Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T05:08:50.573Z Has data issue: false hasContentIssue false

22 - Social Virtual Environments for Neuroscience and Mental Health

from Part III - Activities in Cyber Behavior

Published online by Cambridge University Press:  06 December 2024

Zheng Yan
Affiliation:
University at Albany, State University of New York
Get access

Summary

1 Introduction

2 What Is Social VR?

 2.1 Immersion

 2.2 Social Presence

 2.3 Avatars and Virtual Agents

 2.4 Communication and Social Networking

3 The Use of Social VR in Neuroscience Research

 3.1 From Low-Dimensional to High-Dimensional Tools

 3.2 Benefits of Virtual Reality for Social Neuroscience

 3.3 Social Virtual Reality and Sociomorality

4 Social VR in Mental Health: Rationale and Key Applications

 4.1 Social VR for Structuring Multisensory Bodily Contents

 4.2 Social VR for Augmenting Multisensory Bodily Contents

 4.3 Social VR for Replacing Multisensory Bodily Contents

5 Conclusions

6 Future Directions

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achim, A. M., Guitton, M., Jackson, P. L., Boutin, A., & Monetta, L. (2013) On what ground do we mentalize? Characteristics of current tasks and sources of information that contribute to mentalizing judgments. Psychological Assessment, 25(1) 117126.CrossRefGoogle ScholarPubMed
Adery, L. H., Ichinose, M., Torregrossa, L. J., Wade, J., Nichols, H., Bekele, E., et al. (2018). The acceptability and feasibility of a novel virtual reality based social skills training game for schizophrenia: Preliminary findings. Psychiatry Research, 270, 496502.CrossRefGoogle ScholarPubMed
Adolphs, R. (2009). The social brain: Neural basis of social knowledge. Annual Review of Psychology, 60, 693716.CrossRefGoogle ScholarPubMed
Akhtar, S., Justice, L. V., Loveday, C., & Conway, M. A. (2017). Switching memory perspective. Consciousness and Cognition, 56(Supplement C), 5057.CrossRefGoogle ScholarPubMed
Avram, M., Hennig-Fast, K., Bao, Y., Pöppel, E., Reiser, M., Blautzik, J., … & Gutyrchik, E. (2014). Neural correlates of moral judgments in first and third-person perspectives: Implications for neuroethics and beyond. BMC Neuroscience, 15, 39.CrossRefGoogle ScholarPubMed
Bailenson, J. N., Beall, A. C., Blascovich, J., Loomis, J., & Turk, M. (2005). Transformed social interaction, augmented gaze, and social influence in immersive virtual environments. Human Communication Research, 31, 511537.CrossRefGoogle Scholar
Bailenson, J. N., Beall, A. C., Loomis, J., Blascovich, J., & Turk, M. (2004). Transformed social interaction: Decoupling representation from behavior and form in collaborative virtual environments. Presence: Teleoperators & Virtual Environments, 13(4), 428441.CrossRefGoogle Scholar
Bailenson, J. N., & Blascovich, J. (2004). Avatars. In Encyclopedia of human–computer interaction. Berkshire Publishing Group.Google Scholar
Bailenson, J. N., & Yee, N. (2005). Digital chameleons: Automatic assimilation of nonverbal gestures in immersive virtual environments. Psychological Science, 16(10), 814819.CrossRefGoogle ScholarPubMed
Banakou, D., Kishore, S., & Slater, M. (2018). Virtually being Einstein results in an improvement in cognitive task performance and a decrease in age bias. Frontiers in Psychology, 9(917).CrossRefGoogle Scholar
Barfield, W., Zeltzer, D., Sheridan, T., & Slater, M. (1995). Presence and performance within virtual environments. In Barfield, W. & Furness (Eds.), T. A., Virtual environments and advanced interface design (pp. 473513). Oxford University Press.CrossRefGoogle Scholar
Barkley, R. A. (2012). Executive functions: What they are, how they work, and why they evolved. Guilford Press.Google Scholar
Bastug, E., Bennis, M., Medard, M., & Debbah, M. (2017). Toward interconnected virtual reality: Opportunities, challenges, and enablers. IEEE Communications Magazine, 55(6), 110117.CrossRefGoogle Scholar
Beauchamp, M. H. (2017). Neuropsychology’s social landscape: Common ground with social neuroscience. Neuropsychology, 31(8), 981.CrossRefGoogle ScholarPubMed
Bente, G., & Krämer, N. (2011). Virtual gestures: Embodiment and nonverbal behavior in computer-mediated communication. In Kappas, A. & Krämer, N. (Eds.), Face-to-face communication over the Internet: Emotions in a web of culture, language, and technology (Studies in Emotion and Social Interaction, pp. 176210). Cambridge University Press.CrossRefGoogle Scholar
