Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T05:09:12.257Z Has data issue: false hasContentIssue false

31 - Assessment of Traumatic Brain Injuries

from Part III - Assessment and Diagnosis of Specific Mental Disorders

Published online by Cambridge University Press:  06 December 2019

Martin Sellbom
Affiliation:
University of Otago, New Zealand
Julie A. Suhr
Affiliation:
Ohio University
Get access

Summary

Traumatic brain injury is one of the most prevalent neurological disorders and has gained public attention in recent years. Depending on several factors, including level of consciousness, post-traumatic amnesia, and neuroimaging findings, brain injuries are classified as mild, moderate, or severe. Individuals with moderate to severe injuries have worse cognitive, emotional, and functional outcomes and exhibit a more prolonged recovery than those with mild injuries. Although mild injuries are usually associated with short-term cognitive and emotional difficulties that resolve within weeks, sometimes symptoms persist longer than three months. These prolonged or post-concussion syndrome symptoms are not related to the injury itself but rather are influenced by prior and current psychological symptoms. As individuals with varying levels of brain injury progress through acute, subacute, and chronic stages of their recovery, neuropsychological evaluations are used to assess cognitive and emotional functioning, predict outcomes, and provide treatment recommendations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ACRM (American Congress of Rehabilitation Medicine). (1993). Definition of mild traumatic brain injury. Journal of Head Trauma Rehabilitation, 8(3), 8687.CrossRefGoogle Scholar
Alexander, M. P. (1995). Mild traumatic brain injury: Pathophysiology, natural history, and clinical management. Neurology, 45(7), 12531260.Google Scholar
Alsalaheen, B., Stockdale, K., Pechumer, D., Giessing, A., He, X., & Broglio, S. P. (2017). Cumulative effects of concussion history on baseline computerized neurocognitive test scores: Systematic review and meta-analysis. Sports Health, 9(4), 324332.Google Scholar
Arango-Lasprilla, J. C., Ketchum, J. M., Williams, K., Kreutzer, J. S., Marquez de la Plata, C. D., O’Neil-Pirozzi, T. M., & Wehman, P. (2008). Racial differences in employment outcomes after traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(5), 988995.Google Scholar
Arango-Lasprilla, J. C., Rosenthal, M., Deluca, J., Komaroff, E., Sherer, M., Cifu, D., & Hanks, R. (2007). Traumatic brain injury and functional outcomes: Does minority status matter? Brain Injury, 21(7), 701708.CrossRefGoogle ScholarPubMed
Beck, A. T., & Steer, R. A. (1993). Beck Anxiety Inventory manual. San Antonio, TX: Psychological Corporation.Google Scholar
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck Depression Inventory manual (2nd ed.). San Antonio, TX: Psychological Corporation.Google Scholar
Belanger, H. G., & Vanderploeg, R. D. (2005). The neuropsychological impact of sports-related concussion: A meta-analysis. Journal of the International Neuropsychological Society, 11(4), 345357.Google Scholar
Ben-Porath, Y., & Tellegen, A. (2011). MMPI-2 RF (Minnesota Multiphasic Personality Inventory-2 Restructured Form): Manual for administration, scoring, and interpretation. Minneapolis: University of Minnesota Press.Google Scholar
Bilbao, A., Kennedy, C., Chatterji, S., Ustun, B., Barquero, J. L., & Barth, J. T. (2003). The ICF: Applications of the WHO model of functioning, disability and health to brain injury rehabilitation. NeuroRehabilitation, 18(3), 239250.CrossRefGoogle ScholarPubMed
Bin Zahid, A., Hubbard, M. E., Dammavalam, V. M., Balser, D. Y., Pierre, G., Kim, A., Samadani, U. (2018). Assessment of acute head injury in an emergency department population using Sport Concussion Assessment Tool – 3rd edition. Applied Neuropsychology: Adult, 25(2), 110119.CrossRefGoogle Scholar
Binder, L. M., Iverson, G. L., & Brooks, B. L. (2009). To err is human: “Abnormal” neuropsychological scores and variability are common in healthy adults. Archives of Clinical Neuropsychology, 24(1), 3146.Google Scholar
