Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T06:00:06.761Z Has data issue: false hasContentIssue false

2 - Spatial Cognition in Birds

Published online by Cambridge University Press:  22 June 2017

Carel ten Cate
Affiliation:
Universiteit Leiden
Susan D. Healy
Affiliation:
University of St Andrews, Scotland
Get access
Type
Chapter
Information
Avian Cognition , pp. 6 - 29
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Able, K. (1982). Skylight polarization patterns at dusk influence migratory orientation in birds. Nature, 299, 550551.CrossRefGoogle Scholar
Bingman, V. P. and Cheng, K. (2005). Mechanisms of animal global navigation: comparative perspectives and enduring challenges. Ethology Ecology and Evolution, 17, 295318.CrossRefGoogle Scholar
Biro, D., Meade, J. and Guilford, T. (2004). Familiar route loyalty implies visual pilotage in the homing pigeon. Proceedings of the National Academy of Sciences of the United States of America, 101, 1744017443.CrossRefGoogle ScholarPubMed
Brodbeck, D. R. (1994). Memory for spatial and local cues: a comparison of a storing and nonstoring species. Animal Learning & Behavior, 22, 119133.CrossRefGoogle Scholar
Brown, A. A., Spetch, M. L., Hurd, P. L. (2007). Growing in circles: rearing environment alters spatial navigation in fish. Psychological Science, 18, 569573.CrossRefGoogle ScholarPubMed
Cheng, K. (1986). A purely geometric module in the rat's spatial representation. Cognition, 23, 149178.CrossRefGoogle ScholarPubMed
Cheng, K. (1988). Some psychophysics of the pigeon's use of landmarks. Journal of Comparative Physiology A, 162, 815826.CrossRefGoogle ScholarPubMed
Cheng, K. (1989). The vector sum model of pigeon landmark use. Journal of Experimental Psychology: Animal Behavior Processes, 15, 366375.Google Scholar
Cheng, K. (1992). Three psychophysical principles in the processing of spatial and temporal information. In Cognitive aspects of stimulus control, eds. Honig, W. K. and Fetterman, J. G., Hillsdale, NJ: Erlbaum, pp. 6988.Google Scholar
Cheng, K. (1994). The determination of direction in landmark-based spatial search in pigeons: a further test of the vector sum model. Animal Learning & Behavior, 22, 291301.CrossRefGoogle Scholar
Cheng, K. (2012a). Arthropod navigation: ants, bees, crabs, spiders finding their way. In The Oxford Handbook of Comparative Cognition, eds. Wasserman, E. A. and Zentall, T. R., Oxford, NY: Oxford University Press, pp. 189209.Google Scholar
Cheng, K. (2012b). How to navigate without maps: the power of taxon-like navigation in ants. Comparative Cognition & Behavior Reviews, 7, 122.CrossRefGoogle Scholar
Cheng, K., Huttenlocher, J. and Newcombe, N. S. (2013). 25 years of research on the use of geometry in spatial reorientation: a current theoretical perspective. Psychonomic Bulletin & Review, 20, 10331054.CrossRefGoogle ScholarPubMed
Cheng, K. and Newcombe, N. S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin & Review, 12, 123.CrossRefGoogle Scholar
Cheung, A., Stürzl, W., Zeil, J. and Cheng, K. (2008). The information content of panoramic images II: view-based navigation in nonrectangular experimental arenas. Journal of Experimental Psychology: Animal Behavior Processes, 34, 1530.Google ScholarPubMed
Chiandetti, C. and Vallortigara, G. (2010). Experience and geometry: controlled-rearing studies with chicks. Animal Cognition, 13, 463470.CrossRefGoogle ScholarPubMed
Collett, T. S. (1996). Insect navigation en route to the goal: multiple strategies for the use of landmarks. The Journal of Experimental Biology, 199, 227235.CrossRefGoogle Scholar
Collett, T. S. and Collett, M. (2002). Memory use in insect visual navigation. Nature Reviews Neuroscience, 3, 542552.CrossRefGoogle ScholarPubMed