Bertrand, P., Guegan, J., Robieux, L., McCall, C. A., & Zenasni, F. (2018). Learning empathy through virtual reality: Multiple strategies for training empathy-related abilities using body ownership illusions in embodied virtual reality. Frontiers in Robotics and AI, 5(26).CrossRefGoogle ScholarPubMed
Biocca, F. (1997). The cyborg’s dilemma: Embodiment in virtual environments. Proceedings of the Second International Conference on Cognitive Technology Humanizing the Information Age, Aizu-Wakamatsu City, Japan, 1997 (pp. 12–26). doi: 10.1109/CT.1997.617676.CrossRefGoogle Scholar
Biocca, F., Harms, C., & Burgoo, J. K. (2003). Towards a more robust theory and measure of social presence: Review and suggested criteria. Presence, Teleoperators & Virtual Environments, 12(5), 456–80.CrossRefGoogle Scholar
Biocca, F., & Levy, M. R. (2013). Communication in the age of virtual reality. Routledge.CrossRefGoogle Scholar
Blanchard, C., Burgess, S., Harville, Y., Lanier, J., Lasko, A., Oberman, M., & Teitel, M. (1992). Reality built for two: A virtual reality tool. ACM SZGGRAPH Computer Graphics, 24(2), 3536.CrossRefGoogle Scholar
Bohil, C. J., Alicea, B., & Biocca, F. A. (2011). Virtual reality in neuroscience research and therapy. Nature Review Neuroscience, 12, 752762.CrossRefGoogle ScholarPubMed
Burin, D., Kilteni, K., Rabuffetti, M., Slater, M., & Pia, L. (2019). Body ownership increases the interference between observed and executed movements. PLoS ONE, 14(1), e0209899.CrossRefGoogle ScholarPubMed
Burin, D., Liu, Y., Yamaya, N., & Kawashima, R. (2020). Virtual training leads to physical, cognitive and neural benefits in healthy adults. NeuroImage, 222, 117297.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Berntson, G. G., & Decety, J. (2010). Social neuroscience and its relationship to social psychology. Social Cognition, 28(6), 675685. https://doi.org/10.1521/soco.2010.28.6.675.CrossRefGoogle ScholarPubMed
Canty, A. L., Neumann, D. L., Fleming, J., & Shum, D. H. (2017). Evaluation of a newly developed measure of theory of mind: The virtual assessment of mentalising ability. Neuropsycholigical Rehabilitation, 27(5), 834870.CrossRefGoogle ScholarPubMed
Cesa, G. L., Manzoni, G. M., Bacchetta, M., Castelnuovo, G., Conti, S., Gaggioli, A., et al. (2013). Virtual reality for enhancing the cognitive behavioral treatment of obesity with binge eating disorder: Randomized controlled study with one-year follow-up. Journal of Medical Internet Research, 15(6), e113.CrossRefGoogle ScholarPubMed
Chisholm, J. D., Chapman, C. S., Amm, M., Bischof, W. F., Smilek, D., & Kingstone, A. (2014). A cognitive ethology study of first- and third-person perspectives. PLoS ONE, 9, e92696.CrossRefGoogle ScholarPubMed
Cipresso, P. (2015). Modeling behavior dynamics using computational psychometrics within virtual worlds. Frontiers in Psychology, 6(1725).CrossRefGoogle ScholarPubMed
Cipresso, P., Serino, S., & Riva, G. (2016). Psychometric assessment and behavioral experiments using a free virtual reality platform and computational science. BMC Medical Informatics and Decision Making, 16(1), 111.CrossRefGoogle ScholarPubMed
Collins, F. S., & Riley, W. T. (2016). NIH’s transformative opportunities for the behavioral and social sciences. Science Translational Medicine, 8(366), 366ed14.CrossRefGoogle ScholarPubMed
Craig, T. K. J., Rus-Calafell, M., Ward, T., Leff, J. P., Huckvale, M., Howarth, E., et al. (2018). AVATAR therapy for auditory verbal hallucinations in people with psychosis: A single-blind, randomised controlled trial. The Lancet Psychiatry, 5(1), 3140.CrossRefGoogle ScholarPubMed
Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V., & Hart, J. C. (1992). The CAVE: Audio visual experience automatic virtual environment. Communications of the ACM, 35(6), 6472. DOI: https://doi.org/10.1145/129888.129892.CrossRefGoogle Scholar
Cushman, F. (2013). Action, outcome, and value: A dual-system framework for morality. Personality and Social Psychology Review, 17(3), 273292.CrossRefGoogle ScholarPubMed
de Borst, A. W., & de Gelder, B. (2015). Is it the real deal? Perception of virtual characters versus humans: An affective cognitive neuroscience perspective. Frontiers in Psychology, 6, 576.CrossRefGoogle ScholarPubMed
