Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T18:41:14.206Z Has data issue: false hasContentIssue false

Subpart II.2 - Childhood and Adolescence: The Development of Human Thinking

from Part II - Fundamentals of Cognitive Development from Infancy to Adolescence and Young Adulthood

Published online by Cambridge University Press:  24 February 2022

Olivier Houdé
Affiliation:
Université de Paris V
Grégoire Borst
Affiliation:
Université de Paris V
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adrián, J., Clemente, R., & Villanueva, L. (2007). Mothers’ use of cognitive state verbs in picturebook reading and the development of children’s understanding of mind: A longitudinal study. Child Development, 78, 10521067.CrossRefGoogle ScholarPubMed
Anggoro, F. K., Waxman, S. R., & Medin, D. L. (2008). Naming practices and the acquisition of key biological concepts: Evidence from English and Indonesian. Psychological Science, 19, 314319.CrossRefGoogle ScholarPubMed
Arthur, A. E., Bigler, R. S., Liben, L. S., Gelman, S. A., & Ruble, D. N. (2008). Gender stereotyping and prejudice in young children: A developmental intergroup perspective. In Levy, S. R., & Killen, M. (eds.), Intergroup Attitudes and Relations in Childhood through Adulthood (pp. 6686). Oxford: Oxford University Press.Google Scholar
Astuti, R., Solomon, G. A., & Carey, S. (2004). Constraints on conceptual development: A case study of the acquisition of folkbiological and folksociological knowledge in Madagascar. Monographs of the Society for Research in Child Development, 69, 113.CrossRefGoogle ScholarPubMed
Atran, S. (1998). Folk biology and the anthropology of science: Cognitive universals and cultural particulars. Behavioral and Brain Sciences, 21, 547569.Google Scholar
Austin, K., Theakston, A., Lieven, E., & Tomasello, M. (2014). Young children’s understanding of denial. Developmental Psychology, 50, 20612070.CrossRefGoogle ScholarPubMed
Baldwin, D. A., Markman, E. M., & Melartin, R. L. (1993). Infants’ ability to draw inferences about nonobvious object properties: Evidence from exploratory play. Child Development, 64, 711728.Google Scholar
Banaji, M. R., & Gelman, S. A. (eds.) (2013). Navigating the Social World: What Infants, Children, and Other Species Can Teach Us. New York: Oxford University Press.CrossRefGoogle Scholar
Bastian, B., & Haslam, N. (2007). Psychological essentialism and attention allocation: Preferences for stereotype-consistent versus stereotype-inconsistent information. The Journal of Social Psychology, 147, 531541.CrossRefGoogle ScholarPubMed
Bergelson, E., & Swingley, D. (2012). At 6–9 months, human infants know the meanings of many common nouns. Proceedings of the National Academy of Sciences (USA), 109, 32533258.Google Scholar
Bian, L., Leslie, S. J., & Cimpian, A. (2017). Gender stereotypes about intellectual ability emerge early and influence children’s interests. Science, 355, 389391.CrossRefGoogle ScholarPubMed
Bowerman, M. (2005). Why can’t you “open” a nut or “break” a cooked noodle? Learning covert object categories in action word meanings. In Gershkoff-Stowe, L., & Rakison, D. H. (eds.). Building Object Categories in Developmental Time (pp. 227262). Hove: Psychology Press.Google Scholar
Bowerman, M., & Choi, S. (2001). Shaping meanings for language: Universal and language-specific in the acquisition of spatial semantic categories. In Levinson, S. C., & Bowerman, M. (eds.), Language Acquisition and Conceptual Development (No. 3, pp. 475511). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Brandone, A. C., Cimpian, A., Leslie, S. J., & Gelman, S. A. (2012). Do lions have manes? For children, generics are about kinds rather than quantities. Child Development, 83, 423433.Google Scholar
Brandone, A. C., Gelman, S. A., & Hedglen, J. (2015). Children’s developing intuitions about the truth conditions and implications of novel generics versus quantified statements. Cognitive Science, 39, 711738.CrossRefGoogle ScholarPubMed
Casasola, M., & Ahn, Y. A. (2018). What develops in infants’ spatial categorization? Korean infants’ categorization of containment and tight‐fit relations. Child Development, 89, e382e396.CrossRefGoogle ScholarPubMed
Chouinard, M. M. (2007). Children’s questions: A mechanism for cognitive development. Monographs of the Society for Research in Child Development, 72, viiix, 1–112.Google Scholar
Cimpian, A., Brandone, A. C., & Gelman, S. A. (2010). Generic statements require little evidence for acceptance but have powerful implications. Cognitive Science, 34, 14521482.Google Scholar
Cimpian, A., & Markman, E. M. (2009). Information learned from generic language becomes central to children’s biological concepts: Evidence from their open-ended explanations. Cognition, 113, 1425.CrossRefGoogle ScholarPubMed
Cimpian, A., & Salomon, E. (2014). The inherence heuristic: An intuitive means of making sense of the world, and a potential precursor to psychological essentialism. Behavioral and Brain Sciences, 37, 461480.CrossRefGoogle Scholar
Cimpian, A., & Steinberg, O. D. (2014). The inherence heuristic across development: Systematic differences between children’s and adults’ explanations for everyday facts. Cognitive Psychology, 75, 130154.Google Scholar
Clark, E. V. (1992). Conventionality and contrast: Pragmatic principles with lexical consequences. In Kittay, E. F., & Lehrer, A. (eds.), Frames, Fields, and Contrasts: New Essays in Semantic and Lexical Organization (pp. 171188). Hillsdale, NJ: Erlbaum.Google Scholar
Clark, E. V. (2005). Meaning: Development. In Brown, K. (gen. ed.), Encyclopedia of Language and Linguistics (2nd ed., article 0840, pp. 577584). London: Elsevier.Google Scholar
Coley, J. D. (2012). Where the wild things are: Informal experience and ecological reasoning. Child Development, 83, 9921006.Google Scholar
Danovitch, J. H., & Keil, F. C. (2004). Should you ask a fisherman or a biologist?: Developmental shifts in ways of clustering knowledge. Child Development, 75, 918931.Google Scholar
Davidson, N. S., & Gelman, S. A. (1990). Inductions from novel categories: The role of language and conceptual structure. Cognitive Development, 5, 151176.CrossRefGoogle Scholar
de Villiers, J. G., & de Villiers, P. A. (2014). The role of language in theory of mind development. Topics in Language Disorders, 34, 313328.CrossRefGoogle Scholar
DeJesus, J. M., Hwang, H. G., Dautel, J. B., & Kinzler, K. D. (2017). Bilingual children’s social preferences hinge on accent. Journal of Experimental Child Psychology, 164, 178191.Google Scholar
del Río, M. F., & Strasser, K. (2011). Chilean children’s essentialist reasoning about poverty. British Journal of Developmental Psychology, 29, 722743.Google Scholar
Dewar, K., & Xu, F. (2007). Do 9-month-old infants expect distinct words to refer to kinds? Developmental Psychology, 43, 12271238.Google Scholar
Diesendruck, G. (2013). Essentialism: The development of a simple, but potentially dangerous, idea. In Banaji, M. R., & Gelman, S. A. (eds.), Navigating the Social World: What Infants, Children, and Other Species Can Teach Us (pp. 263268). New York: Oxford University Press.Google Scholar
Diesendruck, G., Goldfein-Elbaz, R., Rhodes, M., Gelman, S. A., & Neumark, N. (2013). Cross-cultural differences in children’s beliefs about the objectivity of social categories. Child Development, 84, 19061917.Google Scholar
Douglas, M. (1966). Purity and Danger: An Analysis of Concepts of Pollution and Taboo. Oxfordshire: Routledge and Keegan Paul.Google Scholar
Feiman, R., Carey, S., & Cushman, F. (2015). Infants’ representations of others’ goals: Representing approach over avoidance. Cognition, 136, 204214.CrossRefGoogle ScholarPubMed
Ferguson, C. A. (1975). Toward a characterization of English foreigner talk. Anthropological Linguistics, 17, 114.Google Scholar
Fisher, A. V., Godwin, E. K., & Matlen, B. (2015). Development of inductive generalization with familiar categories. Psychonomic Bulletin & Review, 22, 11491173.Google Scholar
Frank, M. C., Everett, D. L., Fedorenko, E., & Gibson, E. (2008). Number as a cognitive technology: Evidence from Pirahã language and cognition. Cognition, 108, 819824.Google Scholar
Frazier, B. N., Gelman, S. A., & Wellman, H. M. (2009). Preschoolers’ search for explanatory information within adult–child conversation. Child Development, 80, 15921611.CrossRefGoogle ScholarPubMed
Frazier, B. N., Gelman, S. A., & Wellman, H. M. (2016). Young children prefer and remember satisfying explanations. Journal of Cognition and Development, 17, 718736.CrossRefGoogle ScholarPubMed
Gelman, S. A. (2003). The Essential Child: Origins of Essentialism in Everyday Thought. New York: Oxford University Press.Google Scholar
Gelman, S. A. (2004). Psychological essentialism in children. Trends in Cognitive Sciences, 8, 404409.CrossRefGoogle ScholarPubMed
Gelman, S. A. (2009). Learning from others: Children’s construction of concepts. Annual Review of Psychology, 60, 115140.CrossRefGoogle ScholarPubMed
Gelman, S. A. (2010). Generics as a window onto young children’s concepts. In Pelletier, F. J. (ed.), Kinds, Things, and Stuff: The Cognitive Side of Generics and Mass Terms (New Directions in Cognitive Science, v. 12, pp. 100121). New York: Oxford University Press.Google Scholar
Gelman, S. A., & Bloom, P. (2007). Developmental changes in the understanding of generics. Cognition, 105, 166183.CrossRefGoogle ScholarPubMed
Gelman, S. A., & Coley, J. D. (1990). The importance of knowing a dodo is a bird: Categories and inferences in 2-year-old children. Developmental Psychology, 26, 796804.Google Scholar
Gelman, S. A., Coley, J. D., Rosengren, K., Hartman, E., & Pappas, A. (1998). Beyond labeling: The role of maternal input in the acquisition of richly-structured categories. Monographs of the Society for Research in Child Development, Serial No. 253, 63, 1157.CrossRefGoogle ScholarPubMed
Gelman, S. A., & Davidson, N. S. (2013). Conceptual influences on category-based induction. Cognitive Psychology, 66, 327353.Google Scholar
Gelman, S. A., & Markman, E. M. (1986). Categories and induction in young children. Cognition, 23, 183209.CrossRefGoogle ScholarPubMed
Gelman, S. A., & Markman, E. M. (1987). Young children’s inductions from natural kinds: The role of categories and appearances. Child Development, 58, 15321541.Google Scholar
Gelman, S. A., & Rhodes, M. (2012). “Two-thousand years of stasis”: How psychological essentialism impedes evolutionary understanding. In Rosengren, K. S., Brem, S., Evans, E. M., & Sinatra, G. (eds.), Evolution Challenges: Integrating Research and Practice in Teaching and Learning about Evolution (pp. 321). Cambridge: Oxford University Press.Google Scholar
Gelman, S. A., & Roberts, S. O. (2017). How language shapes the cultural inheritance of categories. Proceedings of the National Academy of Sciences (USA), 114, 79007907.Google Scholar
Gelman, S. A., Taylor, M G., Nguyen, S. P., Leaper, C., & Bigler, R. S. (2004). Mother–child conversations about gender: Understanding the acquisition of essentialist beliefs. Monographs of the Society for Research in Child Development, 69, i142.Google Scholar
Gelman, S. A., Ware, E. A., & Kleinberg, F. (2010). Effects of generic language on category content and structure. Cognitive Psychology, 61, 273301.Google Scholar
Gelman, S. A., Wilcox, S. A., & Clark, E. V. (1989). Conceptual and lexical hierarchies in young children. Cognitive Development, 4, 309326.Google Scholar
Gobbo, C., & Chi, M. (1986). How knowledge is structured and used by expert and novice children. Cognitive Development, 1, 221237.CrossRefGoogle Scholar
Gopnik, A., & Sobel, D. M. (2000). Detecting blickets: How young children use information about novel causal powers in categorization and induction. Child Development, 71, 12051222.Google Scholar
Graham, S. A., Kilbreath, C. S., & Welder, A. N. (2004). Thirteen‐month‐olds rely on shared labels and shape similarity for inductive inferences. Child Development, 75, 409427.Google Scholar
Gunderson, E. A., Gripshover, S. J., Romero, C., Dweck, C. S., Goldin‐Meadow, S., & Levine, S. C. (2013). Parent praise to 1‐to 3‐year‐olds predicts children’s motivational frameworks 5 years later. Child Development, 84, 15261541.Google Scholar
Gustafsson, Å. (1979). Linnaeus’ peloria: The history of a monster. Theoretical and Applied Genetics, 54, 241248.Google Scholar
Harris, P. L., Koenig, M. A., Corriveau, K. H., & Jaswal, V. K. (2018). Cognitive foundations of learning from testimony. Annual Review of Psychology, 69, 251273.Google Scholar
Haslam, N., Rothschild, L., & Ernst, D. (2000). Essentialist beliefs about social categories. British Journal of Social Psychology, 39, 113127.Google Scholar
Henderson, A. M., & Woodward, A. L. (2012). Nine-month-old infants generalize object labels, but not object preferences across individuals. Developmental Science, 15, 641652.Google Scholar
Hollander, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Induction: Processes of Inference. Cambridge, MA: MIT Press.Google Scholar
Horton, M. S., & Markman, E. M. (1980). Developmental differences in the acquisition of basic and superordinate categories. Child Development, 51, 708719.Google Scholar
Inagaki, K. (1990). The effects of raising animals on children’s biological knowledge. British Journal of Developmental Psychology, 8, 119129.Google Scholar
Inhelder, B., & Piaget, J. (1964). The Early Growth of Logic in the Child. New York: Norton.Google Scholar
Jaswal, V. K., Lima, O. K., & Small, J. E. (2009). Compliance, conversion, and category induction. Journal of Experimental Child Psychology, 102, 182195.Google Scholar
Jaswal, V. K., & Markman, E. M. (2007). Looks aren’t everything: 24-month-olds’ willingness to accept unexpected labels. Journal of Cognition and Development, 8, 93111.Google Scholar
Keates, J., & Graham, S. A. (2008). Category markers or attributes: Why do labels guide infants’ inductive inferences? Psychological Science, 19, 12871293.CrossRefGoogle ScholarPubMed
Keil, F. C., Stein, C., Webb, L., Billings, V. D., & Rozenblit, L. (2008). Discerning the division of cognitive labor: An emerging understanding of how knowledge is clustered in other minds. Cognitive Science, 32, 259300.CrossRefGoogle ScholarPubMed
Keller, J. (2005). In genes we trust: the biological component of psychological essentialism and its relationship to mechanisms of motivated social cognition. Journal of Personality and Social Psychology, 88, 686.Google Scholar
Kemler-Nelson, D. G., Egan, L. C., & Holt, M. B. (2004). When children ask, “What is it?” what do they want to know about artifacts? Psychological Science, 15(6), 384389.Google Scholar
Kinzler, K. D. (2013). The development of language as a social category. In Banaji, M. R., & Gelman, S. A. (eds.), Oxford Series in Social Cognition and Social Neuroscience. Navigating the Social World: What Infants, Children, and Other Species Can Teach Us (pp. 314317). New York: Oxford University Press.Google Scholar
Kinzler, K. D., & DeJesus, J. M. (2013). Northern = smart and Southern = nice: The development of accent attitudes in the United States. Quarterly Journal of Experimental Psychology, 66, 11461158.Google Scholar
Kinzler, K. D., Dupoux, E., & Spelke, E. S. (2007). The native language of social cognition. Proceedings of the National Academy of Sciences (USA), 104, 1257712580.Google Scholar
Kirby, S., Cornish, H., & Smith, K. (2008) Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language. Proceedings of the National Academy of Sciences (USA), 105, 1068110686.Google Scholar
Koenig, M. A., & Harris, P. L. (2005). Preschoolers mistrust ignorant and inaccurate speakers. Child Development, 76, 12611277.Google Scholar
Koenig, M. A., & Jaswal, V. K. (2011). Characterizing children’s expectations about expertise and incompetence: Halo or pitchfork effects? Child Development, 82, 16341647.Google Scholar
Labotka, D. & Gelman, S. A. (2019). The Effect of Register on Children’s Social Inferences about Addressees. Baltimore, MD: Society for Research in Child Development Biannual Meeting.Google Scholar
Lane, J. D., Harris, P. L., Gelman, S. A., & Wellman, H. M. (2014). More than meets the eye: Young children’s trust in claims that defy their perceptions. Developmental Psychology, 50, 865871.Google Scholar
Lane, J. D., Wellman, H. M., & Gelman, S. A. (2013). Informants’ traits weigh heavily in young children’s trust in testimony and in their epistemic inferences. Child Development, 84, 12531268.CrossRefGoogle ScholarPubMed
Leslie, S. J. (2013). Essence and natural kinds: When science meets preschooler intuition. Oxford Studies in Epistemology, 4, 108165.Google Scholar
Leslie, S. J., Cimpian, A., Meyer, M., & Freeland, E. (2015). Expectations of brilliance underlie gender distributions across academic disciplines. Science, 347, 262265.Google Scholar
Macnamara, J. (1987). A Border Dispute. Cambridge, MA: MIT Press.Google Scholar
Mandalaywala, T. M., Amodio, D. M., & Rhodes, M. (2018). Essentialism promotes racial prejudice by increasing endorsement of social hierarchies. Social Psychological and Personality Science, 9, 461469.Google Scholar
Markman, E. M. (1989). Categorization and Naming in Children: Problems in Induction. Cambridge: MIT Press.Google Scholar
Maynard Smith, J., & Szathmary, E. (1997). The Major Transitions in Evolution. New York: Oxford University Press.Google Scholar
Medin, D. (1989). Concepts and conceptual structure. American Psychologist, 44, 14691481.Google Scholar
Medin, D., Waxman, S., Woodring, J., & Washinawatok, K. (2010). Human-centeredness is not a universal feature of young children’s reasoning: Culture and experience matter when reasoning about biological entities. Cognitive Development, 25, 197207.Google Scholar
Mervis, C. B., & Crisafi, M. A. (1982). Order of acquisition of subordinate-, basic-, and superordinate-level categories. Child Development, 53, 258266.Google Scholar
Moya, C., Boyd, R., & Henrich, J. (2015). Reasoning about cultural and genetic transmission: Developmental and cross‐cultural evidence from Peru, Fiji, and the United States on how people make inferences about trait transmission. Topics in Cognitive Science, 7, 595610.Google Scholar
Murphy, G. (2002). The Big Book of Concepts. Cambridge, MA: MIT Press.Google Scholar
Olson, K. R., & Enright, E. A. (2018). Do transgender children (gender) stereotype less than their peers and siblings? Developmental Science, 21, e12606.Google Scholar
Orvell, A., Kross, E., & Gelman, S. A. (2017). How “you” makes meaning. Science, 355, 12991302.Google Scholar
Orvell, A., Kross, E., & Gelman, S. A. (2018). That’s how “you” do it: Generic you expresses norms in early childhood. Journal of Experimental Child Psychology, 165, 183195.Google Scholar
Orvell, A., Kross, E., & Gelman, S. A. (2019). “You” and “I” in a foreign land: The persuasive force of generic-you. Journal of Experimental Social Psychology, 85, 103869.Google Scholar
Osherson, D. N., Smith, E. E., Wilkie, O., Lopez, A., & Shafir, E. (1990). Category-based induction. Psychological Review, 97, 185.CrossRefGoogle Scholar
Ozturk, O., & Papafragou, A. (2016). The acquisition of evidentiality and source monitoring. Language Learning and Development, 12, 199230.Google Scholar
Pagel, M. (2017). Darwinian perspectives on the evolution of human languages. Psychonomic Bulletin and Review, 24, 151157.Google Scholar
Perner, J., Ruffman, T., & Leekam, S. R. (1994). Theory of mind is contagious: You catch it from your sibs. Child Development, 65, 12281238.Google Scholar
Perszyk, D. R., & Waxman, S. R. (2018). Linking language and cognition in infancy. Annual Review of Psychology, 69, 231250.Google Scholar
Pruden, S. M., Levine, S. C., & Huttenlocher, J. (2011). Children’s spatial thinking: Does talk about the spatial world matter? Developmental Science, 14, 14171430.Google Scholar
Reuter, T., Feiman, R., & Snedeker, J. (2018). Getting to no: Pragmatic and semantic factors in two‐ and three‐year‐olds’ understanding of negation. Child Development, 89, e364e381.Google Scholar
Rhodes, M., & Gelman, S. A. (2009a). A developmental examination of the conceptual structure of animal, artifact, and human social categories across two cultural contexts. Cognitive Psychology, 59, 244274.Google Scholar
Rhodes, M., & Gelman, S. A. (2009b). Five-year-olds’ beliefs about the discreteness of category boundaries for animals and artifacts. Psychonomic Bulletin & Review, 16, 920924.Google Scholar
Rhodes, M., Gelman, S. A., & Karuza, J. C. (2014). Preschool ontology: The role of beliefs about category boundaries in early categorization. Journal of Cognition and Development, 15, 7893.Google Scholar
Rhodes, M., Leslie, S. J., & Tworek, C. M. (2012). Cultural transmission of social essentialism. Proceedings of the National Academy of Sciences (USA), 109, 1352613531.Google Scholar
Rhodes, M., & Liebenson, P. (2015). Continuity and change in the development of category-based induction: The test case of diversity-based reasoning. Cognitive Psychology, 82, 7495.CrossRefGoogle ScholarPubMed
Rhodes, M., & Mandalaywala, T. M. (2017). The development and developmental consequences of social essentialism. Wiley Interdisciplinary Reviews: Cognitive Science, 8, e1437.Google Scholar
Roberts, S. O., & Gelman, S. A. (2015). Do children see in black and white? Children’s and adults’ categorizations of multiracial individuals. Child Development, 86, 18301847.Google Scholar
Roberts, S. O., Gelman, S. A., & Ho, A. K. (2017a). So it is, so it shall be: Descriptive regularities license children’s prescriptive judgments. Cognitive Science, 41, 576600.CrossRefGoogle Scholar
Roberts, S. O., Ho, A. K., & Gelman, S. A. (2017b). Group presence, category labels, and generic statements foster children’s tendency to enforce group norms. Journal of Experimental Child Psychology, 158, 1931.CrossRefGoogle Scholar
Roberts, S. O., Ho, A. K., & Gelman, S. A. (2019). The role of group norms in evaluating uncommon and negative behaviors. Journal of Experimental Psychology: General, 148, 374387.Google Scholar
Roberts, S. O., Ho, A. K., Rhodes, M., & Gelman, S. A. (2017c). Making boundaries great again: Essentialism and support for boundary-enhancing initiatives. Personality and Social Psychology Bulletin, 43, 16431658.Google Scholar
Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382439.Google Scholar
Sabbagh, M. A., & Baldwin, D. A. (2001). Learning words from knowledgeable versus ignorant speakers: Links between preschoolers’ theory of mind and semantic development. Child Development, 72, 10541070.Google Scholar
Sabbagh, M. A., & Henderson, A. M. (2007). How an appreciation of conventionality shapes early word learning. New Directions in Child and Adolescent Development, 115, 2537.Google Scholar
Salehuddin, K., & Winskel, H. (2009). An investigation into Malay numeral classifier acquisition through an elicited production task. First Language, 29, 289311.Google Scholar
Schwab, J. F., Lew-Williams, C., & Goldberg, A. E. (2018). When regularization gets it wrong: Children over-simplify language input only in production. Journal of Child Language, 45, 10541072.Google Scholar
Shatz, M. (1987). Bootstrapping operations in child language. In Nelson, K. E., & Van Kleeck, A. (eds.), Children’s Language (Vol. 6, pp. 122). Hillsdale, NJ: Erlbaum.Google Scholar
Shatz, M., Tare, M., Nguyen, S. P., & Young, T. (2010). Acquiring non-object terms: The case for time words. Journal of Cognition and Development, 11, 16–6.Google Scholar
Shtulman, A., & Schulz, L. (2008). The relation between essentialist beliefs and evolutionary reasoning. Cognitive Science, 32, 10491062.Google Scholar
Shutts, K., Kenward, B., Falk, H., Ivegran, A., & Fawcett, C. (2017). Early preschool environments and gender: Effects of gender pedagogy in Sweden. Journal of Experimental Child Psychology, 162, 117.Google Scholar
Skinner, A. L., Meltzoff, A. N., & Olson, K. R. (2017). “Catching” social bias: Exposure to biased nonverbal signals creates social biases in preschool children. Psychological Science, 28, 216224.Google Scholar
Smith, L. B., Colunga, E., & Yoshida, H. (2010). Knowledge as process: Contextually cued attention and early word learning. Cognitive Science, 34, 12871314.Google Scholar
Sobel, D. M., & Corriveau, K. H. (2010). Children monitor individuals’ expertise for word learning. Child Development, 81, 669679.Google Scholar
Sobel, D. M., & Kushnir, T. (2013). Knowledge matters: How children evaluate the reliability of testimony as a process of rational inference. Psychological Review, 120, 779797.Google Scholar
Susperreguy, M. I., & Davis-Kean, P. E. (2016). Maternal math talk in the home and math skills in preschool children. Early Education and Development, 27, 841857.Google Scholar
Talmy, L. (1985). Lexicalization patterns: Semantic structure in lexical forms. Language Typology and Syntactic Description, 3, 36149.Google Scholar
Taumoepeau, M., & Reese, E. (2013). Maternal reminiscing, elaborative talk, and children’s theory of mind: An intervention study. First Language, 33, 388410.Google Scholar
Taylor, M.G., Rhodes, M., & Gelman, S.A. (2009). Boys will be boys, cows will be cows: Children’s essentialist reasoning about human gender and animal development. Child Development, 80, 461481.Google Scholar
Tillman, K. A., Marghetis, T., Barner, D., & Srinivasan, M. (2017). Today is tomorrow’s yesterday: Children’s acquisition of deictic time words. Cognitive Psychology, 92, 87100.Google Scholar
Tworek, C. M., & Cimpian, A. (2016). Why do people tend to infer “ought” from “is”? The role of biases in explanation. Psychological Science, 27, 11091122.Google Scholar
Unger, L., & Fisher, A. V. (2019). Rapid, experience-related changes in the organization of children’s semantic knowledge. Journal of Experimental Child Psychology, 179, 122.Google Scholar
Unger, L., Fisher, A. V., Nugent, R., Ventura, S. L., & MacLellan, C. J. (2016). Developmental changes in semantic knowledge organization. Journal of Experimental Child Psychology, 146, 202222.Google Scholar
Vasilyeva, N., Gopnik, A., & Lombrozo, T. (2018). The development of structural thinking about social categories. Developmental Psychology, 54, 17351744.Google Scholar
Waxman, S. R. (1990). Linguistic biases and the establishment of conceptual hierarchies: Evidence from preschool children. Cognitive Development, 5, 123150.Google Scholar
Waxman, S. R., & Gelman, S. A. (2009). Early word-learning entails reference, not merely associations. Trends in Cognitive Sciences, 13, 258263.Google Scholar
Waxman, S. R., & Markow, D. B. (1995). Words as invitations to form categories: Evidence from 12- to 13-month-old infants. Cognitive Psychology, 29, 257302.CrossRefGoogle ScholarPubMed
Waxman, S., Medin, D., & Ross, N. (2007). Folkbiological reasoning from a cross-cultural developmental perspective: Early essentialist notions are shaped by cultural beliefs. Developmental Psychology, 43, 294308.Google Scholar
Wellman, H. M. (2013). Universal social cognition. In Banaji, M., & Gelman, S. (eds.), Navigating the Social World: What Infants, Children, and Other Species Can Teach Us (pp. 6974). New York: Oxford University Press.Google Scholar
Wellman, H. M., Fang, F., & Peterson, C. C. (2011). Sequential progressions in a theory‐of‐mind scale: Longitudinal perspectives. Child Development, 82, 780792.Google Scholar
Wellman, H. M., & Liu, D. (2004). Scaling of theory‐of‐mind tasks. Child Development, 75, 523541.Google Scholar
White, H., Jubran, R., Chroust, A., Heck, A., & Bhatt, R. S. (2018). Dichotomous perception of animal categories in infancy. Visual Cognition, 26, 764779.Google Scholar
Williams, M. J., & Eberhardt, J. L. (2008). Biological conceptions of race and the motivation to cross racial boundaries. Journal of Personality and Social Psychology, 94, 10331047.Google Scholar
Xu, F., & Carey, S. (1996). Infants’ metaphysics: The case of numerical identity. Cognitive Psychology, 30, 111153.Google Scholar
Yamamoto, K., & Keil, F. (2000). The acquisition of Japanese numeral classifiers: Linkage between grammatical forms and conceptual categories. Journal of East Asian Linguistics, 9, 379409.Google Scholar