Collett, T. S., Graham, P., Harris, R. A. and Hempel de Ibarra, N. (2006). Navigational memories in ants and bees: memory retrieval when selecting and following routes. Advances in the Study of Behaviour, 36, 123172.CrossRefGoogle Scholar
Coppola, V. J., Flaim, M. E., Carney, S. N. and Bingman, V. P. (2015). An age-related deficit in spatial-feature reference memory in homing pigeons (Columba livia). Behavioural Brain Research, 280, 15.CrossRefGoogle ScholarPubMed
Coppola, V. J., Hough, G. and Bingman, V. P. (2014). Age-related spatial working memory deficits in homing pigeons (Columba livia). Behavioral Neuroscience, 128, 666675.CrossRefGoogle ScholarPubMed
Dittmar, L., Stürzl, W., Jetzschke, S., Mertes, M. and Boeddeker, N. (2014). Out of the box: how bees orient in an ambiguous environment. Animal Behaviour, 89, 1321.CrossRefGoogle Scholar
Flores-Abreu, I. N., Hurly, T. A. and Healy, S. D. (2012). One-trial spatial learning: wild hummingbirds relocate a reward after a single visit. Animal Cognition, 15, 631637.CrossRefGoogle ScholarPubMed
Gagliardo, A., Ioalè, P., Filannino, C. and Wikelski, M. (2011). Homing pigeons only navigate in air with intact environmental odours: a test of the olfactory activation hypothesis with GPS data loggers. PLoS ONE, 6, e22385.CrossRefGoogle ScholarPubMed
Goodyear, A. J. and Kamil, A. C. (2004). Clark's nutcrackers (Nucifraga columbiana) and the effects of goal-landmark distance on overshadowing. Journal of Comparative Psychology, 118, 258264.CrossRefGoogle ScholarPubMed
Gould-Beierle, K. and Kamil, A. (1999). The effect of proximity on landmark use in Clark's nutcrackers. Animal Behaviour, 58, 477488.CrossRefGoogle ScholarPubMed
Gouteux, S., Thinus-Blanc, C. and Vauclair, J. (2001). Rhesus monkeys use geometric and nongeometric information during a reorientation task. Journal of Experimental Psychology: General, 130, 505519.CrossRefGoogle ScholarPubMed
Graham, P. and Cheng, K. (2009). Ants use the panoramic skyline as a visual cue during navigation. Current Biology, 19, 935937.CrossRefGoogle ScholarPubMed
Gray, E. R., Spetch, M. L., Kelly, D. M. and Nguyen, A. (2004). Searching in the center: Pigeons encode relative distances from walls of an enclosure. Journal of Comparative Psychology, 118, 113117.CrossRefGoogle Scholar
Healy, S. D. and Hurly, T. A. (1998). Rufous hummingbirds’ (Selasphorus rufus) memory for flowers: patterns or actual spatial locations? Journal of Experimental Psychology: Animal Behavior Processes, 24, 396404.Google Scholar
Hodgson, Z. G. and Healy, S. D. (2005). Preference for spatial cues in a non-storing songbird species. Animal Cognition, 8, 211214.CrossRefGoogle Scholar
Hurly, T. A., Fox, T. A. O, Zwueste, D. M. and Healy, S. D. (2014). Wild hummingbirds rely on landmarks not geometry when learning an array of flowers. Animal Cognition, 17, 11571165.CrossRefGoogle Scholar
Hurly, T. A. and Healy, S. D. (1996). Memory for flowers in rufous hummingbirds: location or local visual cues? Animal Behaviour, 51, 11491157.CrossRefGoogle Scholar
Ioalè, P., Nozzolini, M. and Papi, F. (1990). Homing pigeons do extract directional information from olfactory stimuli. Behavioral Ecology and Sociobiology, 26, 301305.CrossRefGoogle Scholar
Jones, J. E., Antomiadis, E., Shettleworth, S. J. and Kamil, A. C. (2002). A comparative study of geometric rule learning by nutcrackers (Nucifraga columbiana), pigeons (Columba livia), and jackdaws (Corvus monedula). Journal of Comparative Psychology, 116, 350356.CrossRefGoogle ScholarPubMed
Kamil, A. C. and Cheng, K. (2001). Way-finding and landmarks: the multiple bearings hypothesis. The Journal of Experimental Biology, 204, 103113.CrossRefGoogle ScholarPubMed