de Jaegher, H., di Paolo, E., & Gallagher, S. (2010). Can social interaction constitute social cognition? Trends in Cognitive Science, 14, 441447.CrossRefGoogle ScholarPubMed
Didehbani, N., Allen, T., Kandalaft, M., Krawczyk, D., & Chapman, S. (2016). Virtual reality social cognition training for children with high functioning autism. Computers in Human Behavior, 62, 703711.CrossRefGoogle Scholar
Dooley, J. J., Beauchamp, M., & Anderson, V. A. (2010). The measurement of sociomoral reasoning in adolescents with traumatic brain injury: A pilot investigation. Brain Impairment, 11(2), 152161.CrossRefGoogle Scholar
Dyck, M., Winbeck, M., Leiberg, S., Chen, Y., Gur, R. C., & Mathiak, K. (2008). Recognition profile of emotions in natural and virtual faces. PLoS ONE, 3(11), e3628.CrossRefGoogle ScholarPubMed
Dzardanova, E., Kasapakis, V., & Gavalas, D. (2018) Social Virtual Reality. In Lee, N. (Ed.), Encyclopedia of computer graphics and games. Springer, Cham. https://doi.org/10.1007/978-3-319-08234-9_204-1.Google Scholar
Faas, D., Bao, Q., Frey, D., & Yang, M. (2014). The influence of immersion and presence in early stage engineering designing and building. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 28(2), 139151. DOI: 10.1017/S0890060414000055CrossRefGoogle Scholar
Feijt, M. A., De Kort, Y. A., Westerink, J. W., & Ijsselsteijn, W. A. (2018). Enhancing empathic interactions in mental health care: Opportunities offered through social interaction technologies. Annual Review of Cybertherapy and Telemedicine, 16, 2530.Google Scholar
Foot, P. (1967). The problem of abortion and the doctrine of double effect. Oxford Review, 5.Google Scholar
Fox, J., Ahn, S. J., Janssen, J. H., Yeykelis, L., Segovia, K. Y., & Bailenson, J. N. (2015) Avatars versus agents: A meta-analysis quantifying the effect of agency on social influence. Human–Computer Interaction, 30(5), 401432.CrossRefGoogle Scholar
Francis, K. B., Howard, C., Howard, I. S., Gummerum, M., Ganis, G., Anderson, G., & Terbeck, S. (2016). Virtual morality: Transitioning from moral judgment to moral action? PLoS ONE, 11(10), e0164374.CrossRefGoogle ScholarPubMed
Francová, A., Darmová, B., Stopková, P., Kosová, J., & Fajnerová, I. (2019). Virtual Reality Exposure Therapy in Patients with Obsessive-Compulsive Disorder. Paper presented at the 2019 International Conference on Virtual Rehabilitation. ICVR, 21–24 July 2019.CrossRefGoogle Scholar
Freeman, D., Yu, L.-M., Kabir, T., Martin, J., Craven, M., Leal, J., et al. (2019). Automated virtual reality (VR) cognitive therapy for patients with psychosis: Study protocol for a single-blind parallel group randomised controlled trial (gameChange). BMJ Open, 9(8), e031606.CrossRefGoogle ScholarPubMed
Friston, K. (2018). Does predictive coding have a future? Nature Neuroscience, 21(8), 10191021.CrossRefGoogle ScholarPubMed
Gaggioli, A., Pallavicini, F., Morganti, L., Serino, S., Scaratti, C., Briguglio, M., et al. (2014). Experiential virtual scenarios with real-time monitoring (interreality) for the management of psychological stress: A block randomized controlled trial. Journal of Medical Internet Research, 16(7), e167.CrossRefGoogle ScholarPubMed
Genon, S., Reid, A., Langner, R., Amunts, K., & Eickhoff, S. B. (2018). How to characterize the function of a brain region. Trends in Cognitive Sciences, 22(4), 350364.CrossRefGoogle ScholarPubMed
Ginzburg, K., Tsur, N., Barak-Nahum, A., & Defrin, R. (2014). Body awareness: Differentiating between sensitivity to and monitoring of bodily signals. Behavioural Medicine, 37(3), 564575.CrossRefGoogle ScholarPubMed
Grassini, S., Laumann, K., & Rasmussen Skogstad, M. (2020). The use of virtual reality alone does not promote training performance (but sense of presence does). Frontiers in Psychology, 11, 1743. https://doi.org/10.3389/fpsyg.2020.01743CrossRefGoogle ScholarPubMed
Greene, J. D., Cushman, F. A., Stewart, L. E., Lowenberg, K., Nystrom, L. E., & Cohen, J. D. (2009) Pushing moral buttons: The interaction between personal force and intention in moral judgment. Cognition, 111(3), 364371.CrossRefGoogle ScholarPubMed
Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science, 293(5537), 21052108.CrossRefGoogle ScholarPubMed
