lecture Notes in Mathematics, Vol. 265. Springer-Verlag, Berlin.
Sancho De Salas, C. 2001. Grupos algebraicos y teoŕıa de invariantes. Aportaciones Matemáticas: Textos, Vol. 16. Sociedad Matemática Mexicana, México.
Sancho De Salas, C. and Sancho De Salas, F. 2009. Principal bundles, quasiabelian varieties and structure of algebraic groups. J. Algebra 322:2751–2772.CrossRefGoogle Scholar
Satake, I. 1963. On the theory of reductive algebraic groups over a perfect field. J. Math. Soc. Japan 15:210–235.CrossRefGoogle Scholar
Satake, I. 1967. Symplectic representations of algebraic groups satisfying a certain analyticity condition. Acta Math. 117:215–279.CrossRefGoogle Scholar
Satake, I. 1971. Classification theory of semi-simple algebraic groups. Lecture Notes in Pure and Applied Mathematics, Vol. 3. Marcel Dekker, Inc., New York. With an appendix by M. Sugiura.
Scharlau, W. 1985. Quadratic and Hermitian forms. Grundlehren der Mathematischen Wissenschaften, Vol. 270. Springer-Verlag, Berlin.
Selbach, M. 1976. Klassifikationstheorie halbeinfacher algebraischer Gruppen. Mathematisches Institut der Universität Bonn, Bonn. Diplomarbeit, Universität Bonn, Bonn, 1973, Bonner Mathematische Schriften, Nr. 83.
Serre, J.-P. 1959. Groupes algébriques et corps de classes. Publications de l'institut de mathématique de l'université de Nancago, VII. Hermann, Paris. Translated as Algebraic groups and class fields, Springer-Verlag, Berlin, 1988.
Serre, J.-P. 1962. Corps locaux. Publications de l'institut de mathématique de l'université de Nancago, VIII. Hermann, Paris. Translated as Local fields, Springer- Verlag, Berlin, 1979.
Serre, J.-P. 1966. Algèbres de Lie semi-simples complexes. W. A., Benjamin, Inc., New York and Amsterdam. Translated as Complex semisimple Lie algebras, Springer-Verlag, Berlin, 1987.
Serre, J.-P. 1970. Cours d'arithmétique. Collection SUP: “Le Mathématicien”, Vol. 2. Presses Universitaires de France, Paris. Translated as A Course in Arithmetic, Springer- Verlag, Berlin, 1973.
Serre, J.-P. 1993. Gèbres. Enseign. Math. (2) 39:33–85.Google Scholar
Serre, J.-P. 1994. Sur la semi-simplicité des produits tensoriels de représentations de groupes. Invent. Math. 116:513–530.CrossRef
Serre, J.-P. 1997. Galois cohomology. Springer-Verlag, Berlin. Translation of Cohomologie Galoisienne; revised by the author.
Sopkina, E. 2009. Classification of all connected subgroup schemes of a reductive group containing a split maximal torus. J. K-Theory 3:103–122.CrossRefGoogle Scholar
Springer, T.A. 1977. Invariant theory. Lecture Notes in Mathematics, Vol. 585. Springer-Verlag, Berlin.
Springer, T.A. 1979. Reductive groups, pp. 3–27. In Automorphic forms, representations and L-functions (Proceedings of Symposia in Pure Mathematics, Vol. 33, Part 1, Oregon State University, Corvallis, OR, 1977). American Mathematical Society, Providence, RI.
Springer, T.A. 1994. Linear algebraic groups, pp. 1–121. In Algebraic geometry. IV, Encyclopaedia of Mathematical Sciences, Vol. 55. Springer-Verlag, Berlin. (Translation of Algebraicheskaya geometriya 4, VNINITI, Moscow, 1989).
Springer, T.A. 1998. Linear algebraic groups. Progress in Mathematics, Vol. 9. Birkhäuser Boston, Boston, MA.
Springer, T.A. and Veldkamp, F.D. 2000. Octonions, Jordan algebras and exceptional groups. Springer Monographs in Mathematics. Springer-Verlag, Berlin.
Steinberg, R. 1965. Regular elements of semisimple algebraic groups. Inst. Hautes Etudes Sci. Publ. Math. pp. 49–80. Reprinted in Serre 1997.
Steinberg, R. 1967. Lectures on Chevalley groups. Department of Mathematics, Yale University. mimeographed notes (reprinted by the American Mathematical Society, 2016).
Steinberg, R. 1968. Endomorphisms of linear algebraic groups. Memoirs of the American Mathematical Society, No. 80. American Mathematical Society, Providence, RI.
