Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T05:41:22.601Z Has data issue: false hasContentIssue false

4 - Food Storing and Memory

Published online by Cambridge University Press:  22 June 2017

Carel ten Cate
Affiliation:
Universiteit Leiden
Susan D. Healy
Affiliation:
University of St Andrews, Scotland
Get access
Type
Chapter
Information
Avian Cognition , pp. 52 - 74
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, M. and Krebs, J. R. (1978). On the evolution of hoarding behaviour. Animal Behaviour, 26, 707711.CrossRefGoogle Scholar
Atoji, Y. and Wild, M. (2006). Anatomy of the avian hippocampal formation. Reviews in the Neurosciences, 17, 315.CrossRefGoogle ScholarPubMed
Babb, S. and Crystal, J. (2005). Discrimination of what, when, and where: implications for episodic-like memory in rats. Learning & Memory, 36, 177189.Google Scholar
Balda, R. P. and Kamil, A. C. (1989). A comparative study of cache recovery by three corvid species. Animal Behaviour, 38, 486495.CrossRefGoogle Scholar
Barnea, A. and Nottebohm, F. (1994). Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees. Proceedings of the National Academy of Sciences USA, 91, 1121711221.CrossRefGoogle ScholarPubMed
Barnea, A. and Nottebohm, F. (1996). Recruitment and replacement of hippocampal neurons in young and adult chickadees: an addition to the theory of hippocampal learning. Proceedings of the National Academy of Sciences USA, 93, 714718.CrossRefGoogle Scholar
Barnea, A. and Pravosudov, V. V. (2011). Birds as a model to study adult neurogenesis: bridging evolutionary, comparative, and neuroethological approaches. European Journal of Neuroscience, 34, 884907.CrossRefGoogle Scholar
Barrett, M. C. and Sherry, D. F. (2012). Consolidation and reconsolidation of memory in black-capped chickadees (Poecile atricapillus). Behavioral Neuroscience, 126, 809818.CrossRefGoogle ScholarPubMed
Bednekoff, P. A. and Balda, R. P. (2014). Clark's nutcracker spatial memory: the importance of large, structural cues. Behavioural Processes, 102, 1217.CrossRefGoogle ScholarPubMed
Bednekoff, P. A., Balda, R. P., Kamil, A. C. and Hile, A. G. (1997). Long-term spatial memory in four seed-caching corvid species. Animal Behaviour, 53, 335341.CrossRefGoogle Scholar
Biebach, H., Krebs, J. R. and Falk, H. (1994). Time-place learning, food availability and the exploitation of patches in garden warblers, Sylvia borin. Animal Behaviour, 48, 273284.CrossRefGoogle Scholar
BirdLife International and National Audubon Society. (2015). The messengers: What birds tell us about threats from climate change and solutions for nature and people. Cambridge, UK and New York: BirdLife International and National Audubon Society.Google Scholar
Bossema, I. (1979). Jays and oaks: an eco-ethological study of a symbiosis. Behaviour, 70, 1117.CrossRefGoogle Scholar
Brodbeck, D. R. (1994). Memory for spatial and local cues: a comparison of a storing and a nonstoring species. Animal Learning & Behavior, 22, 119133.CrossRefGoogle Scholar
Brodin, A. (2005). Mechanisms of cache retrieval in long-term hoarding birds. Journal of Ethology, 23, 7783.CrossRefGoogle Scholar
Brodin, A. (2010). The history of scatter hoarding studies. Philosophical Transactions of the Royal Society of London B, 365, 869881.CrossRefGoogle ScholarPubMed
Brodin, A. and Ekman, J. (1994). Benefits of food hoarding. Nature, 372, 510.CrossRefGoogle Scholar