References

Agrillo, C., Piffer, L., Bisazza, A., & Butterworth, B. (2012). Evidence for two numerical systems that are similar in humans and guppies. PLoS ONE, 7, e31923.Google Scholar
Alibali, M. W., & Goldin-Meadow, S. (1993). Gesture-speech mismatch and mechanisms of learning: What the hands reveal about a child’s state of mind. Cognitive Psychology, 25, 468523.Google Scholar
Andres, M., Michaux, N., & Pesenti, M. (2012). Common substrate for mental arithmetic and finger representation in the parietal cortex. NeuroImage, 62, 15201528.Google Scholar
Ashcraft, M. H. (1982). The development of mental arithmetic: A chronometric approach. Developmental Review, 2, 213236.Google Scholar
Bailey, D. H., Siegler, R. S., & Geary, D. C. (2014). Early predictors of middle school fraction knowledge. Developmental Science, 17, 775785.Google Scholar
Baroody, A. J., & Dowker, A. (eds.) (2003). The Development of Arithmetic Concepts and Skills: Constructing Adaptive Expertise. Mahwah, NJ: Erlbaum.Google Scholar
Berteletti, I., & Booth, J. R. (2015). Perceiving fingers in single-digit arithmetic problems. Frontiers in Psychology, 6, 226.Google Scholar
Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, S., & Zorzi, M. (2010). Numerical estimation in preschoolers. Developmental Psychology, 41, 545551.Google Scholar
Binet, A., & Simon, T. (1905). New methods for the diagnosis of the intellectual level of subnormals. L’Année Psychologique, 11, 191244. Translated by Elizabeth S. Kite and reprinted in The Development of Intelligence in Children (1916). Baltimore: Williams & Wilkins.Google Scholar
Braithwaite, D. W., Pyke, A. A., & Siegler, R. S. (2017). A computational model of fraction arithmetic. Psychological Review, 124, 603625.Google Scholar
Braithwaite, D. W., Tian, J., & Siegler, R. S. (2018). Do children understand fraction addition? Developmental Science, 21, e12601.Google Scholar
Brannon, E. M., & Merritt, D. J. (2011). Evolutionary foundations of the approximate number system. In Dehaene, S., & Brannon, E. (eds.), Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought (pp. 207224). New York: Elsevier.CrossRefGoogle Scholar
Brown, J. S., & Van Lehn, K. (1982). Toward a generative theory of “bugs.” In Carpenter, T. P., Moser, J. M., & Romberg, T. A. (eds.), Addition and Subtraction: A Cognitive Perspective (pp. 117136). Hillsdale, N.J.: ErlbaumGoogle Scholar
Campbell, J. I., & Xue, Q. (2001). Cognitive arithmetic across cultures. Journal of Experimental Psychology. General, 130, 299315.Google Scholar
Carpenter, T. P., Corbitt, M. K., Kepner, H. S., Lindquist, M. M., & Reys, R. E. (1981). Results and Implications from the Second Mathematics Assessment of the National Assessment of Educational Progress. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
Case, R., & Okamoto, Y. (1996). The role of central conceptual structures in the development of children’s thought. Monographs of the Society for Research in Child Development, 61, Nos. 1–2 (Serial No. 246).Google Scholar
Chen, Q., & Li, J. (2014). Association between individual differences in nonsymbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163172.Google Scholar
College Board. (2015). Advanced Placement Physics 1 Equations, Effective 2015 (pdf document). Available from https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-physics-1-equations-table.pdf. Last accessed August 2, 2021.Google Scholar
Cordes, S., & Brannon, E. M. (2008). Quantitative competencies in infancy. Developmental Science, 11, 803808.Google Scholar
Dehaene, S. (2011). The Number Sense: How the Mind Creates Mathematics. New York: Oxford University Press.Google Scholar
Depaepe, F., Torbeyns, J., Vermeersch, N., Janssens, D., Janssen, R., Kelchtermans, G., … Van Dooren, W. (2015). Teachers’ content and pedagogical content knowledge on rational numbers: A comparison of prospective elementary and lower secondary school teachers. Teaching and Teacher Education, 47, 8292.Google Scholar
Dotan, D., & Dehaene, S. (2013). How do we convert a number into a finger trajectory? Cognition, 129, 512529.Google Scholar
Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., … Japel, C. (2007). School readiness and later achievement. Developmental Psychology, 43, 14281446.Google Scholar
Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 5372.Google Scholar
Gauvain, M. (2001). The Social Context of Cognitive Development. New York: The Guilford Press.Google Scholar
Geary, D. C. (2006). Development of mathematical understanding. In Kuhn, D., & Siegler, R. S. (vol. eds.), Cognition, Perception, and Language, (pp. 777810). W. Damon (gen. ed.), Handbook of child psychology (6th ed.). New York: John Wiley & Sons.Google Scholar
Geary, D. C. (2008). An evolutionarily informed education science. Educational Psychologist, 43, 179195.Google Scholar
Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78, 13431359.Google Scholar
Geary, D. C., & vanMarle, K. (2016). Young children’s core symbolic and non-symbolic quantitative knowledge in the prediction of later mathematics achievement. Developmental Psychology, 52, 21302144.Google Scholar
Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “Number sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44, 14571465.Google Scholar
Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences (USA), 109, 1111611120.Google Scholar
Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlates with math achievement. Nature, 455, 665668.Google Scholar
Handel, M. J. (2016). What do people do at work? A profile of U.S. jobs from the survey of workplace Skills, Technology, and Management Practices (STAMP). Journal for Labour Market Research, 49, 177197.Google Scholar
Hanushek, E. A. (2016). What matters for student achievement: Updating Coleman on the influence of families and schools. EducationNext, 16 , 2330.Google Scholar
Iuculano, T., & Butterworth, B. (2011). Understanding the real value of fractions and decimals. The Quarterly Journal of Experimental Psychology, 64, 20882098.Google Scholar
Jordan, N. C., Hansen, N., Fuchs, L. S., Siegler, R. S., Gersten, R., & Micklos, D. (2013). Developmental predictors of fraction concepts and procedures. Journal of Experimental Child Psychology, 116, 4558.Google Scholar
Jordan, N.C., Kaplan, D., Olah, L. N., & Locuniak, M. N. (2006). Number sense growth in kindergarten: A longitudinal investigation of children at risk for mathematics difficulties. Child Development, 77, 153175.Google Scholar
Kant, I. (1781/2003). Critique of Pure Reason, trans. J. M. D. Meiklejohn. Mineola, NY: Dover.Google Scholar
Klahr, D., & MacWhinney, B. (1998). Information processing. In Damon, W. (Series ed.) & Kuhn, D. & Siegler, R. S. (vol. eds.), Handbook of Child Psychology: Vol. 2: Cognition, Perception & Language. (5th ed., pp. 631678). New York: Wiley.Google Scholar
Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 105, 395438.Google Scholar
LeFevre, J. A., Sadesky, G. S., & Bisanz, J. (1996). Selection of procedures in mental addition: Reassessing the problem-size effect in adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 216230.Google Scholar
LeFevre, J. A., Smith-Chant, B. L., Hiscock, K., Dale, K. E., & Morris, J. (2003). Young adults’ strategic choices in simple arithmetic: Implications for the development of mathematical representations. In Baroody, A. J., & Dowker, A. (eds.), The Development of Arithmetic Concepts and Skills: Constructing Adaptive Expertise (pp. 203228). Mahwah, NJ: Erlbaum.Google Scholar
Lemaire, P., & Siegler, R. S. (1995). Four aspects of strategic change: Contributions to children’s learning of multiplication. Journal of Experimental Psychology: General, 124, 8397.Google Scholar
Libertus, M., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14, 12921300.Google Scholar
Lortie-Forgues, H., & Siegler, R. S. (2017). Conceptual knowledge of decimal arithmetic. Journal of Educational Psychology, 109, 374386.Google Scholar
Lortie-Forgues, H., Tian, J., & Siegler, R. S. (2015). Why is learning fraction and decimal arithmetic so difficult? Developmental Review, 38, 201221.Google Scholar
Luo, F., Lo, J., & Leu, Y. (2011). Fundamental fraction knowledge of pre-service elementary teachers: A cross-national study in the United States and Taiwan. School Science and Mathematics, 111, 164177.Google Scholar
Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1-6. Developmental Science, 17, 714726.Google Scholar
Ma, L. (1999). Knowing and Teaching Elementary Mathematics: Teachers Understanding of Fundamental Mathematics in China and the United States. Mahwah, NJ: Erlbaum.Google Scholar
McCrink, K., & Wynn, K. (2004). Large-number addition and subtraction by 9-month-old infants. Psychological Science, 15, 776781.Google Scholar
McCrink, K., & Wynn, K. (2007). Ratio abstraction by 6-month-old infants. Psychological Science, 18, 740745.Google Scholar
McNeil, N. M. (2014). A change-resistance account of children’s difficulties understanding mathematical equivalence. Child Development Perspectives, 8, 4247.CrossRefGoogle Scholar
Meert, G., Grégoire, J., & Noël, M.-P. (2010). Comparing the magnitude of two fractions with common components: Which representations are used by 10- and 12-year-olds? Journal of Experimental Child Psychology, 107, 244259.Google Scholar
Miller, P. H., & Seier, W. L. (1994). Strategy utilization deficiencies in children: When, where, and why. In Reese, H. W. (ed.), Advances in Child Development and Behavior (Vol. 25, pp. 108156). New York: Academic Press.Google Scholar
Möhring, W., Liu, R., & Libertus, M. E. (2017). Infants’ speed discrimination: Effects of different ratios and spatial orientations. Infancy, 22, 762777.Google Scholar
National Mathematics Advisory Panel. (2008). Foundations for Success: The Final Report of the National Mathematics Advisory Panel. Washington, DC: US Department of Education.Google Scholar
Ni, Y., & Zhou, Y.-D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40, 2752.Google Scholar
Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185208.Google Scholar
Park, J., Park, D. C., & Polk, T. A. (2013). Parietal functional connectivity in numerical cognition. Cerebral Cortex, 23, 21272135.Google Scholar
Parnas, M., Lin, A. C., Huetteroth, W., & Miesenböck, G. (2013). Odor discrimination in Drosophila: From neural population codes to behavior. Neuron, 79, 932944.Google Scholar
Piaget, J. (1952). The Child’s Concept of Number. New York: W. W. Norton.Google Scholar
Piazza, M. (2011). Neurocognitive start-up tools for symbolic number representations. In Dehaene, S., & Brannon, E. (eds.), Space, Time, and Number in the Brain: Searching for the Foundations of Mathematical Thought (pp. 267285). London: Elsevier.Google Scholar
Piffer, L., Petrazzini, M. E. M., & Agrillo, C. (2013). Large number discrimination in newborn fish. PLoS ONE, 8, e62466.Google Scholar
Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development, 79, 375394.Google Scholar
Ramani, G. B., & Siegler, R. S. (2011). Reducing the gap in numerical knowledge between low- and middle-income preschoolers. Journal of Applied Developmental Psychology, 32, 146159.Google Scholar
Reardon, S. F. (2011). The widening academic achievement gap between the rich and the poor: New evidence and possible explanations. In Duncan, G., & Murnane, R. (eds.), Whither Opportunity? Rising Inequality and the Uncertain Life Chances of Low-Income Children (pp. 91116). New York: Russell Sage Foundation Press.Google Scholar
Reeve, R. A., Paul, J. M., & Butterworth, B. (2015). Longitudinal changes in young children’s 0–100 to 0–1000 number-line error signatures. Frontiers in Psychology, 6, Article 647.Google ScholarPubMed
Resnick, I., Jordan, N. C., Hansen, N., Rajan, V., Rodrigues, J., Siegler, R. S., & Fuchs, L. (2016). Developmental growth trajectories in understanding of fraction magnitude from fourth through sixth grade. Developmental Psychology, 52, 746757.Google Scholar
Resnick, L. B., Nesher, P., Leonard, F., Magone, M., Omanson, S., & Peled, I. (1989). Conceptual bases of arithmetic errors: The case for decimal fractions. Journal for Research in Mathematics Education, 20, 827.Google Scholar
Riggs, K. J., Ferrand, L., Lancelin, D., Fryziel, L., Dumur, G., & Simpson, A. (2006). Subitizing in tactile perception. Psychological Science, 17, 271272.Google Scholar
Ritchie, S. J., & Bates, T. C. (2013). Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychological Science, 24, 13011308.Google Scholar
Robinson, K. M. (2017). The understanding of additive and multiplicative arithmetic concepts. In Geary, D. C., Berch, D. B., Ochsendorf, R., & Mann Koepke, K. (eds.). Acquiring Complex Arithmetic Skills and Higher-Order Mathematical Concepts (Vol. 3, Mathematical Cognition and Learning, pp. 2146). San Diego, CA: Elsevier Academic Press.Google Scholar
Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20, e12372.Google Scholar
Schneider, M., Merz, S., Stricker, J., De Smedt, B., Torbeyns, J., Verschaffel, L., & Luwel, K. (2018). Associations of number line estimation with mathematical competence: A meta-analysis. Child Development, 89, 14671484.Google Scholar
Schneider, M., & Siegler, R. S. (2010). Representations of the magnitudes of fractions. Journal of Experimental Psychology: Human Perception and Performance, 36, 12271238.Google Scholar
Shrager, J., & Siegler, R. S. (1998). SCADS: A model of children’s strategy choices and strategy discoveries. Psychological Science, 9, 405410.Google Scholar
Siegler, R. S. (1987). The perils of averaging data over strategies: An example from children’s addition. Journal of Experimental Psychology: General, 116, 250264.Google Scholar
Siegler, R. S. (1988). Strategy choice procedures and the development of multiplication skill. Journal of Experimental Psychology: General, 117, 258275.Google Scholar
Siegler, R. S. (1989). Hazards of mental chronometry: An example from children’s subtraction. Journal of Educational Psychology, 81, 497506.Google Scholar
Siegler, R. S. (1996). Unidimensional thinking, multidimensional thinking, and characteristic tendencies of thought. In Sameroff, A. J., & Haith, M. M. (eds.), The Five to Seven Year Shift: The Age of Reason and Responsibility (pp. 6384). Chicago, IL: University of Chicago Press.Google Scholar
Siegler, R. S. (2006). Microgenetic analyses of learning. In Damon, W., & Lerner, R. M. (Series eds.) & Kuhn, D. & Siegler, R. S. (vol. eds.), Handbook of Child Psychology: Volume 2: Cognition, Perception, and Language (6th ed., pp. 464510). Hoboken, NJ: Wiley.Google Scholar
Siegler, R. S. (2016). Magnitude knowledge: The common core of numerical development. Developmental Science, 19, 341361.Google Scholar
Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428444.Google Scholar
Siegler, R. S., & Braithwaite, D. W. (2017). Numerical development. Annual Review of Psychology, 68, 187213.Google Scholar
Siegler, R. S., & Crowley, K. (1994). Constraints on learning in non-privileged domains. Cognitive Psychology, 27, 194227.Google Scholar
Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., … Chen, M. (2012). Early predictors of high school mathematics achievement. Psychological Science, 23, 691697.Google Scholar
Siegler, R. S., & Jenkins, E. A. (1989). How Children Discover New Strategies. Hillsdale, NJ: Erlbaum.Google Scholar
Siegler, R. S., & Lemaire, P. (1997). Older and younger adults’ strategy choices in multiplication: Testing predictions of ASCM via the choice/no-choice method. Journal of Experimental Psychology: General, 126, 7192.Google Scholar
Siegler, R. S., & Lortie-Forgues, H. (2015). Conceptual knowledge of fraction arithmetic. Journal of Educational Psychology, 107, 909918.Google Scholar
Siegler, R. S., & Pyke, A. A. (2013). Developmental and individual differences in understanding fractions. Developmental Psychology, 49, 19942004.Google Scholar
Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games – but not circular ones – improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101, 545560.Google Scholar
Siegler, R. S., & Shrager, J. (1984). Strategy choices in addition and subtraction: How do children know what to do? In Sophian, C. (ed.), The Origins of Cognitive Skills (pp. 229293). Hillsdale, NJ: Erlbaum.Google Scholar
Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62, 273296.Google Scholar
Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10, 8996.Google Scholar
Sullivan, J., & Barner, D. (2014). The development of structural analogy in number-line estimation. Journal of Experimental Child Psychology, 128, 171189.Google Scholar
Svenson, O., & Sjöberg, K. (1983). Evolution of cognitive processes for solving simple additions during the first three school years. Scandinavian Journal of Psychology, 24, 117124.Google Scholar
Thompson, C. A., & Opfer, J. E. (2010). How 15 hundred is like 15 cherries: Effect of progressive alignment on representational changes in numerical cognition. Child Development, 81, 17681786.Google Scholar
Torbeyns, J., Schneider, M., Xin, Z. & Siegler, R. S. (2015). Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction, 37, 513.Google Scholar
Verschaffel, L., Greer, B., & De Corte, E. (2007). Whole number concepts and operations. In Lester, F. (ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 557628). Charlotte, NC: Information Age.Google Scholar
Watts, T. W., Duncan, G. J., Siegler, R. S., & Davis-Kean, P. E. (2014). What’s past is prologue: Relations between early mathematics knowledge and high school achievement. Educational Researcher, 43, 352360.Google Scholar
Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749750.Google Scholar
Xu, X., Chen, C., Pan, M., & Li, N. (2013). Development of numerical estimation in Chinese preschool children. Journal of Experimental Child Psychology, 116, 351366.Google Scholar

