Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T00:43:26.319Z Has data issue: false hasContentIssue false

11 - Biogeography of mosses and allies: does size matter?

from Part IV - Pluricellular eukaryotes

Published online by Cambridge University Press:  05 August 2012

Nagore G. Medina
Affiliation:
Universidad Autónoma de Madrid
Isabel Draper
Affiliation:
Universidad Autónoma de Madrid
Francisco Lara
Affiliation:
Universidad Autónoma de Madrid
Diego Fontaneto
Affiliation:
Imperial College London
Get access

Summary

Introduction

Bryophytes are the second largest group of embryophytes, or green land plants, after the very diverse Angiosperms. They comprise three main lineages (Frey, 2009; Goffinet and Shaw, 2009): mosses (Division or Phylum Bryophyta), that are currently estimated to include 12 500–13 000 species; liverworts (Marchantiophyta), that are thought to number 5000 or a few more; and hornworts (Anthocerotophyta), with only 100–150 species. This adds up to around 18 000 species, although estimates range from 14 000 to 25 000.

Bryophytes in general, and especially mosses and liverworts, are highly successful plants. They display a high level of diversity, are almost universally present in land environments, and play a significant role in many terrestrial and freshwater ecosystems (Vanderpoorten and Goffinet, 2009). Although often inconspicuous, mosses and liverworts can be found even in the world's toughest environments, such as freezing and hot deserts. Moreover, in some harsh environments, such as the epiphytic stratum of temperate woodlands or the terrestrial ecosystems of the tundra, they are the chief group of organisms, together with lichens. Peatlands, which cover c. 3% of the Earth's land surface (Limpens et al., 2008), are a particular and outstanding case of habitat where bryophytes generally prevail, commonly with species of Sphagnum as the dominant vegetation element. Even if bryophytes are particularly diverse and luxuriant in tropical montane cloud forests and in humid temperate woodlands, they can be found more or less abundantly in all environments where land plants can survive (Gignac, 2001).

Type
Chapter
Information
Biogeography of Microscopic Organisms
Is Everything Small Everywhere?
, pp. 209 - 233
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allorge, P. (1947). Essai de bryogéographie de la péninsule Ibérique. Enciclopédie Biogéographique et Écologique. Paris: P. Lechevalier.Google Scholar
Argent, G.C.G. (1979). Systematics of tropical mosses. In Clarke, G., Duckett, J. (eds.), Bryophyte Systematics, pp. 185–194. London: Academic Press.Google Scholar
Baas Becking, L.G.M. (1934). Geobiologie of inleiding tot de milieukunde. The Hague: Van Stockum and Zoon.Google Scholar
Billings, W.D., Anderson, L.E. (1966). Some microclimatic characteristics of habitats of endemic and disjunct bryophytes in the southern Blue Ridge. The Bryologist 69, 76–95.CrossRefGoogle Scholar
Boatman, D.J., Lark, P.M. (1971). Inorganic nutrition of the protonemata of Sphagnum papillosum Lindb., S. magellanicum Brid. and S. cuspidatum Ehrh. New Phytologist 70, 1053–1059.Google Scholar
Cano, M.J., Werner, O., Guerra, J. (2005). A morphometric and molecular study in Tortula subulata complex (Pottiaceae, Bryophyta). Botanical Journal of the Linnean Society 149, 333–350.CrossRefGoogle Scholar
Churchill, S.P. (2009). Moss diversity and endemism of the tropical Andes 1. Annals of the Missouri Botanical Garden 96, 434–449.CrossRefGoogle Scholar
Cook, L.G., Crisp, M.D. (2005). Directional asymmetry of long-distance dispersal and colonization could mislead reconstructions of biogeography. Journal of Biogeography 32, 741–754.CrossRefGoogle Scholar