Boake, C., McCauley, S. R., Levin, H. S., Pedroza, C., Contant, C. F., Song, J. X., … & Diaz-Marchan, P. J. (2005). Diagnostic criteria for postconcussional syndrome after mild to moderate traumatic brain injury. Journal of Neuropsychiatry and Clinical Neurosciences, 17(3), 350356.Google Scholar
Boake, C., Millis, S. R., High, W. M., Jr., Delmonico, R. L., Kreutzer, J. S., Rosenthal, M., … & Ivanhoe, C. B. (2001). Using early neuropsychologic testing to predict long-term productivity outcome from traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 82(6), 761768.Google Scholar
Boone, K. B. (2009). The need for continuous and comprehensive sampling of effort/response bias during neuropsychological examinations. Clinical Neuropsychologist, 23(4), 729741.CrossRefGoogle ScholarPubMed
Borkowski, J. G., Benton, A. L., & Spreen, O. (1967). Word fluency and brain damage. Neuropsychologia, 5(2), 135140.CrossRefGoogle Scholar
Brandt, J. (1991). The hopkins verbal learning test: Development of a new memory test with six equivalent forms. Clinical Neuropsychologist, 5(2), 125142.Google Scholar
Broglio, S. P., Katz, B. P., Zhao, S., McCrea, M., & McAllister, T. (2018). Test-Retest Reliability and Interpretation of Common Concussion Assessment Tools: Findings from the NCAA-DoD CARE Consortium. Sports Med, 48(5), 12551268.Google Scholar
Bryant, R. A., & Harvey, A. G. (1998). Relationship between acute stress disorder and posttraumatic stress disorder following mild traumatic brain injury. Am J Psychiatry, 155(5), 625629.Google Scholar
Bush, S. S., Sweet, J. J., Bianchini, K. J., Johnson-Greene, D., Dean, P. M., & Schoenberg, M. R. (2018). Deciding to adopt revised and new psychological and neuropsychological tests: an inter-organizational position paper. Clinical Neuropsychologist, 32(3), 319325.Google Scholar
Carroll, L. J., Cassidy, J. D., Peloso, P. M., Borg, J., von Holst, H., Holm, L., … & Pepin, M. (2004). Prognosis for mild traumatic brain injury: Results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. Journal of Rehabilitation Medicine (43 Suppl), 84105.Google Scholar
Christensen, B. K., Colella, B., Inness, E., Hebert, D., Monette, G., Bayley, M., & Green, R. E. (2008). Recovery of cognitive function after traumatic brain injury: A multilevel modeling analysis of Canadian outcomes. Archives of Physical Medicine and Rehabilitation, 89(12), S3S15.CrossRefGoogle ScholarPubMed
Cicerone, K. D., Dahlberg, C., Malec, J. F., Langenbahn, D. M., Felicetti, T., Kneipp, S., … & Catanese, J. (2005). Evidence-based cognitive rehabilitation: Updated review of the literature from 1998 through 2002. Archives of Physical Medicine and Rehabilitation, 86(8), 16811692.Google Scholar
Dean, A. C., Victor, T. L., Boone, K. B., & Arnold, G. (2008). The relationship of IQ to effort test performance. Clinical Neuropsychologist, 22(4), 705722.Google Scholar
Dean, A. C., Victor, T. L., Boone, K. B., Philpott, L. M., & Hess, R. A. (2009). Dementia and effort test performance. Clinical Neuropsychologist, 23(1), 133152.Google Scholar
Delis, D. C. (2000). California Verbal Learning Test – Adult Version. Manual. San Antonio, TX: Psychological Corporation.Google Scholar
Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan executive function system: Examiner’s manual. San Antonio, TX: Psychological Corporation.Google Scholar
Dikmen, S. S., Machamer, J. E., Powell, J. M., & Temkin, N. R. (2003). Outcome 3 to 5 years after moderate to severe traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 84(10), 14491457.Google Scholar
Dikmen, S. S., Machamer, J. E., Winn, H. R., & Temkin, N. R. (1995). Neuropsychological outcome at 1-year post head injury. Neuropsychology, 9(1), 8090.Google Scholar
Draper, K., & Ponsford, J. (2008). Cognitive functioning ten years following traumatic brain injury and rehabilitation. Neuropsychology, 22(5), 618625.Google Scholar
Echemendia, R. J., Meeuwisse, W., McCrory, P., Davis, G. A., Putukian, M., Leddy, J., … & Herring, S. (2017). The Sport Concussion Assessment Tool 5th Edition (SCAT5): Background and rationale. British Journal of Sports Medicine, 51(11), 848850.Google Scholar