Gregory, N. J., López, B., Graham, G., Marshman, P., Bate, S., Kargas, N. (2015). Reduced gaze following and attention to heads when viewing a “live” social scene. PLoS ONE. doi:10.1371/journal.pone.0121792CrossRefGoogle Scholar
Gutiérrez-Maldonado, J., Wiederhold, B. K., & Riva, G. (2016). Future directions: How virtual reality can further improve the assessment and treatment of eating disorders and obesity. Cyberpsychology, Behavior & Social Networking, 19(2), 148153.CrossRefGoogle Scholar
Hale, J., & Antonia, F. D. C. (2016). Testing the relationship between mimicry, trust and rapport in virtual reality conversations. Scientific Reports, 6, 35295.CrossRefGoogle ScholarPubMed
Hauser, M., Young, L., & Cushman, F. (2008). Reviving Rawls’ linguistic analogy: Operative principles and the causal structure of moral actions. In Sinnott-Armstrong, W. (Ed.), Moral psychology and biology. Oxford University Press.Google Scholar
Hogenelst, K., Schoevers, R. A., & aan het Rot, M. (2015). Studying the neurobiology of human social interaction: Making the case for ecological validity. Social Neuroscience, 2015(10), 219229.CrossRefGoogle Scholar
Hohwy, J. (2013). The predictive mind. Oxford University Press.CrossRefGoogle Scholar
Hove, M. J., & Risen, J. L. (2009). It’s all in the timing: Interpersonal synchrony increases affiliation. Social Cognition, 27(6), 949960.CrossRefGoogle Scholar
Jerald, J. (2015). The VR book: Human-centered design for virtual reality. Association for Computing Machinery and Morgan & Claypool.CrossRefGoogle Scholar
Jolly, E., & Chang, L. (2019). The flatland fallacy: Moving beyond low-dimensional thinking. Topics in Cognitive Science, 11(2), 433454.CrossRefGoogle ScholarPubMed
Jonas, M., Said, S., Yu, D., Aiello, C., Furlo, N., & Zytko, D. (2019). Towards a taxonomy of Social VR application design. In Extended Abstracts of the Annual Symposium on Computer–Human Interaction in Play Companion Extended Abstracts (CHI PLAY ’19 Extended Abstracts). Association for Computing Machinery, 437444. https://doi.org/10.1145/3341215.3356271CrossRefGoogle Scholar
Keizer, A., van Elburg, A., Helms, R., & Dijkerman, H. C. (2016). A virtual reality full body illusion improves body image disturbance in anorexia nervosa. PLoS ONE, 11(10), e0163921.CrossRefGoogle ScholarPubMed
Kennedy, D. P., & Adolphs, R. (2012). The social brain in psychiatric and neurological disorders. Trends in Cognitive Sciences, 16, 559572.CrossRefGoogle ScholarPubMed
Kenny, P., & Parsons, T. D. (2011; Co-lead authors) Embodied conversational virtual human patients. In Perez-Marin, C. & Pascual-Nieto, I. (Eds.), Conversational Agents and Natural Language Interaction: Techniques and Effective Practices (pp. 254281). IGI Global.CrossRefGoogle Scholar
Klin, A. (2000) Attributing social meaning to ambiguous visual stimuli in higher-functioning autism and Asperger syndrome: The social attribution task. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 41(7), 831846.CrossRefGoogle ScholarPubMed
Kruzan, K. P., & Won, A. S. (2019). Embodied well-being through two media technologies: Virtual reality and social media. New Media & Society, 21(8), 17341749.CrossRefGoogle Scholar
Laforest, M., Bouchard, S., Crétu, A.-M., & Mesly, O. (2016). Inducing an anxiety response using a contaminated virtual environment: Validation of a therapeutic tool for obsessive–compulsive disorder. Frontiers in ICT, 3(18).CrossRefGoogle Scholar
Launay, J., Dean, R. T., & Bailes, F. (2013). Synchronization can influence trust following virtual interaction. Experimental Psychology, 60(1), 5363.CrossRefGoogle ScholarPubMed
Launay, J., Dean, R. T., & Bailes, F. (2014). Synchronising movements with the sounds of a virtual partner enhances partner likeability. Cognitive Processing, 15(4), 491501.CrossRefGoogle ScholarPubMed
Lee, K. M. (2004). Presence, explicated. Communication Theory, 14(1), 2750. https://doi.org/10.1111/j.1468-2885.2004.tb00302.x.CrossRefGoogle Scholar
Lindner, P., Hamilton, W., Miloff, A., & Carlbring, P. (2019). How to treat depression with low-intensity virtual reality interventions: Perspectives on translating cognitive behavioral techniques into the virtual reality modality and how to make anti-depressive use of virtual reality–unique experiences. Frontiers in Psychiatry, 10(792), 1–6.CrossRefGoogle ScholarPubMed