References

Adleman, N. E., Menon, V., Blasey, C. M., White, C. D., Warsofsky, I. S., Glover, G. H., & Reiss, A. L. (2002). A developmental fMRI study of the Stroop color-word task. NeuroImage, 16, 6175.Google Scholar
Ahr, E., Houdé, O., & Borst, G. (2016). Inhibition of the mirror generalization process in reading in school-aged children. Journal of Experimental Child Psychology, 145, 157165.Google Scholar
Aïte, A., Berthoz, A., Vidal, J., Roëll, M., Zaoui, M., Houdé, O., & Borst, G. (2016). Taking a third-person perspective requires inhibitory control: Evidence from a developmental negative priming study. Child Development, 87, 18251840.Google Scholar
Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences (USA), 113, 49094917.Google Scholar
Anobile, G., Cicchini, G. M., & Burr, D. C. (2014). Separate mechanisms for perception of numerosity and density. Psychological Science, 25, 265270.Google Scholar
Anokhin, A. P., Heath, A. C., & Myers, E. (2004). Genetics, prefrontal cortex, and cognitive control: A twin study of event-related brain potentials in a response inhibition task. Neuroscience Letters, 368, 314318.Google Scholar
Ansari, D., Fugelsang, J. A., Dhital, B., & Venkatraman, V. (2006). Dissociating response conflict from numerical magnitude processing in the brain: An event-related fMRI study. NeuroImage, 32, 799805.Google Scholar
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170177.Google Scholar
Bench, C. J., Frith, C. D., Grasby, P. M., Friston, K. J., Paulesu, E., Frackowiak, R. S. J., & Dolan, R. J. (1993). Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia, 31, 907922.Google Scholar
Besner, D., & Coltheart, M. (1979). Ideographic and alphabetic processing in skilled reading of English. Neuropsychologia, 17, 467472.Google Scholar
Blair, C., Knipe, H., & Gamson, D. (2008). Is there a role for executive functions in the development of mathematics ability? Mind, Brain, and Education, 2, 8089.Google Scholar
Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Development, 78, 647663.Google Scholar
Borgmann, K., Fugelsang, J., Ansari, D., & Besner, D. (2011). Congruency proportion reveals asymmetric processing of irrelevant physical and numerical dimensions in the size congruity paradigm. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 65, 98104.Google Scholar
Borst, G., Ahr, E., Roell, M., & Houdé, O. (2015). The cost of blocking the mirror-generalization process in reading: Evidence for the role of inhibitory control in discriminating letters with lateral mirror-image counterparts. Psychonomic Bulletin & Review, 22, 228234.Google Scholar
Borst, G., Cachia, A., Vidal, J., Simon, G., Fischer, C., Pineau, A., … Houdé, O. (2014). Folding of the anterior cingulate cortex partially explains inhibitory control during childhood: A longitudinal study. Developmental Cognitive Neuroscience, 9, 126135.Google Scholar
Borst, G., Poirel, N., Pineau, A., Cassotti, M., & Houdé, O. (2013a). Inhibitory control efficiency in a Piaget-like class-inclusion task in school-age children and adults: A developmental negative priming study. Developmental Psychology, 49, 13661374.Google Scholar
Borst, G., Simon, G., Vidal, J., & Houdé, O. (2013b). Inhibitory control and visuo-spatial reversibility in Piaget’s seminal number conservation task: A high-density ERP study. Frontiers in Human Neuroscience, 7, 920.Google Scholar
Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral Neuroscience, 7, 356366.Google Scholar
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624652.Google Scholar
Brainerd, C. J., & Reyna, V. F. (2001). Fuzzy-trace theory: Dual processes in memory, reasoning, and cognitive neuroscience. Advances in Child Development and Behavior, 28, 41100.Google Scholar
Bub, D. N., Masson, M. E. J., & Lalonde, C. E. (2006). Cognitive control in children: Stroop interference and suppression of word reading. Psychological Science, 17, 351357.Google Scholar
Bugden, S., & Ansari, D. (2011). Individual differences in children’s mathematical competence are related to the intentional but not automatic processing of Arabic numerals. Cognition, 118, 3244.Google Scholar
Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children’s mathematics ability: Inhibition, switching, and working memory. Developmental Neuropsychology, 19, 273293.Google Scholar
Cachia, A., Borst, G., Tissier, C., Fisher, C., Plaze, M., Gay, O., … Raznahan, A. (2016). Longitudinal stability of the folding pattern of the anterior cingulate cortex during development. Developmental Cognitive Neuroscience, 19, 122127.Google Scholar
Cappelletti, M., Didino, D., Stoianov, I., & Zorzi, M. (2014). Number skills are maintained in healthy ageing. Cognitive Psychology, 69, 2545.CrossRefGoogle ScholarPubMed
Cappelletti, M., Lee, H. L., Freeman, E. D., & Price, C. J. (2010). The role of right and left parietal lobes in the conceptual processing of numbers. Journal of Cognitive Neuroscience, 22, 331346.Google Scholar
Chomsky, N. (2006). Language and Mind (3rd ed.). Cambridge: Cambridge University Press.Google Scholar
Clayton, S., & Gilmore, C. (2015). Inhibition in dot comparison tasks. ZDM: The International Journal on Mathematics Education, 47, 759770.Google Scholar
Cohen Kadosh, R., Cohen Kadosh, K., & Henik, A. (2008). When brightness counts: The neuronal correlate of numerical-luminance interference. Cerebral Cortex, 18, 337343.Google Scholar
Cragg, L., & Gilmore, C. (2014). Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. Trends in Neuroscience and Education, 3, 6368.Google Scholar
Dakin, S. C., Tibber, M. S., Greenwood, J. A., Kingdom, F. A. A., & Morgan, M. J. (2011). A common visual metric for approximate number and density. Proceedings of the National Academy of Sciences (USA), 108, 1955219557.Google Scholar
Daurignac, E., Houdé, O., & Jouvent, R. (2006). Negative priming in a numerical Piaget-like task as evidenced by ERP. Journal of Cognitive Neuroscience, 18, 730736.Google Scholar
de Hevia, M. D., Girelli, L., Bricolo, E., & Vallar, G. (2008). The representational space of numerical magnitude: Illusions of length. The Quarterly Journal of Experimental Psychology, 61, 14961514.Google Scholar
de Hevia, M. D., Vanderslice, M., & Spelke, E. S. (2012). Cross-dimensional mapping of number, length and brightness by preschool children. PLoS ONE, 7, e35530.Google Scholar
De Neys, W., Lubin, A., & Houdé, O. (2014). The smart nonconserver: Preschoolers detect their number conservation errors. Child Development Research, 2014, 17.Google Scholar
De Neys, W., & Vanderputte, K. (2011). When less is not always more: Stereotype knowledge and reasoning development. Developmental Psychology, 47, 432441.Google Scholar
Defever, E., Reynvoet, B., & Gebuis, T. (2013). Task- and age-dependent effects of visual stimulus properties on children’s explicit numerosity judgments. Journal of Experimental Child Psychology, 116, 216233.Google Scholar
Dehaene, S. (2011). The Number Sense: How the Mind Creates Mathematics (Rev. and updated ed). New York: Oxford University Press.Google Scholar
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371.Google Scholar
Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56, 384398.Google Scholar
Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21, 355361.Google Scholar
Dehaene, S., Izard, V., Spelke, E., & Pica, P. (2008). Log or linear? Distinct intuitions of the number scale in western and Amazonian indigene cultures. Science, 320, 12171220.Google Scholar
Dempster, F. N. (1992). The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging. Developmental Review, 12, 4575.Google Scholar
Desmet, L., Grégoire, J., & Mussolin, C. (2010). Developmental changes in the comparison of decimal fractions. Learning and Instruction, 20, 521532.Google Scholar
DeWind, N. K., Adams, G. K., Platt, M. L., & Brannon, E. M. (2015). Modeling the approximate number system to quantify the contribution of visual stimulus features. Cognition, 142, 247265.Google Scholar
DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of feedback and training. Frontiers in Human Neuroscience, 6, 68.Google Scholar
DeWolf, M., & Vosniadou, S. (2015). The representation of fraction magnitudes and the whole number bias reconsidered. Learning and Instruction, 37, 3949.Google Scholar
Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Development, 71, 4456.Google Scholar
Diamond, A., & Goldman-Rakic, P. S. (1989). Comparison of human infants and rhesus monkeys on Piaget’s AB task: Evidence for dependence on dorsolateral prefrontal cortex. Experimental Brain Research, 74, 2440.Google Scholar
Dillon, M. R., Huang, Y., & Spelke, E. S. (2013). Core foundations of abstract geometry. Proceedings of the National Academy of Sciences (USA), 110, 1419114195.Google Scholar
Dormal, V., & Pesenti, M. (2009). Common and specific contributions of the intraparietal sulci to numerosity and length processing. Human Brain Mapping, 30, 24662476.Google Scholar
Dubois, B., Verin, M., Teixera-Ferreira, C., Thierry, A. M., Glowinski, J., Goldman-Rakic, P. S., & Christen, Y. (1994). Motor and Cognitive Functions of the Prefrontal Cortex. Berlin: Springer.Google Scholar
Duncan, E. M., & McFarland, C. E. (1980). Isolating the effects of symbolic distance, and semantic congruity in comparative judgments: An additive-factors analysis. Memory & Cognition, 8, 612622.Google Scholar
Durkin, K., & Rittle-Johnson, B. (2012). The effectiveness of using incorrect examples to support learning about decimal magnitude. Learning and Instruction, 22, 206214.Google Scholar
Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8, 17841790.Google Scholar
Espy, K. A., McDiarmid, M. M., Cwik, M. F., Stalets, M. M., Hamby, A., & Senn, T. E. (2004). The contribution of executive functions to emergent mathematic skills in preschool children. Developmental Neuropsychology, 26, 465486.Google Scholar
Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U. F., Church, J. A., Miezin, F. M., … Petersen, S. E. (2009). Functional brain networks develop from a ‘local to distributed’ organization. PLoS Computational Biology, 5, e1000381.Google Scholar
Fjell, A. M., Walhovd, K. B., Brown, T. T., Kuperman, J. M., Chung, Y., Hagler, D. J., … Gruen, J. (2012). Multimodal imaging of the self-regulating developing brain. Proceedings of the National Academy of Sciences (USA), 109, 1962019625.Google Scholar
Foltz, G. S., Poltrock, S. E., & Plotts, G. R. (1984). Mental comparison of size and magnitude: Size congruity effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 442453.Google Scholar
Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science, 16, 136148.Google Scholar
Fuhs, M. W., McNeil, N. M., Kelley, K., O’Rear, C., & Villano, M. (2016). The role of non-numerical stimulus features in approximate number system training in preschoolers from low-income homes. Journal of Cognition and Development, 17, 737764.Google Scholar
Gabriel, F. C., Szucs, D., & Content, A. (2013). The development of the mental representations of the magnitude of fractions. PLoS ONE, 8, e80016.Google Scholar
Gebuis, T., & Gevers, W. (2011). Numerosities and space; indeed a cognitive illusion! A reply to de Hevia and Spelke (2009). Cognition, 121, 248252.Google Scholar
Gebuis, T., Herfs, I. K., Kenemans, J. L., De Haan, E. H. F., & Van der Smagt, M. J. (2009). The development of automated access to symbolic and non-symbolic number knowledge in children: An ERP study. European Journal of Neuroscience, 30, 19992008.Google Scholar
Gebuis, T., Kenemans, J. L., de Haan, E. H. F., & van der Smagt, M. J. (2010). Conflict processing of symbolic and non-symbolic numerosity. Neuropsychologia, 48, 394401.Google Scholar
Gebuis, T., & Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology. General, 141, 642648.Google Scholar
Gebuis, T., & Reynvoet, B. (2013). The neural mechanisms underlying passive and active processing of numerosity. Neuroimage, 70, 301307.Google Scholar
Gelman, R. (1972). Logical capacity of very young children: Number invariance rules. Child Development, 43, 75.Google Scholar
Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., … Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS ONE, 8, e67374.Google Scholar
Gilmore, C., Cragg, L., Hogan, G., & Inglis, M. (2016). Congruency effects in dot comparison tasks: Convex hull is more important than dot area. Journal of Cognitive Psychology (Hove, England), 28, 923931.Google Scholar
Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115, 394406.Google Scholar
Girelli, L., Lucangeli, D., & Butterworth, B. (2000). The development of automaticity in accessing number magnitude. Journal of Experimental Child Psychology, 76, 104122.Google Scholar
Hadland, K. A., Rushworth, M. F. S., Passingham, R. E., Jahanshahi, M., & Rothwell, J. C. (2001). Interference with performance of a response selection task that has no working memory component: An rTMS comparison of the dorsolateral prefrontal and medial frontal cortex. Journal of Cognitive Neuroscience, 13, 10971108.Google Scholar
Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665668.Google Scholar
Harris, I. M., & Miniussi, C. (2003). Parietal lobe contribution to mental rotation demonstrated with rTMS. Journal of Cognitive Neuroscience, 15, 315323.Google Scholar
Henik, A., & Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory & Cognition, 10, 389395.Google Scholar
Ho, C. S.-H., & Fuson, K. C. (1998). Children’s knowledge of teen quantities as tens and ones: Comparisons of Chinese, British, and American kindergartners. Journal of Educational Psychology, 90, 536544.Google Scholar
Houdé, O. (2000). Inhibition and cognitive development: Object, number, categorization, and reasoning. Cognitive Development, 15, 6373.Google Scholar
Houdé, O., & Borst, G. (2015). Evidence for an inhibitory-control theory of the reasoning brain. Frontiers in Human Neuroscience, 9, 148.Google Scholar
Houdé, O., & Guichart, E. (2001). Negative priming effect after inhibition of number/length interference in a Piaget-like task. Developmental Science, 4, 119123.Google Scholar
Houdé, O., Pineau, A., Leroux, G., Poirel, N., Perchey, G., Lanoë, C., … Mazoyer, B. (2011). Functional magnetic resonance imaging study of Piaget’s conservation-of-number task in preschool and school-age children: A neo-Piagetian approach. Journal of Experimental Child Psychology, 110, 332346.Google Scholar
Houdé, O., Rossi, S., Lubin, A., & Joliot, M. (2010). Mapping numerical processing, reading, and executive functions in the developing brain: An fMRI meta-analysis of 52 studies including 842 children: Meta-analysis of developmental fMRI data. Developmental Science, 13, 876885.Google Scholar
Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6, 435448.Google Scholar
Hurewitz, F., Gelman, R., & Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences (USA), 103, 1959919604.Google Scholar
Jacobs, J. E., & Klaczynski, P. A. (2002). The development of judgment and decision making during childhood and adolescence. Current Directions in Psychological Science, 11, 145149.Google Scholar
Joliot, M., Leroux, G., Dubal, S., Tzourio-Mazoyer, N., Houdé, O., Mazoyer, B., & Petit, L. (2009). Cognitive inhibition of number/length interference in a Piaget-like task: Evidence by combining ERP and MEG. Clinical Neurophysiology, 120, 15011513.Google Scholar
Kaufmann, L., Koppelstaetter, F., Delazer, M., Siedentopf, C., Rhomberg, P., Golaszewski, S., … Ischebeck, A. (2005). Neural correlates of distance and congruity effects in a numerical Stroop task: An event-related fMRI study. NeuroImage, 25, 888898.Google Scholar
Kaufmann, L., Koppelstaetter, F., Siedentopf, C., Haala, I., Haberlandt, E., Zimmerhackl, L.-B., … Ischebeck, A. (2006). Neural correlates of the number-size interference task in children. NeuroReport, 17, 587591.Google Scholar
Keller, L., & Libertus, M. (2015). Inhibitory control may not explain the link between approximation and math abilities in kindergarteners from middle class families. Frontiers in Psychology, 6, 685.Google Scholar
Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S. (2009a). Recruitment of an area involved in eye movements during mental arithmetic. Science, 324, 15831585.Google Scholar
Knops, A., Viarouge, A., & Dehaene, S. (2009b). Dynamic representations underlying symbolic and nonsymbolic calculation: Evidence from the operational momentum effect. Attention, Perception, & Psychophysics, 71, 803821.Google Scholar
Knops, A., Zitzmann, S., & McCrink, K. (2013). Examining the presence and determinants of operational momentum in childhood. Frontiers in Psychology, 4, 325.Google Scholar
Koechlin, E., Dehaene, S., & Mehler, J. (1997). Numerical transformations in five-month-old human infants. Mathematical Cognition, 3, 89104.Google Scholar
Kok, A. (1999). Varieties of inhibition: Manifestations in cognition, event-related potentials and aging. Acta Psychologica, 101, 129158. https://doi.org/10.1016/S0001–6918(99)00003-7Google Scholar
Konishi, S., Nakajima, K., Uchida, I., Kameyama, M., Nakahara, K., Sekihara, K., & Miyashita, Y. (1998). Transient activation of inferior prefrontal cortex during cognitive set shifting. Nature Neuroscience, 1, 8084.Google Scholar
Lammertyn, J., Fias, W., & Lauwereyns, J. (2002). Semantic influences on feature-based attention due to overlap of neural circuits. Cortex, 38, 878882.Google Scholar
Leibovich, T., Henik, A., & Salti, M. (2015). Numerosity processing is context driven even in the subitizing range: An fMRI study. Neuropsychologia, 77, 137147.Google Scholar
Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From ‘sense of number’ to ‘sense of magnitude’: The role of continuous magnitudes in numerical cognition. The Behavioral and Brain Sciences, 40, e164.Google Scholar
Leroux, G., Joliot, M., Dubal, S., Mazoyer, B., Tzourio-Mazoyer, N., & Houdé, O. (2006). Cognitive inhibition of number/length interference in a Piaget-like task in young adults: Evidence from ERPs and fMRI. Human Brain Mapping, 27, 498509.Google Scholar
Leroux, G., Spiess, J., Zago, L., Rossi, S., Lubin, A., Turbelin, M.-R., … Joliot, M. (2009). Adult brains don’t fully overcome biases that lead to incorrect performance during cognitive development: An fMRI study in young adults completing a Piaget-like task. Developmental Science, 12, 326338.Google Scholar
Lortie-Forgues, H., Tian, J., & Siegler, R. S. (2015). Why is learning fraction and decimal arithmetic so difficult? Developmental Review, 38, 201221.Google Scholar
Lubin, A., Rossi, S., Lanoë, C., Vidal, J., Houdé, O., & Borst, G. (2016). Expertise, inhibitory control and arithmetic word problems: A negative priming study in mathematics experts. Learning and Instruction, 45, 4048.Google Scholar
Lubin, A., Simon, G., Houdé, O., & De Neys, W. (2015). Inhibition, conflict detection, and number conservation. ZDM, 47, 793800.Google Scholar
Lubin, A., Vidal, J., Lanoë, C., Houdé, O., & Borst, G. (2013). Inhibitory control is needed for the resolution of arithmetic word problems: A developmental negative priming study. Journal of Educational Psychology, 105, 701708.Google Scholar
Luna, B., Padmanabhan, A., & O’Hearn, K. (2010). What has fMRI told us about the development of cognitive control through adolescence? Brain and Cognition, 72, 101113.Google Scholar
MacDonald, A. W. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 18351838.Google Scholar
Marshuetz, C., Smith, E. E., Jonides, J., DeGutis, J., & Chenevert, T. L. (2000). Order information in working memory: FMRI evidence for parietal and prefrontal mechanisms. Journal of Cognitive Neuroscience, 12(suppl 2), 130144.Google Scholar
McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: Operational momentum in nonsymbolic arithmetic. Attention, Perception, & Psychophysics, 69, 13241333.Google Scholar
McNab, F., Leroux, G., Strand, F., Thorell, L., Bergman, S., & Klingberg, T. (2008). Common and unique components of inhibition and working memory: An fMRI, within-subjects investigation. Neuropsychologia, 46, 26682682.Google Scholar
Mehler, J., & Bever, T. G. (1967). Cognitive capacity of very young children. Science, 158, 141142.Google Scholar
Miller, E. K. (2000). The prefrontal cortex and cognitive control. Nature Reviews Neuroscience, 1, 5965.Google Scholar
Moskal, B. M., & Magone, M. E. (2000). Making sense of what students know: Examining the referents, relationships and modes students displayed in response to a decimal task. Educational Studies in Mathematics, 43, 313335.Google Scholar
Nieuwenhuis, S., Yeung, N., van den Wildenberg, W., & Ridderinkhof, K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency. Cognitive, Affective, & Behavioral Neuroscience, 3, 1726.Google Scholar
Nys, J., & Content, A. (2012). Judgement of discrete and continuous quantity in adults: Number counts! Quarterly Journal of Experimental Psychology, 65, 675690.Google Scholar
Nys, J., Ventura, P., Fernandes, T., Querido, L., Leybaert, J., & Content, A. (2013). Does math education modify the approximate number system? A comparison of schooled and unschooled adults. Trends in Neuroscience and Education, 2, 1322.Google Scholar
Odic, D., Hock, H., & Halberda, J. (2014). Hysteresis affects approximate number discrimination in young children. Journal of Experimental Psychology. General, 143, 255265.Google Scholar
Odic, D., Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Developmental change in the acuity of approximate number and area representations. Developmental Psychology, 49, 11031112.Google Scholar
Pardo, J. V., Pardo, P. J., Janer, K. W., & Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences (USA), 87, 256259.Google Scholar
Peterson, B. S., Kane, M. J., Alexander, G. M., Lacadie, C., Skudlarski, P., Leung, H.-C., … Gore, J. C. (2002). An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. Cognitive Brain Research, 13, 427440.Google Scholar
Piaget, J. (1952). The Child’s Conception of Number. London: Routledge and Kegan Paul (original in French, Piaget, J., & Szeminska, A., 1941).Google Scholar
Piaget, J. (1964). Part I: Cognitive development in children: Piaget development and learning. Journal of Research in Science Teaching, 2, 176186.Google Scholar
Piaget, J. (1968). Quantification, conservation, and nativism. Science, 162, 976979.Google Scholar
Piazza, M., De Feo, V., Panzeri, S., & Dehaene, S. (2018). Learning to focus on number. Cognition, 181, 3545.Google Scholar
Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44, 547555.Google Scholar
Piazza, M., Pica, P., Izard, V., Spelke, E. S., & Dehaene, S. (2013). Education enhances the acuity of the nonverbal approximate number system. Psychological Science, 24, 10371043.Google Scholar
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306, 499503.Google Scholar
Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41, 983993.Google Scholar
Poirel, N., Borst, G., Simon, G., Rossi, S., Cassotti, M., Pineau, A., & Houdé, O. (2012). Number conservation is related to children’s prefrontal inhibitory control: An fMRI study of a Piagetian task. PLoS ONE, 7, e40802.Google Scholar
Posner, M., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542.Google Scholar
Resnick, L. B., Nesher, P., Leonard, F., Magone, M., Omanson, S., & Peled, I. (1989). Conceptual bases of arithmetic errors: The case of decimal fractions. Journal for Research in Mathematics Education, 20, 8.Google Scholar
Roche, A. (2005). Longer is larger – Or is it? Australian Primary Mathematics Classroom, 10, 1116.Google Scholar
Roell, M., Viarouge, A., Hilscher, E., Houdé, O., & Borst, G. (2019a). Evidence for a visuospatial bias in decimal number comparison in adolescents and in adults. Scientific Reports, 9, 14770.Google Scholar
Roell, M., Viarouge, A., Houdé, O., & Borst, G. (2017). Inhibitory control and decimal number comparison in school-aged children. PLoS ONE, 12, e0188276.Google Scholar
Roell, M., Viarouge, A., Houdé, O., & Borst, G. (2019b). Inhibition of the whole number bias in decimal number comparison: A developmental negative priming study. Journal of Experimental Child Psychology, 177, 240247.Google Scholar
Rousselle, L., & Noël, M.-P. (2008). The development of automatic numerosity processing in preschoolers: Evidence for numerosity-perceptual interference. Developmental Psychology, 44, 544560.Google Scholar
Rubinsten, O., Henik, A., Berger, A., & Shahar-Shalev, S. (2002). The development of internal representations of magnitude and their association with Arabic numerals. Journal of Experimental Child Psychology, 81, 7492.Google Scholar
Sackur-Grisvard, C., & Léonard, F. (1985). Intermediate cognitive organizations in the process of learning a mathematical concept: The order of positive decimal numbers. Cognition and Instruction, 2, 157174.Google Scholar
Schwarz, W., & Ischebeck, A. (2003). On the relative speed account of number-size interference in comparative judgments of numerals. Journal of Experimental Psychology: Human Perception and Performance, 29, 507522.Google Scholar
Siegler, R. S. (1995). How does change occur: A microgenetic study of number conservation. Cognitive Psychology, 28, 225273.Google Scholar
Siegler, R. S. (1998). Emerging Minds: The Process of Change in Children’s Thinking. New York: Oxford University Press.Google Scholar
Simon, T. J., Hespos, S. J., & Rochat, P. (1995). Do infants understand simple arithmetic? A replication of Wynn (1992). Cognitive Development, 10, 253269.Google Scholar
Smith, L. B., & Sera, M. D. (1992). A developmental analysis of the polar structure of dimensions. Cognitive Psychology, 24, 99142.Google Scholar
Soltesz, F., Szucs, D., & Szucs, L. (2010). Relationships between magnitude representation, counting and memory in 4- to 7-year-old children: A developmental study. Behavioral and Brain Functions, 6, 13.Google Scholar
Sophian, C., & Chu, Y. (2008). How do people apprehend large numerosities? Cognition, 107, 460478.Google Scholar
Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10, 8996.Google Scholar
St Clair-Thompson, H. L., & Gathercole, S. E. (2006). Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Quarterly Journal of Experimental Psychology, 59, 745759.Google Scholar
Stacey, K., Helme, S., & Steinle, V. (2001). Confusions between decimals, fractions and negative numbers: A consequence of the mirror as a conceptual metaphor in three different ways. PME Conference, 4, 4217.Google Scholar
Starkey, P., & Cooper, R. (1980). Perception of numbers by human infants. Science, New Series, 210, 10331035.Google Scholar
Starkey, P., Spelke, E., & Gelman, R. (1983). Detection of intermodal numerical correspondences by human infants. Science, 222, 179181.Google Scholar
Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Infants show ratio-dependent number discrimination regardless of set size. Infancy, 18, 927941.Google Scholar
Steinle, V., & Stacey, K. (2003). Grade-related trends in the prevalence and persistence of decimal misconceptions. International Group for the Psychology of Mathematics Education, 4, 259266.Google Scholar
Szucs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2013a). Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 49, 26742688.Google Scholar
Szűcs, D., Nobes, A., Devine, A., Gabriel, F. C., & Gebuis, T. (2013b). Visual stimulus parameters seriously compromise the measurement of approximate number system acuity and comparative effects between adults and children. Frontiers in Psychology, 4, 444.Google Scholar
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Nagase, T., … Kawashima, R. (2012). Regional gray and white matter volume associated with Stroop interference: Evidence from voxel-based morphometry. NeuroImage, 59, 28992907.Google Scholar
Tibber, M. S., Greenwood, J. A., & Dakin, S. C. (2012). Number and density discrimination rely on a common metric: Similar psychophysical effects of size, contrast, and divided attention. Journal of Vision, 12, 8.Google Scholar
Tipper, S. P. (2001). Does negative priming reflect inhibitory mechanisms? A review and integration of conflicting views. The Quarterly Journal of Experimental Psychology Section A, 54, 321343.Google Scholar
Tipper, S. P., Weaver, B., Cameron, S., Brehaut, J. C., & Bastedo, J. (1991). Inhibitory mechanisms of attention in identification and localization tasks: Time course and disruption. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 681692.Google Scholar
Tissier, C., Linzarini, A., Allaire-Duquette, G., Mevel, K., Poirel, N., Dollfus, S., … Cachia, A. (2018). Sulcal polymorphisms of the IFC and ACC contribute to inhibitory control variability in children and adults. eNeuro, 5.Google Scholar
Tokita, M., & Ishiguchi, A. (2010). How might the discrepancy in the effects of perceptual variables on numerosity judgment be reconciled? Attention, Perception, & Psychophysics, 72, 18391853.Google Scholar
Townsend, J., Adamo, M., & Haist, F. (2006). Changing channels: An fMRI study of aging and cross-modal attention shifts. NeuroImage, 31, 16821692.Google Scholar
Tzelgov, J., Meyer, J., & Henik, A. (1992). Automatic and intentional processing of numerical information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 166179.Google Scholar
Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2012). Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior, 31, 344355.Google Scholar
Van Dooren, W., Lehtinen, E., & Verschaffel, L. (2015). Unraveling the gap between natural and rational numbers. Learning and Instruction, 37, 14.Google Scholar
Van Hoof, J., Lijnen, T., Verschaffel, L., & Van Dooren, W. (2013). Are secondary school students still hampered by the natural number bias? A reaction time study on fraction comparison tasks. Research in Mathematics Education, 15, 154164.Google Scholar
Viarouge, A., & de Hevia, M. D. (2013). The role of numerical magnitude and order in the illusory perception of size and brightness. Frontiers in Psychology, 4, 484.Google Scholar
Viarouge, A., Houdé, O., & Borst, G. (2019). Evidence for the role of inhibition in numerical comparison: A negative priming study in 7- to 8-year-olds and adults. Journal of Experimental Child Psychology, 186, 131141.Google Scholar
Vogel, S. E., Grabner, R. H., Schneider, M., Siegler, R. S., & Ansari, D. (2013). Overlapping and distinct brain regions involved in estimating the spatial position of numerical and non-numerical magnitudes: An fMRI study. Neuropsychologia, 51, 979989.Google Scholar
Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7, 483488.Google Scholar
Westlye, L. T., Grydeland, H., Walhovd, K. B., & Fjell, A. M. (2011). Associations between regional cortical thickness and attentional networks as measured by the attention network test. Cerebral Cortex, 21, 345356.Google Scholar
Wilkey, E. D., Barone, J. C., Mazzocco, M. M. M., Vogel, S. E., & Price, G. R. (2017). The effect of visual parameters on neural activation during nonsymbolic number comparison and its relation to math competency. NeuroImage, 159, 430442.Google Scholar
Wilkey, E. D., Pollack, C., & Price, G. R. (2020). Dyscalculia and typical math achievement are associated with individual differences in number-specific executive function. Child Development, 91, 596619.Google Scholar
Wood, G., Ischebeck, A., Koppelstaetter, F., Gotwald, T., & Kaufmann, L. (2009). Developmental trajectories of magnitude processing and interference control: An fMRI study. Cerebral Cortex, 19, 27552765.Google Scholar
Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749750.Google Scholar
Wynn, K. (1995). Infants possess a system of numerical knowledge. Current Directions in Psychological Science, 4, 172177.Google Scholar
Wynn, K. (1998). Psychological foundations of number: Numerical competence in human infants. Trends in Cognitive Sciences, 2, 296303.Google Scholar
Wynn, K., Bloom, P., & Chiang, W.-C. (2002). Enumeration of collective entities by 5-month-old infants. Cognition, 83, B55B62.Google Scholar
Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74, B1B11.Google Scholar
Zacks, J. M. (2008). Neuroimaging studies of mental rotation: A meta-analysis and review. Journal of Cognitive Neuroscience, 20, 31.Google Scholar
Zhou, X., Chen, Y., Chen, C., Jiang, T., Zhang, H., & Dong, Q. (2007). Chinese kindergartners’ automatic processing of numerical magnitude in Stroop-like tasks. Memory & Cognition, 35, 464470.Google Scholar