Kamil, A. C. and Jones, J. E. (1997). The seed-storing corvid Clark's nutcracker learns geometric relationships among landmarks. Nature, 390, 276279.CrossRefGoogle Scholar
Kamil, A. C. and Jones, J. E. (2000). Geometric rule learning by Clark's nutcrackers (Nucifraga columbiana). Journal of Experimental Psychology: Animal Behavior Processes, 26, 439453.Google ScholarPubMed
Kelly, D. M., Chiandetti, C. and Vallortigara, G. (2011). Re-orienting in space: do animals use global or local geometry strategies? Biology Letters, 7, 472375.CrossRefGoogle ScholarPubMed
Kelly, D. M., Kippenbrock, S., Templeton, J. and Kamil, A. C. (2008). Use of a geometric rule or absolute vectors: Landmark use by Clark's nutcrackers (Nucifraga columbiana). Brain Research Bulletin, 76, 293299.CrossRefGoogle ScholarPubMed
Kelly, D. M. and Spetch, M. L. (2001). Pigeons encode relative geometry. Journal of Experimental Psychology: Animal Behavior Processes, 27, 417422.Google ScholarPubMed
Kelly, D. M., Spetch, M. L. and Heth, C. D. (1998). Pigeons' (Columba livia) encoding of geometric and featural properties of a spatial environment. Journal of Comparative Psychology, 112, 259269.CrossRefGoogle Scholar
Knierim, J. J., Kudrimoti, H. S. and McNaughton, B. L. (1995). Place cells, head direction cells, and the learning of landmark stability. The Journal of Neuroscience, 15, 16481659.CrossRefGoogle ScholarPubMed
Kohler, M. and Wehner, R. (2005). Idiosyncratic route-based memories in desert ants, Melophorus bagoti: how do they interact with path-integration vectors? Neurobiology of Learning and Memory, 83, 112.CrossRefGoogle ScholarPubMed
Kreithen, M. and Keeton, W. (1974). Detection of polarized light by the homing pigeon, Columba livia. Journal of Comparative Physiology, 89, 8392.CrossRefGoogle Scholar
LaDage, L. D., Roth II, T. C., Fox, R. A. and Pravosudov, V. V. (2009). Flexible cue use in food-caching birds. Animal Cognition, 12, 419426.CrossRefGoogle ScholarPubMed
Lambinet, V., Wilzeck, C. and Kelly, D. M. (2014). Size does not matter, but features do: Clark's nutcrackers (Nucifraga columbiana) weigh features more heavily than geometry in large and small enclosures. Behavioural Processes, 102, 311.CrossRefGoogle Scholar
Learmonth, A. E., Nadel, L. and Newcombe, N. S. (2002). Children's use of landmarks: implications for modularity theory. Psychological Science, 13, 337341.CrossRefGoogle ScholarPubMed
Learmonth, A. E., Newcombe, N. S. and Huttenlocher, J. (2001). Toddlers’ use of metric information and landmarks to reorient. Journal of Experimental Child Psychology, 80, 225244.CrossRefGoogle ScholarPubMed
Lent, D., Graham, P. and Collett, T. S. (2013). Visual scene perception in navigating wood ants. Current Biology, 23, 684690.CrossRefGoogle ScholarPubMed
Lever, C., Burton, S., Jeewajee, A., O'Keefe, J. and Burgess, N. (2009). Boundary vector cells in the subiculum of the hippocampal formation. The Journal of Neuroscience, 29, 97719777.CrossRefGoogle ScholarPubMed
Lipp, H. P., Vyssotski, A. L., Wolfer, D. P., Renaudineau, S., Savini, M., Tröster, G. and Dell'Omo, G. (2004). Pigeon homing along highways and exits. Current Biology, 14, 12391249.CrossRefGoogle ScholarPubMed
Mangan, M. and Webb, B. (2012). Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behavioral Ecology, 23, 944954.CrossRefGoogle Scholar
Moser, E. I., Kropff, E. and Moser, M. B. (2008). Place cells, grid cells, and the brain's spatial representation system. Annual Review of Neuroscience, 31, 6989.CrossRefGoogle ScholarPubMed
Pecchia, T. and Vallortigara, G. (2010). View-based strategy for reorientation by geometry. The Journal of Experimental Biology, 213, 29872996.CrossRefGoogle ScholarPubMed