Ellenberg, J. H., Levin, H. S., & Saydjari, C. (1996). Posttraumatic Amnesia as a predictor of outcome after severe closed head injury: Prospective assessment. Archives of Neurology, 53(8), 782791.Google Scholar
Erlanger, D., Feldman, D., Kutner, K., Kaushik, T., Kroger, H., Festa, J., … & Broshek, D. (2003). Development and validation of a web-based neuropsychological test protocol for sports-related return-to-play decision-making. Archives of Clinical Neuropsychology, 18(3), 293316.Google Scholar
Esselman, P. C., & Uomoto, J. M. (1995). Classification of the spectrum of mild traumatic brain injury. Brain Injury, 9(4), 417424.Google Scholar
Fork, M., Bartels, C., Ebert, A. D., Grubich, C., Synowitz, H., & Wallesch, C. W. (2005). Neuropsychological sequelae of diffuse traumatic brain injury. Brain Inj, 19(2), 101108.Google Scholar
Garcia, G. P., Broglio, S. P., Lavieri, M. S., McCrea, M., & McAllister, T. (2018). Quantifying the value of multidimensional assessment models for acute concussion: An analysis of data from the NCAA-DoD Care Consortium. Sports Medicine, 48(7), 17391749.Google Scholar
Gary, K. W., Arango-Lasprilla, J. C., & Stevens, L. F. (2009). Do racial/ethnic differences exist in post-injury outcomes after TBI? A comprehensive review of the literature. Brain Inj, 23(10), 775789.Google Scholar
Giacino, J. T., Kalmar, K., & Whyte, J. (2004). The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Archives of Physical Medicine and Rehabilitation, 85(12), 20202029.Google Scholar
Giza, C. C., & Hovda, D. A. (2014). The new neurometabolic cascade of concussion. Neurosurgery, 75(0 4), S24S33.Google Scholar
Golden, C. J. (1978). Stroop Color and Word Test: A Manual for Clinical and Experimental Uses. Wood Dale, IL: Stoelting Company.Google Scholar
Gouvier, W. D., Blanton, P. D., LaPorte, K. K., & Nepomuceno, C. (1987). Reliability and validity of the Disability Rating Scale and the Levels of Cognitive Functioning Scale in monitoring recovery from severe head injury. Archives of Physical Medicine and Rehabilitation, 68(2), 9497.Google Scholar
Green, P. (2003). Word memory test for windows: User’s manual and program. Edmonton: Green’s Publishing.Google Scholar
Greiffenstein, M. F., Baker, W. J., & Gola, T. (1994). Validation of malingered amnesia measures with a large clinical sample. Psychological Assessment, 6(3), 218224.Google Scholar
Gunstad, J., & Suhr, J. A. (2001). “Expectation as etiology” versus “the good old days”: Postconcussion syndrome symptom reporting in athletes, headache sufferers, and depressed individuals. Journal of the International Neuropsychological Society, 7(3), 323333.CrossRefGoogle ScholarPubMed
Guskiewicz, K. M., Ross, S. E., & Marshall, S. W. (2001). Postural stability and neuropsychological deficits after concussion in collegiate athletes. Journal of Athletic Training, 36(3), 263273.Google Scholar
Hart, T., Hoffman, J. M., Pretz, C., Kennedy, R., Clark, A. N., & Brenner, L. A. (2012). A longitudinal study of major and minor depression following traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 93(8), 13431349.Google Scholar
Hart, T., Millis, S., Novack, T., Englander, J., Fidler-Sheppard, R., & Bell, K. R. (2003). The relationship between neuropsychologic function and level of caregiver supervision at 1 year after traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 84(2), 221230.Google Scholar
Heaton, R. K., Grant, I., & Matthews, C. (1991). Comprehensive norms for an expanded Halstead-Reitan neuropsychological battery: Demographic corrections, research findings, and clinical applications. Odessa, FL: Psychological Assessment Resources.Google Scholar
Heaton, S. K., Chelune, G.J., Talley, J.L., Kay, G.G., & Curtiss, G. (1993). Wisconsin Card Sorting Test manual: Revised and expanded. Odessa, FL: Psychological Assessment Resources.Google Scholar
Heilbronner, R. L., Sweet, J. J., Attix, D. K., Krull, K. R., Henry, G. K., & Hart, R. P. (2010). Official position of the American academy of clinical neuropsychology on serial neuropsychological assessments: The utility and challenges of repeat test administrations in clinical and forensic contexts. Clinical Neuropsychologist, 24(8), 12671278.Google Scholar