References

Anscombe, G. E. M. (1957). Intention. Cambridge, MA: Harvard University Press.Google Scholar
Apperly, I. A., & Butterfill, S. A. (2009). Do humans have two systems to track beliefs and belief-like states? Psychological Review, 116, 953.Google Scholar
Apperly, I. A., & Robinson, E. (1998). Children’s mental representation of referential relations. Cognition, 67, 287309.Google Scholar
Astington, J. W., & Gopnik, A. (1988). Knowing you’ve changed your mind: Children’s understanding of representational change. In Astington, J. W., Harris, P. L., & Olson, D. R. (eds.), Developing Theories of Mind (pp. 193206). Cambridge: Cambridge University Press.Google Scholar
Baillargeon, R., Buttelmann, D., & Southgate, V. (2018). Invited commentary: Interpreting failed replications of early false-belief findings: Methodological and theoretical considerations. Cognitive Development, 46, 112124.Google Scholar
Baker, C. L., Jara-Ettinger, J., Saxe, R., & Tenenbaum, J. B. (2017). Rational quantitative attribution of beliefs, desires and percepts in human mentalizing. Nature Human Behaviour, 1, 0064.Google Scholar
Barlassina, L., & Gordon, R. M. (2017). Folk psychology as mental simulation. In Zalta, E. N. (ed.), The Stanford Encyclopedia of Philosophy (Summer 2017 ed.). Available from https://plato.stanford.edu/entries/folkpsych-simulation/. Last accessed 4 August 2021.Google Scholar
Barone, P., Corradi, G., & Gomila, A. (2019). Infants’ performance in spontaneous-response false belief tasks: A review and meta-analysis. Infant Behavior and Development, 57, 101350.Google Scholar
Beck, S. R., Carroll, D. J., Brunsdon, V. E., & Gryg, C. K. (2011). Supporting children’s counterfactual thinking with alternative modes of responding. Journal of Experimental Child Psychology, 108, 190202.Google Scholar
Beck, S. R., & Guthrie, C. (2011). Almost thinking counterfactually: Children’s understanding of close counterfactuals. Child Development, 82, 11891198.Google Scholar
Beck, S. R., Riggs, K. J., & Gorniak, S. L. (2009). Relating developments in children’s counterfactual thinking and executive functions. Thinking & Reasoning, 15, 337354.Google Scholar
Beck, S. R., Riggs, K. J., & Gorniak, S. L. (2010). The effect of causal chain length on counterfactual conditional reasoning. British Journal of Developmental Psychology, 28, 505521.Google Scholar
Beck, S. R., Robinson, E. J., Carroll, D. J., & Apperly, I. A. (2006). Children’s thinking about counterfactuals and future hypotheticals as possibilities. Child Development, 77, 413426.Google Scholar
Bello, P., & Cassimatis, N. (2006). Developmental Accounts of Theory-of-Mind Acquisition: Achieving Clarity via Computational Cognitive Modeling. Paper presented at the Proceedings of the Annual Meeting of the Cognitive Science Society, Vancouver, Canada.Google Scholar
Björklund, D. F. (2018). A metatheory for cognitive development (or ‘Piaget is dead’ revisited). Child Development, 89, 22882302.Google Scholar
Breheny, R. (2006). Communication and folk psychology. Mind & Language, 21, 74107.Google Scholar
Buchsbaum, D., Bridgers, S., Weisberg, D. S., & Gopnik, A. (2012). The power of possibility: Causal learning, counterfactual reasoning, and pretend play. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 22022212.Google Scholar
Burns, P., Riggs, K. J., & Beck, S. R. (2012). Executive control and the experience of regret. Journal of Experimental Child Psychology, 111, 501515.Google Scholar
Buttelmann, D., Carpenter, M., & Tomasello, M. (2009). Eighteen-month-old infants show false belief understanding in an active helping paradigm. Cognition, 112, 337342.Google Scholar
Butterfill, S. A., & Apperly, I. A. (2013). How to construct a minimal theory of mind. Mind & Language, 28, 606637.Google Scholar
Carey, S. (2009). Where our number concepts come from. The Journal of Philosophy, 106, 220.Google Scholar
Carlson, S. M., Claxton, L. J., & Moses, L. J. (2015). The relation between executive function and theory of mind is more than skin deep. Journal of Cognition and Development, 16, 186197.Google Scholar
Carlson, S. M., Wong, A., Lemke, M., & Cosser, C. (2005). Gesture as a window on children’s beginning understanding of false belief. Child Development, 76, 7386.Google Scholar
Clements, W. A., & Perner, J. (1994). Implicit understanding of belief. Cognitive Development, 9, 377395.Google Scholar
Davidson, D. (1963). Actions, reasons, and causes. The Journal of Philosophy, 60, 685700.Google Scholar
De Villiers, J. (2007). The interface of language and theory of mind. Lingua, 117, 18581878.Google Scholar
Devine, R. T., & Hughes, C. (2014). Relations between false belief understanding and executive function in early childhood: A meta‐analysis. Child Development, 85, 17771794.Google Scholar
Dias, M. G., & Harris, P. L. (1988). The effect of make‐believe play on deductive reasoning. British Journal of Developmental Psychology, 6, 207221.Google Scholar
Diesendruck, G., Markson, L., & Bloom, P. (2003). Children’s reliance on creator’s intent in extending names for artifacts. Psychological Science, 14, 164168.Google Scholar
Doherty, M. J., & Perner, J. (1998). Metalinguistic awareness and theory of mind: Just two words for the same thing? Cognitive Development, 13, 279305.Google Scholar
Doherty, M. J., & Perner, J. (2020). Mental files: Developmental integration of dual naming and theory of mind. Developmental Review, 56, 100909.Google Scholar
Drayton, S., Turley-Ames, K. J., & Guajardo, N. R. (2011). Counterfactual thinking and false belief: The role of executive function. Journal of Experimental Child Psychology, 108, 532548.Google Scholar
Edgington, D. (2011). Causation first: Why causation is prior to counterfactuals. In Hoerl, C., McCormack, T., & Beck, S. R. (eds.), Understanding Counterfactuals, Understanding Causation: Issues in Philosophy and Psychology (pp. 230241). Oxford: Oxford University Press.Google Scholar
Ferguson, H. J., & Cane, J. E. (2015). Examining the cognitive costs of counterfactual language comprehension: Evidence from ERPs. Brain Research, 1622, 252269.Google Scholar
Fodor, J. A. (1981). The current state of the innateness controversy. In Fodor, J. A. (ed.), Representations (pp. 257316). Cambridge, MA: MIT Press.Google Scholar
Fodor, J. A. (2008). LOT 2: The Language of Thought Revisited. Oxford: Oxford University Press.Google Scholar
Gallagher, S. (2007). Simulation trouble. Social Neuroscience, 2, 353365.Google Scholar
Garnham, W. A., & Perner, J. (2001). Actions really do speak louder than words – but only implicitly: Young children’s understanding of false belief in action. British Journal of Developmental Psychology, 19, 413432.Google Scholar
German, T. P., & Nichols, S. (2003). Children’s counterfactual inferences about long and short causal chains. Developmental Science, 6, 514523.Google Scholar
Ginsberg, M. L. (1986). Counterfactuals. Artificial Intelligence, 30, 3579.Google Scholar
Gollek, C., & Doherty, M. J. (2016). Metacognitive developments in word learning: Mutual exclusivity and theory of mind. Journal of Experimental Child Psychology, 148, 5169.Google Scholar
Gopnik, A., & Meltzoff, A. N. (1998). Words, Thoughts, and Theories (Learning, Development, and Conceptual Change). Cambridge, MA: MIT Press.Google Scholar
Gordon, R. M. (1986). Folk psychology as simulation. Mind & Language, 1, 158171.Google Scholar
Gordon, R. M. (2001). Simulation and reason explanation: the radical view. Philosophical Topics, 29, 175192.Google Scholar
Grice, H. P. (1957). Meaning. The Philosophical Review, 66, 377388.Google Scholar
Guajardo, N. R., Parker, J., & Turley‐Ames, K. (2009). Associations among false belief understanding, counterfactual reasoning, and executive function. British Journal of Developmental Psychology, 27, 681702.Google Scholar
Harris, P. L. (1992). From simulation to folk psychology: The case for development. Mind & Language, 7, 120144.Google Scholar
Harris, P. L. (1997). On realizing what might have happened instead. Polish Quarterly of Developmental Psychology, 3, 161176.Google Scholar
Harris, P. L. (2000). The Work of the Imagination: Understanding Children’s Worlds. Malden, MA: Wiley-Blackwell.Google Scholar
Harris, P. L., German, T., & Mills, P. (1996). Children’s use of counterfactual thinking in causal reasoning. Cognition, 61, 233259.Google Scholar
Harris, P. L., Kavanaugh, R. D., Wellman, H. M., & Hickling, A. K. (1993). Young children’s understanding of pretense. Monographs of the Society for Research in Child Development, 58, i107.Google Scholar
Haryu, E. (1991). A developmental study of children’s use of ‘mutual exclusivity’ and context to interpret novel words. The Japanese Journal of Educational Psychology, 39, 1120.Google Scholar
Haryu, E., & Imai, M. (1999). Controlling the application of the mutual exclusivity assumption in the acquisition of lexical hierarchies. Japanese Psychological Research, 41, 2134.Google Scholar
Hauf, P., Aschersleben, G., & Prinz, W. (2007). Baby do–baby see!: How action production influences action perception in infants. Cognitive Development, 22, 1632.Google Scholar
Hauf, P., & Prinz, W. (2005). The understanding of own and others’ actions during infancy: ‘You-like-Me’ or ‘Me-like-You’? Interaction Studies, 6, 429445.Google Scholar
He, Z., Bolz, M., & Baillargeon, R. (2011). False‐belief understanding in 2.5‐year‐olds: Evidence from violation‐of‐expectation change‐of‐location and unexpected‐contents tasks. Developmental Science, 14, 292305.Google Scholar
Heal, J. (1986). Replication and functionalism. In Butterfield, J. (ed.), Language, Mind, and Logic (pp. 135150). Cambridge: Cambridge University Press.Google Scholar
Helming, K. A., Strickland, B., & Jacob, P. (2016). Solving the puzzle about early belief‐ascription. Mind & Language, 31, 438469.Google Scholar
Huemer, M., Perner, J., & Leahy, B. (2018). Mental files theory of mind: When do children consider agents acquainted with different object identities? Cognition, 171, 122129.Google Scholar
Kamp, H. (1990). Prolegomena to a structural account of belief and other attitudes. In Anderson, C. A. (ed.), Propositional Attitudes: The Role of Content in Logic, Language and Mind (pp. 2790). Stanford, CA: Center for study of language and information, Lecture Notes Series.Google Scholar
Kampis, D., Parise, E., Csibra, G., & Kovács, Á. M. (2015). Neural signatures for sustaining object representations attributed to others in preverbal human infants. Proceedings of the Royal Society B, 282, 20151683.Google Scholar
Karttunen, L. (1976). Discourse referents. In McCawley, J. D. (ed.), Notes from the Linguistic Underground (Syntax and Semantics, vol. 7, pp. 363385). New York: Academic Press.Google Scholar
Kovács, Á. M., Téglás, E., & Endress, A. D. (2010). The social sense: Susceptibility to others’ beliefs in human infants and adults. Science, 330, 18301834.Google Scholar
Kuczaj, S. A., & Daly, M. J. (1979). The development of hypothetical reference in the speech of young children. Journal of Child Language, 6, 563579.Google Scholar
Kulakova, E., Aichhorn, M., Schurz, M., Kronbichler, M., & Perner, J. (2013). Processing counterfactual and hypothetical conditionals: An fMRI investigation. NeuroImage, 72, 265271.Google Scholar
Kulke, L., & Rakoczy, H. (2018). Implicit theory of mind – An overview of current replications and non-replications. Data in Brief, 16, 101104.Google Scholar
Kulke, L., von Duhn, B., Schneider, D., & Rakoczy, H. (2018). Is implicit theory of mind a real and robust phenomenon? Results from a systematic replication study. Psychological Science, 29, 888900.Google Scholar
Leahy, B., Rafetseder, E., & Perner, J. (2014). Basic conditional reasoning: How children mimic counterfactual reasoning. Studia Logica, 102, 793810.Google Scholar
Leslie, A. M. (1987). Pretense and representation: The origins of ‘theory of mind’. Psychological Review, 94, 412.Google Scholar
Leslie, A. M. (1994). ToMM, ToBy, and Agency: Core architecture and domain specificity. In Hirschfeld, L. A., & Gelman, S. A. (eds.). Mapping the Mind: Domain Specificity in Cognition and Culture (pp. 119148). New York: Cambridge University Press.Google Scholar
Leslie, A. M., Friedman, O., & German, T. P. (2004). Core mechanisms in ‘theory of mind’. Trends in Cognitive Sciences, 8, 528533.Google Scholar
Lewis, D. (1973). Counterfactuals. Oxford: Basil Blackwell.Google Scholar
Lillard, A. S. (1993). Young children’s conceptualization of pretense: Action or mental representational state? Child Development, 64, 372386.Google Scholar
Liu, D., Sabbagh, M. A., Gehring, W. J., & Wellman, H. M. (2009). Neural correlates of children’s theory of mind development. Child Development, 80, 318326.Google Scholar
Low, J., & Watts, J. (2013). Attributing false beliefs about object identity reveals a signature blind spot in humans’ efficient mind-reading system. Psychological Science, 24, 305311.Google Scholar
Margolis, E., & Laurence, S. (2011). Learning matters: The role of learning in concept acquisition. Mind & Language, 26, 507539.Google Scholar
Milligan, K., Astington, J. W., & Dack, L. A. (2007). Language and theory of mind: Meta‐analysis of the relation between language ability and false‐belief understanding. Child Development, 78, 622646.Google Scholar
Norman, D., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In Davidson, R. J., Schwarts, G. E., & Shapiro, D. (eds.), Consciousness and Self-regulation: Advances in Research and Theory (pp. 118). New York: Plenum Press.Google Scholar
Nyhout, A., Henke, L., & Ganea, P. A. (2017). Children’s counterfactual reasoning about causally overdetermined events. Child Development, 90, 610622.Google Scholar
Onishi, K. H., & Baillargeon, R. (2005). Do 15-month-old infants understand false beliefs? Science, 308, 255258.Google Scholar
Paulus, M. (2012). Is it rational to assume that infants imitate rationally a theoretical analysis and critique. Human Development, 55, 107121.Google Scholar
Paulus, M., Hunnius, S., Vissers, M., & Bekkering, H. (2011). Imitation in infancy: Rational or motor resonance? Child Development, 82, 10471057.Google Scholar
Perner, J. (1998). The meta-intentional nature of executive functions and theory of mind. In Carruthers, P., & Boucher, J. (eds.), Language and Thought: Interdisciplinary Themes (pp. 270283). Cambridge: Cambridge University Press.Google Scholar
Perner, J. (2000). About + belief + counterfactual. In Mitchell, P., & Riggs, K. J. (eds.), Children’s Reasoning and the Mind (pp. 367401). Hove, East Sussex: Psychology Press.Google Scholar
Perner, J., & Brandl, J. L. (2005). File change semantics for preschoolers: Alternative naming and belief understanding. Interaction Studies, 6, 483501.Google Scholar
Perner, J., & Howes, D. (1992). ‘He thinks he knows’: And more developmental evidence against the simulation (role taking) theory. Mind & Language, 7, 7286.Google Scholar
Perner, J., Huemer, M., & Leahy, B. (2015). Mental files and belief: A cognitive theory of how children represent belief and its intensionality. Cognition, 145, 7788.Google Scholar
Perner, J., & Lang, B. (1999). Development of theory of mind and executive control. Trends in Cognitive Sciences, 3, 337344.Google Scholar
Perner, J., Lang, B., & Kloo, D. (2002). Theory of mind and self‐control: More than a common problem of inhibition. Child Development, 73, 752767.Google Scholar
Perner, J., & Leahy, B. (2016). Mental files in development: Dual naming, false belief, identity and intensionality. Review of Philosophy and Psychology, 7, 491508.Google Scholar
Perner, J., Mauer, M. C., & Hildenbrand, M. (2011). Identity: Key to children’s understanding of belief. Science, 333, 474477.Google Scholar
Perner, J., & Roessler, J. (2010). Teleology and causal understanding in children’s theory of mind. In Aguilar, J. H., & Buckareff, A. A. (eds.), Causing Human Actions: New Perspectives on the Causal Theory of Action. Cambridge, MA: MIT Press.Google Scholar
Perner, J., Sprung, M., & Steinkogler, B. (2004). Counterfactual conditionals and false belief: A developmental dissociation. Journal of Cognition and Development, 19, 179201.Google Scholar
Peterson, D. M., & Riggs, K. J. (1999). Adaptive modelling and mindreading. Mind & Language, 14, 80112.Google Scholar
Phillips, J., Ong, D. C., Surtees, A. D., Xin, Y., Williams, S., Saxe, R., & Frank, M. C. (2015). A second look at automatic theory of mind: Reconsidering Kovács, Téglás, and Endress (2010). Psychological Science, 26, 13531367.Google Scholar
Powell, L. J., & Carey, S. (2017). Executive function depletion in children and its impact on theory of mind. Cognition, 164, 150162.Google Scholar
Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1, 515526.Google Scholar
Priewasser, B., Fowles, F., Schweller, K., & Perner, J. (2020). Mistaken max befriends Duplo girl: No difference between a standard and an acted-out false belief task. Journal of Experimental Child Psychology, 191, 104756.Google Scholar
Priewasser, B., Rafetseder, E., Gargitter, C., & Perner, J. (2018). Helping as an early indicator of a theory of mind: Mentalism or teleology? Cognitive Development, 46, 6978.Google Scholar
Rafetseder, E., Cristi‐Vargas, R., & Perner, J. (2010). Counterfactual reasoning: Developing a sense of ‘nearest possible world’. Child Development, 81, 376389.Google Scholar
Rafetseder, E., & Perner, J. (2018). Belief and counterfactuality. Zeitschrift für Psychologie, 226, 110121.Google Scholar
Rafetseder, E., Schwitalla, M., & Perner, J. (2013). Counterfactual reasoning: From childhood to adulthood. Journal of Experimental Child Psychology, 114, 389404.Google Scholar
Rakoczy, H., Bergfeld, D., Schwarz, I., & Fizke, E. (2015). Explicit theory of mind is even more unified than previously assumed: Belief ascription and understanding aspectuality emerge together in development. Child Development, 86, 486502.Google Scholar
Recanati, F. (2012). Mental Files. Oxford: Oxford University Press.Google Scholar
Riggs, K. J., Peterson, D. M., Robinson, E. J., & Mitchell, P. (1998). Are errors in false belief tasks symptomatic of a broader difficulty with counterfactuality? Cognitive Development, 13, 7390.Google Scholar
Robinson, E. J., & Mitchell, P. (1995). Masking of children’s early understanding of the representational mind: Backwards explanation versus prediction. Child Development, 66, 10221039.Google Scholar
Rubio-Fernández, P., & Geurts, B. (2013). How to pass the false-belief task before your fourth birthday. Psychological Science, 24, 2733.Google Scholar
Ruffman, T. (1996). Do children understand the mind by means of simulation or a theory? Evidence from their understanding of inference. Mind & Language, 11, 388414.Google Scholar
Ruffman, T., Garnham, W., Import, A., & Connolly, D. (2001). Does eye gaze indicate implicit knowledge of false belief? Charting transitions in knowledge. Journal of Experimental Child Psychology, 80, 201224.Google Scholar
Russell, J. (1987). ‘Can we say…?’ Children’s understanding of intensionality. Cognition, 25, 289308.Google Scholar
Russell, J. (1996). Agency. Its Role in Mental Development. Hove: Erlbaum.Google Scholar
Russell, J., Mauthner, N., Sharpe, S., & Tidswell, T. (1991). The ‘windows task’ as a measure of strategic deception in preschoolers and autistic subjects. British Journal of Developmental Psychology, 9, 331349.Google Scholar
Scanlon, T. (1998). What We Owe to Each Other. Cambridge, MA: Harvard University Press.Google Scholar
Schneider, D., Lam, R., Bayliss, A. P., & Dux, P. E. (2012). Cognitive load disrupts implicit theory-of-mind processing. Psychological Science, 23, 842847.Google Scholar
Scott, F. J., Baron‐Cohen, S., & Leslie, A. (1999). ‘If pigs could fly’: A test of counterfactual reasoning and pretence in children with autism. British Journal of Developmental Psychology, 17, 349362.Google Scholar
Scott, R. M., & Baillargeon, R. (2017). Early false-belief understanding. Trends in Cognitive Sciences, 21, 237249.Google Scholar
Scott, R. M., He, Z., Baillargeon, R., & Cummins, D. (2012). False‐belief understanding in 2.5‐year‐olds: Evidence from two novel verbal spontaneous‐response tasks. Developmental Science, 15, 181193.Google Scholar
Sommerville, J. A., Woodward, A. L., & Needham, A. (2005). Action experience alters 3-month-old infants’ perception of others’ actions. Cognition, 96, 111.Google Scholar
Southgate, V., Chevallier, C., & Csibra, G. (2010). Seventeen‐month‐olds appeal to false beliefs to interpret others’ referential communication. Developmental Science, 13, 907912.Google Scholar
Southgate, V., Senju, A., & Csibra, G. (2007). Action anticipation through attribution of false belief by 2-year-olds. Psychological Science, 18, 587592.Google Scholar
Southgate, V., & Vernetti, A. (2014). Belief-based action prediction in preverbal infants. Cognition, 130, 110.Google Scholar
Stalnaker, R. (1968). A theory of conditionals. In Jackson, F. (ed.), Conditionals (pp. 98112). Oxford: Oxford University Press.Google Scholar
Stuhlmüller, A., & Goodman, N. D. (2014). Reasoning about reasoning by nested conditioning: Modeling theory of mind with probabilistic programs. Cognitive Systems Research, 28, 8099.Google Scholar
Surian, L., Caldi, S., & Sperber, D. (2007). Attribution of beliefs by 13-month-old infants. Psychological Science, 18, 580586.Google Scholar
Surian, L., & Geraci, A. (2012). Where will the triangle look for it? Attributing false beliefs to a geometric shape at 17 months. British Journal of Developmental Psychology, 30, 3044.Google Scholar
Thompson, V. A., & Byrne, R. M. (2002). Reasoning counterfactually: Making inferences about things that didn’t happen. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 1154.Google Scholar
Träuble, B., Marinović, V., & Pauen, S. (2010). Early theory of mind competencies: Do infants understand others’ beliefs? Infancy, 15, 434444.Google Scholar
Weisberg, D. P., & Beck, S. R. (2012). The development of children’s regret and relief. Cognition & Emotion, 26, 820835.Google Scholar
Weisberg, D. S., & Gopnik, A. (2013). Pretense, counterfactuals, and Bayesian causal models: Why what is not real really matters. Cognitive Science, 37, 13681381.Google Scholar
Wellman, H. M., Cross, D., & Watson, J. (2001). Meta‐analysis of theory‐of‐mind development: The truth about false belief. Child Development, 72, 655684.Google Scholar
Westra, E., & Carruthers, P. (2017). Pragmatic development explains the Theory-of-Mind Scale. Cognition, 158, 165176.Google Scholar
Wiesmann, C. G., Schreiber, J., Singer, T., Steinbeis, N., & Friederici, A. D. (2017). White matter maturation is associated with the emergence of Theory of Mind in early childhood. Nature Communications, 8, 14692.Google Scholar
Wimmer, H. (1989). Common-sense Mentalismus und Emotion: einige entwicklungspsychologische Implikationen Denken und Fühlen (pp. 5666). Berlin: Springer.Google Scholar
Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition, 13, 103128.Google Scholar
Woodward, A. L. (1998). Infants selectively encode the goal object of an actor’s reach. Cognition, 69, 134.Google Scholar
Woodward, J. (2011). Psychological studies of causal and counterfactual reasoning. In Hoerl, C., McCormack, T., & Beck, S. R. (eds.), Understanding Counterfactuals, Understanding Causation. Issues in Philosophy and Psychology (pp. 1653). Oxford: Oxford University Press.Google Scholar