Brodin, A. and Kunz, C. (1997). An experimental study of cache recovery by hoarding willow tits after different retention intervals. Behaviour, 134, 881890.CrossRefGoogle Scholar
Brodin, A. and Lundborg, K. (2003). Is hippocampus volume affected by specialization for food hoarding in birds? Proceedings of the Royal Society London B, 270, 15551563.CrossRefGoogle ScholarPubMed
Clayton, N. S. and Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272274.CrossRefGoogle ScholarPubMed
Clayton, N. S. and Dickinson, A. (1999). Scrub jays (Aphelocoma coerulescens) remember the relative time of caching as well as the location and content of their caches. Journal of Comparative Psychology, 113, 403416.CrossRefGoogle ScholarPubMed
Clayton, N. S., Yu, K. S. and Dickinson, A. (2001). Scrub jays (Aphelocoma coerulescens) form integrated memories of the multiple features of caching episodes. Journal of Experimental Psychology: Animal Behavior Processes, 27, 1729.Google ScholarPubMed
Colombo, M. and Broadbent, N. (2000). Is the avian hippocampus a functional homologue of the mammalian hippocampus? Neuroscience and Biobehavioral Reviews, 24, 465484.CrossRefGoogle ScholarPubMed
Colombo, M., Broadbent, N. J., Taylor, C. S. R. and Frost, N. (2001). The role of the avian hippocampus in orientation in space and time. Brain Research, 919, 292301.CrossRefGoogle ScholarPubMed
Cowie, R. J., Krebs, J. R. and Sherry, D. F. (1981). Food storing by marsh tits. Animal Behaviour, 29, 12521259.CrossRefGoogle Scholar
Dudai, Y. (2004). The neurobiology of consolidations, or, how stable is the engram? Annual Review of Psychology, 55, 5186.CrossRefGoogle ScholarPubMed
Duff, S. J., Brownlie, L. A., Sherry, D. F. and Sangster, M. (1998). Sun compass orientation and landmark orientation by black-capped chickadees (Parus atricapillus). Journal of Experimental Psychology: Animal Behavior Processes, 24, 243253.Google Scholar
Epstein, H. T., Child, F. M., Kuzirian, A. M. and Alkon, D. L. (2003). Time windows for effects of protein synthesis inhibitors on Pavlovian conditioning in Hermissenda: behavioral aspects. Neurobiology of Learning and Memory, 79, 127131.CrossRefGoogle ScholarPubMed
Erichsen, J. T., Bingman, V. P. and Krebs, J. R. (1991). The distribution of neuropeptides in the dorsomedial telencephalon of the pigeon (Columba livia): a basis for regional subdivisions. Journal of Comparative Neurology, 314, 478492.CrossRefGoogle ScholarPubMed
Feeney, M. C., Roberts, W. A. and Sherry, D. F. (2009). Memory for what, where, and when in the black-capped chickadee (Poecile atricapillus). Animal Cognition, 12, 767777.CrossRefGoogle ScholarPubMed
Feeney, M. C., Roberts, W. A. and Sherry, D. F. (2011). Mechanisms of what-where-when memory in black-capped chickadees (Poecile atricapillus): Do chickadees remember “when”? Journal of Comparative Psychology, 125, 308316.CrossRefGoogle Scholar
Freeman, F. M., Rose, S. P. R. and Scholey, A. B. (1995). Two time windows of anisomycin-induced amnesia for passive avoidance training in the day-old chick. Neurobiology of Learning and Memory, 63, 291295.CrossRefGoogle ScholarPubMed
Friedman, W. J. (1993). Memory for the time of past events. Psychological Bulletin, 113, 4466.CrossRefGoogle Scholar
Frost, E. P. (1913). The behavior of a grey squirrel. Journal of Animal Behavior, 3, 145146.CrossRefGoogle Scholar
