Published online by Cambridge University Press: 23 May 2010
The next extract contains the major part of Serre's elegant and important paper on Eilenberg-MacLane spaces. The scope and usefulness of this paper has been explained in §7. This work is perhaps one of the main sources for the idea of ‘Universal example’ or ‘epresentablefunctor’ (see also the application of the same idea to homotopy summarised in paper 7). The paper is fairly selfcontained but it leans heavily on a theorem of A. Borel. For this, see the remarks and references in §6 plus Adams chap. 2, p. 11. The student might find the paper easier if he is familiar with homology theory before reading it; but equally, reading this paper would be a good way to acquire familiarity with homology theory.
Introduction
On sait que les complexes K (Π, q) introduits par Eilenberg-MacLane dans jouent un role essentiel dans un grand nombre de questions de topologie algébrique. Le présent article est une contribution à leur étude.
En nous appuyant sur un théorème démontré par A. Borel dans sa thèse, nous déterminons les algebres de cohomologie modulo 2 de ces complexes, tout au moins lorsque le groupe Π possède un nombre fini de générateurs. Ceci fait l'objet du § 2. Dans le § 3 nous étudions le comportement asymptotique des séries de Poincaré des algèbres de cohomologie précédentes; nous en déduisons que, lorsqu'un espace X vérifie des conditions très larges (par exemple, lorsque X est un polyèdre fini, simplement connexe, d'homologie modulo 2 non triviale), il existe une infinité d'entiers i tels que le groupe d'homotopie πi(X) contienne un sous-groupe isomorphe à Z ou à Z2.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.