Manzoni, G. M., Cesa, G. L., Bacchetta, M., Castelnuovo, G., Conti, S., Gaggioli, A., et al. (2016). Virtual reality-enhanced cognitive-behavioral therapy for morbid obesity: A randomized controlled study with 1 year follow-up. Cyberpsychology, Behavior & Social Networking, 19(2), 134140.CrossRefGoogle ScholarPubMed
McDonnell, R., Jorg, S., McHugh, J., Newell, F., O’Cullivan, C. (2008). Evaluating the emotional content of human motions on real and virtual characters. In Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization APGV, Los Angeles, CA, USA, 9–10 August 2008. ACM Press.Google Scholar
Meister, L., Slater, M., Sanchez-Vives, M. V., Tsakiris, M. (2015) Changing bodies changes minds: Owning another body affects social cognition. Trends in Cognitive Sciences, 19(1) 612.CrossRefGoogle Scholar
Mesa-Gresa, P., Gil-Gomez, H., Lozano-Quilis, J. A., & Gil-Gomez, J. A. (2018). Effectiveness of virtual reality for children and adolescents with autism spectrum disorder: An evidence-based systematic review. Sensors (Basel), 18(8).CrossRefGoogle ScholarPubMed
Morasse, F., Vera Estay, E., & Beauchamp, M. H. (2020). Using virtual reality to optimize assessment of sociomoral skills. Virtual Reality, https://doi.org/10.1007/s10055-020-00443-9CrossRefGoogle Scholar
Moser, E., Derntl, B., Robinson, S., Fink, B., Gur, R. C., & Grammer, K. (2007). Amygdala activation at 3T in response to human and avatar facial expressions of emotions. Journal of Neuroscience Methods, 161(1), 126133.CrossRefGoogle ScholarPubMed
Nash, E. B., Edwards, G. W., Thompson, J. A., & Barfield, W. (2000). A review of presence and performance in virtual environments. International Journal of Human–Computer Interaction, 12(1), 141.CrossRefGoogle Scholar
Navarrete, C. D., McDonald, M. M., Mott, M. L., & Asher, B. (2012). Virtual morality: Emotion and action in a simulated three-dimensional “trolley problem”. Emotion, 12(2), 364.CrossRefGoogle Scholar
Normand, J. M., Giannopoulos, E., Spanlang, B., & Slater, M. (2011). Multisensory stimulation can induce an illusion of larger belly size in immersive virtual reality. PLoS ONE, 6(1), 1–10.CrossRefGoogle ScholarPubMed
Oh, C. S., Bailenson, J. N., & Welch, G. F. (2018) A systematic review of social presence: Definition, antecedents, and implications. Frontiers in Robotics and AI, 5( 114). doi: 10.3389/frobt.2018.00114Google ScholarPubMed
Osimo, S. A., Pizarro, R., Spanlang, B., & Slater, M. (2015). Conversations between self and self as Sigmund Freud – A virtual body ownership paradigm for self counselling. Scientific Reports, 5.CrossRefGoogle Scholar
Pan, X., & Hamilton, A. (2018). Why and how to use virtual reality to study human social interaction: The challenges of exploring a new research landscape. British Journal of Psychology, 109(3), 395417. https://doi.org/10.1111/bjop.12290CrossRefGoogle ScholarPubMed
Pan, X., & Slater, M. (2011). Confronting a moral dilemma in virtual reality: A pilot study. In Proceedings of the 25th BCS Conference on Human–Computer Interaction (BCS-HCI ’11). BCS Learning & Development Ltd., 4651.Google Scholar
Parsons, T., Gaggioli, A., & Riva, G. (2017). Virtual reality for research in social neuroscience. Brain Sciences, 7(4), 42.CrossRefGoogle ScholarPubMed
Parsons, T. D. (2011). Affect-sensitive virtual standardized patient interface system. In Surry, D., Stefurak, T., & Gray, R. (Eds.), Technology integration in higher education: Social and organizational aspects (pp. 201221). IGI Global.CrossRefGoogle Scholar
Parsons, T. D. (2015). Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Frontiers in Human Neuroscience, 9, 660.CrossRefGoogle ScholarPubMed
Parsons, T. D. (2017). Cyberpsychology and the brain: The interaction of neuroscience and affective computing. Cambridge University Press.CrossRefGoogle Scholar
Parsons, T. D. (2019). Ethical challenges in digital psychology and cyberpsychology. Cambridge University Press.CrossRefGoogle Scholar
Parsons, T. D., & Duffield, T. (2019). National Institutes of Health initiatives for advancing scientific developments in clinical neuropsychology. The Clinical Neuropsychologist, 33, 246270.CrossRefGoogle ScholarPubMed
Patil, I., Cogoni, C., Zangrando, N., Chittaro, L., & Silani, G. (2014). Affective basis of judgment–behavior discrepancy in virtual experiences of moral dilemmas. Social Neuroscience, 9(1), 94107.CrossRefGoogle ScholarPubMed