Garamszegi, L. Z. and Eens, M. (2004). The evolution of hippocampus volume and brain size in relation to food hoarding in birds. Ecology Letters, 7, 12161224.CrossRefGoogle Scholar
Garamszegi, L. Z., Eens, M., Erritzøe, J. and Møller, A. P. (2005). Sexually dimorphic dimorphic brains and song complexity in passerine birds. Behavioral Ecology, 16, 335345.CrossRefGoogle Scholar
Grollman, A. P. (1967). Inhibitors of protein biosynthesis: II mode of action of anisomycin. Journal of Biological Chemistry, 242, 32263233.CrossRefGoogle ScholarPubMed
Gupta, S., Maurya, R., Saxena, M. and Sen, J. (2012). Defining structural homology between the mammalian and avian hippocampus thorugh conserved gene expression patterns observed in the chick embryo. Developmental Biology, 366, 125141.CrossRefGoogle Scholar
Gurnell, J. (1984). Home range, territoriality, caching behaviour and food-supply of the red squirrel (Tamiasciurus hudsonicus fremonti) in a subalpine lodgepole pine forest. Animal Behaviour, 32, 11191131.CrossRefGoogle Scholar
Hall, Z. J., Delaney, S. and Sherry, D. F. (2014). Inhibition of cell proliferation in black-capped chickadees suggests a role for neurogenesis in spatial learning. Developmental Neurobiology, 10, 10021010.CrossRefGoogle Scholar
Hampton, R. R. and Sherry, D. F. (1994). The effects of cache loss on choice of cache sites in black-capped chickadees. Behavioral Ecology, 5, 4450.CrossRefGoogle Scholar
Hampton, R. R., Sherry, D. F., Shettleworth, S. J., Khurgel, M. and Ivy, G. (1995). Hippocampal volume and food-storing behavior are related in in parids. Brain, Behavior and Evolution, 45, 5461.CrossRefGoogle ScholarPubMed
Hampton, R. R. and Shettleworth, S. J. (1996). Hippocampal lesions impair memory for location but not color in passerine birds. Behavioral Neuroscience, 110, 831835.CrossRefGoogle Scholar
Härdling, R., Källander, H. and Nillson, J.-Å. (1997). Memory for hoarded food: an aviary study of the European nuthatch. Condor, 99, 526529.Google Scholar
Healy, S. D. and Suhonen, J. (1996). Memory for locations of stored food in willow tits and marsh tits. Behaviour, 133, 81102.CrossRefGoogle Scholar
Herold, C., Coppola, V. J. and Bingman, V. P. (2015). The maturation of research into the avain hippocampal formation: recent discoveries from one of the nature's foremost navigators. Hippocampus, 25, 11931211.CrossRefGoogle Scholar
Herz, R. S., Zanette, L. and Sherry, D. F. (1994). Spatial cues for cache retrieval by black-capped chickadees. Animal Behaviour, 48, 343351.CrossRefGoogle Scholar
Hitchcock, C. L. and Sherry, D. F. (1990). Long-term memory for cache sites in the black-capped chickadee. Animal Behaviour, 40, 701712.CrossRefGoogle Scholar
Hoshooley, J. S., Phillmore, L. S., Sherry, D. F. and MacDougall-Shackleton, S. A. (2007). Annual cycle of the black-capped chickadee: seasonality of food-storing and the hippocampus. Brain, Behavior and Evolution, 69, 161168.CrossRefGoogle ScholarPubMed
Hoshooley, J. S. and Sherry, D. F. (2004). Neuron production, neuron number, and structure size are seasonally stable in the hippocampus of the food-storing black-capped chickadee (Poecile atricapillus). Behavioral Neuroscience, 118, 345355.CrossRefGoogle ScholarPubMed
Hoshooley, J. S. and Sherry, D. F. (2007). Greater hippocampal neuronal recruitment in food-storing than in non-food-storing birds. Developmental Neurobiology, 67, 406414.CrossRefGoogle ScholarPubMed