Heilbronner, R. L., Sweet, J. J., Morgan, J. E., Larrabee, G. J., & Millis, S. R. (2009). American Academy of Clinical Neuropsychology Consensus Conference Statement on the neuropsychological assessment of effort, response bias, and malingering. Clinical Neuropsychologist, 23(7), 10931129.Google Scholar
Hiott, D. W., & Labbate, L. (2002). Anxiety disorders associated with traumatic brain injuries. NeuroRehabilitation, 17(4), 345355.Google Scholar
Jackson, W. T., Novack, T. A., & Dowler, R. N. (1998). Effective serial measurement of cognitive orientation in rehabilitation: The Orientation Log. Archives of Physical Medicine and Rehabilitation, 79(6), 718720.Google Scholar
Kaplan, E., Goodglass, H., & Weintrab, S. (1983). The Boston naming test. Philadelphia: Lea & Febiger.Google Scholar
Karr, J. E., Areshenkoff, C. N., & Garcia-Barrera, M. A. (2014). The neuropsychological outcomes of concussion: A systematic review of meta-analyses on the cognitive sequelae of mild traumatic brain injury. Neuropsychology, 28(3), 321336.Google Scholar
Kashluba, S., Hanks, R. A., Casey, J. E., & Millis, S. R. (2008). Neuropsychologic and functional outcome after complicated mild traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(5), 904911.Google Scholar
Kiernan, R. J., Mueller, J., Langston, J. W., & Van Dyke, C. (1987). The Neurobehavioral Cognitive Status Examination: A brief but quantitative approach to cognitive assessment. Annals of Internal Medicine, 107(4), 481485.Google Scholar
King, N. S., Crawford, S., Wenden, F. J., Moss, N. E., & Wade, D. T. (1995). The Rivermead Post Concussion Symptoms Questionnaire: A measure of symptoms commonly experienced after head injury and its reliability. J Neurol, 242(9), 587592.Google Scholar
Kontos, A. P., Deitrick, J. M., Collins, M. W., & Mucha, A. (2017). Review of vestibular and oculomotor screening and concussion rehabilitation. Journal of Athletic Training, 52(3), 256261.Google Scholar
Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ-9: Validity of a brief depression severity measure. J Gen Intern Med, 16(9), 606613.Google Scholar
Larrabee, G. J. (2003). Detection of malingering using atypical performance patterns on standard neuropsychological tests. Clinical Neuropsychologist, 17(3), 410425.Google Scholar
Larrabee, G. J. (2012). Performance validity and symptom validity in neuropsychological assessment. Journal of the International Neuropsychological Society, 18(4), 625630.Google Scholar
Laxe, S., Tschiesner, U., Zasler, N., López-Blazquez, R., Tormos, J. M., & Bernabeu, M. (2012). What domains of the International Classification of Functioning, Disability and Health are covered by the most commonly used measurement instruments in traumatic brain injury research? Clinical Neurology and Neurosurgery, 114(6), 645650.Google Scholar
Laxe, S., Zasler, N., Robles, V., López-Blázquez, R., Tormos, J. M., & Bernabeu, M. (2014). ICF profiling of patients with traumatic brain injury: an international professional survey. Disability and Rehabilitation, 36(1), 8288.Google Scholar
Levin, H. S., O’Donnell, V. M., & Grossman, R. G. (1979). The Galveston Orientation and Amnesia Test: A practical scale to assess cognition after head injury. J Nerv Ment Dis, 167(11), 675684.Google Scholar
Lippa, S. M. (2018). Performance validity testing in neuropsychology: A clinical guide, critical review, and update on a rapidly evolving literature. Clinical Neuropsychologist, 32(3), 391421.Google Scholar
Lippa, S. M., Agbayani, K. A., Hawes, S., Jokic, E., & Caroselli, J. S. (2014). Effort in acute traumatic brain injury: Considering more than pass/fail. Rehabilitation Psychology, 59(3), 306312.Google Scholar
Lippa, S. M., Lange, R. T., French, L. M., & Iverson, G. L. (2017). Performance Validity, Neurocognitive Disorder, and Post-concussion Symptom Reporting in Service Members with a History of Mild Traumatic Brain Injury. Archives of Clinical Neuropsychology, 33(5), 113.Google Scholar