Pecchia, T. and Vallortigara, G. (2011). Stable panoramic views facilitate snap-shot like memories for spatial reorientation in homing pigeons. PLoS One, 6, 22657.CrossRefGoogle ScholarPubMed
Pecchia, T. and Vallortigara, G. (2012). Spatial reorientation by geometry with freestanding objects and extended surfaces: a unifying view. Proceedings of the Royal Society B: Biological Sciences, 279, 22282236.CrossRefGoogle ScholarPubMed
Philippides, A., Baddeley, B., Cheng, K. and Graham, P. (2011). How might ants use panoramic views for route navigation? The Journal of Experimental Biology, 214, 445451.CrossRefGoogle ScholarPubMed
Ratliff, K. R. and Newcombe, N. S. (2008). Reorienting when cues conflict. Psychological Science, 19, 13011307.CrossRefGoogle ScholarPubMed
Reichert, J. F. and Kelly, D. M. (2015). How Clark's nutcrackers (Nucifraga columbiana) weigh geometric cues depends on their previous experience. Animal Cognition, 18, 953968.CrossRefGoogle ScholarPubMed
Reid, S. F., Narendra, A., Hemmi, J. M. and Zeil, J. (2011). Polarised skylight and the landmark panorama provide night-active bull ants with compass information during route following. The Journal of Experimental Biology, 214, 363370.CrossRefGoogle ScholarPubMed
Schmidt-Koenig, K. (1958). Experimentelle Einflußnahme auf die 24-Stunden-Periodik bei Brieftauben und deren Auswirkungen unter besonderer Berücksichtigung des Heimfindevermögens. Zeitschrift für Tierpsychologie, 15, 301331.CrossRefGoogle Scholar
Schwarz, S., Julle-Daniere, E., Morin, L., et al. (2014). Desert ants (Melophorus bagoti) navigating with robustness to distortions of the natural panorama. Insectes Sociaux, 61, 371383.CrossRefGoogle Scholar
Schwarz, S., Narendra, A. and Zeil, J. (2011). The properties of the visual system in the Australian desert ant Melophorus bagoti. Arthropod Structure and Development, 40, 128134.CrossRefGoogle ScholarPubMed
Sherry, D. F. and Hoshooley, J. S. (2010). Seasonal hippocampal plasticity in food-storing birds. Proceedings of the Royal Society B: Biological Sciences, 365, 933943.Google ScholarPubMed
Sovrano, V. A., Bisazza, A. and Vallortigara, G. (2005). Animals’ use of landmarks and metric information to reorient: effects of the size of the experimental space. Cognition, 97, 121133.CrossRefGoogle ScholarPubMed
Sovrano, V. A., Potrich, D. and Vallortigara, G. (2013). Learning of geometry and features in bumblebees (Bombus terrestris). Journal of Comparative Psychology, 127, 312318.CrossRefGoogle ScholarPubMed
Sovrano, V. A., Rigosi, E. and Vallortigara, G. (2012). Spatial reorientation by geometry in bumblebees. PLoS One, 7, e37449.CrossRefGoogle ScholarPubMed
Spetch, M. L. (1995). Overshadowing in landmark learning: Touch-screen studies with pigeons and humans. Journal of Experimental Psychology: Animal Behavior Processes, 21, 166181.Google ScholarPubMed
Spetch, M. L., Cheng, K., MacDonald, S. E., et al. (1997). Use of landmark configuration in pigeons and humans: II. Generality across search tasks. Journal of Comparative Psychology, 111, 1424.CrossRefGoogle Scholar
Spetch, M. L. and Edwards, C. A., (1986). Spatial memory in pigeons (Columba livia) in an open-field feeding environment. Journal of Comparative Psychology, 100, 266278.CrossRefGoogle Scholar
Spetch, M. L., Rust, T. B., Kamil, A. C. and Jones, J. E. (2003). Search by rules: pigeons’ (Columba livia) landmark-based search according to constant bearing or constant distance. Journal of Comparative Psychology, 117, 123132.CrossRefGoogle ScholarPubMed