Crum, H.A., Anderson, L.E. (1981). Mosses of Eastern North America, Vol. 1. New York, NY: Columbia University Press.Google Scholar
Devos, N., Vanderpoorten, A. (2009). Range disjunctions, speciation, and morphological transformation rates in the liverwort genus Leptoscyphus. Evolution 63, 779–792.Google ScholarPubMed
Dierssen, K. (2001). Distribution, ecological amplitude and phytosociological characterization of European bryophytes. Bryophytorum Bibliotheca 56, 1–289.Google Scholar
Drakare, S., Lennon, J.J., Hillebrand, H. (2006). The imprint of the geographical, evolutionary and ecological context on species-area relationships. Ecology Letters 9, 215–227.CrossRefGoogle ScholarPubMed
Draper, I., Hedenäs, L. (2008). Sciuro-hypnum tromsoeense (Kaurin & Arnell) Draper & Hedenäs, a distinct species from the European mountains. Journal of Bryology 30, 271–278.CrossRefGoogle Scholar
Draper, I., Hedenäs, L. (2009). Sciuro-hypnum dovrense (Limpr.) Draper & Hedenäs comb. nov., a distinct Eurasian alpine species. Cryptogamie, Bryologie 30, 289–299.Google Scholar
Engel, J.J., Glenny, D. (2008). A Flora of the Liverworts and Hornworts of New Zealand, Vol. 1. Monographs in Systematic Botany from the Missouri Botanical Garden. St Louis, MI: Missouri Botanical Garden.Google Scholar
Farrar, D.R. (1998). The tropical flora of rockhouse cliff formations in the eastern United States. Journal of the Torrey Botanical Society 125, 91–108.CrossRefGoogle Scholar
Feldberg, K., Hentschel, J., Wilson, R. et al. (2007). Phylogenetic biogeography of the leafy liverwort Herbertus (Jungermanniales, Herbertaceae) based on nuclear and chloroplast DNA sequence data: correlation between genetic variation and geographical distribution. Journal of Biogeography 34, 688–698.CrossRefGoogle Scholar
Fenchel, T., Finlay, B.J. (2004). The ubiquity of small species: patterns of local and global diversity. Bioscience 54, 777–784.CrossRefGoogle Scholar
Fife, A.J. (1995). Checklist of the mosses of New Zealand. The Bryologist 98, 313–337.CrossRefGoogle Scholar
Foissner, W. (1999). Protist diversity: estimates of the near-imponderable. Protist 150, 363–368.CrossRefGoogle ScholarPubMed
Frahm, J.-P. (2008). Diversity, dispersal and biogeography of bryophytes (mosses). Biodiversity and Conservation 17, 277–284.CrossRefGoogle Scholar
Frahm, J.-P., O'Shea, B., Pócs, T. et al. (2003). Manual of tropical bryology. Tropical Bryology 23, 5–194.Google Scholar
Freitas, H., Brehm, A. (2001). Genetic diversity of the Macaronesian leafy liverwort Porella canariensis inferred from RAPD markers. The American Genetic Association 92, 339–345.Google ScholarPubMed
Frey, W. (ed.). (2009). Syllabus of Plant Families, Vol. 3. Bryophytes and Seedless Vascular Plants. Berlin: Borntraeger.
Frey, W., Stech, M., Meissner, K. (1999). Chloroplast DNA-relationship in palaeoaustral Lopidium concinnum (Hypopterygiaceae, Musci). An example of stenoevolution in mosses. Studies in austral temperate rain forest bryophytes 2. Plant Systematics and Evolution 218, 67–75.CrossRefGoogle Scholar
Frey, W., Frahm, J.-P., Fischer, E., Lobin, W. (2006). The Liverworts, Mosses and Ferns of Europe. Colchester: Harley Books.Google Scholar
Furuki, T., Dalton, P.J. (2008). Vandiemenia ratkowskiana Hewson (Marchantiophyta): a revised description and reassessment of its taxonomic status. Journal of Bryology 30, 48–54.Google Scholar
Gignac, L.D. (2001). Bryophytes as indicators of climate change. The Bryologist 104, 410–420.CrossRefGoogle Scholar
Glime, J.M. (2007). Bryophyte Ecology, Vol. 1. Physiological Ecology. EBook sponsored by Michigan Technological University and the International Association of Bryologists. Accessed October 2009 at www.bryoecol.mtu.edu.