Loring, D. W., & Bauer, R. M. (2010). Testing the limits: Cautions and concerns regarding the new Wechsler IQ and Memory scales. Neurology, 74(8), 685690.Google Scholar
Loring, D. W., Goldstein, F. C., Chen, C., Drane, D. L., Lah, J. J., Zhao, L., & Larrabee, G. J. (2016). False-positive error rates for reliable digit span and auditory verbal learning test performance validity measures in amnestic mild cognitive impairment and early Alzheimer disease. Archives of Clinical Neuropsychology, 31(4), 313331.Google Scholar
Lovell, M. R., Iverson, G. L., Collins, M. W., Podell, K., Johnston, K. M., Pardini, D., … & Maroon, J. C. (2006). Measurement of symptoms following sports-related concussion: Reliability and normative data for the post-concussion scale. Applied Neuropsychology, 13(3), 166174.Google Scholar
Malec, J. F., Brown, A. W., Leibson, C. L., Flaada, J. T., Mandrekar, J. N., Diehl, N. N., & Perkins, P. K. (2007). The mayo classification system for traumatic brain injury severity. Journal of Neurotrauma, 24(9), 14171424.CrossRefGoogle ScholarPubMed
Marr, A. C. V. (2004). Central Nervous System Injury Surveillance: Annual Data Submission Standards for the Year 2002. Atlanta: U.S. Department of Health and Human Services, CDC, National Center for Injury Prevention and Control.Google Scholar
Marshall, P., & Happe, M. (2007). The performance of individuals with mental retardation on cognitive tests assessing effort and motivation. Clinical Neuropsychologist, 21(5), 826840.Google Scholar
Mathias, J. L., & Wheaton, P. (2007). Changes in attention and information-processing speed following severe traumatic brain injury: A meta-analytic review. Neuropsychology, 21(2), 212223.Google Scholar
McCrea, M., Barr, W. B., Guskiewicz, K., Randolph, C., Marshall, S. W., Cantu, R., … & Kelly, J. P. (2005). Standard regression-based methods for measuring recovery after sport-related concussion. Journal of the International Neuropsychological Society, 11(1), 5869.Google Scholar
McCrea, M., Guskiewicz, K. M., Marshall, S. W., Barr, W., Randolph, C., Cantu, R. C., … & Kelly, J. P. (2003). Acute effects and recovery time following concussion in collegiate football players: The NCAA Concussion Study. Jama, 290(19), 25562563.Google Scholar
McCrea, M., Hammeke, T., Olsen, G., Leo, P., & Guskiewicz, K. (2004). Unreported concussion in high school football players: Implications for prevention. Clin J Sport Med, 14(1), 1317.Google Scholar
McCrea, M., Iverson, G. L., McAllister, T. W., Hammeke, T. A., Powell, M. R., Barr, W. B., & Kelly, J. P. (2009). An integrated review of recovery after mild traumatic brain injury (MTBI): Implications for clinical management. Clinical Neuropsychologist, 23(8), 13681390.CrossRefGoogle ScholarPubMed
McCrea, M., Kelly, J. P., Kluge, J., Ackley, B., & Randolph, C. (1997). Standardized assessment of concussion in football players. Neurology, 48(3), 586588.Google Scholar
McCrory, P., Meeuwisse, W., Dvorak, J., Aubry, M., Bailes, J., Broglio, S., … & Vos, P. E. (2017). Consensus statement on concussion in sport-the 5(th) international conference on concussion in sport held in Berlin, October 2016. British Journal of Sports Medicine, 51(11), 838847.Google Scholar
McKee, A. C., Cantu, R. C., Nowinski, C. J., Hedley-Whyte, E. T., Gavett, B. E., Budson, A. E., … & Stern, R. A. (2009). Chronic traumatic encephalopathy in athletes: Progressive tauopathy after repetitive head injury. Journal of Neuropathology and Experimental Neurology, 68(7), 709735.Google Scholar
McKinley, W. (1999). Cognitive and behavioral effects of brain injury. In Rosenthal, M. (Ed.), Rehabilitation of the adult and child with traumatic brain injury (pp. 7486). Philadelphia:FA Davis Co.Google Scholar
McLeod, T. C., & Leach, C. (2012). Psychometric properties of self-report concussion scales and checklists. Journal of Athletic Training, 47(2), 221223.Google Scholar
Meterko, M., Baker, E., Stolzmann, K. L., Hendricks, A. M., Cicerone, K. D., & Lew, H. L. (2012). Psychometric assessment of the Neurobehavioral Symptom Inventory-22: The structure of persistent postconcussive symptoms following deployment-related mild traumatic brain injury among veterans. Journal of Head Trauma Rehabilitation, 27(1), 5562.Google Scholar