Pavone, E. F., Tieri, G., Rizza, G., Tidoni, E., Grisoni, L., & Aglioti, S. M. (2016). Embodying others in immersive virtual reality: Electro-cortical signatures of monitoring the errors in the actions of an avatar seen from a first-person perspective. The Journal of Neuroscience, 36, 268279.CrossRefGoogle ScholarPubMed
Peck, T. C., Seinfeld, S., Aglioti, S. M., Slater, M. (2013). Putting yourself in the skin of a black avatar reduces implicit racial bias. Conscious and Cognition, 22(3), 779787.CrossRefGoogle Scholar
Petkova, V. I., & Ehrsson, H. H. (2008). If I were you: Perceptual illusion of body swapping. PLoS ONE, 3(12), e3832.CrossRefGoogle Scholar
Petkova, V. I., Khoshnevis, M., & Ehrsson, H. H. (2011). The perspective matters! Multisensory integration in ego-centric reference frames determines full-body ownership. Frontiers in Psychology, 2, 35.CrossRefGoogle ScholarPubMed
Porras-Garcia, B., Serrano-Troncoso, E., Carulla-Roig, M., Soto-Usera, P., Ferrer-Garcia, M., Figueras-Puigderrajols, N., et al. (2020). Virtual reality body exposure therapy for anorexia nervosa. A case report with follow-up results. Frontiers in Psychology, 11(956), 1–9.CrossRefGoogle ScholarPubMed
Preston, C., & Ehrsson, H. H. (2014). Illusory changes in body size modulate body satisfaction in a way that is related to non-clinical eating disorder psychopathology. PLoS ONE, 9(1), 1–9.CrossRefGoogle Scholar
Preston, C., & Ehrsson, H. H. (2016). Illusory obesity triggers body dissatisfaction responses in the insula and anterior cingulate cortex. Cerebral Cortex, 26(12), 44504460.CrossRefGoogle ScholarPubMed
Price, C. J. (2018). The evolution of cognitive models: From neuropsychology to neuroimaging and back. Cortex, 107, 3749.CrossRefGoogle ScholarPubMed
Reader, A. T., & Holmes, N. P. (2016). Examining ecological validity in social interaction: Problems of visual fidelity, gaze, and social potential. Culture and Brain, 4, 134–46.CrossRefGoogle ScholarPubMed
Repetto, C., Gorini, A., Algeri, D., Vigna, C., Gaggioli, A., & Riva, G. (2009). The use of biofeedback in clinical virtual reality: The Intrepid project. Studies in Health, Technology and Informatics, 144, 128132.Google ScholarPubMed
Risko, E. F., Laidlaw, K. E., Freeth, M., Foulsham, T., & Kingstone, A. (2012). Social attention with real versus reel stimuli: Toward an empirical approach to concerns about ecological validity. Frontiers in Human Neuroscience, 6, 143.CrossRefGoogle ScholarPubMed
Riva, G. (2008). From virtual to real body: Virtual reality as embodied technology. Journal of Cybertherapy and Rehabilitation, 1(1), 722.Google Scholar
Riva, G. (2011). The key to unlocking the virtual body: Virtual reality in the treatment of obesity and eating disorders. Journal of Diabetes Science and Technology, 5(2), 283292.CrossRefGoogle ScholarPubMed
Riva, G. (2016). Embodied medicine: What human–computer confluence can offer to health care. In Gaggioli, A., Ferscha, A., Riva, G., Dunne, S., & Viaud-Delmon, I. (Eds.), Human–computer confluence: Transforming human experience through symbiotic technologies (pp. 5579). De Gruyter Open.Google Scholar
Riva, G., Baños, R. M., Botella, C., Mantovani, F., & Gaggioli, A. (2016). Transforming experience: The potential of augmented reality and virtual reality for enhancing personal and clinical change. Frontiers in Psychiatry, 7(164), 1–14.CrossRefGoogle ScholarPubMed
Riva, G., & Dakanalis, A. (2018). Altered processing and integration of multisensory bodily representations and signals in eating disorders: A possible path toward the understanding of their underlying causes. Frontiers in Human Neuroscience, 12(49), 1–7.CrossRefGoogle ScholarPubMed
Riva, G., & Gaudio, S. (2018). Locked to a wrong body: Eating disorders as the outcome of a primary disturbance in multisensory body integration. Consciousness and Cognition, 59, 5759.CrossRefGoogle Scholar
Riva, G., & Mantovani, F. (2014). Extending the self through the tools and the others: A general framework for presence and social presence in mediated interactions. In Interacting with presence: HCI and the sense of presence in computer-mediated environments (pp. 931). De Gruyter.Google Scholar
Riva, G., Serino, S., Di Lernia, D., Pavone, E. F., & Dakanalis, A. (2017). Embodied medicine: Mens sana in corpore virtuale sano. Frontiers in Human Neuroscience, 11(120).CrossRefGoogle ScholarPubMed