Hurly, T. A. and Robertson, R. J. (1990). Variation in the food hoarding behavior of red squirrels. Behavioral Ecology and Sociobiology, 26, 9197.CrossRefGoogle Scholar
Jacobs, L. F. (1992). Memory for cache locations in Merriam's kangaroo rats. Animal Behaviour, 43, 585593.CrossRefGoogle Scholar
Jacobs, L. F. and Liman, E. R. (1991). Grey squirrels remember the locations of buried nuts. Animal Behaviour, 41, 103110.CrossRefGoogle Scholar
Jacobs, L. F. and Spencer, W. D. (1994). Natural space-use and hippocampal size in kangaroo rats. Brain, Behavior and Evolution, 44, 125132.CrossRefGoogle ScholarPubMed
Johnson, K. M., Boonstra, R. and Wojtowicz, J. M. (2010). Hippocampal neurogenesis in food-storing red squirrels: the impact of age and spatial behavior. Genes, Brain and Behavior, 9, 583591.CrossRefGoogle ScholarPubMed
Källén, B. (1962). II. Embryogenesis of brain nuclei in the chick telencephalon. Ergebnisse der Anatomie und Entwicklungsgeschichte, 36, 6282.Google ScholarPubMed
Kaslin, J., Ganz, J. and Brand, M. (2008). Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Philosophical Transactions of the Royal Society B, 363, 101122.CrossRefGoogle ScholarPubMed
Kirn, J. R., Alvarez-Buylla, A. and Nottebohm, F. (1991). Production and survival of projection neurons in a forebrain vocal center of adult male canaries. Journal of Neuroscience, 11, 17561762.CrossRefGoogle Scholar
Krebs, J. R., Erichsen, J. T. and Bingman, V. P. (1991). The distribution of neurotransmitters and neurotransmitter-related enzymes in the dorsomedial telencephalon of the pigeon (Columba livia). Journal of Comparative Neurology, 314, 467477.CrossRefGoogle ScholarPubMed
Krebs, J. R., Healy, S. D. and Shettleworth, S. J. (1990). Spatial memory of Paridae: Comparison of a storing and a non-storing species, the coal tit, Parus ater, and the great tit, P. major. Animal Behaviour, 39, 11271137.CrossRefGoogle Scholar
Krebs, J. R., Sherry, D. F., Healy, S. D., Perry, V. H. and Vaccarino, A. L. (1989). Hippocampal specialization of food-storing birds. Proceedings of the National Academy of Sciences USA, 86, 13881392.CrossRefGoogle ScholarPubMed
Krushinskaya, N. L. (1966). Some complex forms of feeding behaviour of nut-cracker Nucifraga caryocatactes, after removal of old cortex. Zhurnal Evoluzionni Biochimii y Fisiloggia, II, 563568.Google Scholar
Lucas, J. R., Brodin, A., de Kort, S. R. and Clayton, N. S. (2004). Does hippocampal size correlate with the degree of caching specialization? Proceedings of the Royal Society London B, 271, 24232429.CrossRefGoogle ScholarPubMed
Luo, Y., Yang, Z., Steele, M. A., et al. (2014). Hoarding without reward: rodent responses to repeated episodes of complete cache loss. Behavioural Processes, 106, 3643.CrossRefGoogle ScholarPubMed
Macdonald, D. W. (1976). Food caching by red foxes and some other carnivores. Zeitscrhift für Tierpsychologie, 42, 170185.CrossRefGoogle ScholarPubMed
Male, L. H. and Smulders, T. V. (2007). Memory decay and cache site preferences in hoarding coal tits: a laboratory study. Behaviour, 144, 693710.Google Scholar
McGaugh, J. L. (1966). Time-dependent processes in memory storage. Science, 153, 13511358.CrossRefGoogle ScholarPubMed
McGaugh, J. L. (2000). Memory – a century of consolidation. Science, 287, 248251.CrossRefGoogle ScholarPubMed