Meyers, J. E., & Diep, A. (2000). Assessment of malingering in chronic pain patients using neuropsychological tests. Applied Neuropsychology, 7(3), 133139.Google Scholar
Meyers, J. E., & Volbrecht, M. E. (2003). A validation of multiple malingering detection methods in a large clinical sample. Archives of Clinical Neuropsychology, 18(3), 261276.Google Scholar
Miller, J. B., Axelrod, B. N., Schutte, C., & Davis, J. J. (2017). Symptom and performance validity assessment in forensic neuropsychology. In Bush, S. S., Demakis, G. J., & Rohling, M. L (Eds.). APA handbook of forensic neuropsychology (pp. 67109). Washington, DC: American Psychological Association.Google Scholar
Millis, S. R., Rosenthal, M., Novack, T. A., Sherer, M., Nick, T. G., Kreutzer, J. S., … & Ricker, J. H. (2001). Long-term neuropsychological outcome after traumatic brain injury. Journal of Head Trauma Rehabilitation, 16(4), 343355.CrossRefGoogle ScholarPubMed
Mittenberg, W., DiGiulio, D. V., Perrin, S., & Bass, A. E. (1992). Symptoms following mild head injury: Expectation as aetiology. Journal of Neurology, Neurosurgery, and Psychiatry, 55(3), 200204.Google Scholar
Morey, L. C. (2007). Personality Assessment Inventory (PAI): Professional manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., … & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695699.Google Scholar
Nelson, L. D., Furger, R. E., Ranson, J., Tarima, S., Hammeke, T. A., Randolph, C., … & McCrea, M. A. (2018). Acute clinical predictors of symptom recovery in emergency department patients with uncomplicated mild traumatic brain injury or non-traumatic brain injuries. Journal of Neurotrauma, 35(2), 249259.Google Scholar
Nelson, L. D., Janecek, J. K., & McCrea, M. A. (2013). Acute clinical recovery from sport-related concussion. Neuropsychology Review, 23(4), 285299.Google Scholar
Nelson, L. D., LaRoche, A. A., Pfaller, A. Y., Lerner, E. B., Hammeke, T. A., Randolph, C., … & McCrea, M. A. (2016). Prospective, head-to-head study of three Computerized Neurocognitive Assessment Tools (CNTs): Reliability and validity for the assessment of sport-related concussion. Journal of the International Neuropsychological Society, 22(1), 2437.Google Scholar
Nelson, N. W., Hoelzle, J. B., Sweet, J. J., Arbisi, P. A., & Demakis, G. J. (2010). Updated meta-analysis of the MMPI-2 symptom validity scale (FBS): Verified utility in forensic practice. Clinical Neuropsychologist, 24(4), 701724.Google Scholar
Novack, T. A., Alderson, A. L., Bush, B. A., Meythaler, J. M., & Canupp, K. (2000). Cognitive and functional recovery at 6 and 12 months post-TBI. Brain Injury, 14(11), 987996.Google Scholar
Novack, T. A., Bush, B. A., Meythaler, J. M., & Canupp, K. (2001). Outcome after traumatic brain injury: Pathway analysis of contributions from premorbid, injury severity, and recovery variables. Archives of Physical Medicine and Rehabilitation, 82(3), 300305.CrossRefGoogle ScholarPubMed
Pearson. (2009). Test of Premorbid Functioning (TOPF). San Antonio, TX: NCS Pearson.Google Scholar
Pertab, J. L., James, K. M., & Bigler, E. D. (2009). Limitations of mild traumatic brain injury meta-analyses. Brain Injury, 23(6), 498508.Google Scholar
Rabin, L. A., Barr, W. B., & Burton, L. A. (2005). Assessment practices of clinical neuropsychologists in the United States and Canada: A survey of INS, NAN, and APA Division 40 members. Archives of Clinical Neuropsychology, 20(1), 3365.Google Scholar
Randolph, C., Tierney, M. C., Mohr, E., & Chase, T. N. (1998). The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Preliminary clinical validity. Journal of Clinical and Experimental Neuropsychology, 20(3), 310319.Google Scholar
Rappaport, M. (2005). The Disability Rating and Coma/Near-Coma scales in evaluating severe head injury. Neuropsychological Rehabilitation, 15(34), 442453.Google Scholar
Rappaport, M., Dougherty, A. M., & Kelting, D. L. (1992). Evaluation of coma and vegetative states. Archives of Physical Medicine and Rehabilitation, 73(7), 628634.Google Scholar