Riva, G., Waterworth, J. A., Waterworth, E. L., & Mantovani, F. (2011). From intention to action: The role of presence. New Ideas in Psychology, 29, 2437.CrossRefGoogle Scholar
Riva, G., Wiederhold, B. K., & Mantovani, F. (2019). Neuroscience of virtual reality: From virtual exposure to embodied medicine. Cyberpsychology, Behavior and Social Networking, 22(1), 8296.CrossRefGoogle ScholarPubMed
Roth, D., Latoschik, M., Vogeley, K., & Bente, G. (2015). Hybrid avatar-agent technology – A conceptual step towards mediated “social” virtual reality and its respective challenges. i-com, 14(2), 107114. doi: https://doi.org/10.1515/icom-2015-0030.CrossRefGoogle Scholar
Russo-Ponsaran, N., McKown, C., Johnson, J., Russo, J., Crossman, J., & Reife, I. (2018). Virtual environment for social information processing: Assessment of children with and without autism spectrum disorders. Autism Research, 11(2), 305317.CrossRefGoogle ScholarPubMed
Sadowski, W., & Stanney, K. (2002). Presence in virtual environments. In Stanney, K. M. (Ed.), Human factors and ergonomics. Handbook of virtual environments: Design, implementation, and applications (pp. 791806). Lawrence Erlbaum Associates Publishers.Google Scholar
Salminen, M., Järvelä, S., Ruonala, A., et al. (2018). Bio-adaptive Social VR to evoke affective interdependence (pp. 7377). Association for Computing Machinery.Google Scholar
Salminen, M., Järvelä, S., Ruonala, A., Harjunen, V., Jacucci, G., Hamari, J., et al. (2019). Evoking physiological synchrony and empathy using social VR with biofeedback. IEEE Transactions on Affective Computing.Google Scholar
Schoeller, F., Bertrand, P., Gerry, L. J., Jain, A., Horowitz, A. H., & Zenasni, F. (2019). Combining virtual reality and biofeedback to foster empathic abilities in humans. Frontiers in Psychology, 9(2741), 1–5.CrossRefGoogle ScholarPubMed
Schultheis, M. T., & Rizzo, A. A. (2001). The application of virtual reality technology in rehabilitation. Rehabilitation Psychology, 46(3), 296311.CrossRefGoogle Scholar
Schwartz, R., & Steptoe, W. (2018). The immersive VR self: Performance, embodiment and presence in immersive virtual reality environments. In Papacharissi, Z. (Ed.), A networked self and human augmentics, artificial intelligence, sentience. Routledge. https://doi.org/10.4324/9781315202082Google Scholar
Serino, S., Baglio, F., Rossetto, F., Realdon, O., Cipresso, P., Parsons, T. D., et al. (2017). Picture Interpretation Test (PIT) 360 degrees: An innovative measure of executive functions. Scientific Reports, 7.CrossRefGoogle Scholar
Serino, S., & Dakanalis, A. (2017). Bodily illusions and weight-related disorders: Clinical insights from experimental research. Annals of Physical Rehabilitation Medicine, 60(3), 217219.CrossRefGoogle ScholarPubMed
Serino, S., Pedroli, E., Keizer, A., Triberti, S., Dakanalis, A., Pallavicini, F., et al. (2016). Virtual reality body swapping: A tool for modifying the allocentric memory of the body. Cyberpsycholy, Behavior and Social Networking, 19(2), 127133.CrossRefGoogle ScholarPubMed
Serino, S., Polli, N., & Riva, G. (2019). From avatars to body swapping: The use of virtual reality for assessing and treating body-size distortion in individuals with anorexia. Journal of Clinical Psychology, 75(2), 313322.CrossRefGoogle ScholarPubMed
Serino, S., Scarpina, F., Chirico, A., Dakanalis, A., Di Lernia, D., Colombo, D., Catallo, V., Pedroli, E., & Riva, G. (in press). Gulliver’s virtual travels: Active embodiment in extreme body sizes for modulating our body representations. Cognitive Processing. https://link.springer.com/article/10.1007/s10339-020-00977-5Google Scholar
Serino, S., Scarpina, F., Keizer, A., Pedroli, E., Dakanalis, A., Castelnuovo, G., et al. (2016). A novel technique for improving bodily experience in a non-operable super-super obesity case. Frontiers in Psychology, 7(837). doi: 10.3389/fpsyg.2016.00837.CrossRefGoogle Scholar
Short, J. A., Williams, E., & Christie, B. (1976). The social psychology of telecommunications. Wiley.Google Scholar
Skulmowski, A., Bunge, A., Kaspar, K., & Pipa, G. (2014). Forced-choice decision-making in modified trolley dilemma situations: A virtual reality and eye tracking study. Frontiers in Behavioral Neuroscience, 8, 426.CrossRefGoogle ScholarPubMed