Goffinet, B., Shaw, A.J. (eds.). (2009). Bryophyte Biology. Cambridge: Cambridge University Press.
González-Mancebo, J.M., Romaguera, F., Ros, R.M., Patiño, J., Werner, O. (2008). Bryophyte flora of the Canary Islands: an updated compilation of the species list with an analysis of distribution patterns in the context of the Macaronesian Region. Cryptogamie, Bryologie 29, 315–357.Google Scholar
Grolle, R., Long, D.G. (2000). An annotated check-list of the Hepaticae and Anthocerotae of Europe and Macaronesia. Journal of Bryology 22, 103–140.CrossRefGoogle Scholar
Hallingbäck, T. (2002). Globally widespread bryophytes, but rare in Europe. Portugaliae Acta Biologica 20, 11–24.Google Scholar
Hawkins, B.A., Porter, E.E., Felizola Diniz-Filho, J.A. (2003). Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology 84, 1608–1623.CrossRefGoogle Scholar
Heads, M. (2005). Dating nodes on molecular phylogenies: a critique of molecular biogeography. Cladistics 21, 62–78.CrossRefGoogle Scholar
Hedderson, T.A., Nowell, T.L. (2006). Phylogeography of Homalothecium sericeum (Hedw.) Br. Eur.; toward a reconstruction of glacial survival and postglacial migration. Journal of Bryology 28, 283–292.Google Scholar
Hedderson, T.A., Zander, R.H. (2007). Triquetrella mxinwana, a new moss species from South Africa, with a phylogenetic and biogeographic hypothesis for the genus. Journal of Bryology 29, 151–160.CrossRefGoogle Scholar
Hedenäs, L. (2007). Global diversity patterns among pleurocarpous mosses. The Bryologist 110, 319–331.CrossRefGoogle Scholar
Hedenäs, L. (2008). Molecular variation and speciation in Antitrichia curtipendula s.l. (Leucodontaceae, Bryophyta). Botanical Journal of the Linnean Society 156, 341–354.CrossRefGoogle Scholar
Hedenäs, L. (2009a). Relationships among arctic and non-arctic haplotypes of the moss species Scorpidium cossonii and Scorpidium scorpioides (Calliergonaceae). Plant Systematics and Evolution 277, 217–231.CrossRefGoogle Scholar
Hedenäs, L. (2009b). Haplotype variation of relevance to global and European phylogeography in Sarmentypnum exannulatum (Bryophyta: Calliergonaceae). Journal of Bryology 31, 145–158.CrossRefGoogle Scholar
Hedenäs, L., Herben, T., Rydin, H., Söderström, L. (1989). Ecology of the invading moss species Orthodontium lineare in Sweden: Spatial distribution and population structure. Holarctic Ecology 12, 163–172.Google Scholar
Hedenäs, L., Eldenäs, P. (2007). Cryptic speciation, habitat differentiation, and geography in Hamatocaulis vernicosus (Calliergonaceae, Bryophyta). Plant Systematics and Evolution 268, 131–145.Google Scholar
Hedenäs, L., Huttunen, S., Shevock, J.R., Norris, D.H. (2009). Homalothecium californicum (Brachytheciaceae), a new endemic species to the California Floristic Province, Pacific Coast of North America. The Bryologist 112, 593–604.CrossRefGoogle Scholar
Heinrichs, J., Groth, H., Lindner, M., Feldberg, K., Rycroft, D.S. (2004a). Molecular, morphological, and phytochemical evidence for a broad species concept of Plagiochila bifaria (Hepaticae). The Bryologist 107, 28–40.CrossRefGoogle Scholar
Heinrichs, J., Groth, H., Lindner, M. et al. (2004b). Intercontinental distribution of Plagiochila corrugata (Plagiochilaceae, Hepaticae) inferred from nrDNA ITS sequences and morphology. Botanical Journal of the Linnean Society 146, 469–481.CrossRefGoogle Scholar