Reitan, R. M. (1955). The relation of the trail making test to organic brain damage. Journal of Consulting Psychology, 19, 393394.Google Scholar
Reitan, R. M. (1958). Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills, 8(3), 271276.Google Scholar
Reitan, R. M., & Wolfson, D. (1995). Category test and trail making test as measures of frontal lobe functions. Clinical Neuropsychologist, 9(1), 5056.Google Scholar
Resch, J. E., McCrea, M. A., & Cullum, C. M. (2013). Computerized neurocognitive testing in the management of sport-related concussion: an update. Neuropsychology Review, 23(4), 335349.Google Scholar
Rey, A. (1941). L’examen psychologique dans les cas d’encephalopathie traumtique. Archives of Psychology, 28, 286340.Google Scholar
Ricker, J. H. (2010). Traumatic brain injury in adults. In Frank, R. G., Rosenthal, M., & Caplan, B. (Eds.) Handbook of rehabilitation psychology (2nd ed., pp. 4362). Washington, DC: American Psychological Association.Google Scholar
Robles, L., Lopez, E., Salazar, X., Boone, K. B., & Glaser, D. F. (2015). Specificity data for the b Test, Dot Counting Test, Rey-15 Item Plus Recognition, and Rey Word Recognition Test in monolingual Spanish-speakers. Journal of Clinical and Experimental Neuropsychology, 37(6), 614621.Google Scholar
Rohling, M. L., Meyers, J. E., & Millis, S. R. (2003). Neuropsychological impairment following traumatic brain injury: A dose-response analysis. Clinical Neuropsychologist, 17(3), 289302.Google Scholar
Rosenthal, M., Dljkers, M., Harrison-Felix, C., Nabors, N., Witol, A. D., Young, M. E., & Englander, J. S. (1996). Impact of minority status on functional outcome and community integration following traumatic brain injury. Journal of Head Trauma Rehabilitation, 11(5), 4057.Google Scholar
Salazar, X. F., Lu, P. H., Wen, J., & Boone, K. B. (2007). The use of effort tests in ethnic minorities and in non-English-speaking and English as a second language populations. In Boone, K. B. (Ed.) Assessment of feigned cognitive impairment: A neuropsychological perspective (pp. 405427). New York: Guilford Press.Google Scholar
Sander, A. M., Pappadis, M. R., Davis, L. C., Clark, A. N., Evans, G., Struchen, M. A., & Mazzei, D. M. (2009). Relationship of race/ethnicity and income to community integration following traumatic brain injury: Investigation in a non-rehabilitation trauma sample. NeuroRehabilitation, 24(1), 1527.Google Scholar
Schmidt, M. (1996). Rey auditory verbal learning test: A handbook. Los Angeles: Western Psychological Services.Google Scholar
Schretlen, D. J., Testa, S. M., Winicki, J. M., Pearlson, G. D., & Gordon, B. (2008). Frequency and bases of abnormal performance by healthy adults on neuropsychological testing. Journal of the International Neuropsychological Society, 14(3), 436445.Google Scholar
Schwamm, L. H., Van Dyke, C., Kiernan, R. J., Merrin, E. L., & Mueller, J. (1987). The Neurobehavioral Cognitive Status Examination: Comparison with the Cognitive Capacity Screening Examination and the Mini-Mental State Examination in a neurosurgical population. Annals of Internal Medicine, 107(4), 486491.Google Scholar
Sherer, M., Giacino, J. T., Doiron, M. J., LaRussa, A., & Taylor, S. R. (2014). Bedside evaluations. In Sherer, M. & Sander, A. M. (Eds.), Handbook on the neuropsychology of traumatic brain injury (pp. 4975). New York: Springer.Google Scholar
Sherer, M., & Novack, T. A. (2003). Neuropsychological assessment after brain injury. In Prigatano, G., & Pliskin, N (Ed.), Clinical neuropsychology and cost outcome research: A beginning (pp. 3960). New York: Psychology Press.Google Scholar
Sherer, M., Novack, T. A., Sander, A. M., Struchen, M. A., Alderson, A., & Thompson, R. N. (2002). Neuropsychological assessment and employment outcome after traumatic brain injury: A review. Clinical Neuropsychologist, 16(2), 157178.Google Scholar
Sherer, M., Yablon, S. A., Nakase-Richardson, R., & Nick, T. G. (2008). Effect of severity of post-traumatic confusion and its constituent symptoms on outcome after traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(1), 4247.Google Scholar