References

Allan, N. P., Hume, L. E., Allan, D. M., Farrington, A. L., & Lonigan, C. J. (2014). Relations between inhibitory control and the development of academic skills in preschool and kindergarten: A meta-analysis. Developmental Psychology, 50, 23682379.Google Scholar
Allan, N. P., & Lonigan, C. J. (2014). Exploring dimensionality of effortful control using hot and cool tasks in a sample of preschool children. Journal of Experimental Child Psychology, 122, 3347.Google Scholar
Alloway, T. P., Gathercole, S. E., Kirkwood, H., & Elliott, J. (2009). The Working Memory Rating Scale: A classroom-based behavioral assessment of working memory. Learning and Individual Differences, 19, 242245.Google Scholar
Archibald, S. J., & Kerns, K. A. (1999). Identification and description of new tests of executive functioning in children. Child Neuropsychology, 5, 115129.Google Scholar
Bargh, J. A., & Morsella, E. (2008). The unconscious mind. Perspectives on Psychological Science, 3, 7379.Google Scholar
Barnes, J. J. M., Dean, A. J., Nandam, L. S., O’Connell, R. G., & Bellgrove, M. A. (2011). The molecular genetics of executive function: Role of monoamine system genes. Biological Psychiatry, 69, e127e143.Google Scholar
Bassett, H. H., Denham, S., Wyatt, T. M., & Warren-Khot, H. K. (2012). Refining the Preschool Self-Regulation Assessment for use in preschool classrooms. Infant and Child Development, 21, 596616.Google Scholar
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 715.Google Scholar
Bechara, A., Tranel, D., Damasio, H., & Damasio, A. R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex, 6, 215225.Google Scholar
Becker, M. G., Isaac, W., & Hynd, G. W. (1987). Neuropsychological development of nonverbal behaviors attributed to “frontal lobe” functioning. Developmental Neuropsychology, 3, 275298.Google Scholar
Bernier, A., Carlson, S. M., Deschênes, M., & Matte‐Gagné, C. (2012). Social factors in the development of early executive functioning: A closer look at the caregiving environment. Developmental Science, 15, 1224.Google Scholar
Bernier, A., Carlson, S. M., & Whipple, N. (2010). From external regulation to self‐regulation: Early parenting precursors of young children’s executive functioning. Child Development, 81, 326339.Google Scholar
Bernstein, A., Hadash, Y., Lichtash, Y., Tanay, G., Shepherd, K., & Fresco, D. M. (2015). Decentering and related constructs: A critical review and metacognitive processes model. Perspectives on Psychological Science, 10, 599617.Google Scholar
Best, J. R. Miller, P. H., & Naglieri, J. A. (2011). Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learning and Individual Differences, 21, 327336.Google Scholar
Blair, C., Granger, D., & Razza, R. P. (2005). Cortisol reactivity is positively related to executive function in preschool children attending head start. Child Development, 76, 554567.Google Scholar
Blair, C., Granger, D., Willoughby, M., Mills-Koonce, R., Cox, M., Greenberg, M. T., et al. (2011). Salivary cortisol mediates effects of poverty and parenting on executive functions in early childhood. Child Development, 82, 19701984.Google Scholar
Blair, C., & Raver, C. C. (2015). School readiness and self-regulation: A developmental psychobiological approach. Annual Review of Psychology, 66, 711731.Google Scholar
Blair, C., & Raver, C. C. (2016). Poverty, stress, and brain development: New directions for prevention and intervention. Academic Pediatrics, 16, S30S36.Google Scholar
Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Development, 78, 647680.Google Scholar
Bodrova, E., & Leong, D. J. (2001). Tools of the mind: A case study of implementing the Vygotskian approach in American early childhood and primary classrooms. Innodata Monographs, 7. Geneva: UNESCO International Bureau of Education.Google Scholar
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539546.Google Scholar
Bradley, R. H., McKelvey, L. M., & Whiteside‐Mansell, L. (2011). Does the quality of stimulation and support in the home environment moderate the effect of early education programs? Child Development, 82, 21102122.Google Scholar
Brock, L. L., Rimm-Kaufman, S. E., Nathanson, L., & Grimm, K. J. (2009). The contributions of “hot” and “cool” executive function to children’s academic achievement, learning-related behaviors, and engagement in kindergarten. Early Childhood Research Quarterly, 24, 337349.Google Scholar
Bronfenbrenner, U. (1979). The Ecology of Human Development: Experiments by Nature and Design. Cambridge, MA: Harvard University Press.Google Scholar
Bruce, J., Fisher, P. A., Pears, K. C., & Levine, S. (2008). Morning cortisol levels in preschool-aged foster children: Differential effects of maltreatment type. Developmental Psychobiology, 51, 1423.Google Scholar
Brydges, C. R., Reid, C. L., Fox, A. M., & Anderson, M. (2012). A unitary executive function predicts intelligence in children. Intelligence, 40, 458469.Google Scholar
Bugental, D. B., Schwartz, A. & Lynch, C. (2010). Effects of an early family intervention on children’s memory: The mediating effects of cortisol levels. Mind, Brain, and Education, 4, 159170.Google Scholar
Bunge, S. A. (2004). How we use rules to select actions: A review of evidence from cognitive neuroscience. Cognitive, Affective, and Behavioral Neuroscience, 4, 564579.Google Scholar
Bunge, S. A., & Wallis, J. D. (2008). Perspectives on Rule Guided Behavior. New York: Oxford University Press.Google Scholar
Bunge, S. A., & Zelazo, P. D. (2006). A brain-based account of the development of rule use in childhood. Current Directions in Psychological Science, 15, 118121.Google Scholar
Carlson, S. M. (2005). Developmentally sensitive measures of executive function in preschool children. Developmental Neuropsychology, 28, 595616.Google Scholar
Carlson, S. M., & Moses, L. J. (2001). Individual differences in inhibitory control and children’s theory of mind. Child Development, 72, 10321053.Google Scholar
Carlson, S. M., White, R. E., & Davis-Unger, A. C. (2014). Evidence for a relation between executive function and pretense representation in preschool children. Cognitive Development, 29, 116.Google Scholar
Carlson, S. M., & Zelazo, P. D. (2014). Minnesota Executive Function Scale. Saint Paul, MN: Reflection Sciences, LLC.Google Scholar
Carthy, T., Horesh, N., Apter, A., Edge, M. D., & Gross, J. J. (2010). Emotional reactivity and cognitive regulation in anxious children. Behaviour Research and Therapy, 48, 384393.Google Scholar
Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H. L., Israel, S., et al. (2014). The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2, 119137.Google Scholar
Castellanos, F. X., Sonuga-Barke, E. J. S., Milham, M. P., & Tannock, R. (2006). Characterizing cognition in ADHD: Beyond executive dysfunction. Trends in Cognitive Sciences, 10, 117123.Google Scholar
Castellanos-Ryan, N., Brière, F. N., O’Leary-Barrett, M., Banaschewski, T., Bokde, A., Bromberg, U., et al. (2016). The structure of psychopathology in adolescence and its common personality and cognitive correlates. Journal of Abnormal Psychology, 125, 10391052.Google Scholar
Checa, P., & Fernández-Berrocal, P. (2019). Cognitive control and emotional intelligence: Effect of the emotional content of the task: Brief Reports. Frontiers in Psychology, 10, 195.Google Scholar
Cicchetti, D. (1984). The emergence of developmental psychopathology. Child Development, 55, 17.Google Scholar
Cicchetti, D., & Rogosch, F. A. (2001). Diverse patterns of neuroendocrine activity in maltreated children. Development and Psychopathology, 13, 677693.Google Scholar
Cicchetti, D., & Tucker, D. (1994). Development and self-regulatory structures of the mind. Development and Psychopathology, 6, 533549.Google Scholar
Cirino, P. T., Ahmed, Y., Miciak, J., Taylor, W. P., Gerst, E. H., & Barnes, M. A. (2018). A framework for executive function in the late elementary years. Neuropsychology, 32, 176189.Google Scholar
Ciurli, P., Bivona, U., Barba, C., Onder, G., Silvestro, D., Azicnuda, E., et al. (2010). Metacognitive unawareness correlates with executive function impairment after severe traumatic brain injury. Journal of the International Neuropsychological Society, 16, 360.Google Scholar
Clark, A. S., & Goldman-Rakic, P. S. (1989). Gonadal hormones influence the emergence of cortical function in nonhuman primates. Behavioral Neuroscience, 103, 12871295.Google Scholar
Clark, C. A., Martinez, M. M., Nelson, J. M., Wiebe, S. A., & Andrews Espy, K. (2014). Children's self‐regulation and executive control: Critical for later years. Wellbeing: A Complete Reference Guide (pp. 130). Wiley Online Library.Google Scholar
Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16, 13481355.Google Scholar
Conger, R. D., Wallace, L. B., Sun, Y., Simons, R. L., McLoyd, V., & Brody, G. H. (2002). Economic pressure in African American families: A replication and extension of the family stress model. Developmental Psychology, 38, 179193.Google Scholar
Conway, A., & Stifter, C. A. (2012). Longitudinal antecedents of executive function in preschoolers. Child Development, 83, 10221036.Google Scholar
Crone, E., & Steinbeis, N. (2017). Neural perspectives on cognitive control development during childhood and adolescence. Trends in Cognitive Sciences, 21, 205215.Google Scholar
Cunningham, W. A., & Zelazo, P. D. (2007). Attitudes and evaluations: A social cognitive neuroscience perspective. Trends in Cognitive Sciences, 11, 97104.Google Scholar
Delis, D., Kramer, J., Kaplan, E., & Holdnack, J. (2004). Reliability and validity of the Delis-Kaplan Executive Function System: An update. Journal of the International Neuropsychological Society, 10, 301303.Google Scholar
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168.Google Scholar
Diamond, A., & Doar, B. (1989). The performance of human infants on a measure of frontal cortex function, the delayed response task. Developmental Psychobiology, 22, 271294.Google Scholar
Diamond, A., & Ling, D. S. (2016). Conclusions about interventions, programs and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Developmental Cognitive Neuroscience, 18, 3448.Google Scholar
DiStefano, R., Galinsky, E., McClelland, M. M., Zelazo, P. D., & Carlson, S. M. (2018). Autonomy-supportive parenting and associations with child and parent executive function. Journal of Applied Developmental Psychology, 58, 7785.Google Scholar
Duncan, J. (2013). The structure of cognition: Attentional episodes in mind and brain. Neuron, 80, 3550.Google Scholar
Enlow, M. B., Petty, C. R., Svelnys, C., Gusman, M., Huezo, M., Malin, A., et al. (2019). Differential effects of stress exposures, caregiving quality, and temperament in early life on working memory versus inhibitory control in preschool-aged children. Developmental Neuropsychology, 44, 339356.Google Scholar
Eslinger, P. J., Flaherty-Craig, C. V., Benton, A. L. (2004). Developmental outcomes after early prefrontal cortex damage. Brain and Cognition, 55, 84103.Google Scholar
Espinet, S. D., Anderson, J. E., & Zelazo, P. D. (2012). N2 amplitude as a neural marker of executive function in young children: An ERP study of children who switch versus perseverate on the Dimensional Change Card Sort. Developmental Cognitive Neuroscience, 2, S49–S58.Google Scholar
Espinet, S. D., Anderson, J. E., & Zelazo, P. D. (2013). Reflection training improves executive function in preschool children: Behavioral and neural effects. Developmental Cognitive Neuroscience, 4, 315.Google Scholar
Espy, K. A. (1997). The shape school: Assessing executive function in preschool children. Developmental Neuropsychology, 13, 495499.Google Scholar
Espy, K. A., Kaufmann, P. M., McDiarmid, M. D., & Glisky, M. L. (1999). Executive functioning in preschool children: Performance on A-not-B and other delayed response format tasks. Brain and Cognition, 41, 178199.Google Scholar
Evans, G. W. (2004). The environment of childhood poverty. American Psychologist, 59, 7792.Google Scholar
Evans, G. W., & Schamberg, M. A. (2009). Childhood poverty, chronic stress, and adult working memory. Proceedings of the National Academy of Sciences (USA), 106, 65456549.Google Scholar
Farah, M. J., Shera, D. M., Savage, J. H., Betancourt, L., Giannetta, J. M., Brodsky, N. L., et al. (2006). Childhood poverty: Specific associations with neurocognitive development. Brain Research, 1110, 166174.Google Scholar
Fellows, L. K., & Farah, M. J. (2005). Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15, 5863.Google Scholar
Fitzpatrick, C., McKinnon, R. D., Blair, C. B., & Willoughby, M. T. (2014). Do preschool executive function skills explain the school readiness gap between advantaged and disadvantaged children? Learning and Instruction, 30, 2531.Google Scholar
Fonseca, R. P., Zimmermann, N., Cotrena, C., Cardoso, C., Kristensen, C. H., & Grassi-Oliveira, R. (2012). Neuropsychological assessment of executive functions in traumatic brain injury: Hot and cold components. Psychology & Neuroscience, 5, 183190.Google Scholar
Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P., & Hewitt, J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology: General, 137, 201225.Google Scholar
Frye, D., Zelazo, P. D., & Palfai, T. (1995). Theory of mind and rule-based reasoning. Cognitive Development, 10, 483527.Google Scholar
Gandolfi, E., Viterbori, P., Traverso, L., & Usai, M. C. (2014). Inhibitory processes in toddlers: A latent-variable approach. Frontiers in Psychology, 5, 381.Google Scholar
Gathercole, S. E. (1998). The development of memory. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 39, 327.Google Scholar
Gerstadt, C., Hong, Y., & Diamond, A. (1994). The relationship between cognition and action: Performance of children 3 ½–7 years old on a Stroop-like day-night test. Cognition, 53, 129153.Google Scholar
Gottlieb, G. (1992). Individual Development and Evolution: The Genesis of Novel Behavior. New York: Oxford University Press.Google Scholar
Groppe, K., & Elsner, B. (2014). Executive function and food approach behavior in middle childhood. Frontiers in Psychology, 5, 477.Google Scholar
Hackman, D. A., Gallop, R., Evans, G. W., & Farah, M. J. (2015). Socioeconomic status and executive function: Developmental trajectories and mediation. Developmental Science, 18, 686702.Google Scholar
Hadley, L. V., Acluche, F., & Chevalier, N. (2019). Encouraging performance monitoring promotes proactive control in children. Developmental Science, e12861.Google Scholar
Hammond, S. I., Müller, U., Carpendale, J. I. M., Bobok, M. B., & Liebermann-Finestone, D. P. (2012). The effects of parental scaffolding on preschoolers’ executive function. Developmental Psychology, 48, 271281.Google Scholar
Hanson, J. L., Chung, M. K., Avants, B. B., Shirtcliff, E. A., Gee, J. C., Davidson, R. J., et al. (2010). Early stress is associated with alterations in the orbitofrontal cortex: A tensor-based morphometry investigation of brain structure and behavioral risk. Journal of Neuroscience, 30, 74667472.Google Scholar
Happaney, K., Zelazo, P. D., & Stuss, D. T. (2004). Development of orbitofrontal function: Current themes and future directions. Brain and Cognition, 55, 110.Google Scholar
Hart, B., & Risley, T. (1995). Meaningful Differences in the Everyday Experience of Young American Children. Baltimore, MD: Brookes.Google Scholar
Hinson, J. M., Jameson, T. L., & Whitney, P. (2003). Impulsive decision making and working memory. Journal of Experimental Psychology; Learning Memory and Cognition, 29, 298306.Google Scholar
Hongwanishkul, D., Happaney, K. R., Lee, W., & Zelazo, P. D. (2005). Hot and cool executive function: Age-related changes and individual differences. Developmental Neuropsychology, 28, 617644.Google Scholar
Hostinar, C. E., Sullivan, R. M., & Gunnar, M. R. (2014). Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: A review of animal models and human studies across development. Psychological Bulletin, 140, 256282.Google Scholar
Hughes, C., & Ensor, R. (2009). How do families help or hinder the emergence of early executive function? New Directions in Child and Adolescent Development, 123, 3550.Google Scholar
Hunter, W. S. (1917). The delayed reaction in a child. Psychological Review, 24, 7487.Google Scholar
Jacobsen, C. F. (1936). Studies of cerebral function in primates. I. The functions of the frontal association areas in primates. Comparative Psychology Monographs, 13, 160.Google Scholar
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences (USA), 105, 68296833.Google Scholar
Jester, J. M., Nigg, J. T., Puttler, L. I., Long, J. C., Fitzgerald, H. E., & Zucke, R. A. (2009). Intergenerational transmission of neuropsychological executive functioning. Brain and Cognition, 70, 145153.Google Scholar
Joensson, M., Thomsen, K. R., Andersen, L. M., Gross, J., Mouridsen, K., Sandberg, K., et al. (2015). Making sense: Dopamine activates conscious self-monitoring through medial prefrontal cortex. Human Brain Mapping, 36, 18661877.Google Scholar
Johnson, M. H. (2011). Interactive specialization: A domain-general framework for human functional brain development? Developmental Cognitive Neuroscience, 1, 721.Google Scholar
Kaller, M. S., Lazari, A., Blanco-Duque, C., Sampaio-Baptista, C., & Johansen-Berg, H. (2017). Myelin plasticity and behaviour: Connecting the dots. Current Opinion in Neurobiology, 47, 8692.Google Scholar
Kerr, A., & Zelazo, P. D. (2004). Development of “hot” executive function: The Children’s Gambling Task. Brain and Cognition, 55, 148157.Google Scholar
Kesek, A., Cunningham, W. A., Packer, D. J., & Zelazo, P. D. (2011). Indirect goal priming is more powerful than explicit instruction in children. Developmental Science, 14, 944948.Google Scholar
Kim, S., Nordling, J. K., Yoon, J. E., Boldt, L. J., & Kochanska, G. (2013). Effortful control in “hot” and “cool” tasks differentially predicts children’s behavior problems and academic performance. Journal of Abnormal Child Psychology, 41, 4356.Google Scholar
Kishiyama, M. M., Boyce, W. T., Jimenez, A. M., Perry, L. M., & Knight, R. T. (2009). Socioeconomic disparities affect prefrontal function in children. Journal of Cognitive Neuroscience, 21, 1106-1115.Google Scholar
Kolb, B., Harker, L., de Melo, S., & Gibb, R. (2017). Stress and pre-frontal cortical plasticity in the developing brain. Cognitive Development, 42, 1526.Google Scholar
Korucu, I., Rolan, E., Napoli, A. R., Purpura, D. J., & Schmitt, S. A. (2019). Development of the Home Executive Function Environment (HEFE) scale: Assessing its relation to preschoolers’ executive function. Early Childhood Research Quarterly, 47, 919.Google Scholar
Koss, K. J., & Gunnar, M. R. (2018). Annual research review: Early adversity, the hypothalamic-pituitary-adrenocortical axis, and child psychopathology. Journal of Child Psychology and Psychiatry, 59, 327346.Google Scholar
Kross, E., Duckworth, A., Ayduk, O., Tsukayama, E., & Mischel, W. (2011). The effect of self-distancing adaptive versus maladaptive self-reflection in children. Emotion, 11, 10321039.Google Scholar
Lahey, B. B., Krueger, R. F., Rathouz, P. J., Waldman, I. D., & Zald, D. H. (2017). A hierarchical causal taxonomy of psychopathology across the life span. Psychological Bulletin, 143, 142186.Google Scholar
Lee, K., Bull, R., & Ho, R.M. (2013). Developmental changes in executive functioning. Child Development, 84, 19331953.Google Scholar
Lehto, J. E., Juujarvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. British Journal of Developmental Psychology, 21, 5980.Google Scholar
Lengua, L. J., Honorado, E., & Bush, N. R. (2007). Contextual risk and parenting as predictors of effortful control and social competence in preschool children. Journal of Applied Developmental Psychology, 28, 4055.Google Scholar
Lerner, M. D., & Lonigan, C. J. (2014). Executive function among preschool children: Unitary versus distinct abilities. Journal of Psychopathology and Behavioral Assessment, 36, 626639.Google Scholar
Levin, H. S., Culhane, K. A., Hartmann, J., Evankovich, K., Mattson, A. J., Harward, H., et al. (1991). Developmental-changes in performance on tests of purported frontal-lobe functioning. Developmental Neuropsychology, 7, 377395.Google Scholar
Lhermitte, F. (1983). “Utilization behavior” and its relation to lesions to the frontal lobes. Brain, 106, 237255.Google Scholar
Liston, C., McEwen, B. S., & Casey, B. J. (2009). Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proceedings of the National Academy of Science (USA), 106, 912917.Google Scholar
Logue, S. F., & Gould, T. J. (2014). The neural and genetic basis of executive function: Attention, cognitive flexibility, and response inhibition. Pharmacology Biochemistry and Behavior, 123, 4554.Google Scholar
Luciana, M., & Nelson, C. A. (1998). The functional emergence of prefrontally-guided working memory systems in four-to-eight-year-old children. Neuropsychologia, 36. 273293.Google Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445.Google Scholar
Luria, A. R. (1966). Higher Cortical Functions in Man (2nd ed.). New York: Basic Books.Google Scholar
Luria, A. R., & Vinogradova, O. S. (1959). An objective investigation of the dynamics of semantic systems. British Journal of Psychology, 50, 89105.Google Scholar
Lyons, K. E., & Zelazo, P. D. (2011). Monitoring, metacognition, and executive function: Elucidating the role of self-reflection in the development of self-regulation. Advances in Child Development and Behavior, 40, 379412.Google Scholar
Maccoby, E. E. (1980). Social Development. San Diego, CA: Harcourt Brace Jovanovich.Google Scholar
Mackey, A. P., Hill, S. S., Stone, S. I., & Bunge, S. A. (2011). Differential effects of reasoning and speed training in children. Developmental Science, 14, 582590.Google Scholar
Manes, F., Sahakian, B., Clark, L., Rogers, R., Antoun, N., Aitken, M., et al. (2002). Decision-making processes following damage to prefrontal cortex. Brain, 125, 624639.Google Scholar
Mann, T. D., Hund, A. M., Hesson-McInnis, M. S., & Roman, Z. J. (2017). Pathways to school readiness: Executive functioning predicts academic and social-emotional aspects of school readiness. Mind, Brain, and Education, 11, 2131.Google Scholar
Martel, M. M., Pan, P. M, Hoffmann, M. S., Gadelha, A., do Rosário, M. C., Jair, J., et al. (2017). A general psychopathology factor (p factor) in children: Structural model analysis and external validation through familial risk and child global executive function. Journal of Abnormal Psychology, 126, 137148.Google Scholar
Marulis, L., Baker, S., & Whitebread, D. (2020). Integrating metacognition and executive function to enhance young children’s perception of and agency in their learning. Early Childhood Research Quarterly, 50, 4654.Google Scholar
Masten, A. S., Herbers, J. E., Desjardins, C. D., Cutuli, J. J., McCormick, C. M., Sapienza, J. K., et al. (2012). Executive function skills and school success in young children experiencing homelessness. Educational Researcher, 41, 373384.Google Scholar
Matheny, A., Jr., Wachs, T. D., Ludwig, J., & Phillips, K. (1995). Bringing order out of chaos: Psychometric characteristics of the Confusion, Hub-bub, and Order Scale. Journal of Applied Developmental Psychology, 16, 429444.Google Scholar
Matte-Gagne, C., & Bernier, A. (2011). Prospective relations between maternal autonomy support and child executive functioning: Investigating the mediating role of child language ability. Journal of Experimental Child Psychology, 110, 611625.Google Scholar
McAuley, T., & White, D. A. (2011). A latent variables examination of processing speed, response inhibition, and working memory during typical development. Journal of Experimental Child Psychology, 108, 453468.Google Scholar
McClelland, M. M., Cameron, C. E., Duncan, R., Bowles, R. P., Acock, A. C., Miao, A., et al. (2014). Predictors of early growth in academic achievement: The Head-Toes-Knees-Shoulders task. Frontiers in Psychology, 5, 599.Google Scholar
McLaughlin, K. A. (2016). Future directions in childhood adversity and youth psychopathology. Journal of Clinical Child & Adolescent Psychology, 45, 361382.Google Scholar
McLoyd, V. (1998). Socioeconomic disadvantage and child development. American Psychologist, 53, 185204.Google Scholar
Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of “far transfer”: Evidence from a meta-analytic review. Perspectives on Psychological Science, 11, 512534.Google Scholar
Meuwissen, A. S., & Carlson, S. M. (2018). An experimental study of the effects of autonomy support on preschoolers’ self-regulation. Journal of Applied Developmental Psychology, 60, 1123.Google Scholar
Mezzacappa, E., Buckner, J. C., & Earls, F. (2011). Prenatal cigarette exposure and infant learning stimulation as predictors of cognitive control in childhood. Developmental Science, 14, 881891.Google Scholar
Micalizzi, L., Brick, L. A., Flom, M., Ganiban, J. M., & Saudino, K. J. (2019). Effects of socioeconomic status and executive function on school readiness across levels of household chaos. Early Childhood Research Quarterly, 47, 331340.Google Scholar
Miller, M. R., Giesbrecht, G. F., Muller, U., McInerney, R. J., & Kerns, K. A. (2012). A latent variable approach to determining the structure of executive function in preschool children. Journal of Cognition and Development, 13, 395423.Google Scholar
Milner, B. (1963). Effects of different brain lesions on card sorting. Archives of Neurology, 9, 90100.Google Scholar
Mischel, W., Shoda, Y., & Rodriguez, M. L. (1989). Delay of gratification in children. Science, 244, 933938.Google Scholar
Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychology, 21, 814.Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). the unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49100.Google Scholar
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., et al. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences (USA), 108, 26932698.Google Scholar
Montroy, J. J., Merz, C., Williams, J. M., Landry, S. H., Johnson, U. Y., Zucker, T. A., et al. (2019). Hot and cool dimensionality of executive function: Model invariance across age and maternal education in preschool children. Early Childhood Research Quarterly, 49, 188201.Google Scholar
Moriguchi, Y., Sakata, Y., Ishibashi, M., & Ishikawa, Y. (2015) Teaching others rule-use improves executive function and prefrontal activations in young children. Frontiers in Psychology, 6, 894.Google Scholar
Moriguchi, Y., & Shinahara, I. (2019). Less Is More activation: The involvement of the lateral prefrontal regions in a “Less Is More” task. Developmental Neuropsychology, 44, 273281.Google Scholar
Moritz, S., Andreou, C., Schneider, B. C., Wittekind, C. E., Menon, M., Balzan, R. P., et al. (2014). Sowing the seeds of doubt: A narrative review on metacognitive training in schizophrenia. Clinical Psychology Review, 34, 358366.Google Scholar
Mulder, H., Hoofs, H., Verhagen, J., van der Veen, I., & Leseman, P. P. (2014). Psychometric properties and convergent and predictive validity of an executive function test battery for two-year-olds. Frontiers in Psychology, 5, 733.Google Scholar
Mungas, D., Widaman, K., Zelazo, P.D., Tulsky, D., Heaton, R. K., Slotkin, J., et al. (2013). VII. NIH toolbox Cognition Battery (CB): Factor structure for 3- to 15-year-olds. Monographs of the Society for Research in Child Development, 78, 103118.Google Scholar
Nejati, V., Salehinejad, M. A., & Nitsche, M. A. (2018). Interaction of the left dorsolateral prefrontal cortex (L-dlPFC) and right orbitofrontal cortex (OFC) in hot and cold executive functions: Evidence from transcranial direct current stimulation (tDCS). Neuroscience, 369(Suppl C), 109123.Google Scholar
Nelson, T. D., Kidwell, K. M., Nelson, J. M., Tomaso, C. C., Hankey, M., & Espy, K. A. (2018). Preschool executive control and internalizing symptoms in elementary school. Journal of Abnormal Child Psychology, 46, 15091520.Google Scholar
Nesbitt, K. T., Baker-Ward, L., & Willoughby, M. T. (2013). Executive function mediates socio-economic and racial differences in early academic achievement. Early Childhood Research Quarterly, 28, 774783.Google Scholar
Noble, K. G., Houston, S. M, Brito, N. H., Bartsch, H., Kan., E., Kuperman, J. M., et al. (2015). Family income, parental education and brain structure in children and adolescents. Nature Neuroscience, 18, 773778.Google Scholar
Noble, K. G., McCandliss, B. D., & Farah, M. J. (2007). Socioeconomic gradients predict individual differences in neurocognitive abilities. Developmental Science, 10, 464480.Google Scholar
Normann, N., & Morina, N. (2018). The efficacy of metacognitive therapy: A systematic review and meta-analysis. Frontiers in Psychology, 9, 2211.Google Scholar
O’Hearn, K., Osato, M., Ordaz, S., & Luna, B. (2008). Neurodevelopment and executive function in autism. Development and Psychopathology, 20, 11031132.Google Scholar
Overman, W. H., Bachevalier, J., Schumann, E., & Ryan, P. (1996). Cognitive gender differences in very young children parallel biologically based cognitive gender differences in monkeys. Behavioral Neuroscience, 110, 673684.Google Scholar
Passler, M. A., Isaac, W., & Hynd, G. W. (1985). Neuropsychological development of behavior attributed to frontal lobe functioning in children. Developmental Neuropsychology, 1, 349370.Google Scholar
Peterson, E., & Welsh, M. C. (2014). The development of hot and cool executive functions in childhood and adolescence: Are we getting warmer? In Goldstein, S., & Naglieri, J. (eds.), Executive Functioning Handbook (pp. 4565). New York: Springer.Google Scholar
Petrides, M., & Milner, B. (1982). Deficits on subject-ordered tasks after frontal-and temporal-lobe lesions in man. Neuropsychologia, 20, 249262.Google Scholar
Pickering, S. J., & Gathercole, S. E. (2001). Working Memory Test Battery for Children. London: Psychological Corp.Google Scholar
Pietrefesa, A. S., & Evans, D. W. (2007). Affective and neuropsychological correlates of children’s rituals and compulsive-like behaviors: Continuities and discontinuities with Obsessive-Compulsive Disorder. Brain and Cognition, 65, 3646.Google Scholar
Plamondon, A., Akbari, E., Atkinson, L., Steiner, M., Meaney, M. J., & Fleming, A. S. (2015). Spatial working memory and attention skills are predicted by maternal stress during pregnancy. Early Human Development, 91, 2329.Google Scholar
Plessow, F., Fischer, R., Kirschbaum, C., & Goschke, T. (2011). Inflexibly focused under stress: Acute psychosocial stress increases shielding of action goals at the expense of reduced cognitive flexibility with increasing time lag to the stressor. Journal of Cognitive Neuroscience, 23, 32183227.Google Scholar
Pozuelos, J. P., Combita, L. M., Abundis, A., Paz-Alonso, P. M., Conejero, A., Guerra, S., et al. (2019). Metacognitive scaffolding boosts cognitive and neural benefits following executive attention training in children. Developmental Science, 22, e12756.Google Scholar
Prencipe, A., Kesek, A., Cohen, J., Lamm, C., & Zelazo, P. D. (2011). Development of hot and cool executive function during the transition to adolescence. Journal of Experimental Child Psychology, 108, 621637.Google Scholar
Prencipe, A., & Zelazo, P. D. (2005). Development of affective decision-making for self and other: Evidence for the integration of first- and third-person perspectives. Psychological Science, 16, 501505.Google Scholar
Pribram, K. H. (1973). The primate frontal cortex: Executive of the brain. In Pribram, K. H., & Luria, A. R. (eds.), Psychophysiology of the Frontal Kobes (pp. 293314). New York: Academic Press.Google Scholar
Rhoades, R. D., Greenberg, M. C., & Domitrovich, T. (2009). The contribution of inhibitory control to preschoolers’ social–emotional competence. Journal of Applied Developmental Psychology, 30, 310320.Google Scholar
Riggs, N. R., Greenberg, M. T., Kusché, C. A., & Pentz, M. A. (2006). The mediational role of neurocognition in the behavioral outcomes of a social-emotional prevention program in elementary school students: Effects of the PATHS curriculum. Prevention Science, 7, 91102.Google Scholar
Robbins, T. W., & Arnsten, A. F. (2009). The neuropsychopharmacology of fronto-executive function: Monoaminergic modulation. Annual Review of Neuroscience, 32, 267287.Google Scholar
Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., McInnes, L., & Rabbitt, P. (1994). Cambridge Neuropsychological Test Automated Battery (CANTAB): A factor analytic study of a large sample of normal elderly volunteer. Dementia, 5, 266281.Google Scholar
Roebers, C. (2017). Executive function and metacognition: Towards a unifying framework of cognitive self-regulation. Developmental Review, 45, 3151.Google Scholar
Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55, 1129.Google Scholar
Rubia, K. (2011). “Cool” inferior frontostriatal dysfunction in attention-deficit/hyperactivity disorder versus “hot” ventromedial orbitofrontal-limbic dysfunction in conduct disorder: A review. Biological Psychiatry, 69, e69e87.Google Scholar
Sameroff, A. J. (1983). Developmental systems: Contexts and evolution. In Kessen, W. (Series ed.) & Mussen, P. H. (Vol ed.), Handbook of Child Psychology: Vol. 1. History, Theories, and Methods (pp. 238294). New York: Wiley.Google Scholar
Saver, J. L., & Damasio, A. R. (1991). Preserved access and processing of social knowledge in a patient with acquired sociopathy due to ventromedial frontal damage. Neuropsychologia, 29, 12411249.Google Scholar
Schmitt, S. A., Simpson, A. M., & Friend, M. (2011). A longitudinal assessment of the home literacy environment and early language. Infant and Child Development, 20, 409431.Google Scholar
Schoemaker, K., Bunte, T., Wiebe, S. A., Espy, K. A., Deković, M., & Matthys, W. (2012). Executive function deficits in preschool children with ADHD and DBD. Journal of Child Psychology and Psychiatry, 53, 111119.Google Scholar
Sheppes, G., Suri, G., & Gross, J. J. (2015). Emotion regulation and psychopathology. Annual Review of Clinical Psychology, 11, 379405.Google Scholar
Sheridan, M. A., Peverill, M., Finn, A. S., & McLaughlin, K. A. (2017). Dimensions of childhood adversity have distinct associations with neural systems underlying executive functioning. Development and Psychopathology, 29, 17771794.Google Scholar
Sheridan, M. A., Sarsour, K., Jutte, D., D’Esposito, M., & Boyce, W. T. (2012). The impact of social disparity on prefrontal function in childhood. PLoS ONE, 7, e35744.Google Scholar
Shi, R., Sharpe, L., & Abbott, M. (2017). A meta-analysis of the relationship between anxiety and attentional control. Clinical Psychology Review, 72, 101754.Google Scholar
Shields, G. S., Sazma, M. A., & Yonelinas, A. P. (2016). The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Neuroscience & Biobehavioral Review, 68, 651668.Google Scholar
Shinaver, C. S., Entwistle, P. C., & Söderqvist, S. (2014). Cogmed WM training: Reviewing the reviews. Applied Neuropsychology: Child, 3, 163172.Google Scholar
Shing, Y.L., Lindenberger, U., Diamond, A., Li, S.C., & Davidson, M. C. (2010). Memory maintenance and inhibitory control differentiate from early childhood to adolescence. Developmental Neuropsychology, 35, 679697.Google Scholar
Shoda, Y., Mischel, W., & Peake, P. K. (1990). Predicting adolescent cognitive and self-regulatory competencies from preschool delay of gratification: Identifying diagnostic conditions. Developmental Psychology, 26, 978986.Google Scholar
Shonkoff, J. P. (2011). Protecting brains, not simply stimulating minds. Science, 333, 982983.Google Scholar
Shonkoff, J. P., Garner, A. S., Siegel, B. S., Dobbins, M. I., Earls, M. F., Garner, A. S., et al. (2012). The lifelong effects of early childhood adversity and toxic stress. Pediatrics, 129, e232e246.Google Scholar
Smith, S. M. (1982). Enhancement of recall using multiple environmental contexts during learning. Memory & Cognition, 10, 405412.Google Scholar
Smith-Donald, R., Raver, C. C., Hayes, T., & Richardson, B. (2007). Preliminary construct and concurrent validity of the preschool self-regulation assessment (PSRA) for field-based research. Early Childhood Research Quarterly, 22, 173187.Google Scholar
Sonuga-Barke, E. J. S. (2003). The dual pathway model of AD/HD: An elaboration of neuro-developmental characteristics. Neuroscience and Biobehavioral Reviews, 27, 593604.Google Scholar
Sroufe, L. A., & Rutter, M. (1984). The domain of developmental psychopathology. Child Development. 55, 1729.Google Scholar
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643662.Google Scholar
Stuss, D. T., & Benson, D. F. (1986). The Frontal Lobes. New York: Raven Press.Google Scholar
Thorell, L. B. (2007). Do delay aversion and executive function deficits make distinct contributions to the functional impact of ADHD symptoms? A study of early academic skill deficits. Journal of Child Psychology and Psychiatry, 48, 10611070.Google Scholar
Toll, S. W., Van der Ven, S. H., Kroesbergen, E. H., & Van Luit, J. E. (2011). Executive functions as predictors of math learning disabilities. Journal of Learning Disabilities, 44, 521532.Google Scholar
Travers-Hill, E., Dunn, B., Hoppitt, L., Hitchcock, C., & Dalgleish, T. (2017). Beneficial effects of training in self-distancing and perspective broadening for people with a history of recurrent depression. Behaviour Research and Therapy, 95, 1928.Google Scholar
Usai, M. C., Viterbori, P., Traverso, L., & De Franchis, V. (2014). Latent structure of executive function in 5- and 6-year-old children: A longitudinal study. European Journal of Developmental Psychology, 11, 447462.Google Scholar
Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100, 33283342.Google Scholar
Wass, S. V., Smith, C. G., Daubney, K. R., Suata, Z. M., Clackson, K., Begum, A., et al. (2019). Influences of environmental stressors on autonomic function in 12-month-old infants: Understanding early common pathways to atypical emotion regulation and cognitive performance. Journal of Child Psychology and Psychiatry, 60, 13231333.Google Scholar
Wechsler, D. (1992). Wechsler Intelligence Scale for Children – Third Edition. London: Psychological Corporation.Google Scholar
Welsh, M. C., & Pennington, B. F. (1988). Assessing frontal lobe functioning in children: Views from developmental psychology. Developmental Neuropsychology, 4, 199230.Google Scholar
Welsh, M. C., Pennington, B. F., & Groisser, D. B. (1991). A normative-developmental study of executive function: A window on prefrontal function in children. Developmental Neuropsychology, 7, 131149.Google Scholar
Wiebe, S. A., Espy, K. A., & Charak, D. (2008). Using confirmatory factor analysis to understand executive control in preschool children: I. Latent structure. Developmental Psychology, 44, 575587.Google Scholar
Wiebe, S. A., Sheffield, T., Nelson, J. M., Clark, C. A. C., Chevalier, N., & Espy, K. A. (2011). The structure of executive function in 3-year-olds. Journal of Experimental Child Psychology, 108, 436452.Google Scholar
Willoughby, M., Kupersmidt, J., Voegler-Lee, M., & Bryant, D. (2011). Contributions of hot and cool self-regulation to preschool disruptive behavior and academic achievement. Developmental Neuropsychology, 36, 162180.Google Scholar
Xu, F., Han, Y., Sabbagh, M.A., Wang, T., Ren, X., & Li, C. (2013). Developmental differences in the structure of executive function in middle childhood and adolescence. PLoS ONE, 8, e77770.Google Scholar
Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2013). Plasticity in gray and white: Neuroimaging changes in brain structure during learning. Nature Neuroscience, 15, 528536.Google Scholar
Zelazo, P. D. (2006). The dimensional change card sort: A method of assessing executive function in children. Nature Protocols, 1, 297301.Google Scholar
Zelazo, P. D. (2015). Executive function: Reflection, iterative reprocessing, complexity, and the developing brain. Developmental Review, 38, 5568.Google Scholar
Zelazo, P. D. (2020). Executive function and psychopathology: A neurodevelopmental perspective. Annual Review of Clinical Psychology, 16, 14.114.24.Google Scholar
Zelazo, P. D., Anderson, J. E., Richler, J., Wallner-Allen, K., Beaumont, J. L., Conway, K. P., et al. (2014). NIH Toolbox Cognition Battery (CB): Validation of executive function measures in adults. Journal of the International Neuropsychological Society, 20, 620629.Google Scholar
Zelazo, P. D., Anderson, J. E., Richler, J., Wallner-Allen, K., Beamont, J. L., & Weintraub, S. (2013). NIH Toolbox Cognition Battery (CB): Measuring executive function and attention. Monographs of the Society for Research in Child Development, 78, 1633.Google Scholar
Zelazo, P. D., Blair, C. B., & Willoughby, M. T. (2016). Executive function: Implications for education. US Department of Education, 1–148. Available from https://ies.ed.gov/ncer/pubs/20172000/pdf/20172000.pdf. Last accessed August 4, 2021.Google Scholar
Zelazo, P. D., Carter, A., Reznick, J. S., & Frye, D. (1997). Early development of executive function: A problem-solving framework. Review of General Psychology, 1, 198226.Google Scholar
Zelazo, P. D., & Cunningham, W. (2007). Executive function: Mechanisms underlying emotion regulation. In Gross, J. (ed.), Handbook of Emotion Regulation (pp. 135158). New York: Guilford.Google Scholar
Zelazo, P. D., Forston, J. L., Masten, A. S., & Carlson, S. M. (2018). Mindfulness plus reflection training: Effects on executive function in early childhood. Frontiers in Psychology, 9, 112.Google Scholar
Zelazo, P. D., Frye, D., & Rapus, T. (1996). An age-related dissociation between knowing rules and using them. Cognitive Development, 11, 3763.Google Scholar
Zelazo, P. D., & Jacques, S. (1996). Children’s rule use: Representation, reflection, and cognitive control. Annals of Child Development, 12, 119176.Google Scholar
Zelazo, P. D., & Müller, U. (2002). Executive function in typical and atypical development. In Goswami, U. (ed.), Handbook of Childhood Cognitive Development (pp. 445469). Oxford: Blackwell.Google Scholar
Zelazo, P. D., Müller, U., Frye, D., & Marcovitch, S. (2003). The development of executive function in early childhood. Monographs of the Society for Research on Child Development, 68, vii137.Google Scholar
Zelazo, P. D., & Reznick, J. S. (1991). Age related asynchrony of knowledge and action. Child Development, 62, 719735.Google Scholar