Heinrichs, J., Lindner, M., Groth, H. et al. (2006). Goodbye or welcome Gondwana? – insights into the phylogenetic biogeography of the leafy liverwort Plagiochila with a description of Proskauera, gen. nov. (Plagiochilaceae, Jungermanniales). Plant Systematics and Evolution 258, 227–250.CrossRefGoogle Scholar
Heinrichs, J., Hentschel, J., Feldberg, K., Bombosch, A., Schneider, H. (2009a). Phylogenetic biogeography and taxonomy of disjunctly distributed bryophytes. Journal of Systematics and Evolution 47, 497–508.Google Scholar
Heinrichs, J., Klugmann, F., Hentschel, J., Schneider, H. (2009b). DNA taxonomy, cryptic speciation and diversification of the Neotropical-African liverwort, Marchesinia brachiata (Lejeuneaceae, Porellales). Molecular Phylogenetics and Evolution 53, 113–121.CrossRefGoogle Scholar
Hentschel, J., Zhu, R.-L., Long, D.G. et al. (2007). A phylogeny of Porella (Porellaceae, Jungermanniopsida) based on nuclear and chloroplast DNA sequences. Molecular Phylogenetics and Evolution 45, 693–705.CrossRefGoogle ScholarPubMed
Hill, M.O., Bell, N., Bruggeman-Nannenga, M.A. et al. (2006). An annotated checklist of the mosses of Europe and Macaronesia. Journal of Bryology 28, 198–267.CrossRefGoogle Scholar
Hillebrand, H., Watermann, F., Karez, R., Berninger, U.G. (2001). Differences in species richness patterns between unicellular and multicellular organisms. Oecologia 126, 114–124.CrossRefGoogle ScholarPubMed
Hovestadt, T., Poethke, H.J. (2005). Dispersal and establishment: spatial patterns and species–area relationships. Diversity and Distributions 11, 333–340.CrossRefGoogle Scholar
Huttunen, S., Hedenäs, L., Ignatov, M.S., Devos, N., Vanderpoorten, A. (2008). Origin and evolution of the northern hemisphere disjunction in the moss genus Homalothecium (Brachytheciaceae). American Journal of Botany 95, 720–730.CrossRefGoogle Scholar
Ingerpuu, N., Vellak, K., Kukk, T., Pärtel, M. (2001). Bryophyte and vascular plant species richness in boreo-nemoral moist forests and mires. Biodiversity and Conservation 10, 2153–2166.CrossRefGoogle Scholar
Kimmerer, R.W., Driscoll, M.J.L. (2000). Bryophyte species richness on insular boulder habitats: the effect of area, isolation, and microsite diversity. The Bryologist 103, 748–756.CrossRefGoogle Scholar
Kuusinen, M., Penttinen, A. (1999). Spatial pattern of the threatened epiphytic bryophyte Neckera pennata at two scales in a fragmented boreal forest. Ecography 22, 729–735.CrossRefGoogle Scholar
Lara, F., Garilleti, R., Mazimpaka, V. (2003). Noticias sobre el estado de Orthotrichum handiense en Fuerteventura (Islas Canarias). Boletín de la Sociedad Española de Briología 22–23, 11–16.Google Scholar
Limpens, J., Berendse, F., Blodau, C. et al. (2008). Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences 5, 1475–1491.Google Scholar
Longton, R.E., Schuster, R.M. (1983). Reproductive biology. In Schuster, R.M. (ed.), New Manual of Bryology, pp. 386–462. Nichinan: Hattori Botanical Laboratory.Google Scholar
Löbel, S., Snäll, T., Rydin, H. (2006). Metapopulation processes in epiphytes inferred patterns of regional distribution and local abundance fragmented forest landscapes. Ecology 94, 856–868.CrossRefGoogle Scholar
Machado, A. (2002). La biodiversidad de las islas Canarias. In Pineda, F.D., Miguel, J.M., Casado, M.A., Montalvo, J. (eds.), La diversidad biológica de España, pp. 89–100. Madrid: Pearson Educación S.A.Google Scholar