Miller, G. A. (1945). Concerning the goal of harding behavior in the rat. Journal of Comparative Psychology, 38, 209212.CrossRefGoogle Scholar
Moser, E. I., Kropff, E. and Moser, M.-B. (2008). Place cells, grid cells, and the brain's spatial representation system. Annual Review of Neuroscience, 31, 6989.CrossRefGoogle ScholarPubMed
Nader, K. (2003). Memory traces unbound. Trends in Neurosciences, 26, 6572.CrossRefGoogle ScholarPubMed
Nader, K., Schafe, G. E. and Le Doux, J. E. (2000a). Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 406, 722726.CrossRefGoogle ScholarPubMed
Nader, K., Schafe, G. E. and Le Doux, J. E. (2000b). The labile nature of consolidation theory. Nature Reviews Neuroscience, 1, 216219.CrossRefGoogle ScholarPubMed
Naqshabandi, M., Feeney, M. C., McKenzie, T. L. B. and Roberts, W. A. (2007). Testing for episodic-like memory in rats in the absence of time of day cues: replication of Babb and Crystal. Behavioural Processes, 74, 217225.CrossRefGoogle Scholar
O'Keefe, J. and Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature, 6581, 425428.CrossRefGoogle Scholar
Pan, Y., Li, M., Yi, X., et al. (2013). Scatter hoarding and hippocampal cell proliferation in Siberian chipmunks. Neuroscience, 255, 7685.CrossRefGoogle ScholarPubMed
Pravosudov, V. V. and Clayton, N. S. (2001). Effects of demanding foraging conditions on cache retrieval accuracy in food-caching Mountain chickadees (Poecile gambeli). Proceedings of the Royal Society B, 268, 363368.CrossRefGoogle ScholarPubMed
Roberts, W. A., Feeney, M. C., Macpherson, K., et al. (2008). Episodic-like memory in rats: Is it based on when or how long ago? Science, 320, 113115.CrossRefGoogle ScholarPubMed
Rosenberg, K. V., Kennedy, J. A., Dettmers, R., et al. (2016). Partners in flight landbird conservation plan: 2016 revision for Canada and continental United States. Partners in Flight Science Committee.Google Scholar
Roth, T. C. I., LaDage, L. D., Freas, C. A. and Pravosudov, V. V. (2012). Variation in memory and the hippocampus across populations from different climates: a common garden approach. Proceedings of the Royal Society B, 279, 402410.CrossRefGoogle ScholarPubMed
Schaming, T. D. (2015). Population-wide failure to breed in the Clark's nutcracker (Nucifraga columbiana). PLOS One, 10, e0123917 DOI:10.137/journal.pone.0123917CrossRefGoogle ScholarPubMed
Sechley, T. H., Strickland, D. and Norris, D. R. (2015). Linking the availability of cached food to climate change: an experimental test of the hoard-rot hypothesis. Canadian Journal of Zoology, 93, 411419.CrossRefGoogle Scholar
Sherry, D. F. (1984). Food storage by black-capped chickadees: memory for the location and contents of caches. Animal Behaviour, 32, 451464.CrossRefGoogle Scholar
Sherry, D., Avery, M. and Stevens, A. (1982). The spacing of stored food by marsh tits. Zeitschrift für Tierpsychologie, 58, 153162.CrossRefGoogle Scholar
Sherry, D. F. and Hoshooley, J. S. (2010). Seasonal hippocampal plasticity in food-storing birds. Philosophical Transactions of the Royal Society, B, 365, 933943.CrossRefGoogle ScholarPubMed
Sherry, D. F., Krebs, J. R. and Cowie, R. J. (1981). Memory for the location of stored food in marsh tits. Animal Behaviour, 29, 12601266.CrossRefGoogle Scholar