Steinberg, R. 1999. The isomorphism and isogeny theorems for reductive algebraic groups. J. Algebra 216:366–383.CrossRefGoogle Scholar
Suzuki, K. 1971. A note on a theorem of E. Cartan. Tôhoku Math. J. (2) 23:17–20.CrossRefGoogle Scholar
Sweedler, M.E. 1967. Hopf algebras with one grouplike element. Trans. Amer. Math. Soc. 127:515–526.CrossRefGoogle Scholar
Sweedler, M.E. 1969. Hopf algebras. Mathematics Lecture Note Series. W. A. Benjamin, Inc., New York and Amsterdam.
Takeuchi, M. 1972. A correspondence between Hopf ideals and sub-Hopf algebras. Manuscripta Math. 7:251–270.CrossRefGoogle Scholar
Takeuchi, M. 1983. A hyperalgebraic proof of the isomorphism and isogeny theorems for reductive groups. J. Algebra 85:179–196.CrossRefGoogle Scholar
Tate, J. 1997. Finite flat group schemes, pp. 121–154. In Modular forms and Fermat's last theorem (Boston, MA, 1995). Springer-Verlag, Berlin.
Tate, J. and Oort, F. 1970. Group schemes of prime order. Ann. Sci. École Norm. Sup. (4) 3:1–21.CrossRefGoogle Scholar
Thăńg, N. 2008. On Galois cohomology of semisimple groups over local and global fields of positive characteristic. Math. Z. 259:457–467.CrossRefGoogle Scholar
ThĂńg, N. 2012. On Galois cohomology of semisimple groups over local and global fields of positive characteristic, II. Math. Z. 270:1057–1065.CrossRefGoogle Scholar
Tits, J. 1966. Classification of algebraic semisimple groups, pp. 33–62. In Algebraic Groups and Discontinuous Subgroups (Proceedings of Symposia in Pure Mathematics, Boulder, CO, 1965). American Mathematical Society, Providence, RI.
Tits, J. 1968. Lectures on Algebraic Groups, notes by P. André and D. Winter, fall term 1966–1967, Yale University.
Tits, J. 1971. Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque. J. Reine Angew. Math. 247:196–220.Google Scholar
Tits, J. 1992. Théorie des groupes, Annuaire du Collège de France 1991-92. Reprinted in Tits 2013.
Tits, J. 1993. Théorie des groupes, Annuaire du Collège de France 1992-93. Reprinted in Tits 2013.
Tits, J. 2013. Résumés des cours au Collège de France 1973–2000. Documents Mathématiques (Paris), Vol. 12. Société Mathématique de France, Paris.
Totaro, B. 2008. Hilbert's 14th problem over finite fields and a conjecture on the cone of curves. Compos. Math. 144:1176–1198.CrossRefGoogle Scholar
Totaro, B. 2013. Pseudo-abelian varieties. Ann. Sci. École Norm. Sup. (4) 46:693–721.CrossRefGoogle Scholar
VoskresenskiĬ, V.E. 1998. Algebraic groups and their birational invariants. Translations of Mathematical Monographs, Vol. 179. American Mathematical Society, Providence, RI.
Waterhouse, W.C. 1979. Introduction to affine group schemes. Graduate Texts in Mathematics, Vol. 66. Springer-Verlag, Berlin.
Weil, A. 1946. Foundations of Algebraic Geometry. American Mathematical Society Colloquium Publications, Vol. 29. American Mathematical Society, New York.
Weil, A. 1957. On the projective embedding of Abelian varieties, pp. 177–181. In Algebraic geometry and topology. A symposium in honor of S., Lefschetz. Princeton University Press, Princeton, NJ.
Weil, A. 1982. Adeles and algebraic groups. Progress in Mathematics, Vol. 23. Birkhäuser Boston. Based on lectures at IAS, 1959–1960.
Wu, X.L. 1986. On the extensions of abelian varieties by affine group schemes, pp. 361–387. In Group theory, Beijing 1984, Lecture Notes in Mathematics, Vol. 1185. Springer-Verlag, Berlin.
Zibrowius, M. 2015. Symmetric representation rings are rings. New York J. Math. 21:1055–1092.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • J. S. Milne, University of Michigan, Ann Arbor
  • Book: Algebraic Groups
  • Online publication: 25 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316711736.031
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • J. S. Milne, University of Michigan, Ann Arbor
  • Book: Algebraic Groups
  • Online publication: 25 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316711736.031
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • J. S. Milne, University of Michigan, Ann Arbor
  • Book: Algebraic Groups
  • Online publication: 25 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316711736.031
Available formats
×