Marino, P., Raguso, R., Goffinet, B. (2009). The ecology and evolution of fly-dispersed dung mosses (Splachnaceae): manipulating insect behavior through odour and visual cues. Symbiosis 47, 61–76.CrossRefGoogle Scholar
McDaniel, S.F., Shaw, A.J. (2003). Phylogeographic structure and cryptic speciation in the Trans-Antarctic moss Pyrrhobryum mnioides. Evolution 57, 205–215.CrossRefGoogle ScholarPubMed
McDowall, R.W. (2004). What biogeography is: a place for process. Journal of Biogeography 31, 345–351.CrossRefGoogle Scholar
Miles, C.J., Longton, R.E. (1990). The role of spores in reproduction in mosses. Biological Journal of the Linnean Society 104, 149–173.CrossRefGoogle Scholar
Mishler, B. (2009). Species are not uniquely real biological entities. In Ayala, F., Arp, R . (eds.), Contemporary Debates in Philosophy of Biology, pp. 110–122. Chichester: Wiley-Blackwell.Google Scholar
Morat, P. (1993). Our knowledge of the flora of New Caledonia: endemism and diversity in relation to vegetation types and substrates. Biodiversity Letters 1, 72–81.CrossRefGoogle Scholar
Mouquet, N., Loreau, M. (2002). Coexistence in metacommunities: the regional similarity hypothesis. American Naturalist 159, 420–426.CrossRefGoogle ScholarPubMed
Muñoz, J., Felicísimo, A.M., Cabezas, F., Burgaz, A.R., Martínez, I. (2004). Wind as a long-distance dispersal vehicle in the southern hemisphere. Science 304, 1144–1147.CrossRefGoogle ScholarPubMed
Mutke, J., Barthlott, W. (2005). Patterns of vascular plant diversity at continental to global scales. Biologiske Skrifter 55, 521–537.Google Scholar
Nakanishi, K. (2001). Floristic diversity of bryophyte vegetation in relation to island area. Journal of Hattori Botanical Laboratory 91, 301–316.Google Scholar
Nekola, J.C., White, P.S. (1999). Special Paper: The distance decay of similarity in biogeography and ecology. Journal of Biogeography 26, 867–878.CrossRefGoogle Scholar
O'Shea, B.J. (2006). Checklist of the mosses of sub-Saharan Africa (version 5, 12/06). Tropical Bryology Research Reports 6, 1–252.Google Scholar
Ochyra, R., Buck, W.R. (2003). Arctoa fulvella, new to Tierra del Fuego, with notes on trans-American bipolar bryogeography. The Bryologist 106, 532–538.CrossRefGoogle Scholar
Ochyra, R., Smith, R.L., Bednarek-Ochyra, H. (2008). Illustrated Moss Flora of Antarctica. Cambridge: Cambridge University Press.Google Scholar
Oguri, E., Yamaguchi, T., Shimamura, M., Tsubota, H., Deguchi, H. (2008). Phylogenetic and morphological reevaluation of Leucobryum boninense (Leucobryaceae), endemic to the Bonin Islands. The Bryologist 111, 260–270.CrossRefGoogle Scholar
Oliver, M.J., Velten, J., Mishler, B.D. (2005). Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats?Integrative and Comparative Biology 45, 788–799.CrossRefGoogle ScholarPubMed
Peintinger, M., Bergamini, A., Schmid, B. (2003). Species-area relationships and nestedness of four taxonomic groups in fragmented wetlands. Basic and Applied Ecology 4, 385–394.CrossRefGoogle Scholar
Pócs, T. (1998). Bryophyte diversity along the Eastern Arc. Journal of East African Natural History 87, 75–84.CrossRefGoogle Scholar
Porley, R., Hodgetts, N. (2005). Mosses and Liverworts. London: HarperCollins.Google Scholar
Proctor, M.C.F. (2009). Physiological ecology. In Shaw, A., Goffinet, B. (eds.), Bryophyte Biology (2nd edition), pp. 237–268. Cambridge: Cambridge University Press.Google Scholar
Pugnaire, F.I., Valladares, F. (eds.). (2007). Functional Plant Ecology (2nd edition). New York, NY: Taylor & Francis Group.