Slater, M., Spanlang, B., Sanchez-Vives, M. V., & Blanke, O. (2010). First person experience of body transfer in virtual reality. PLoS ONE, 5, e10564.CrossRefGoogle ScholarPubMed
Slater, M., & Wilbur, S. (1997). A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence, Teleoperators and Virtual Environments, 6, 603616. doi: 10.1162/pres.1997.6.6.603CrossRefGoogle Scholar
Steptoe, W., & Steed, A. (2012). Multimodal data capture and analysis of interaction in immersive collaborative virtual environments. Presence, 21(4), 388405.CrossRefGoogle Scholar
Suzuki, K., Garfinkel, S. N., Critchley, H. D., & Seth, A. K. (2013). Multisensory integration across exteroceptive and interoceptive domains modulates self-experience in the rubber-hand illusion. Neuropsychologia, 51(13), 29092917.CrossRefGoogle ScholarPubMed
Talsma, D. (2015). Predictive coding and multisensory integration: An attentional account of the multisensory mind. Frontiers in Integrative Neuroscience, 9, 19.CrossRefGoogle ScholarPubMed
Tarr, B., Slater, M., & Cohen, E. (2018). Synchrony and social connection in immersive Virtual Reality. Scientific Reports, 8(1), 18.CrossRefGoogle ScholarPubMed
Triberti, S., Durosini, I., Aschieri, F., Villani, D., & Riva, G. ( 2017 ). Changing avatars, changing selves? The influence of social and contextual expectations on digital rendition of identity. Cyberpsycholy, Behavior and Social Networking, 20(8), 501507. doi:10.1089/cyber.2016.0424.CrossRefGoogle ScholarPubMed
Valdesolo, P., & DeSteno, D. (2011). Synchrony and the social tuning of compassion. Emotion, 11(2), 262.CrossRefGoogle ScholarPubMed
Van Vugt, E., Gibbs, J., Stams, G. J., Bijleveld, C., Hendriks, J., & van der Laan, P. (2011). Moral development and recidivism: A meta-analysis. International Journal of Offender Therapy and Comparative Criminology, 55(8), 12341250.CrossRefGoogle ScholarPubMed
Verhulst, A., Normand, J.-M., Lombart, C., Sugimoto, M., & Moreau, G. (2018). Influence of being embodied in an obese virtual body on shopping behavior and products perception in VR. Frontiers in Robotics and AI, 5, 120.CrossRefGoogle Scholar
Vogeley, K., May, M., Ritzl, A., Falkai, P., Zilles, K., & Fink, G. R. (2004). Neural correlates of first-person perspective as one constituent of human self-consciousness. Journal of Cognitive Neuroscience, 16(5), 817827.CrossRefGoogle ScholarPubMed
Ward, J., & Meijer, P. (2010). Visual experiences in the blind induced by an auditory sensory substitution device. Consciousness and Cognition, 19(1), 492500.CrossRefGoogle Scholar
Waterworth, J. A., & Waterworth, E. L. (2014). Altered, expanded and distributed embodiment: The three stages of interactive presence. In Riva, G., Waterworth, J. A., & Murray, D. (Eds.), Interacting with presence: HCI and the sense of presence in computer-mediated environments (pp. 3650). De Gruyter Open – Online. www.presence-research.comGoogle Scholar
Wiltermuth, S. S., & Heath, C. (2009). Synchrony and cooperation. Psychological Science, 20(1), 15.CrossRefGoogle ScholarPubMed
Winter, K., Spengler, S., Bermpohl, F., Singer, T., & Kanske, P. (2017) Social cognition in aggressive offenders: Impaired empathy, but intact theory of mind. Scientific Reports, 7(1), 670680.CrossRefGoogle ScholarPubMed
Yaremych, H. E., & Persky, S. (2019). Tracing physical behavior in virtual reality: A narrative review of applications to social psychology. Journal of Experimental Social Psychology, 85, 103845.CrossRefGoogle ScholarPubMed
Yee, N., & Bailenson, J. (2007). The Proteus Effect: The effect of transformed self-representation on behavior. Human Communication Research, 33(3), 271290.CrossRefGoogle Scholar
Yee, N., Bailenson, J. N., & Ducheneaut, N. (2009). The Proteus Effect: Implications of transformed digital self-representation on online and offline behavior. Communication Research, 36(2), 285312.CrossRefGoogle Scholar
Yuan, Y., Steed, A. (2010). Is the rubber hand illusion induced by immersive virtual reality? 2010 IEEE Virtual Reality Conference (VR) (pp. 95–102). doi: 10.1109/VR.2010.5444807.CrossRefGoogle Scholar
Zaki, J., & Ochsner, K. (2009). The need for a cognitive neuroscience of naturalistic social cognition. Annals of the New York Academy of Sciences, 1167(16).CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×