References

Altmann, E. M., & Trafton, J. G. (2002). Memory for goals: An activation-based model. Cognitive Science, 26, 3983.Google Scholar
Ambrosi, S., Lemaire, P., & Blaye, A. (2016). Do young children modulate their cognitive control?: Sequential congruency effects across three conflict tasks in 5-to-6 year-olds. Experimental Psychology, 63, 117126.Google Scholar
Ambrosi, S., Servant, M., Blaye, A., & Burle, B. (2019). Conflict processing in kindergarten children: New evidence from distribution analyses reveals the dynamics of incorrect response activation and suppression. Journal of Experimental Child Psychology, 177, 3652.Google Scholar
Ambrosi, S., Śmigasiewicz, K., Burle, B., & Blaye, A. (2020). The dynamics of interference control across childhood and adolescence: Distribution analyses in three conflict tasks and ten age groups. Developmental Psychology, 56, 22622280.Google Scholar
Andrews-Hanna, J. R., Mackiewicz Seghete, K. L., Claus, E. D., Burgess, G. C., Ruzic, L., & Banich, M. T. (2011). Cognitive control in adolescence: Neural underpinnings and relation to self-report behaviors. PLoS ONE, 6, e21598.Google Scholar
Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6, 115116.Google Scholar
Atas, A., Desender, K., Gevers, W., & Cleeremans, A. (2016). Dissociating perception from action during conscious and unconscious conflict adaptation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 866881.Google Scholar
Barber, A. D., Caffo, B. S., Pekar, J. J., & Mostofsky, S. H. (2013). Developmental changes in within- and between-network connectivity between late childhood and adulthood. Neuropsychologia, 51, 156167.Google Scholar
Barnes, J. J., Nobre, A. C., Woolrich, M. W., Baker, K., & Astle, D. E. (2016). Training working memory in childhood enhances coupling between frontoparietal control network and task-related regions. Journal of Neuroscience, 36, 90019011.Google Scholar
Blackwell, K. A., & Munakata, Y. (2014). Costs and benefits linked to developments in cognitive control. Developmental Science, 17, 203211.Google Scholar
Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Development, 78, 647663.Google Scholar
Blaye, A., Ambrosi, S., Lucenet, J., & Burle, B. (2018). The development of within and between-trials dynamics of inhibitory processes across childhood and adolescence. Paper presented to the 48th Annual meeting of the Jean Piaget Society, 31 May–2 June, Amsterdam, the Netherlands.Google Scholar
Blaye, A., & Chevalier, N. (2011). The role of goal representation in preschoolers’ flexibility and inhibition. Journal of Experimental Child Psychology, 108, 469483.Google Scholar
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624652.Google Scholar
Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16, 106113.Google Scholar
Braver, T. S., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. In Conway, A., Jarrold, C., Kane, M., Miyake, A., & Towse, J. (eds.), Variation in Working Memory (pp. 76106). Oxford: Oxford University Press.Google Scholar
Brinums, M., Imuta, K., & Suddendorf, T. (2018). Practicing for the future: Deliberate practice in early childhood. Child Development, 86, 20512058.Google Scholar
Buss, A. T., & Spencer, J. P. (2018). Changes in frontal and posterior cortical activity underlie the early emergence of executive function. Developmental Science, 21, e12602.Google Scholar
Camos, V., & Barrouillet, P. (2011). Developmental change in working memory strategies: From passive maintenance to active refreshing. Developmental Psychology, 47, 898904.Google Scholar
Carp, J., & Compton, R. J. (2009). Alpha power is influenced by performance errors. Psychophysiology, 46, 336343.Google Scholar
Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18, 414421.Google Scholar
Chatham, C. H., Frank, M. J., & Munakata, Y. (2009). Pupillometric and behavioral markers of a developmental shift in the temporal dynamics of cognitive control. Proceedings of the National Academy of Sciences (USA), 106, 55295533.Google Scholar
Chein, J. M., & Schneider, W. (2012). The brain’s learning and control architecture. Current Directions in Psychological Science, 21, 7884.Google Scholar
Chevalier, N. (2015). The development of executive function: Toward more optimal coordination of control with age. Child Development Perspectives, 9, 239244.Google Scholar
Chevalier, N. (2018). Willing to think hard? The subjective value of cognitive effort in children. Child Development, 89, 12831295.Google Scholar
Chevalier, N., & Blaye, A. (2009). Setting goals to switch between tasks: Effect of cue transparency on children’s cognitive flexibility. Developmental Psychology, 45, 782797.Google Scholar
Chevalier, N., & Blaye, A. (2016). Metacognitive monitoring of executive control engagement during childhood. Child Development, 87, 12641276.Google Scholar
Chevalier, N., Dauvier, B., & Blaye, A. (2009). Preschoolers’ use of feedback for flexible behavior: Insights from a computational model. Journal of Experimental Child Psychology, 103, 251267.Google Scholar
Chevalier, N., Huber, K. L., Wiebe, S. A., & Espy, K. A. (2013). Qualitative change in executive control during childhood and adulthood. Cognition, 128, 112.Google Scholar
Chevalier, N., Jackson, J., Revueltas Roux, A., Moriguchi, Y., & Auyeung, B. (2019). Differentiation in prefrontal cortex recruitment during childhood: Evidence from cognitive control demands and social contexts. Developmental Cognitive Neuroscience, 36, 100629.Google Scholar
Chevalier, N., James, T. D., Wiebe, S. A., Nelson, J. M., & Espy, K. A. (2014). Contribution of reactive and proactive control to children’s working memory performance: Insight from item recall durations in response sequence planning. Developmental Psychology, 50, 19992008.Google Scholar
Chevalier, N., Martis, S. B., Curran, T., & Munakata, Y. (2015). Metacognitive processes in executive control development: The case of reactive and proactive control. Journal of Cognitive Neuroscience, 27, 11251136.Google Scholar
Chevalier, N., Wiebe, S. A., Huber, K. L., & Espy, K. A. (2011). Switch detection in preschoolers’ cognitive flexibility. Journal of Experimental Child Psychology, 109, 353370.Google Scholar
Christ, S. E., Kanne, S. M., & Reiersen, A. M. (2010). Executive function in individuals with subthreshold autism traits. Neuropsychology, 24, 590598.Google Scholar
Claro, S., Paunesku, D., & Dweck, C. S. (2016). Growth mindset tempers the effects of poverty on academic achievement. Proceedings of the National Academy of Sciences (USA), 113, 86648668.Google Scholar
Cragg, L. (2016). The development of stimulus and response interference control in mid-childhood. Developmental Psychology, 52, 242252.Google Scholar
Cragg, L., & Nation, K. (2010). Language and the development of cognitive control. Topics in Cognitive Science, 2, 631642.Google Scholar
Crone, E. A. (2009). Executive functions in adolescence: Inferences from brain and behavior. Developmental Science, 12, 825830.Google Scholar
Crone, E. A., Donohue, S. E., Honomichl, R., Wendelken, C., & Bunge, S. A. (2006). Brain regions mediating flexible rule use during development. The Journal of Neuroscience, 26, 1123911247.Google Scholar
Crump, M. J. C., Vaquero, J. M. M., & Milliken, B. (2008). Context-specific learning and control: The roles of awareness, task relevance, and relative salience. Consciousness and Cognition, 17, 2236.Google Scholar
Daly, M., Delaney, L., Egan, M., & Baumeister, R. F. (2015). Childhood self-control and unemployment throughout the life span: Evidence from two British cohort studies. Psychological Science, 26, 709723.Google Scholar
Dauvier, B., Chevalier, N., & Blaye, A. (2012). Using finite mixture of GLMs to explore variability in children’s flexibility in a task-switching paradigm. Cognitive Development, 27, 440454.Google Scholar
Davis, E. P., Bruce, J., Snyder, K., & Nelson, C. A. (2003). The X-trials: Neural correlates of an inhibitory control task in children and adults. Journal of Cognitive Neuroscience, 15, 432443.Google Scholar
Destan, N., Hembacher, E., Ghetti, S., & Roebers, C. M. (2014). Early metacognitive abilities: The interplay of monitoring and control processes in 5- to 7-year-old children. Journal of Experimental Child Psychology, 126, 213228.Google Scholar
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168.Google Scholar
Doebel, S., Barker, J. E., Chevalier, N., Michaelson, L. E., Fisher, V., & Munakata, Y. (2017). Getting ready to use control: Advances in the measurement of young children’s use of proactive control. PLoS ONE, 12, e0175072.Google Scholar
Doebel, S., & Zelazo, P. D. (2015). A meta-analysis of the dimensional change card sort: Implications for developmental theories and the measurement of executive function in children. Developmental Review, 38, 241268.Google Scholar
DuPuis, D., Ram, N., Willner, C. J., Karalunas, S., Segalowitz, S. J., & Gatzke-Kopp, L. M. (2015). Implications of ongoing neural development for the measurement of the error-related negativity in childhood. Developmental Science, 18, 452468.Google Scholar
Durston, S., Davidson, M. C., Tottenham, N., Galvan, A., Spicer, J., Fossella, J. A., & Casey, B. J. (2006). A shift from diffuse to focal cortical activity with development. Developmental Science, 9, 18.Google Scholar
Durston, S., Thomas, K. M., Yang, Y., Ulug, A. M., Zimmerman, R. D., & Casey, B. J. (2002). A neural basis for the development of inhibitory control. Developmental Science, 5, F9F16.Google Scholar
Duthoo, W., Abrahamse, E. L., Braem, S., Boehler, C. N., & Notebaert, W. (2014). The heterogeneous world of congruency sequence effects: An update. Frontiers in Psychology, 5, 19.Google Scholar
Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 7, 380390.Google Scholar
Elke, S., & Wiebe, S. A. (2017). Proactive control in early and middle childhood: An ERP study. Developmental Cognitive Neuroscience, 26, 2838.Google Scholar
Erb, C. D., & Marcovitch, S. (2019). Tracking the within-trial, cross-trial, and developmental dynamics of cognitive control: Evidence from the Simon task. Child Development, 90, e831e848.Google Scholar
Erb, C. D., Moher, J., Sobel, D. M., & Song, J. H. (2016). Reach tracking reveals dissociable processes underlying cognitive control. Cognition, 152, 114126.Google Scholar
Ezekiel, F., Bosma, R., & Morton, J. B. (2013). Dimensional change card sort performance associated with age-related differences in functional connectivity of lateral prefrontal cortex. Developmental Cognitive Neuroscience, 5, 4050.Google Scholar
Fair, D. A., Dosenbach, N. U. F., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. M., … Schlaggar, B. L. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences (USA), 104, 1350713512.Google Scholar
Fair, D. A., Nigg, J. T., Iyer, S., Bathula, D., Mills, K. L., Dosenbach, N. U. F., … Milham, M. P. (2013). Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data. Frontiers in Systems Neuroscience, 6, 131.Google Scholar
Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology, 78, 447455.Google Scholar
Fatzer, S. T., & Roebers, C. M. (2012). Language and executive functions: The effect of articulatory suppression on executive functioning in children. Journal of Cognition and Development, 13, 454472.Google Scholar
Ferdinand, N. K., & Kray, J. (2014). Developmental changes in performance monitoring: How electrophysiological data can enhance our understanding of error and feedback processing in childhood and adolescence. Behavioural Brain Research, 263, 122132.Google Scholar
Finn, A. S., Minas, J. E., Leonard, J. A., Mackey, A. P., Salvatore, J., Goetz, C., … Gabrieli, J. D. E. (2017). Functional brain organization of working memory in adolescents varies in relation to family income and academic achievement. Developmental Science, 20, e12450.Google Scholar
Fjell, A. M., Walhovd, K. B., Brown, T. T., Kuperman, J. M., Chung, Y., Hagler, D. J., … Dale, A. M. (2012). Multimodal imaging of the self-regulating developing brain. Proceedings of the National Academy of Sciences (USA), 109, 1962019625.Google Scholar
Gehring, W. J., Goss, B., Coles, M. G. H., David, E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385390.Google Scholar
Gehring, W. J., & Knight, R. T. (2000). Prefrontal–cingulate interactions in action monitoring. Nature Neuroscience, 3, 516520.Google Scholar
Geurts, H. M., Verté, S., Oosterlaan, J., Roeyers, H., & Sergeant, J. A. (2004). How specific are executive functioning deficits in attention deficit hyperactivity disorder and autism? Journal of Child Psychology and Psychiatry, and Allied Disciplines, 45, 836854.Google Scholar
Gold, J. M., Kool, W., Botvinick, M. M., Hubzin, L., August, S., & Waltz, J. A. (2015). Cognitive effort avoidance and detection in people with schizophrenia. Cognitive, Affective & Behavioral Neuroscience, 15, 145154.Google Scholar
Gonthier, C., Ambrosi, S., & Blaye, A. (2021). Learning-based before intentional cognitive control: Developmental evidence for a dissociation between implicit and explicit control. Journal of Experimental Psychology: Learning, Memory, and Cognition. Advance online publicationGoogle Scholar
Gonthier, C., Zira, M., Colé, P., & Blaye, A. (2019). Evidencing the developmental shift from reactive to proactive control in early childhood and its relationship to working memory. Journal of Experimental Child Psychology, 177, 116.Google Scholar
Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121, 480506.CrossRefGoogle ScholarPubMed
Grayson, D. S., & Fair, D. A. (2017). Development of large-scale functional networks from birth to adulthood: A guide to the neuroimaging literature. NeuroImage, 160, 1531.Google Scholar
Gupta, R., Kar, B. R., & Srinivasan, N. (2009). Development of task switching and post-error-slowing in children. Behavioral and Brain Functions: BBF, 5, 38.CrossRefGoogle ScholarPubMed
Hadley, L. V., Acluche, F., & Chevalier, N. (2020). Encouraging performance monitoring promotes proactive control in children. Developmental Science, 23, e12861.Google Scholar
Haimovitz, K., & Dweck, C. S. (2017). The origins of children’s growth and fixed mindsets: New research and a new proposal. Child Development, 88, 18491859.Google Scholar
Helfrich, R. F., & Knight, R. T. (2016). Oscillatory dynamics of prefrontal cognitive control. Trends in Cognitive Sciences, 20, 916930.Google Scholar
Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679709.Google Scholar
Hommel, B., Proctor, R. W., & Vu, K.-P. L. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68, 117.Google Scholar
Hwang, K., Velanova, K., & Luna, B. (2010). Strengthening of top-down frontal cognitive control networks underlying the development of inhibitory control: A functional magnetic resonance imaging effective connectivity study. Journal of Neuroscience, 30, 1553515545.Google Scholar
Iani, C., Stella, G., & Rubichi, S. (2014). Response inhibition and adaptations to response conflict in 6- to 8-year-old children: Evidence from the Simon effect. Attention, Perception & Psychophysics, 76, 12341241.Google Scholar
Jiang, J., Correa, C. M., Geerts, J., & van Gaal, S. (2018). The relationship between conflict awareness and behavioral and oscillatory signatures of immediate and delayed cognitive control. NeuroImage, 177, 1119.Google Scholar
Johnson, M. H. (2011). Interactive specialization: A domain-general framework for human functional brain development? Developmental Cognitive Neuroscience, 1, 721.Google Scholar
Jones, L. B., Rothbart, M. K., & Posner, M. I. (2003). Development of executive attention in preschool children. Developmental Science, 6, 498504.Google Scholar
Karr, J. E., Areshenkoff, C. N., Rast, P., Hofer, S. M., Iverson, G. L., & Garcia-Barrera, M. A. (2018). The unity and diversity of executive functions: A systematic review and re-analysis of latent variable studies. Psychological Bulletin, 144(11), 11471185.CrossRefGoogle ScholarPubMed
Kelly, A. M. C., Di Martino, A., Uddin, L. Q., Shehzad, Z., Gee, D. G., Reiss, P. T., … Milham, M. P. (2009). Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cerebral Cortex, 19, 640657.Google Scholar
Kool, W., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M. (2010). Decision making and the avoidance of cognitive demand. Journal of Experimental Psychology. General, 139, 665682.CrossRefGoogle ScholarPubMed
Kray, J., Karbach, J., & Blaye, A. (2012). The influence of stimulus-set size on developmental changes in cognitive control and conflict adaptation. Acta Psychologica, 140, 119128.Google Scholar
Larson, M. J., Clawson, A., Clayson, P. E., & South, M. (2012). Cognitive control and conflict adaptation similarities in children and adults. Developmental Neuropsychology, 37, 343357.Google Scholar
Lee, K., Bull, R., & Ho, R. M. H. (2013). Developmental changes in executive functioning. Child Development, 84, 19331953.Google Scholar
Linzarini, A., Houdé, O., & Borst, G. (2017). Cognitive control outside of conscious awareness. Consciousness and Cognition, 53, 185193.Google Scholar
Lo, S. L. (2018). A meta-analytic review of the event-related potentials (ERN and N2) in childhood and adolescence: Providing a developmental perspective on the conflict monitoring theory. Developmental Review, 48, 82112.Google Scholar
Lucenet, J., & Blaye, A. (2014). Age-related changes in the temporal dynamics of executive control: A study in 5- and 6-year-old children. Frontiers in Psychology, 5, 111.Google Scholar
Luna, B., Marek, S., Larsen, B., Tervo-Clemmens, B., & Chahal, R. (2015). An integrative model of the maturation of cognitive control. Annual Review of Neuroscience, 38, 151170.Google Scholar
Luna, B., Padmanabhan, A., & O’Hearn, K. (2010). What has fMRI told us about the development of cognitive control through adolescence? Brain and Cognition, 72, 101113.Google Scholar
Mai, X., Tardif, T., Doan, S. N., Liu, C., Gehring, W. J., & Luo, Y.-J. (2011). Brain activity elicited by positive and negative feedback in preschool-aged children. PLoS ONE, 6, e18774.Google Scholar
Marcovitch, S., & Zelazo, P. D. (1999). The A-not-B error: Results from a logistic meta-analysis. Child Development, 70, 12971313.Google Scholar
Marek, S., Hwang, K., Foran, W., Hallquist, M. N., & Luna, B. (2015). The contribution of network organization and integration to the development of cognitive control. PLoS Biology, 13, 125.Google Scholar
Marklund, P., & Persson, J. (2012). Context-dependent switching between proactive and reactive working memory control mechanisms in the right inferior frontal gyrus. NeuroImage, 63, 15521560.Google Scholar
Marsh, R., Zhu, H., Schultz, R. T., Quackenbush, G., Royal, J., Skudlarski, P., & Peterson, B. S. (2006). A developmental fMRI study of self-regulatory control. Human Brain Mapping, 27, 848863.Google Scholar
Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6, 450452.Google Scholar
McGuire, J. T., & Botvinick, M. M. (2010). Prefrontal cortex, cognitive control, and the registration of decision costs. Proceedings of the National Academy of Sciences (USA), 107, 79227926.Google Scholar
Meyer, A., Hajcak, G., Torpey, D. C., Kujawa, A., Kim, J., Bufferd, S., … Klein, D. N. (2013). Increased error-related brain activity in six-year-old children with clinical anxiety. Journal of Abnormal Child Psychology, 41, 12571266.Google Scholar
Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21, 814.Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex ‘Frontal Lobe’ tasks: A latent variable analysis. Cognitive Psychology, 41, 49100.Google Scholar
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., … Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences (USA), 108, 26932698.Google Scholar
Morey, C. C., Mareva, S., Lelonkiewicz, J. R., & Chevalier, N. (2018). Gaze-based rehearsal in children under 7: A developmental investigation of eye movements during a serial spatial memory task. Developmental Science, 21, e12559.CrossRefGoogle ScholarPubMed
Moriguchi, Y., & Hiraki, K. (2011). Longitudinal development of prefrontal function during early childhood. Developmental Cognitive Neuroscience, 1, 153162.Google Scholar
Muhle-Karbe, P. S., Jiang, J., & Egner, T. (2018). Causal evidence for learning-dependent frontal-lobe contributions to cognitive control. The Journal of Neuroscience, 38, 962973.Google Scholar
Munakata, Y., Snyder, H. R., & Chatham, C. H. (2012). Developing cognitive control: Three key transitions. Current Directions in Psychological Science, 21, 7177.Google Scholar
Niebaum, J. C., Chevalier, N., Guild, R. M., & Munakata, Y. (2019). Adaptive control and the avoidance of cognitive control demands across development. Neurospychologia, 123, 152158.Google Scholar
Nieuwenhuis, S., Stins, J., Posthuma, D., Polderman, T. C., Boomsma, D., & Geus, E. (2006). Accounting for sequential trial effects in the flanker task: Conflict adaptation or associative priming? Memory & Cognition, 34, 12601272.Google Scholar
Noble, K. G., McCandliss, B. D., & Farah, M. J. (2007). Socioeconomic gradients predict individual differences in neurocognitive abilities. Developmental Science, 10, 464480.Google Scholar
O’Leary, A. P., & Sloutsky, V. M. (2017). Carving metacognition at its joints: Protracted development of component processes. Child Development, 88, 10151032.Google Scholar
Ordaz, S. J., Foran, W., Velanova, K., & Luna, B. (2013). Longitudinal growth curves of brain function underlying inhibitory control through adolescence. Journal of Neuroscience, 33, 1810918124.Google Scholar
Peters, S., Koolschijn, P. C. M. P., Crone, E. A., Van Duijvenvoorde, A. C. K., & Raijmakers, M. E. J. (2014). Strategies influence neural activity for feedback learning across child and adolescent development. Neuropsychologia, 62, 365374.Google Scholar
Polizzotto, N. R., Hill-Jarrett, T., Walker, C., & Cho, Y. (2018). Normal development of context processing using the AXCPT paradigm. PLoS ONE, 13, e0197812.CrossRefGoogle ScholarPubMed
Pozuelos, J. P., Combita, L. M., Abundis, A., Paz-Alonsa, P. M., Conejero, Á., Guerra, S., & Rueda, M. R. (2019). Metacognitive scaffolding boosts cognitive and neural benefits following executive attention training in children. Developmental Science, 22, e12756.Google Scholar
Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., Greenstein, D., … Giedd, J. N. (2011). How does your cortex grow? The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31, 71747177.Google Scholar
Ridderinkhof, K. R., van den Wildenberg, W. P. M., Segalowitz, S. J., & Carter, C. S. (2004). Neurocognitive mechanisms of cognitive control: The role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain and Cognition, 56, 129140.Google Scholar
Roebers, C. M. (2017). Executive function and metacognition: Towards a unifying framework of cognitive self-regulation. Developmental Review, 45, 3151.Google Scholar
Schachar, R. J., Chen, S., Logan, G. D., Ornstein, T. J., Crosbie, J., Ickowicz, A., & Pakulak, A. (2004). Evidence for an error monitoring deficit in attention deficit hyperactivity disorder. Journal of Abnormal Child Psychology, 32, 285293.Google Scholar
Schmidt, J. R. (2013). Questioning conflict adaptation: Proportion congruent and Gratton effects reconsidered. Psychonomic Bulletin & Review, 20, 615630.Google Scholar
Schmidt, J. R. (2019). Evidence against conflict monitoring and adaptation: An updated review. Psychonomic Bulletin & Review, 26, 753771.Google Scholar
Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., … Wise, S. P. (2008). Neurodevelopmental trajectories of the human cerebral cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28, 35863594.Google Scholar
Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79, 217240.Google Scholar
Sherman, L. E., Rudie, J. D., Pfeifer, J. H., Masten, C. L., McNealy, K., & Dapretto, M. (2014). Development of the default mode and central executive networks across early adolescence: A longitudinal study. Developmental Cognitive Neuroscience, 10, 148159.Google Scholar
Smulders, S. F. A., Soetens, E., & van der Molen, M. W. (2016). What happens when children encounter an error? Brain and Cognition, 104, 3447.Google Scholar
Smulders, S. F. A., Soetens, E. L. L., & van der Molen, M. W. (2018). How do children deal with conflict? A developmental study of sequential conflict modulation. Frontiers in Psychology, 9, 766.Google Scholar
Stins, J. F., Polderman, J. C. T., Boomsma, D. I., & de Geus, E. J. C. (2007). Conditional accuracy in response interference tasks: Evidence from the Eriksen flanker task and the spatial conflict task. Advances in Cognitive Psychology, 3, 409417.Google Scholar
Strang, N. M., & Pollak, S. D. (2014). Developmental continuity in reward-related enhancement of cognitive control. Developmental Cognitive Neuroscience, 10C, 3443.Google Scholar
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643.Google Scholar
Tamm, L., Menon, V., & Reiss, A. L. (2002). Maturation of brain function associated with response inhibition. Journal of American Academy of Child and Adolescent Psychiatry, 41, 12311238.Google Scholar
Tamnes, C. K., Walhovd, K. B., Torstveit, M., Sells, V. T., & Fjell, A. M. (2013). Performance monitoring in children and adolescents: A review of developmental changes in the error-related negativity and brain maturation. Developmental Cognitive Neuroscience, 6, 113.Google Scholar
Torpey, D. C., Hajcak, G., Kim, J., Kujawa, A., & Klein, D. N. (2012). Electrocortical and behavioral measures of response monitoring in young children during a Go/No-Go task. Developmental Psychobiology, 54, 139150.Google Scholar
Tsujii, T., Yamamoto, E., Masuda, S., & Watanabe, S. (2009). Longitudinal study of spatial working memory development in young children. NeuroReport, 20, 759763.Google Scholar
Uddin, L. Q., Supekar, K. S., Ryali, S., & Menon, V. (2011). Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31, 1857818589.CrossRefGoogle ScholarPubMed
van de Laar, M. C., van den Wildenberg, W. P. M., van Boxtel, G. J. M., & van der Molen, M. W. (2011). Lifespan changes in global and selective stopping and performance adjustments. Frontiers in Psychology, 2, 357.Google Scholar
van Gaal, S., Lamme, V. A. F., & Ridderinkhof, K. R. (2010). Unconsciously triggered conflict adaptation. PLoS ONE, 5, 6.Google Scholar
Velanova, K., Wheeler, M. E., & Luna, B. (2008). Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control. Cerebral Cortex, 18, 25052522.Google Scholar
Verguts, T. (2017). Binding by random bursts: A computational model of cognitive control. Journal of Cognitive Neuroscience, 29, 11031118.Google Scholar
Voigt, B., Mahy, C. E. V, Ellis, J., Schnitzspahn, K., Krause, I., Altgassen, M., & Kliegel, M. (2014). The development of time-based prospective memory in childhood: The role of working memory updating. Developmental Psychology, 50, 2393.Google Scholar
Wiebe, S. A., Espy, K. A., & Charak, D. (2008). Using confirmatory factor analysis to understand executive control in preschool children: I. Latent structure. Developmental Psychology, 44(2), 575587.Google Scholar
Wiebe, S. A., Sheffield, T., Nelson, J. M., Clark, C. A. C., Chevalier, N., & Espy, K. A. (2011). The structure of executive function in 3-year-olds. Journal of Experimental Child Psychology, 108, 436452.Google Scholar
Wiersema, J. R., van der Meere, J. J., & Roeyers, H. (2007). Developmental changes in error monitoring: An event-related potential study. Neuropsychologia, 45, 16491657.CrossRefGoogle ScholarPubMed
Wilk, H. A., & Morton, J. B. (2012). Developmental changes in patterns of brain activity associated with moment-to-moment adjustments in control. NeuroImage, 63, 475484.Google Scholar
Willoughby, M. T., Blair, C. B., Wirth, R. J., & Greenberg, M. (2012). The measurement of executive function at age 5: Psychometric properties and relationship to academic achievement. Psychological Assessment, 24, 226239.Google Scholar
Yordanova, J., Kolev, V., Albrecht, B., Uebel, H., & Banaschewski, T. (2011). May posterior performance be a critical factor for behavioral deficits in attention-deficit/hyperactivity disorder? Biological Psychiatry, 70, 246254.Google Scholar
Zelazo, P. D., & Carlson, S. M. (2012). Hot and cool executive function in childhood and adolescence: Development and plasticity. Child Development Perspectives, 6, 354360.Google Scholar

References

Bago, B., & De Neys, W. (2017). Fast logic?: Examining the time course assumption of dual process theory. Cognition, 158, 90109.Google Scholar
Bago, B., & De Neys, W. (2020a). Advancing the specification of dual process models of higher cognition: A critical test of the hybrid model view. Thinking & Reasoning, 26, 130.Google Scholar
Bago, B., & De Neys, W. (2020b). The smart system 1: Evidence for the intuitive nature of correct responding on the bat-and-ball problem. Thinking & Reasoning, 26, 130.Google Scholar
Ball, L., Thompson, V., & Stupple, E. (2017). Conflict and dual process theory: The case of belief bias. In De Neys, W. (ed.), Dual Process Theory 2.0 (pp. 100120). Oxford: Routledge.Google Scholar
Banks, A. (2017). Comparing dual process theories: Evidence from event-related potentials. In De Neys, W. (ed.), Dual Process Theory 2.0 (pp. 6681). Oxford: Routledge.Google Scholar
Barrouillet, P. (2011). Dual process theories of reasoning: The test of development. Developmental Review, 31, 151179.Google Scholar
Brainerd, C. J., & Reyna, V. F. (2001). Fuzzy-trace theory: Dual processes in memory, reasoning, and cognitive neuroscience. In Reese, H. W., & Kail, R. (eds.), Advances in Child Development and Behavior (Vol. 28, pp. 41100). San Diego, CA: Academic Press.Google Scholar
Brainerd, C. J., Reyna, V. F., & Ceci, S. J. (2008). Developmental reversals in false memory: A review of data and theory. Psychological Bulletin, 134, 343382.Google Scholar
Davidson, D. (1995). The representativeness heuristic and the conjunction fallacy effect in children’s decision making. Merrill-Palmer Quarterly, 41, 328346.Google Scholar
De Neys, W. (2006). Dual processing in reasoning: Two systems but one reasoner. Psychological Science, 17, 428433.Google Scholar
De Neys, W. (2012). Bias and conflict a case for logical intuitions. Perspectives on Psychological Science, 7, 2838.Google Scholar
De Neys, W. (2013). Heuristics, biases, and the development of conflict detection during reasoning. In Markovits, H. (ed.), The Developmental Psychology of Reasoning and Decision Making (pp. 130147). Hove: Psychology Press.Google Scholar
De Neys, W. (2017). Bias, conflict, and fast logic: Towards a hybrid dual process future? In De Neys, W. (ed.), Dual Process Theory 2.0 (pp. 4765). Oxford: Routledge.Google Scholar
De Neys, W., & Feremans, V. (2013). Development of heuristic bias detection in elementary school. Developmental Psychology, 49, 258269.Google Scholar
De Neys, W., & Glumicic, T. (2008). Conflict monitoring in dual process theories of thinking. Cognition, 106, 12481299.Google Scholar
De Neys, W., Rossi, S., & Houdé, O. (2013). Bats, balls, and substitution sensitivity: Cognitive misers are no happy fools. Psychonomic Bulletin & Review, 20, 269273.Google Scholar
De Neys, W., & Vanderputte, K. (2011). When less is not always more: Stereotype knowledge and reasoning development. Developmental Psychology, 47, 432441.Google Scholar
De Neys, W., Vartanian, O., & Goel, V. (2008). Smarter than we think when our brains detect that we are biased. Psychological Science, 19, 483489.Google Scholar
Evans, J. St. B. T. (2003). In two minds: Dual-process accounts of reasoning. Trends in Cognitive Sciences, 7, 454459.Google Scholar
Evans, J. St. B. T. (2008). Dual-processing accounts of reasoning, judgement and social cognition. Annual Review of Psychology, 59, 255278.Google Scholar
Evans, J. St. B. T. (2010). Intuition and reasoning: A dual process perspective. Psychological Inquiry, 21, 313326.Google Scholar
Evans, J. St. B. T. (2017). Dual process theories: Perspectives and problems. In De Neys, W. (ed.), Dual Process Theory 2.0 (pp. 137155). Oxford: Routledge.Google Scholar
Evans, J. St. B. T., & Over, D. E. (1996). Rationality and Reasoning. Hove: Psychology Press.Google Scholar
Evans, J. St. B. T., & Stanovich, K. E. (2013). Dual-process theories of higher cognition advancing the debate. Perspectives on Psychological Science, 8, 223241.Google Scholar
Franssens, S., & De Neys, W. (2009). The effortless nature of conflict detection during thinking. Thinking & Reasoning, 15, 105128.Google Scholar
Gangemi, A., Bourgeois-Gironde, S., & Mancini, F. (2015). Feelings of error in reasoning – in search of a phenomenon. Thinking & Reasoning, 21, 383396.Google Scholar
Houdé, O. (1997). Rationality in reasoning: The problem of deductive competence and the inhibitory control of cognition. Current Psychology of Cognition, 16, 108113.Google Scholar
Houdé, O. (2000). Inhibition and cognitive development: Object, number, categorization, and reasoning. Cognitive Development, 15, 6373.Google Scholar
Houdé, O. (2007). First insights on neuropedagogy of reasoning. Thinking & Reasoning, 13, 8189.Google Scholar
Houdé, O., & Borst, G. (2014). Measuring inhibitory control in children and adults: Brain imaging and mental chronometry. Frontiers in Psychology, 5, 616.Google Scholar
Jacobs, J. E., & Klaczynski, P. A. (2002). The development of decision making during childhood and adolescence. Current Directions in Psychological Science, 4, 145149.Google Scholar
Jacobs, J. E., & Potenza, M. (1991). The use of judgment heuristics to make social and object decisions: A developmental perspective. Child Development, 62, 166178.Google Scholar
Johnson, E. D., Tubau, E., & De Neys, W. (2016). The doubting system 1: Evidence for automatic substitution sensitivity. Acta Psychologica, 164, 5664.Google Scholar
Kahneman, D. (2002, December). Maps of bounded rationality: A perspective on intuitive judgement and choice. Nobel Prize Lecture. Available from http://nobelprize.org/nobel_prizes/economics/laureates/2002/kahnemann-lecture.pdf, Last accessed January 11, 2006.Google Scholar
Kahneman, D. (2011). Thinking, Fast and Slow. New York: Farrar, Straus and Giroux.Google Scholar
Kahneman, D. & Frederick, S. (2005). A model of heuristic judgement. In Holyoak, K. J., & Morrison, R. G. (eds.), The Cambridge Handbook of Thinking and Reasoning (pp. 267293). Cambridge, MA: Cambridge University Press.Google Scholar
Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological Review, 80, 237251.Google Scholar
Klaczynski, P. A., Byrnes, J. B., & Jacobs, J. E. (2001). Introduction: Special issue on decision making. Journal of Applied Developmental Psychology, 22, 225236.Google Scholar
Klaczynski, P. A., & Narashimham, G. (1998). Representations as mediators of adolescent deductive reasoning. Developmental Psychology, 5, 865881.Google Scholar
Kokis, J. V., Macpherson, R., Toplak, M. E., West, R. F., & Stanovich, K. E. (2002). Heuristic and analytic processing: Age trends and associations with cognitive ability and cognitive styles. Journal of Experimental Child Psychology, 83, 2652.Google Scholar
Markovits, H., & Barrouillet, P. (2004). Why is understanding the development of reasoning important? Thinking and Reasoning, 10, 113121.Google Scholar
Mevel, K., Poirel, N., Rossi, S., Cassotti, M., Simon, G., Houdé, O., & Neys, W. D. (2015). Bias detection: Response confidence evidence for conflict sensitivity in the ratio bias task. Journal of Cognitive Psychology, 27, 227237.Google Scholar
Newman, I., Gibb, M., & Thompson, V. A. (2017). Rule-based reasoning is fast and belief-based reasoning can be slow: Challenging current explanations of belief -bias and base-rate neglect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43, 11541170.Google Scholar
Pennycook, G. (2017). A perspective on the theoretical foundation of dual process models. In De Neys, W. (ed.), Dual Process Theory 2.0 (pp. 527). Oxford: Routledge.Google Scholar
Pennycook, G., Cheyne, J. A., Barr, N., Koehler, D. J., & Fugelsang, J. A. (2014a). Cognitive style and religiosity: The role of conflict detection. Memory & Cognition, 42, 110.Google Scholar
Pennycook, G., Fugelsang, J. A., & Koehler, D. J. (2012). Are we good at detecting conflict during reasoning. Cognition, 124, 101106.Google Scholar
Pennycook, G., Fugelsang, J. A., & Koehler, D. J. (2015). What makes us think? A three-stage dual-process model of analytic engagement. Cognitive Psychology, 80, 3472.Google Scholar
Pennycook, G., Trippas, D., Handley, S. J., & Thompson, V. A. (2014b). Base rates: Both neglected and intuitive. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 544554.Google Scholar
Piaget, J. (1952/1941). The Child’s Conception of Number. New York: Routledge & Kegan Paul.Google Scholar
Raoelison, M., Boissin, E., Borst, G., & De Neys, W. (2021). From slow to fast logic: The development of logical intuitions. Thinking & Reasoning, 1–25, online doi.org/10.1080/13546783.2021.1885488.Google Scholar
Raoelison, M., Thompson, V., & De Neys, W. (2020). The smart intuitor: Cognitive capacity predicts intuitive rather than deliberate thinking. Cognition, 204, 104381.Google Scholar
Reyna, V. F. (2004). How people make decisions that involve risk: A dual-processes approach. Current Directions in Psychological Science, 13, 6066.Google Scholar
Reyna, V. F., & Brainerd, C. J. (1994). The origins of probability judgment: A review of data and theories. In Wright, G., & Ayton, P. (eds.), Subjective Probability (pp. 239272). New York: Wiley.Google Scholar
Reyna, V. F., & Farley, F. (2006). Risk and rationality in adolescent decision making: Implications for theory, practice, and public policy. Psychological Science in the Public Interest, 7, 144.Google Scholar
Reyna, V. F., Lloyd, F. J., & Brainerd, C. J. (2003). Memory, development, and rationality: An integrative theory of judgement and decision-making. In Schneider, S., & Shanteau, J. (eds.), Emerging Perspectives on Judgment and Decision Research (pp. 201245). New York: Cambridge University Press.Google Scholar
Simon, G., Lubin, A., Houdé, O., & De Neys, W. (2015). Anterior cingulate cortex and intuitive bias detection during number conservation. Cognitive Neuroscience, 6, 158168.Google Scholar
Stanovich, K. E. (2011). Rationality and the Reflective Mind. Oxford: Oxford University Press.Google Scholar
Stanovich, K. E. (2018). Miserliness in human cognition: The interaction of detection, override and mindware. Thinking & Reasoning, 24, 423444.Google Scholar
Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality debate. Behavioral and Brain Sciences, 23, 645665.Google Scholar
Stanovich, K. E., West, R. F., & Toplak, M. E. (2011). The complexity of developmental predictions from dual process models. Developmental Review, 31, 103118.Google Scholar
Stupple, E. J., Ball, L. J., Evans, J. S. B., & Kamal-Smith, E. (2011). When logic and belief collide: Individual differences in reasoning times support a selective processing model. Journal of Cognitive Psychology, 23, 931941.CrossRefGoogle Scholar
Thompson, V. A., & Johnson, S. C. (2014). Conflict, metacognition, and analytic thinking. Thinking & Reasoning, 20, 215244.Google Scholar
Thompson, V. A., & Newman, I. (2017). Logical intuitions and other conundra for dual process theories. In De Neys, W. (ed.), Dual Process Theory 2.0 (pp. 121136). Oxford: Routledge.Google Scholar
Thompson, V. A., Pennycook, G., Trippas, D., & Evans, J. S. B. (2018). Do smart people have better intuitions? Journal of Experimental Psychology: General, 147, 945.Google Scholar
Thompson, V. A., Turner, J. A. P., & Pennycook, G. (2011). Intuition, reason, and metacognition. Cognitive Psychology, 63, 107140.Google Scholar
Trippas, D., & Handley, S. (2017). The parallel processing model of belief bias: Review and extensions. In De Neys, W. (ed.), Dual Process Theory 2.0 (pp. 2846). Oxford: Routledge.Google Scholar
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 11241131.Google Scholar
Vartanian, O., Beatty, E. L., Smith, I., Blackler, K., Lam, Q., Forbes, S., & De Neys, W. (2018). The reflective mind: Examining individual differences in susceptibility to base rate neglect with FMRI. Journal of Cognitive Neuroscience, 30, 10111022.Google Scholar