Stürzl, W., Cheung, A., Cheng, K. and Zeil, J. (2008). The information content of panoramic images I: the rotational errors and the similarity of views in rectangular experimental arenas. Journal of Experimental Pschology: Animal Behavior Processes, 34, 114.Google ScholarPubMed
Tomback, D. F. (1978). Foraging strategies of Clark's nutcracker. Living Bird, 16, 123161.Google Scholar
Tomback, D. F. (1980). How nutcrackers find their seed stores. Condor, 82, 1019.CrossRefGoogle Scholar
Tommasi, L. and Vallortigara, G. (2000). Searching for the center: spatial cognition in the domestic chick (Gallus gallus). Journal of Experimental Psychology: Animal Behavior Processes, 26, 477486.Google Scholar
Twyman, A. D., Newcombe, N. S. and Gould, T. J. (2013). Malleability in the development of spatial representation. Developmental Psychobiology, 55, 243255.CrossRefGoogle Scholar
Vallortigara, G., Feruglio, M. and Sovrano, V. A. (2005). Reorientation by geometric and landmark information in environments of different spatial size. Developmental Science, 8, 393401.CrossRefGoogle Scholar
Vander Wall, S. (1982). An experimental analysis of cache recovery in Clark's nutcrackers. Animal Behaviour, 30, 8494.CrossRefGoogle Scholar
Wiltschko, R. and Wiltschko, W. (1978). Evidence for the use of magnetic outward-journey information in homing pigeons. Nature, 65, 112113.Google Scholar
Wiltschko, W. and Wiltschko, R. (1996). Magnetic orientation in birds. The Journal of Experimental Biology, 199, 2938.CrossRefGoogle ScholarPubMed
Wilzeck, C. and Kelly, D. M. (2013). Avian visual pseudoneglect: the effect of age and sex on visuospatial side biases. In Behavioral lateralization in vertebrates, eds. Csermely, D. and Reolin, L.. New York: Springer, pp. 5570.CrossRefGoogle Scholar
Wystrach, A. and Beugnon, G. (2009). Ants learn geometry and features. Current Biology, 19, 6166.CrossRefGoogle ScholarPubMed
Wystrach, A., Beugnon, G. and Cheng, K. (2011a). Landmarks or panoramas: what do navigating ants attend to for guidance? Frontiers in Zoology, 8, 21.CrossRefGoogle ScholarPubMed
Wystrach, A., Beugnon, G. and Cheng, K. (2012). Ants might use different view-matching strategies on and off the route. The Journal of Experimental Biology, 215, 4455.CrossRefGoogle ScholarPubMed
Wystrach, A. and Graham, P. (2012a). View-based matching can be more than image matching: the importance of considering an animal's perspective. i-Perception, 3, 547549.CrossRefGoogle ScholarPubMed
Wystrach, A. and Graham, P. (2012b). What can we learn from studies of insect navigation? Animal Behaviour, 84, 1320.CrossRefGoogle Scholar
Wystrach, A., Mangan, M., Philippides, A. and Graham, P. (2013). Snapshots in ants? New interpretations of paradigmatic experiments. The Journal of Experimental Biology, 216, 17661770.Google ScholarPubMed
Wystrach, A., Schwarz, S., Schultheiss, P., Beugnon, G. and Cheng, K. (2011b). Views, landmarks, and routes: how do desert ants negotiate an obstacle course? Journal of Comparative Physiology A, 197, 167179.CrossRefGoogle ScholarPubMed
Wystrach, A., Sosa, S., Beugnon, G. and Cheng, K. (2011c). Geometry, features, and panoramic views: ants in rectangular arenas. Journal of Experimental Pschology: Animal Behavior Processes, 37, 420435.Google ScholarPubMed
Zeil, J. (2003). Catchment areas of panoramic snapshots in outdoor scenes. Journal of the Optical Society of America A, 20, 450469.CrossRefGoogle ScholarPubMed
Zeil, J. (2012). Visual homing: an insect perspective. Current Opinion in Neurobiology, 22, 285293.CrossRefGoogle ScholarPubMed
Zollikofer, C. P. E., Wehner, R. and Fukushi, T. (1995). Optical scaling in conspecific Cataglyphis ants. The Journal of Experimental Biology, 198, 16371646.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×