Renzaglia, K.S., Schuette, S., Duff, R.J. et al. (2007). Bryophyte phylogeny: advancing the molecular and morphological frontiers. The Bryologist 110, 179–213.CrossRefGoogle Scholar
Rice, S.K., Collins, D., Anderson, A.M. (2001). Functional significance of variation in bryophyte canopy structure. American Journal of Botany 88, 1568–1576.CrossRefGoogle ScholarPubMed
Rycroft, D.S., Groth, H., Heinrichs, J. (2004). Reinstatement of Plagiochila maderensis (Jungermanniopsida: Plagiochilaceae) based on chemical evidence and nrDNA ITS sequences. Journal of Bryology 26, 37–45.CrossRefGoogle Scholar
Sáinz Ollero, H., Moreno Saiz, J.C. (2002). Flora vascular endémica española. In Pineda, F., Miguel, , J., Casado, M., Montalvo, J. (eds.), Diversidad biológica de España, pp. 175–196. Madrid: Pearson Educación S.A.Google Scholar
Schofield, W.B. (1988). Bryophyte disjunctions in the northern hemisphere: Europe and North America. Biological Journal of the Linnean Society 98, 211–224.CrossRefGoogle Scholar
Schofield, W.B. (1992). Bryophyte distribution patterns. In Bates, J., Farmer, A. (eds.), Bryophytes and Lichens in a Changing Environment, pp. 103–130. Oxford: Oxford University Press.Google Scholar
Schofield, W.B., Crum, H.A. (1972). Disjunctions in bryophytes. Annals of the Missouri Botanical Garden 59, 174–202.CrossRefGoogle Scholar
Schuster, R.M. (1983). Phytogeography of the bryophyta. In Schuster, R.M. (ed.), New Manual of Bryology, Vol. 1, pp. 463–623. Nichinan: The Hattori Botanical Laboratory, Nichinan.Google Scholar
Shaw, A.J. (2001). Biogeographic patterns and cryptic speciation in bryophytes. Journal of Biogeography 28, 253–261.CrossRefGoogle Scholar
Shaw, A.J., Goffinet, B. (2000). Bryophyte Biology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Shaw, A.J., McDaniel, S.F., Werner, O., Ros, R.M. (2002). New frontiers in bryology and lichenology (invited essay). Phylogeography and phylodemography. The Bryologist 105, 373–383.CrossRefGoogle Scholar
Shaw, A.J., Werner, O., Ros, R.M. (2003). Intercontinental mediterranean disjunct mosses: morphological and molecular patterns. American Journal of Botany 90, 540–550.CrossRefGoogle ScholarPubMed
Shaw, A.J., Cox, C.J., Goffinet, B. (2005). Global patterns of moss diversity: taxonomic and molecular inferences. Taxon 54, 337–352.CrossRefGoogle Scholar
Shaw, A.J., Holz, I., Cox, C.J., Goffinet, B. (2008). Phylogeny, character evolution, and biogeography of the Gondwanic moss family Hypopterygiaceae (Bryophyta). Systematic Botany 33, 21–30.CrossRefGoogle Scholar
Smith, A.J.E. (2004). The Moss Flora of Britain and Ireland. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Sotiaux, A., Enroth, J., Olsson, S., Quandt, D., Vanderpoorten, A. (2009). When morphology and molecules tell us different stories: a case-in-point with Leptodon corsicus, a new and unique endemic moss species from Corsica. Journal of Bryology 31, 186–196.CrossRefGoogle Scholar
Spratt, B.G., Staley, J.T., Fisher, M.C. (2006). Introduction: species and speciation in micro-organisms. Philosophical Transactions of the Royal Society B 365, 1897–1898.CrossRefGoogle Scholar
Staples, G.W., Imada, C.T. (2006). Checklist of Hawaiian anthocerotes and hepatics. Tropical Bryology 28, 15–47.Google Scholar
Staples, G.W., Imada, C.T., Hoe, W.J., Smith, C.W. (2004). A revised checklist of Hawaiian mosses. Tropical Bryology 25, 35–69.Google Scholar
Stech, M., Dohrmann, J. (2004). Molecular relationships and biogeography of two Gondwanan Campylopus species, C. pilifer and C. introflexus (Dicranaceae). Monographs in Systematic Botany 98, 415–432.Google Scholar