References

Aboud, F. E. (1988). Children and Prejudice. New York: Blackwell.Google Scholar
Abrams, D., & Rutland, A. (2008). The development of subjective group dynamics. In Levy, S. R., & Killen, M. (eds.), Intergroup Attitudes and Relations in Childhood through Adulthood: Studies in Crime and Public Policy (pp. 4765). Oxford: Oxford University Press.Google Scholar
Abrams, D., Rutland, A., & Cameron, L. (2003). The development of subjective group dynamics: Children’s judgments of normative and deviant in-group and out-group individuals. Child Development, 74, 18401856.Google Scholar
Abrams, D., Rutland, A., Pelletier, J., & Ferrell, J. M. (2009). Children’s group nous: Understanding and applying peer exclusion within and between groups. Child Development, 80, 224243.CrossRefGoogle ScholarPubMed
Allport, G. (1954). The Nature of Prejudice. Cambridge: Addison Wesley.Google Scholar
Astuti, R., Solomon, G. E., & Carey, S. (2004). Constraints on conceptual development: A case study of the acquisition of folkbiological and folksociological knowledge in Madagascar. Monographs of the Society for Research in Child Development, 69, 1135.Google Scholar
Atran, S. (1990). Cognitive Foundations of Natural History. New York: Cambridge University Press.Google Scholar
Bar-Haim, Y., Ziv, T., Lamy, D., & Hodes, R. M. (2006). Nature and nurture in own-race face processing. Psychological Science, 17, 159163.CrossRefGoogle ScholarPubMed
Baron, A. S., & Banaji, M. R. (2006). The development of implicit attitudes evidence of race evaluations from ages 6 and 10 and adulthood. Psychological Science, 17, 5358.Google Scholar
Baron, A. S., & Dunham, Y. (2015). Representing “us” and “them”: Building blocks of intergroup cognition. Journal of Cognition and Development, 16, 780801.Google Scholar
Barrett, M. (2007). Children’s Knowledge, Beliefs and Feelings about Nations and National Groups. Hove: Psychology Press.Google Scholar
Batson, C. D., Polycarpou, M. P., Harmon-Jones, E., Imhoff, H. J., Mitchener, E. C., Bednar, L. L., Klein, T. R., & Highberger, L. (1997). Empathy and attitudes: Can feeling for a member of a stigmatized group improve feelings toward the group? Journal of Personality and Social Psychology, 72, 105118.Google Scholar
Baumeister, R. F., & Leary, M. F. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117, 497529.Google Scholar
Bennett, M., Lyons, E., Sani, F., & Barrett, M. (1998). Children’s subjective identification with the group and in-group favoritism. Developmental Psychology, 34, 902909.Google Scholar
Bennett, M., & Sani, F. (2008a). Children’s subjective identification with social groups: A self-stereotyping approach. Developmental Science, 11, 6975.Google Scholar
Bennett, M., & Sani, F. (2008b). The effect of comparative context upon stereotype content: Children’s judgments of ingroup behavior. Scandinavian Journal of Psychology, 49, 141146.Google Scholar
Benozio, A., & Diesendruck, G. (2015). From effort to value: Preschool children’s alternative to effort justification. Psychological Science, 26, 14231429.Google Scholar
Berndt, T. J., & Heller, K. A. (1986). Gender stereotypes and social inferences: A developmental study. Journal of Personality and Social Psychology, 50, 889898.Google Scholar
Bian, L., Leslie, S. J., & Cimpian, A. (2017). Gender stereotypes about intellectual ability emerge early and influence children’s interests. Science, 355, 389391.Google Scholar
Bian, L., Sloane, S., & Baillargeon, R. (2018). Infants expect ingroup support to override fairness when resources are limited. Proceedings of the National Academy of Sciences (USA), 115, 27052710.CrossRefGoogle ScholarPubMed
Biernat, M. (1991). Gender stereotypes and the relationship between masculinity and femininity: A developmental analysis. Journal of Personality and Social Psychology, 61, 351365.Google Scholar
Bigler, R. S., & Liben, L. S. (1993). A cognitive-developmental approach to racial stereotyping and reconstructive memory in Euro-American children. Child Development, 64, 15071518.CrossRefGoogle Scholar
Bigler, R. S., & Liben, L. S. (2006). A developmental intergroup theory of social stereotypes and prejudice. Advances in Child Development and Behavior, 34, 3989.Google Scholar
Binder, J., Zagefka, H., Brown, R., Funke, F., Kessler, T., Mummendey, A., Maquil, A., Demoulin, S., & Leyens, J. P. (2009). Does contact reduce prejudice or does prejudice reduce contact? A longitudinal test of the contact hypothesis among majority and minority groups in three European countries. Journal of Personality and Social Psychology, 96, 843856.Google Scholar
Birnbaum, D., Deeb, I., Segall, G., Ben-Eliyahu, A., & Diesendruck, G. (2010). The development of social essentialism: The case of Israeli children’s inferences about Jews and Arabs. Child Development, 81, 757777.Google Scholar
Boyd, R., & Richerson, P. J. (2009). Culture and the evolution of human cooperation. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 32813288.Google Scholar
Brown, D. E. (2004). Human universals, human nature & human culture. Daedalus, 133, 4754.CrossRefGoogle Scholar
Butler, L. P., & Walton, G. M. (2013). The opportunity to collaborate increases preschoolers’ motivation for challenging tasks. Journal of Experimental Child Psychology, 116, 953961.Google Scholar
Buttelmann, D., & Bohm, R. (2014). The ontogeny of the motivation that underlies in-group bias. Psychological Science, 25, 921927.Google Scholar
Buttelmann, D., Zmyj, N., Daum, M., & Carpenter, M. (2013). Selective imitation of in-group over out-group members in 14-month-old infants. Child Development, 64, 422428.Google Scholar
Cameron, L., & Rutland, A. (2006). Extended contact through story reading in school: Reducing children’s prejudice toward the disabled. Journal of Social Issues, 62, 469488.Google Scholar
Cameron, L., Rutland, A., & Brown, R. (2007). Promoting children’s positive intergroup attitudes towards stigmatized groups: Extended contact and multiple classification skills training. International Journal of Behavioral Development, 31, 454466.Google Scholar
Cameron, L., Rutland, A., Brown, R., & Douch, R. (2006). Changing children’s intergroup attitudes toward refugees: Testing different models of extended contact. Child Development, 77, 12081219.Google Scholar
Castelli, L., De Amicis, L., & Sherman, S.J. (2007). The loyal member effect: On the preference for ingroup members who engage in exclusive relations with the ingroup. Developmental Psychology, 43, 13471359.Google Scholar
Chalik, L., Leslie, S. J., & Rhodes, M. (2017). Cultural context shapes essentialist beliefs about religion. Developmental Psychology, 53, 11781187.Google Scholar
Chalik, L., & Rhodes, M. (2014). Preschoolers use social allegiances to predict behavior. Journal of Cognition and Development, 15, 136160.Google Scholar
Chalik, L., & Rhodes, M. (2018). Learning about social category-based obligations. Cognitive Development, 48, 117124.CrossRefGoogle Scholar
Chalik, L., Rivera, C., & Rhodes, M. (2014). Children’s use of categories and mental states to predict social behavior. Developmental Psychology, 50, 23602367.Google Scholar
Chen, E. E., Corriveau, K. H., & Harris, P. L. (2013). Children trust a consensus composed of outgroup members - but do not retain that trust. Child Development, 84, 269282.CrossRefGoogle Scholar
Corenblum, B. (2003). What children remember about ingroup and outgroup peers: Effects of stereotypes on children’s processing of information about group members. Journal of Experimental Child Psychology, 86, 3266.Google Scholar
Corriveau, K. H., & Harris, P. L. (2010). Preschoolers (sometimes) defer to the majority in making simple perceptual judgments. Developmental Psychology, 46, 437445.Google Scholar
Corriveau, K. H., Kinzler, K. D., & Harris, P. L. (2013). Accuracy trumps accent in children’s endorsement of object labels. Developmental Psychology, 49, 470479.Google Scholar
Cvencek, D., Meltzoff, A. N., & Greenwald, A. G. (2011). Math-gender stereotypes in elementary school children. Child Development, 82, 766779.Google Scholar
Degner, J., & Wentura, D. (2010). Automatic prejudice in childhood and early adolescence. Journal of Personality and Social Psychology, 98, 356.Google Scholar
DeJesus, J. M., Rhodes, M., & Kinzler, K. D. (2014). Evaluations versus expectations: Children’s divergent beliefs about resource distribution. Cognitive Science, 38, 178193.Google Scholar
del Río, M. F., & Strasser, K. (2011). Chilean children’s essentialist reasoning about poverty. British Journal of Developmental Psychology, 29, 722743.Google Scholar
Devine, P. G. (1989). Stereotypes and prejudice: Their automatic and controlled components. Journal of Personality and Social Psychology, 56, 518.Google Scholar
Diesendruck, G., & Haber, L. (2009). God’s categories: The effect of religiosity on children’s teleological and essentialist beliefs about categories. Cognition, 110, 100114.Google Scholar
Diesendruck, G., & HaLevi, H. (2006). The role of language, appearance, and culture in children’s social category-based induction. Child Development, 77, 539553.CrossRefGoogle ScholarPubMed
Dunham, Y. (2018). Mere membership. Trends in Cognitive Sciences, 22, 780793.Google Scholar
Dunham, Y., Baron, A. S., & Banaji, M. R. (2006). From American city to Japanese village: A cross-cultural investigation of implicit race attitudes. Child Development, 77, 12681281Google Scholar
Dunham, Y., Baron, A. S., & Banaji, M. R. (2007). Children and social groups: A developmental analysis of implicit consistency in Hispanic Americans. Self and Identity, 6, 238255.Google Scholar
Dunham, Y., Baron, A. S., & Banaji, M. R. (2008). The development of implicit intergroup cognition. Trends in Cognitive Sciences, 12, 248253.Google Scholar
Dunham, Y., Baron, A. S., & Banaji, M. R. (2015). The development of implicit gender attitudes. Developmental Science, 18, 469483.Google Scholar
Dunham, Y., Baron, A. S., & Carey, S. (2011). Consequences of “minimal” group affiliations in children. Child Development, 82, 793811.Google Scholar
Dunham, Y., & Degner, J. (2013). From categories to exemplars (and back again). In Banaji, M. R., & Gelman, S. A. (eds.), Navigating the Social World: What Infants, Children, and Other Species Can Teach Us (pp. 275280). New York: Oxford University Press.Google Scholar
Dunham, Y., & Emory, J. (2014). Of affect and ambiguity: The emergence of preference for arbitrary ingroups. Journal of Social Issues, 70, 8198.Google Scholar
Dunham, Y., Newheiser, A. K., Hoosain, L., Merrill, A., & Olson, K. R. (2014a). From a different vantage: Intergroup attitudes among children from low- and intermediate-status racial groups. Social Cognition, 32, 121.Google Scholar
Dunham, Y., Srinivasan, M., Dorsch, R., & Barner, D. (2014b). Religion insulates ingroup evaluations: The development of intergroup attitudes in India. Developmental Science, 17, 311319.Google Scholar
Engelmann, J. M., Herrmann, E., Rapp, D. J., & Tomasello, M. (2016). Young children (sometimes) do the right thing even when their peers do not. Cognitive Development, 39, 8692.Google Scholar
Engelmann, J. M., Over, H., Herrmann, E., & Tomasello, M. (2013). Young children care more about their reputation with ingroup members and potential reciprocators. Developmental Science, 16, 952958.Google Scholar
Fehr, E., Bernhard, H., & Rockenbach, B. (2008). Egalitarianism in young children. Nature, 454, 10791083.Google Scholar
Finlay, K. A., & Stephan, W. G. (2000). Improving intergroup relations: The effects of empathy on racial attitudes. Journal of Applied Social Psychology, 30, 17201737.Google Scholar
Gaias, L. M., Gal, D., Abry, T., Granger, K. L., & Taylor, M. (2018). Diversity exposure in preschool: Longitudinal implications for cross-race friendships and racial bias. Journal of Applied Developmental Psychology, 59, 515.Google Scholar
Gelman, S. A. (2003). The Essential Child: Origins of Essentialism in Everyday Thought. Oxford: Oxford University Press.Google Scholar
Gelman, S., Collman, P., & Maccoby, E. (1986). Inferring properties from categories versus inferring categories from properties: The case of gender. Child Development, 57, 396404.Google Scholar
Gopnik, A., & Wellman, H. M. (2012). Reconstructing constructivism: Causal models, Bayesian learning mechanisms, and the theory theory. Psychological Bulletin, 138, 10851108.Google Scholar
Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. (1998). Measuring individual differences in implicit cognition: The implicit association test. Journal of Personality and Social Psychology, 74, 1464.Google Scholar
Griffiths, J., & Nesdale, D. (2006). Ingroup and outgroup attitudes of ethnic majority and minority children. International Journal of Intercultural Relations, 30, 735749.Google Scholar
Halim, M. L. D., Ruble, D. N., Tamis-LeMonda, C. S., Shrout, P. E., & Amodio, D. M. (2017). Gender attitudes in early childhood: Behavioral Consequences and cognitive antecedents. Child Development, 88, 882899.Google Scholar
Haslam, N., Rothschild, L., & Ernst, D. (2000). Essentialist beliefs about social categories. British Journal of Social Psychology, 39, 113127.Google Scholar
Haun, D. B., & Tomasello, M. (2011). Conformity to peer pressure in preschool children. Child Development, 82, 17591767.Google Scholar
Heiphetz, L., Spelke, E. S., & Banaji, M. R. (2013). Patterns of implicit and explicit attitudes in children and adults: Tests in the domain of religion. Journal of Experimental Psychology: General, 142, 864879.Google Scholar
Hetherington, C., Hendrickson, C., & Koenig, M. (2014). Reducing an in-group bias in preschool children: The impact of moral behavior. Developmental Science, 17, 10421049.Google Scholar
Hilliard, L. J., & Liben, L. S. (2010). Differing levels of gender salience in preschool classrooms: Effects on children’s gender attitudes and intergroup bias. Child Development, 81, 17871798.Google Scholar
Hirschfeld, L. A. (1996). Race in the Making. Cambridge, MA: MIT Press.Google Scholar
Howard, L. H., Henderson, A. M., Carrazza, C., & Woodward, A. L. (2015). Infants’ and young children’s imitation of linguistic in-group and out-group informants. Child Development, 86, 259275.CrossRefGoogle Scholar
James, J. D. (2001). The role of cognitive development and socialization in the initial development of team loyalty. Leisure Sciences, 23, 233261.Google Scholar
Jin, K., & Baillargeon, R. (2017). Infants possess an abstract expectation of ingroup support. Proceedings of the National Academy of Sciences (USA), 114, 81998204.Google Scholar
Jordan, J. J., McAuliffe, K., & Warneken, F. (2014). Development of ingroup favoritism in children’s third-party punishment of selfishness. Proceedings of the National Academy of Sciences (USA), 111, 1271012715.Google Scholar
Kalish, C. W., & Lawson, C. A. (2008). Development of social category representations: Early appreciation of roles and deontic relations. Child Development, 79, 577593.Google Scholar
Keller, J. (2005). In genes we trust: The biological component of psychological essentialism and its relationship to mechanisms of motivated social cognition. Journal of Personality and Social Psychology, 88, 686702.Google Scholar
Kelly, D. J., Quinn, P. C., Slater, A. M., Lee, K., Gibson, A., Smith, M., Ge, L., & Pascalis, O. (2005). Three-month-olds but not newborns prefer own-race faces. Developmental Science, 8, F31F36.Google Scholar
Kinzler, K. D., & Dautel, J. (2012). Children’s essentialist reasoning about language and race. Developmental Science, 15, 131138.Google Scholar
Kinzler, K. D., Dupoux, E., & Spelke, E. S. (2007). The native language of social cognition. Proceedings of the National Academy of Sciences (USA), 104, 1257712580.Google Scholar
Kinzler, K. D., Dupoux, E., & Spelke, E. S. (2012). “Native” objects and collaborators: Infants’ object choices and acts of giving reflect favor for native over foreign speakers. Journal of Cognition and Development, 13, 6781.Google Scholar
Kinzler, K. D., Shutts, K., DeJesus, J., & Spelke, E. S. (2009). Accent trumps race in guiding children’s social preferences. Social Cognition, 27, 623634.Google Scholar
Kinzler, K. D., & Spelke, E. S. (2011). Do infants show social preferences for people differing in race? Cognition, 119, 19.Google Scholar
Lee, K., Quinn, P. C., & Pascalis, O. (2017). Face race processing and racial bias in early development: A perceptual-social linkage. Current Directions in Psychological Science, 26, 256262.Google Scholar
Liberman, Z., Kinzler, K. D., & Woodward, A. L. (2014). Friends or foes: Infants use shared evaluations to infer others’ social relationships. Journal of Experimental Psychology: General, 143, 966971.Google Scholar
Liberman, Z., Woodward, A. L., & Kinzler, K. D. (2017). Preverbal infants infer third-party social relationships based on language. Cognitive Science, 41, 622634.Google Scholar
Mahajan, N., & Wynn, K. (2012). Origins of “us” versus “them”: Prelinguistic infants prefer similar others. Cognition, 124, 227233.Google Scholar
Mahalingam, R. (2003). Essentialism, culture, and power: Representations of social class. Journal of Social Issues, 59, 733749.Google Scholar
Marques, J. M., Yzerbyt, V. Y., & Leyens, J. (1988). “The black sheep effect”: Extremity of judgments toward ingroup members as a function of group identification. European Journal of Social Psychology, 18, 116.Google Scholar
Master, A., Cheryan, S., & Meltzoff, A. N. (2017). Social group membership increases STEM engagement among preschoolers. Developmental Psychology, 53, 201209.Google Scholar
Master, A. & Walton, G. M. (2012). Minimal groups increase young children’s motivation and learning on group-relevant tasks. Child Development, 84, 737751.Google Scholar
McAuliffe, K., & Dunham, Y. (2017). Fairness overrides group bias in children’s second-party punishment. Journal of Experimental Psychology: General, 146, 485494.Google Scholar
McGlothlin, H., & Killen, M. (2010). How social experience is related to children’s intergroup attitudes. European Journal of Social Psychology, 40, 625634.Google Scholar
McLoughlin, N., & Over, H. (2017). The developmental origins of dehumanization. Advances in Child Development and Behavior, 54, 153178.Google Scholar
McLoughlin, N., Tipper, S. P., & Over, H. (2018). Young children perceive less humanness in outgroup faces. Developmental Science, 21, e12539.CrossRefGoogle ScholarPubMed
Medin, D. L., & Ortony, A. (1989). Psychological essentialism. In Vosnaidou, S., & Ortony, A. (eds.), Similarity and Analogical Reasoning (pp. 179196). Cambridge, MA: Cambridge University Press.Google Scholar
Misch, A., & Dunham, Y. (2021). (Peer) group influence on children's prosocial and antisocial behavior. Journal of Experimental Child Psychology, 201, 104994.Google Scholar
Misch, A., Over, H., & Carpenter, M. (2014). Stick with your group: Young children’s attitudes about group loyalty. Journal of Experimental Child Psychology, 126, 1936.Google Scholar
Misch, A., Over, H., & Carpenter, M. (2016). I won’t tell: Young children show loyalty to their group by keeping group secrets. Journal of Experimental Child Psychology, 142, 96106.Google Scholar
Misch, A., Over, H., & Carpenter, M. (2018). The whistleblower’s dilemma in young children: When loyalty trumps other moral concerns. Frontiers in Psychology, 9, 250.Google Scholar
Muzzatti, B., & Agnoli, F. (2007). Gender and mathematics: Attitudes and stereotype threat susceptibility in Italian children. Developmental Psychology, 43, 747759.Google Scholar
Nesdale, D., & Flesser, D. (2001). Social identity and the development of children’s group attitudes. Child Development, 72, 506517Google Scholar
Newheiser, A. K., & Olson, K. R. (2012). White and black American children’s implicit intergroup bias. Journal of Experimental Social Psychology, 48, 264270.Google Scholar
Noyes, A., & Dunham, Y. (2017). Mutual intentions as a causal framework for social groups. Cognition, 162, 133142.Google Scholar
Olson, K. R., & Dunham, Y. (2010). The development of implicit social cognition. In Gawronski, B., & Payne, B. K. (eds.), Handbook of Implicit Social Cognition: Measurement, Theory, and Applications (pp. 241254). New York: Guilford Press.Google Scholar
Oostenbroek, J., & Over, H. (2015). Young children contrast their behavior to that of out-group members. Journal of Experimental Child Psychology, 139, 234241.Google Scholar
Over, H., & Carpenter, M. (2009). Eighteen-month-old infants show increased helping following priming with affiliation. Psychological Science, 20, 11891193.Google Scholar
Over, H., Eggleston, A., Bell, J., & Dunham, Y. (2017). Young children seek out biased information about social groups. Developmental Science, 21, 112.Google Scholar
Over, H., Vaish, A., & Tomasello, M. (2016). Do young children accept responsibility for the negative actions of ingroup members? Cognitive Development, 40, 2432.Google Scholar
Pettigrew, T. F., & Tropp, L. R. (2006). A meta-analytic test of intergroup contact theory. Journal of Personality and Social Psychology, 90, 751783.Google Scholar
Powell, L. J., & Spelke, E. S. (2013). Preverbal infants expect members of social groups to act alike. Proceedings of the National Academy of Sciences (USA), 110, E3965E3972.Google Scholar
Prentice, D. A., & Miller, D. T. (2007). Psychological essentialism of human categories. Current Directions in Psychological Science, 16, 202206.Google Scholar
Qian, M. K., Quinn, P. C., Heyman, G. D., Pascalis, O., Fu, G., & Lee, K. (2017). Perceptual individuation training (but not mere exposure) reduces implicit racial bias in preschool children. Developmental Psychology, 53, 845859.Google Scholar
Quinn, P. C., Yahr, J., Kuhn, A., Slater, A. M., & Pascalis, O. (2002). Representation of the gender of human faces by infants: A preference for female. Perception, 31, 11091121.Google Scholar
Raabe, T., & Beelmann, A. (2011). Development of ethnic, racial, and national prejudice in childhood and adolescence: A multinational meta-analysis of age differences. Child Development, 82, 17151737.Google Scholar
Renno, M. P., & Shutts, K. (2015). Children’s social category-based giving and its correlates: Expectations and preferences. Developmental Psychology, 51, 533543.Google Scholar
Rhodes, M. (2012). Naïve theories of social groups. Child Development, 83, 19001916.Google Scholar
Rhodes, M., & Chalik, L. (2013). Social categories as markers of intrinsic interpersonal obligations. Psychological Science, 24, 9991006.Google Scholar
Rhodes, M., & Gelman, S. A. (2009). A developmental examination of the conceptual structure of animal, artifact, and human social categories across two cultural contexts. Cognitive Psychology, 59, 244274.Google Scholar
Rhodes, M., Leslie, S. J., Saunders, K., Dunham, Y., & Cimpian, A. (2017). How does social essentialism affect the development of inter-group relations? Developmental Science, 21, 115.Google Scholar
Rhodes, M., Leslie, S. J., & Tworek, C. M. (2012). Cultural transmission of social essentialism. Proceedings of the National Academy of Sciences (USA), 109, 1352613531.Google Scholar
Rotenberg, K. J., & Cerda, C. (1994). Racially based trust expectancies of Native American and Caucasian children. Journal of Social Psychology, 134, 621631.Google Scholar
Rothbart, M., & Taylor, M. (1992). Category labels and social reality: Do we view social categories as natural kinds? In Semin, G. R., & Fiedler, K. (eds.), Language, Interaction and Social Cognition (pp. 1136). Thousand Oaks, CA: Sage Publications, Inc.Google Scholar
Rutland, A., Cameron, L., Bennett, L., & Ferrell, J. (2005a). Interracial contact and racial constancy: A multi-site study of racial intergroup bias in 3–5 year old Anglo-British children. Journal of Applied Developmental Psychology, 26, 699713.Google Scholar
Rutland, A., Cameron, L., Milne, A., & McGeorge, P. (2005b). Social norms and self‐presentation: Children's implicit and explicit intergroup attitudes. Child Development, 76, 451466.Google Scholar
Rutland, A., & Killen, M. (2015). A developmental science approach to reducing prejudice and social exclusion: Intergroup processes, social-cognitive development, and moral reasoning: A developmental science approach to reducing prejudice and social exclusion. Social Issues and Policy Review, 9, 121154.Google Scholar
Rutland, A., Killen, M., & Abrams, D. (2010). A new social-cognitive developmental perspective on prejudice: The interplay between morality and group identity. Perspectives on Psychological Science, 5, 279291.Google Scholar
Salomon, E., & Cimpian, A. (2014). The inherence heuristic as a source of essentialist thought. Personality and Social Psychology Bulletin, 40, 12971315.Google Scholar
Sani, F., & Bennett, M. (2009). Children’s inclusion of the group in the self: Evidence from a self-ingroup confusion paradigm. Developmental Psychology, 45, 503510.Google Scholar
Schmidt, M. F., Rakoczy, H., & Tomasello, M. (2012). Young children enforce social norms selectively depending on the violator’s group affiliation. Cognition, 124, 325333.Google Scholar
Schug, M. G., Shusterman, A., Barth, H., & Palatano, A. L. (2013). Minimal-group membership influences children’s responses to novel experience with group members. Developmental Science, 16, 4755.Google Scholar
Shutts, K. (2015). Young children’s preferences: Gender, race, and social status. Child Development Perspectives, 9, 262266.Google Scholar
Shutts, K., Banaji, M. R., & Spelke, E. S. (2010). Social categories guide young children’s preferences for novel objects. Developmental Science, 13, 599610.Google Scholar
Sierksma, J., Thijs, J. T., & Verkuyten, M. (2015). In-group bias in children’s intention to help can be overpowered by inducing empathy. British Journal of Developmental Psychology, 33, 4556.Google Scholar
Singarajah, A., Chanley, J., Gutierrez, Y., Cordon, Y., Nguyen, B., Burakowski, L., & Johnson, S. P. (2017). Infant attention to same- and other-race faces. Cognition, 159, 7684.Google Scholar
Song, R., Over, H., & Carpenter, M. (2015). Children draw more affiliative pictures following priming with third-party ostracism. Developmental Psychology, 51, 831840.Google Scholar
Sousa, P., Atran, S., & Medin, D. (2002). Essentialism and folkbiology: Evidence from Brazil. Journal of Cognition and Culture, 2, 195223.Google Scholar
Tajfel, H., & Turner, J. (1979). An integrative theory of intergroup conflict. In Austin, W. G., & Worchel, S. (eds.), The Social Psychology of Inter-group Relations (pp. 3347). Monterey, CA: Brooks/Cole.Google Scholar
Taylor, M. G. (1996). The development of children’s beliefs about social and biological aspects of gender differences, Child Development, 67, 15551571.Google Scholar
Taylor, M. G., Rhodes, M., & Gelman, S. (2009). Boys will be boys; cows will be cows: Children’s essentialist reasoning about gender categories and animal species. Child Development, 80, 461481.Google Scholar
Watson-Jones, R. E., Whitehouse, H., & Legare, C. H. (2016). In-group ostracism increases high-fidelity imitation in early childhood. Psychological Science, 27, 3442.Google Scholar
Waxman, S. R. (2010). Names will never hurt me? Naming and the development of racial and gender categories in preschool-aged children. European Journal of Social Psychology, 40, 593610.Google Scholar
Waxman, S. R., & Grace, A. D. (2012). Developing gender- and race-based categories in infants: Evidence from 7- and 11-month-olds. In Hayes, G., & Bryant, M. (eds.), Psychology of Culture (pp. 159175). Hauppauge, NY: Nova Science Publishers.Google Scholar
Wellman, H. M., & Gelman, S. A. (1992). Cognitive development: Foundational theories of core domains. Annual Review of Psychology, 43, 337375.Google Scholar
Williams, M. J., & Eberhardt, J. L. (2008). Biological conceptions of race and the motivation to cross racial boundaries. Journal of Personality and Social Psychology, 94, 10331047.Google Scholar
Wilks, M., & Nielsen, M. (2018). Children disassociate from antisocial in-group members. Journal of Experimental Child Psychology, 165, 3750.Google Scholar
Witt, S. D. (1997). Parental influence on children’s socialization to gender roles. Adolescence, 32, 253259.Google Scholar
Wright, S. C., Aron, A., McLaughlin-Volpe, T., & Ropp, S. A. (1997). The extended contact effect: Knowledge of cross-group friendships and prejudice. Journal of Personality and Social Psychology, 73, 7390.Google Scholar
Yang, F., Choi, Y., Misch, A., Yang, X., & Dunham, Y. (2018). In defense of the commons: Young children negatively evaluate and sanction free-riders. Psychological Science, 29, 15981611.Google Scholar