Smith, A. (1982). Symbol Digit Modalities Test (SDMT): Manual (revised). Los Angeles: Western Psychological Services.Google Scholar
Spitzer, R. L., Kroenke, K., Williams, J. B., & Lowe, B. (2006). A brief measure for assessing generalized anxiety disorder: The GAD-7. Archives of Internal Medicine, 166(10), 10921097.Google Scholar
Stein, S. C., & Ross, S. E. (1992). Moderate head injury: A guide to initial management. Journal of Neurosurgery, 77(4), 562564.Google Scholar
Strutt, A. M., Scott, B. M., Shrestha, S., & York, M. K. (2011). The Rey 15-item memory test and Spanish-speaking older adults. Clinical Neuropsychologist, 25(7), 12531265.Google Scholar
Tator, C. H. (2009). Let’s standardize the definition of concussion and get reliable incidence data. Canadian Journal of Neurological Sciences, 36(4), 405406.Google Scholar
Taylor, , Bell, J. M., M. J., Breiding, & Xu, L. (2017). Traumatic brain injury-related emergency department visits, hospitalizations, and deaths – United States, 2007 and 2013. MMWR Surveillance Summaries, 66(9), 116.Google Scholar
Teasdale, G., & Jennett, B. (1974). Assessment of coma and impaired consciousness: A practical scale. Lancet, 2(7872), 8184.Google Scholar
Tombaugh, T. N. (1996). TOMM, Test of Memory Malingering. North Tonawanda: Multi-Health Systems.Google Scholar
VA/DoD (Department of Veterans Affairs, Department of Defense). (2009). VA/DoD Clinical Practice Guideline for Management of Concussion/Mild Traumatic Brain Injury. Journal of Rehabilitation Research and Development, 46(6), 168.Google Scholar
Van Reekum, R., Bolago, I., Finlayson, M. A. J., Garner, S., & Links, P. S. (1996). Psychiatric disorders after traumatic brain injury. Brain Injury, 10(5), 319328.Google Scholar
van Reekum, R., Cohen, T., & Wong, J. (2000). Can traumatic brain injury cause psychiatric disorders? Journal of Neuropsychiatry and Clinical Neurosciences, 12(3), 316327.Google Scholar
Vilar-López, R., Gomez-Rio, M., Caracuel, A., Llamas-Elvira, J., & Perez-Garcia, M. (2008). Use of specific malingering measures in a Spanish sample. Journal of Clinical and Experimental Neuropsychology, 30(6), 710722.Google Scholar
Vilar-López, R., Santiago-Ramajo, S., Gomez-Rio, M., Verdejo-García, A. M., Llamas, J., & Perez-Garcia, M. (2007). Detection of malingering in a Spanish population using three specific malingering tests. Archives of Clinical Neuropsychology, 22(3), 379388.Google Scholar
Volbrecht, M. E., Meyers, J. E., & Kaster-Bundgaard, J. (2000). Neuropsychological outcome of head injury using a short battery. Archives of Clinical Neuropsychology, 15(3), 251265.Google Scholar
Wechsler, D. (2008). Wechsler Memory Scale – fourth edition (WMS-IV). San Antonio, TX: NCS Pearson.Google Scholar
Wechsler, D. (2011). Wechsler Abbreviated Scale of Intelligence – second edition (WASI-II). San Antonio, TX: NCS Pearson.Google Scholar
Whelan-Goodinson, R., Ponsford, J. L., Schonberger, M., & Johnston, L. (2010). Predictors of psychiatric disorders following traumatic brain injury. Journal of Head Trauma Rehabilitation, 25(5), 320329.CrossRefGoogle ScholarPubMed
Whelan, R., Ponsford, J., Johnston, L., & Grant, F. (2009). Psychiatric disorders following traumatic brain injury. Journal of Head Trauma Rehabilitation, 24 (5), 324332.Google Scholar
WHO (World Health Organization). (2001). International Classification of Functioning, Disability and Health. www3.who.int/icf/icftemplate.cfmGoogle Scholar
Wygant, D. B., Sellbom, M., Gervais, R. O., Ben-Porath, Y. S., Stafford, K. P., Freeman, D. B., & Heilbronner, R. L. (2010). Further validation of the MMPI-2 and MMPI-2-RF Response Bias Scale: Findings from disability and criminal forensic settings. Psychological Assessment, 22(4), 745756.Google Scholar
Youngjohn, J. R., Wershba, R., Stevenson, M., Sturgeon, J., & Thomas, M. L. (2011). Independent validation of the MMPI-2-RF Somatic/Cognitive and Validity scales in TBI Litigants tested for effort. Clinical Neuropsychologist, 25(3), 463476.Google Scholar
Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatrica Scandinavica, 67(6), 361370.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×