Stech, M., Sim-Sim, M., Esquível, M.G. et al. (2008). Explaining the ‘anomalous’ distribution of Echinodium (Bryopsida: Echinodiaceae): independent evolution in Macaronesia and Australasia. Organisms, Diversity and Evolution 8, 282–292.CrossRefGoogle Scholar
Sundberg, S., Rydin, H. (2002). Habitat requirements for establishment of Sphagnum from spores. Journal of Ecology 90, 268–278.CrossRefGoogle Scholar
Szweykowski, J., Buczkowska, K., Odrzykoski, I.J. (2005). Conocephalum salebrosum (Marchantiopsida, Conocephalaceae) – a new Holarctic liverwort species. Plant Systematics and Evolution 253, 133–158.CrossRefGoogle Scholar
Söderström, L., Jonsson, B.G. (1989). Spatial pattern and dispersal in the leafy hepatic Ptilidium pulcherrimum. Journal of Bryology 15, 793–802.CrossRefGoogle Scholar
Tan, B., Pócs, T. (2000). Biogeography and conservation of bryophytes. In Shaw, A. J., Goffinet, B. (eds.), Biology of Bryophytes, pp. 403–448. Cambridge: Cambridge University Press.Google Scholar
Tangney, R.S., Wilson, J.B., Mark, A.F. (1990). Bryophyte island biogeography: a study in Lake Manapouri, New Zealand. Oikos 59, 21–26.CrossRefGoogle Scholar
Taylor, T.N., Taylor, E.L., Krings, M. (2009). Paleobotany: The Biology and Evolution of Fossil Plants. New York, NY: Academic Press.Google Scholar
Zanten, B.O. (1978). Experimental studies on transoceanic long-range dispersal of moss spores in the southern hemisphere. Journal of Hattori Botanical Laboratory 44, 455–482.Google Scholar
Zanten, B.O., Pócs, T. 1981. Distribution and dispersal of bryophytes. Advances in Bryology 1, 479–562.Google Scholar
Zanten, B.O., Gradstein, S.R. (1988). Experimental dispersal geography of neotropical liverworts. Beihefte zur Nova Hedwigia 90, 41–94.Google Scholar
Vanderpoorten, A., Goffinet, B. (2009). Introduction to Bryophytes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Vanderpoorten, A., Long, D.G. (2006). Budding speciation and neotropical origin of the Azorean endemic liverwort, Leptoscyphus azoricus. Molecular Phylogenetics and Evolution 40, 73–83.CrossRefGoogle ScholarPubMed
Vanderpoorten, A., Devos, N., Goffinet, B., Hardy, O.J., Shaw, A.J. (2008). The barriers to oceanic island radiation in bryophytes: insights from the phylogeography of the moss Grimmia montana. Journal of Biogeography 35, 654–663.CrossRefGoogle Scholar
Virtanen, R., Oksanen, J. (2007). The effects of habitat connectivity on cryptogam richness in boulder metacommunity. Biological Conservation 135, 415–422.CrossRefGoogle Scholar
Konrat, M., Hagborg, A., Söderström, L. et al. (2008). Early land plants today: Global patterns of liverwort diversity, distribution, and floristic knowledge. In Mohamed, H., Baki, B., Nasrulaq-Boyce, A., Lee, P.K.Y. (eds.), Bryology in the New Millennium, pp. 425–438. Kuala Lumpur: University of Malaya.Google Scholar
Werner, O., Ros, R.M., Guerra, J., Shaw, A.J. (2003). Molecular data confirm the presence of Anacolia menziesii (Bartramiaceae, Musci) in southern Europe and its separation from Anacolia webbii. Systematic Botany 28, 483–489.Google Scholar
Werner, O., Patiño, J., González, Mancebo, J.M., Gabriel, R.M.A., Ros, R.M. (2009). The taxonomic status and the geographical relationships of the Macaronesian endemic moss Fissidens luisieri (Fissidentaceae) based on DNA sequence data. The Bryologist 112, 315–324.CrossRefGoogle Scholar
Zander, R.H. (2007). When biodiversity study and systematics diverge. Biodiversity 8, 43–48.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×