References

Achterberg, M., Peper, J. S., Van Duijvenvoorde, A. C., Mandl, R. C., & Crone, E. A. (2016a). Fronto-striatal white matter integrity predicts development in delay of gratification: A longitudinal study. Journal of Neuroscience, 36, 19541961.Google Scholar
Achterberg, M., van Duijvenvoorde, A. C., Bakermans-Kranenburg, M. J., & Crone, E. A. (2016b). Control your anger! The neural basis of aggression regulation in response to negative social feedback. Social Cognitive and Affective Neuroscience, 11, 712720.Google Scholar
Achterberg, M., van Duijvenvoorde, A. C. K., van der Meulen, M., Bakermans-Kranenburg, M. J., & Crone, E. A. (2018). Heritability of aggression following social evaluation in middle childhood: An fMRI study. Human Brain Mapping, 39, 28282841.Google Scholar
Achterberg, M., van Duijvenvoorde, A. C. K., van der Meulen, M., Euser, S., Bakermans-Kranenburg, M. J., & Crone, E. A. (2017). The neural and behavioral correlates of social evaluation in childhood. Developmental Cognitive Neuroscience, 24, 107117.Google Scholar
Blankenstein, N. E., Crone, E. A., van den Bos, W., & van Duijvenvoorde, A. C. K. (2016). Dealing with uncertainty: Testing risk- and ambiguity-attitude across adolescence. Developmental Neuropsychology, 41, 116.Google Scholar
Blankenstein, N. E., Schreuders, E., Peper, J. S., Crone, E. A., & van Duijvenvoorde, A. C. K. (2018). Individual differences in risk-taking tendencies modulate the neural processing of risky and ambiguous decision-making in adolescence. NeuroImage, 172, 663673.Google Scholar
Braams, B. R., Peper, J. S., van der Heide, D., Peters, S., & Crone, E. A. (2016). Nucleus accumbens response to rewards and testosterone levels are related to alcohol use in adolescents and young adults. Developmental Cognitive Neuroscience, 17, 8393.Google Scholar
Braams, B. R., Peters, S., Peper, J. S., Guroglu, B., & Crone, E. A. (2014). Gambling for self, friends, and antagonists: Differential contributions of affective and social brain regions on adolescent reward processing. NeuroImage, 100, 281289.Google Scholar
Braams, B. R., van Duijvenvoorde, A. C. K., Peper, J. S., & Crone, E. A. (2015). Longitudinal changes in adolescent risk-taking: A comprehensive study of neural responses to rewards, pubertal development, and risk-taking behavior. The Journal of Neuroscience, 35, 72267238.Google Scholar
Carlson, S. M., Shoda, Y., Ayduk, O., Aber, L., Schaefer, C., Sethi, A., Wilson, N., Peake, P. K., & Mischel, W. (2018). Cohort effects in children’s delay of gratification. Developmental Psychology Journal, 54, 13951407.Google Scholar
Casey, B., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., & Garavan, H. (2018). The adolescent brain cognitive development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 32, 4354.Google Scholar
Casey, B. J., Galvan, A., & Somerville, L. H. (2016). Beyond simple models of adolescence to an integrated circuit-based account: A commentary. Developmental Cognitive Neuroscience, 17, 128130.Google Scholar
Casey, B. J., Somerville, L. H., Gotlib, I. H., Ayduk, O., Franklin, N. T., Askren, M. K., Jonides, J., Berman, M. G., Wilson, N. L., Teslovich, T., Glover, G., Zayas, V., Mischel, W., & Shoda, Y. (2011). Behavioral and neural correlates of delay of gratification 40 years later. Proceedings of the National Academy of Sciences (USA), 108, 1499815003.Google Scholar
Chein, J., Albert, D., O’Brien, L., Uckert, K., & Steinberg, L. (2011). Peers increase adolescent risk taking by enhancing activity in the brain’s reward circuitry. Developmental Science, 14, F110.Google Scholar
Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social-affective engagement and goal flexibility. Nature Reviews Neuroscience, 13, 636650.Google Scholar
Crone, E. A., & Steinbeis, N. (2017). Neural perspectives on cognitive control development during childhood and adolescence. Trends in Cognitive Science, 21, 205215.Google Scholar
Dahl, R. E., Allen, N. B., Wilbrecht, L., & Suleiman, A. B. (2018). Importance of investing in adolescence from a developmental science perspective. Nature, 554, 441.Google Scholar
DeWall, C. N., & Bushman, B. J. (2011). Social acceptance and rejection: The sweet and the bitter. Current Directions in Psychological Science, 20, 256260.Google Scholar
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168.Google Scholar
Do, K. T., Guassi Moreira, J. F., & Telzer, E. H. (2017). But is helping you worth the risk? Defining prosocial risk taking in adolescence. Developmental Cognitive Neuroscience, 25, 260271.Google Scholar
Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. The Quarterly Journal of Economics, 75, 643669.Google Scholar
Figner, B., Mackinlay, R. J., Wilkening, F., & Weber, E. U. (2009). Affective and deliberative processes in risky choice: Age differences in risk taking in the Columbia Card Task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 709.Google Scholar
Figner, B., & Weber, E. U. (2011). Who takes risks when and why? Determinants of risk taking. Current Directions in Psychological Science, 20, 211216.Google Scholar
Frey, R., Pedroni, A., Mata, R., Rieskamp, J., & Hertwig, R. (2017). Risk preference shares the psychometric structure of major psychological traits. Science Advances, 3, e1701381.Google Scholar
Galvan, A., Hare, T., Voss, H., Glover, G., & Casey, B. (2007). Risk‐taking and the adolescent brain: Who is at risk? Developmental Science, 10, F8F14.Google Scholar
Genc, S., Smith, R. E., Malpas, C. B., Anderson, V., Nicholson, J. M., Efron, D., Sciberras, E., Seal, M. L., & Silk, T. J. (2018). Development of white matter fibre density and morphology over childhood: A longitudinal fixel-based analysis. Neuroimage, 183, 666676.Google Scholar
Gianotti, L. R. R., Knoch, D., Faber, P. L., Lehmann, D., Pascual-Marqui, R. D., Diezi, C., Schoch, C., Eisenegger, C., & Fehr, E. (2009). Tonic activity level in the right prefrontal cortex predicts individuals’ risk taking. Psychological Science, 20, 3338.Google Scholar
Glimcher, P. W., & Rustichini, A. (2004). Neuroeconomics: The consilience of brain and decision. Science, 306, 447452.Google Scholar
Gunther Moor, B., Van Leijenhorst, L., Rombouts, S. A., Crone, E. A., & Van der Molen, M. W. (2010). Do you like me? Neural correlates of social evaluation and developmental trajectories. Social Neuroscience, 5, 461482.Google Scholar
Harden, K. P., Kretsch, N., Mann, F. D., Herzhoff, K., Tackett, J. L., Steinberg, L., & Tucker-Drob, E. M. (2016). Beyond dual systems: A genetically-informed, latent factor model of behavioral and self-report measures related to adolescent risk-taking. Developmental Cognitive Neuroscience, 25, 221234.Google Scholar
Herting, M. M., Gautam, P., Spielberg, J. M., Dahl, R. E., & Sowell, E. R. (2015). A longitudinal study: Changes in cortical thickness and surface area during pubertal maturation. PLoS ONE, 10, e0119774.Google Scholar
Herting, M. M., & Sowell, E. R. (2017). Puberty and structural brain development in humans. Frontiers in Neuroendocrinology, 44, 122137.Google Scholar
Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive functions and self-regulation. Trends in Cognitive Science, 16, 174180.Google Scholar
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Research, 163, 195205.Google Scholar
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, 387, 167178.Google Scholar
Koenis, M. M. G., Brouwer, R. M., Swagerman, S. C., van Soelen, I. L. C., Boomsma, D. I., & Hulshoff Pol, H. E. (2018). Association between structural brain network efficiency and intelligence increases during adolescence. Human Brain Mapping, 39, 822836.Google Scholar
Kray, J., Schmitt, H., Lorenz, C., & Ferdinand, N. K. (2018). The influence of different kinds of incentives on decision-making and cognitive control in adolescent development: A review of behavioral and neuroscientific studies. Frontiers in Psychology, 9, 768.Google Scholar
Luna, B., Marek, S., Larsen, B., Tervo-Clemmens, B., & Chahal, R. (2015). An integrative model of the maturation of cognitive control. Annual Review of Neuroscience, 38, 151170.Google Scholar
Ma, I., van Duijvenvoorde, A., & Scheres, A. (2016). The interaction between reinforcement and inhibitory control in ADHD: A review and research guidelines. Clinical Psychology Review, 44, 94111.Google Scholar
Mamerow, L., Frey, R., & Mata, R. (2016). Risk taking across the life span: A comparison of self-report and behavioral measures of risk taking. Psychology and Aging, 31, 711723.Google Scholar
Matzke, D., Hughes, M., Badcock, J. C., Michie, P., & Heathcote, A. (2017). Failures of cognitive control or attention? The case of stop-signal deficits in schizophrenia. Attention, Perception, & Psychophysics, 79, 10781086.Google Scholar
McCormick, E. M., & Telzer, E. H. (2017). Failure to retreat: Blunted sensitivity to negative feedback supports risky behavior in adolescents. NeuroImage, 147, 381389.Google Scholar
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202.Google Scholar
Mills, K. L., & Tamnes, C. K. (2014). Methods and considerations for longitudinal structural brain imaging analysis across development. Developmental Cognitive Neuroscience, 9, 172190.Google Scholar
Mischel, W., Ayduk, O., Berman, M. G., Casey, B. J., Gotlib, I. H., Jonides, J., Kross, E., Teslovich, T., Wilson, N. L., Zayas, V., & Shoda, Y. (2011). ‘Willpower’ over the life span: Decomposing self-regulation. Social Cognitive and Affective Neuroscience, 6, 252256.Google Scholar
Nussey, S., & Whitehead, S. (2001). Endocrinology: An Integrated Approach. Oxford: BIOS Scientific Publishers.Google Scholar
Peper, J. S., Braams, B. R., Blankenstein, N. E., Bos, M. G., & Crone, E. A. (2018). Development of multifaceted risk taking and the relations to sex steroid hormones: A longitudinal study. Child Development, 89, 18871907.Google Scholar
Peper, J. S., & Dahl, R. E. (2013). Surging hormones: Brain–behavior interactions during puberty. Current Directions in Psychological Science, 22, 134139.Google Scholar
Peper, J. S., de Reus, M. A., van den Heuvel, M. P., & Schutter, D. J. (2015). Short fused? associations between white matter connections, sex steroids, and aggression across adolescence. Human Brain Mapping, 36, 10431052.Google Scholar
Peper, J. S., Koolschijn, P. C., & Crone, E. A. (2013a). Development of risk taking: Contributions from adolescent testosterone and the orbito-frontal cortex. Journal of Cognitive Neuroscience, 25, 21412150.Google Scholar
Peper, J. S., Mandl, R. C., Braams, B. R., de Water, E., Heijboer, A. C., Koolschijn, P. C., & Crone, E. A. (2013b). Delay discounting and frontostriatal fiber tracts: A combined DTI and MTR study on impulsive choices in healthy young adults. Cerebral Cortex, 23, 16951702.Google Scholar
Peters, S., Van der Meulen, M., Zanolie, K., & Crone, E. A. (2017). Predicting reading and mathematics from neural activity for feedback learning. Developmental Psychology Journal, 53, 149159.Google Scholar
Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., Greenstein, D., Clasen, L., Gogtay, N., & Giedd, J. N. (2011). How does your cortex grow? Journal of Neuroscience, 31, 71747177.Google Scholar
Rubia, K. (2018). Cognitive neuroscience of attention deficit hyperactivity disorder (ADHD) and its clinical translation. Frontiers in Human Neuroscience, 12, 100.Google Scholar
Schreuders, E., Braams, B. R., Blankenstein, N. E., Peper, J. S., Güroğlu, B., & Crone, E. A. (2018). Contributions of reward sensitivity to ventral striatum activity across adolescence and early adulthood. Child Development, 89, 797810.Google Scholar
Schriber, R. A., & Guyer, A. E. (2016). Adolescent neurobiological susceptibility to social context. Developmental Cognitive Neuroscience, 19, 118.Google Scholar
Shoda, Y., Mischel, W., & Peake, P. K. (1990). Predicting adolescent cognitive and self-regulatory competences from preschool delay of gratification – Identifying diagnostic conditions. Developmental Psychology, 26, 978986.Google Scholar
Shulman, E. P., Smith, A. R., Silva, K., Icenogle, G., Duell, N., Chein, J., & Steinberg, L. (2016). The dual systems model: Review, reappraisal, and reaffirmation. Developmental Cognitive Neuroscience, 17, 103117.Google Scholar
Silverman, M. H., Jedd, K., & Luciana, M. (2015). Neural networks involved in adolescent reward processing: An activation likelihood estimation meta-analysis of functional neuroimaging studies. NeuroImage, 122, 427439.Google Scholar
Somerville, L. H., & Casey, B. J. (2010). Developmental neurobiology of cognitive control and motivational systems. Current Opinion in Neurobiology, 20, 236241.Google Scholar
Somerville, L. H., Heatherton, T. F., & Kelley, W. M. (2006). Anterior cingulate cortex responds differentially to expectancy violation and social rejection. Nature Neuroscience, 9, 10071008.Google Scholar
Spear, L. P. (2018). Effects of adolescent alcohol consumption on the brain and behaviour. Nature Reviews Neuroscience, 19, 197.Google Scholar
Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28, 78106.Google Scholar
Tamnes, C. K., Herting, M. M., Goddings, A. L., Meuwes, R., Blakemore, S. J., Dahl, R. E., Guroglu, B., Raznahan, A., Sowell, E. R., Crone, E. A., & Mills, K. L. (2017). Development of the cerebral cortex across adolescence: A multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. Journal of Neuroscience, 37, 34023412.Google Scholar
Tan, P. Z., Silk, J. S., Dahl, R. E., Kronhaus, D., & Ladouceur, C. D. (2018). Age-related developmental and individual differences in the influence of social and non-social distractors on cognitive performance. Frontiers in Psychology, 9, 863.Google Scholar
Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297323.Google Scholar
Twenge, J. M., Baumeister, R. F., Tice, D. M., & Stucke, T. S. (2001). If you can’t join them, beat them: Effects of social exclusion on aggressive behavior. Journal of Personality and Social Psychology, 81, 10581069.Google Scholar
Tymula, A., Rosenberg Belmaker, L. A., Roy, A. K., Ruderman, L., Manson, K., Glimcher, P. W., & Levy, I. (2012). Adolescents’ risk-taking behavior is driven by tolerance to ambiguity. Proceedings of the National Academy of Sciences (USA), 109, 1713517140.Google Scholar
van den Bos, W., & Hertwig, R. (2017). Adolescents display distinctive tolerance to ambiguity and to uncertainty during risky decision making. Scientific Reports, 7, 40962.Google Scholar
van Duijvenvoorde, A. C. K., Blankenstein, N., Crone, E., & Figner, B. (2017). Towards a better understanding of adolescent risk taking: Contextual moderators and model-based analysis. In Toplak, M. E., & Weller, J. A. (eds.), Individual Differences in Judgment and Decision-Making: A Developmental Perspective (pp. 827). Hove: Psychology Press.Google Scholar
van Duijvenvoorde, A. C. K., & Crone, E. A. (2013). The teenage brain a neuroeconomic approach to adolescent decision making. Current Directions in Psychological Science, 22, 108113.Google Scholar
van Duijvenvoorde, A. C. K., Huizenga, H. M., Somerville, L. H., Delgado, M. R., Powers, A., Weeda, W. D., Casey, B., Weber, E. U., & Figner, B. (2015). Neural correlates of expected risks and returns in risky choice across development. The Journal of Neuroscience, 35, 15491560.Google Scholar
van Duijvenvoorde, A. C. K., Peters, S., Braams, B. R., & Crone, E. A. (2016). What motivates adolescents? Neural responses to rewards and their influence on adolescents’ risk taking, learning, and cognitive control. Neuroscience & Biobehavioral Reviews, 70, 135147.Google Scholar
Van Leijenhorst, L., Moor, B. G., de Macks, Z. A. O., Rombouts, S. A., Westenberg, P. M., & Crone, E. A. (2010). Adolescent risky decision-making: Neurocognitive development of reward and control regions. NeuroImage, 51, 345355.Google Scholar
van Noordt, S. J. R., & Segalowitz, S. J. (2012). Performance monitoring and the medial prefrontal cortex: A review of individual differences and context effects as a window on self-regulation. Frontiers in Human Neuroscience, 6, 197.Google Scholar
van Timmeren, T., Daams, J. G., van Holst, R. J., & Goudriaan, A. E. (2018). Compulsivity-related neurocognitive performance deficits in gambling disorder: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 84, 204217.CrossRefGoogle ScholarPubMed
Vives, M.-L., & FeldmanHall, O. (2018). Tolerance to ambiguous uncertainty predicts prosocial behavior. Nature Communications, 9, 2156.Google Scholar
Von Gaudecker, H.-M., Van Soest, A., & Wengström, E. (2011). Heterogeneity in risky choice behavior in a broad population. The American Economic Review, 101, 664694.Google Scholar
Watts, T. W., Duncan, G. J., & Quan, H. (2018). Revisiting the Marshmallow Test: A conceptual replication investigating links between early delay of gratification and later outcomes. Psychological Science, 29, 11591177.Google Scholar
Wierenga, L. M., Bos, M. G. N., Schreuders, E., Vd Kamp, F., Peper, J. S., Tamnes, C. K., & Crone, E. A. (2018). Unraveling age, puberty and testosterone effects on subcortical brain development across adolescence. Psychoneuroendocrinology, 91, 105114.Google Scholar
Willoughby, T., Good, M., Adachi, P. J., Hamza, C., & Tavernier, R. (2014). Examining the link between adolescent brain development and risk taking from a social–developmental perspective (reprinted). Brain and Cognition, 89, 7078.Google Scholar
Yakovlev, P., Lecours, A.-R., Minkowski, A., & Davis, F. (1967). Regional Development of the Brain in Early Life. Oxford: Blackwell Scientific.Google Scholar

References

Balleine, B. W., & Killcross, S. (2006). Parallel incentive processing: An integrated view of amygdala function. Trends in Neuroscience, 29, 272279.Google Scholar
Balleine, B. W., & O’Doherty, J. P. (2010). Human and rodent homologies in action control: Corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35, 4869.Google Scholar
Banich, M. T. (2009). Executive function: The search for an integrated account. Current Directions in Psychological Science, 18, 8994.Google Scholar
Berridge, K. C., & Kringelbach, M. L. (2013). Neuroscience of affect: Brain mechanisms of pleasure and displeasure. Current Opinions in Neurobiology, 23, 294303.CrossRefGoogle ScholarPubMed
Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neuroscience, 26, 507513.Google Scholar
Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68, 815834.Google Scholar
Campese, V. D., Sears, R. M., Moscarello, J. M., Diaz-Mataix, L., Cain, C. K., & LeDoux, J. E. (2016). The neural foundations of reaction and action in aversive motivation. In Simpson, E. H., & Balsam, P. D. (eds.), Behavioral Neuroscience of Motivation (pp. 171195). Cham: Springer International Publishing.Google Scholar
Casey, B. J., Jones, R. M., & Hare, T. A. (2008). The adolescent brain. Annals of the New York Academy of Sciences, 1124, 111126.Google Scholar
Christoff, K., & Gabrieli, J. D. E. (2000). The frontopolar cortex and human cognition: Evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology, 28, 168186.Google Scholar
Delgado, M. R., Jou, R. L., & Phelps, E. A. (2011). Neural systems underlying aversive conditioning in humans with primary and secondary reinforcers. Frontiers in Neuroscience, 5, 71.Google Scholar
Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine learning approaches for clinical psychology and psychiatry. Annual Review of Clinical Psychology, 14, 91118.Google Scholar
Elliot, A. J., & Covington, M. V. (2001). Approach and avoidance motivation. Educational Psychology Review, 13, 7392.Google Scholar
Ernst, M. (2014). The triadic model perspective for the study of adolescent motivated behavior. Brain and Cognition, 89, 104111.Google Scholar
Ernst, M., Daniele, T., & Frantz, K. (2011). New perspectives on adolescent motivated behavior: Attention and conditioning. Developmental Cognitive Neuroscience, 1, 377389.Google Scholar
Ernst, M., Pine, D. S., & Hardin, M. (2006). Triadic model of the neurobiology of motivated behavior in adolescence. Psychological Medicine, 36, 299312.Google Scholar
Ernst, M., & Spear, L. P. (2009). Reward systems. In de Haan, M. & Gunnar, M. R. (eds.), Handbook of Developmental Social Neuroscience (pp. 324341). New York: The Guilford Press.Google Scholar
Gleason, P. M., Boushey, C. J., Harris, J. E., & Zoellner, J. (2015). Publishing nutrition research: A review of multivariate techniques – Part 3: Data reduction methods. Journal of the Academy of Nutrition & Dietetics, 115, 10721082.Google Scholar
Goode, T. D., & Maren, S. (2017). Role of the bed nucleus of the stria terminalis in aversive learning and memory. Learning & Memory, 24, 480491.Google Scholar
Hare, T. A., Tottenham, N., Galvan, A., Voss, H. U., Glover, G. H., & Casey, B. J. (2008). Biological substrates of emotional reactivity and regulation in adolescence during an emotional go–nogo task. Biological Psychiatry, 63, 927934.Google Scholar
Iniesta, R., Stahl, D., & McGuffin, P. (2016). Machine learning, statistical learning and the future of biological research in psychiatry. Psychological Medicine, 46, 24552465.Google Scholar
Jernigan, T. L., & Brown, S. A. (2018). Introduction. Developmental Cognitive Neuroscience, 32, 13.Google Scholar
Kouneiher, F., Charron, S., & Koechlin, E. (2009). Motivation and cognitive control in the human prefrontal cortex. Nature Neuroscience, 12, 939945.Google Scholar
Kragel, P. A., & LaBar, K. S. (2016). Decoding the nature of emotion in the brain. Trends in Cognitive Sciences, 20, 444455.Google Scholar
LeDoux, J., & Daw, N. D. (2018). Surviving threats: Neural circuit and computational implications of a new taxonomy of defensive behaviour. Nature Reviews Neuroscience, 19, 269282.Google Scholar
Maren, S. (2016). Parsing reward and aversion in the amygdala. Neuron, 90, 209211.Google Scholar
Mirenowicz, J., & Schultz, W. (1996). Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature, 379, 449451.Google Scholar
Murphy, F. C., Nimmo-Smith, I., & Lawrence, A. D. (2003). Functional neuroanatomy of emotions: A meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3, 207233.Google Scholar
Petrides, M. (2005). Lateral prefrontal cortex: Architectonic and functional organization. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 781795.Google Scholar
Quevedo, K. M., Benning, S. D., Gunnar, M. R., & Dahl, R. E. (2009). The onset of puberty: Effects on the psychophysiology of defensive and appetitive motivation. Development and Psychopathology, 21, 2745.Google Scholar
Sanford, C. A., Soden, M. E., Baird, M. A., Miller, S. M., Schulkin, J., Palmiter, R. D., … Zweifel, L. S. (2017). A central amygdala CRF circuit facilitates learning about weak threats. Neuron, 93, 164178.Google Scholar
Silvers, J. A., McRae, K., Gabrieli, J. D. E., Gross, J. J., Remy, K. A., & Ochsner, K. N. (2012). Age-related differences in emotional reactivity, regulation, and rejection sensitivity in adolescence. Emotion, 12, 12351247.Google Scholar
Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28, 78106.CrossRefGoogle ScholarPubMed
Stuss, D. T., & Alexander, M. P. (2007). Is there a dysexecutive syndrome? Philosophical Transactions of the Royal Society of London B: Biological Science, 362, 901915.Google Scholar
Tarca, A. L., Carey, V. J., Chen, X. W., Romero, R., & Drăghici, S. (2007). Machine learning and its applications to biology. PLoS Computational Biology, 3, e116.Google Scholar
Tsutsui-Kimura, I., Bouchekioua, Y., Mimura, M., & Tanaka, K. F. (2017). A new paradigm for evaluating avoidance/escape motivation. International Journal of Neuropsychopharmacology, 20, 593601.Google Scholar
Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297323.CrossRefGoogle Scholar
Varoquaux, G., & Craddock, R. C. (2013). Learning and comparing functional connectomes across subjects. Neuroimage, 80, 405415.Google Scholar
Varoquaux, G., Raamana, P. R., Engemann, D. A., Hoyos-Idrobo, A., Schwartz, Y., & Thirion, B. (2017). Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines. Neuroimage, 145, 166179.CrossRefGoogle ScholarPubMed
Wassum, K. M., & Izquierdo, A. (2015). The basolateral amygdala in reward learning and addiction. Neuroscience& Biobehavioral Reviews, 57, 271283.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×