Sherry, D. F. and MacDougall-Shackleton, S. A. (2014). Seasonal change in the hippocampus. Frontiers in Neuroendocrinology, 37, 158167.CrossRefGoogle Scholar
Sherry, D. F. and Vaccarino, A. L. (1989). Hippocampus and memory for food caches in black-capped chickadees. Behavioral Neuroscience, 103, 308318.CrossRefGoogle Scholar
Sherry, D. F., Vaccarino, A. L., Buckenham, K. and Herz, R. S. (1989). The hippocampal complex of food-storing birds. Brain, Behavior and Evolution, 34, 308317.CrossRefGoogle ScholarPubMed
Siegel, J. J., Nitz, D. and Bingman, V. P. (2005). Spatial-specificity of single-units in the hippocampal formation of freely moving homing pigeons. Hippocampus, 15, 2640.CrossRefGoogle ScholarPubMed
Soykan, C. U., Sauer, J., Schuetz, J. G., et al. (2016). Population trends for North American winter birds based on hierarchical models. Ecosphere, 7, e01351. DOI:10.1002/ecs1002.1351CrossRefGoogle Scholar
Stevens, T. A. and Krebs, J. R. (1986). Retrieval of stored seeds by marsh tits Parus palustris in the field. Ibis, 128, 513525.CrossRefGoogle Scholar
Szekely, A. D. (1999). The avian hippocampal formation: subdivisions and connectivity. Behavioural Brain Research, 98, 219225.CrossRefGoogle ScholarPubMed
Tomback, D. F. (1980). How nutcrackers find their seed stores. Condor, 82, 1019.CrossRefGoogle Scholar
Tulving, E. (1972). Episodic and semantic memory. In Organization of memory, eds. Tulving, E. and Donaldson, W.. San Diego: Academic Press, pp. 381403.Google Scholar
Tulving, E. (1983). Elements of episodic memory. Oxford: Clarendon Press.Google Scholar
Tulving, E. (1985). How many memory systems are there? American Psychologist, 40, 385398.CrossRefGoogle Scholar
Tulving, E. (2002). Episodic memory: from mind to brain. Annual Review of Psychology, 53, 125.CrossRefGoogle ScholarPubMed
Vander Wall, S. B. (1982). An experimental analysis of cache recovery in Clark's nutcracker. Animal Behaviour, 30, 8494.CrossRefGoogle Scholar
Vander Wall, S. B. (1991). Mechanisms of cache recovery by yellow pine chipmunks. Animal Behaviour, 41, 851863.CrossRefGoogle Scholar
Vellema, M., Van der Linden, A. and Gahr, M. (2010). Area-specific migration and recruitment of new neurons in the adult songbird brain. Journal of Comparative Neurology, 518, 14421459.CrossRefGoogle ScholarPubMed
Waite, T. A. and Strickland, D. (2006). Climate change and the demographic demise of a hoarding bird living on the edge. Proceedings of the Royal Society B, 273, 28092813.CrossRefGoogle ScholarPubMed
Wilkie, D. M., Carr, J. A. R., Siegenthaler, A., et al. (1996). Field observations of time-place behaviour in scavenging birds. Behavioural Processes, 38, 7788.CrossRefGoogle ScholarPubMed
Wiltschko, W. and Balda, R. P. (1989). Sun compass orientation in seed-caching scrub jays (Aphelocoma coerulescens). Journal of Comparative Physiology A, 164, 717721.CrossRefGoogle Scholar
Winterrowd, M. F. and Weigl, P. D. (2006). Mechanisms of cache retrieval in the group nesting southern flying squirrel (Glaucomys volans). Ethology, 112, 11361144.CrossRefGoogle Scholar
Zentall, T. R., Clement, T. S., Bhatt, R. S. and Allen, J. (2001). Episodic-like memory in pigeons. Psychonomic Bulletin & Review, 8, 685690.CrossRefGoogle ScholarPubMed
Zinkivskay, A., Nazir, F. and Smulders, T. V. (2009). What-where-when memory in magpies. Animal Cognition, 12, 119125.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×