Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T03:44:53.154Z Has data issue: false hasContentIssue false

6 - Human Laboratory Paradigms in Addictions Research

from Part II - Clinical and Research Methods in the Addictions

Published online by Cambridge University Press:  13 July 2020

Steve Sussman
Affiliation:
University of Southern California
Get access

Summary

This chapter will provide an overview of the various ways in which addictive disorders can be studied using human participants in laboratory settings. Human laboratory research provides an important piece of the translational research chain by enabling researchers to examine addictive behaviors in controlled settings using validated experimental methodologies. This chapter will cover three common laboratory techniques: cue exposure protocols, stress induction protocols, and addictive object self-administration protocols. The primary goal is to provide a methodological guide to conducting research using these approaches, but not extensively review previous research. Therefore, for each technique, we discuss the background and rationale, ethical considerations, strengths and limitations, and representative examples and promising future directions in the use of the technique to study substance and behavioral addictions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, D. B., Monti, P. M., Carey, K. B., Pinto, R. P. & Jacobus, S. I. (1988). Reactivity to smoking cues and relapse: Two studies of discriminant validity. Behaviour Research and Therapy, 26(3), 225233. doi:10.1016/0005-7967(88)90003-4Google Scholar
Ait-Daoud, N., Seneviratne, C., Smith, J. B., et al. (2012). Preliminary evidence for cue-induced alcohol craving modulated by serotonin transporter gene polymorphism rs1042173. Frontiers in Psychiatry, 3. doi:10.3389/fpsyt.2012.00006Google Scholar
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edition). Washington, DC: American Psychiatric Association Publishing.Google Scholar
Amlung, M. T., Acker, J., Stojek, M. K., Murphy, J. G. & MacKillop, J. (2011). Is talk “cheap”? An initial investigation of the equivalence of alcohol purchase task performance for hypothetical and actual rewards. Alcoholism: Clinical and Experimental Research, 36(4), 716724. doi:10.1111/j.1530-0277.2011.01656.xGoogle Scholar
Arnsten, A. F. T. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10(6), 410422. https://doi.org/10.1038/nrn2648Google Scholar
Avants, S., Margolin, A., Kosten, T. R. & Cooney, N. L. (1995). Differences between responders and nonresponders to cocaine cues in the laboratory. Addictive Behaviors, 20(2), 215224. doi:10.1016/0306-4603(94)00066-2Google Scholar
Balodis, I. M., Wynne-Edwards, K. E. & Olmstead, M. C. (2010). The other side of the curve: Examining the relationship between pre-stressor physiological responses and stress reactivity. Psychoneuroendocrinology, 35(9), 13631373. https://doi.org/10.1016/j.psyneuen.2010.03.011CrossRefGoogle ScholarPubMed
Balodis, I. M., Kober, H., Worhunsky, P. D., et al. (2012). Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gamblingBiological Psychiatry71(8), 749757.Google Scholar
Becirevic, A., Reed, D. D., Amlung, M., et al. (2017). An initial study of behavioral addiction symptom severity and demand for indoor tanning. Experimental and Clinical Psychopharmacology, 25(5), 346352. doi:10.1037/pha0000146Google Scholar
Carter, B. L. & Tiffany, S. T. (1999). Meta-analysis of cue-reactivity in addiction researchAddiction, 94(3), 327340. doi:10.1046/j.1360-0443.1999.9433273.xGoogle Scholar
Chen, X., Gianferante, D., Hanlin, L., et al. (2017). HPA-axis and inflammatory reactivity to acute stress is related with basal HPA-axis activity. Psychoneuroendocrinology, 78, 168176. https://doi.org/10.1016/j.psyneuen.2017.01.035Google Scholar
Clark, G. I., Rock, A. J., Mckeith, C. F. & Coventry, W. L. (2016). Cue-reactive rationality, visual imagery and volitional control predict cue-reactive urge to gamble in poker-machine gamblers. Journal of Gambling Studies, 33(3), 807823. doi:10.1007/s10899-016-9650-6CrossRefGoogle Scholar
DeLongis, A. Folkman, S. & Lazarus, R. S. (1988). The impact of daily stress on health and mood: Psychological and social resources as mediators. Journal of Personality and Social Psychology, 54(3), 486495. https://doi.org/10.1037/0022-3514.54.3.486Google Scholar
Dickerson, S. S. & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3), 355391. https://doi.org/10.1037/0033-2909.130.3.355Google Scholar
Dixon, M. J., Harrigan, K. A., Santesso, D. L., et al. (2013a). The impact of sound in modern multiline video slot machine play. Journal of Gambling Studies, 30(4), 913929. doi:10.1007/s10899-013-9391-8CrossRefGoogle Scholar
Dixon, M. J., Collins, K., Harrigan, K. A., Graydon, C. & Fugelsang, J. A. (2013b). Using sound to unmask losses disguised as wins in multiline slot machines. Journal of Gambling Studies, 31(1), 183196. doi:10.1007/s10899-013-9411-8Google Scholar
Dixon, M. J., Graydon, C., Harrigan, K. A., et al. (2014). The allure of multi-line games in modern slot machines. Addiction, 109(11), 19201928. doi:10.1111/add.12675Google Scholar
Dixon, M. J., Larche, C. J., Stange, M., Graydon, C. & Fugelsang, J. A. (2017). Near-misses and stop buttons in slot machine play: An investigation of how they affect players, and may foster erroneous cognitions. Journal of Gambling Studies, 34(1), 161180. doi:10.1007/s10899-017-9699-xGoogle Scholar
Dolinsky, Z. S. & Babor, T. F. (1997). Ethical, scientific and clinical issues in ethanol administration research involving alcoholics as human subjectsAddiction, 92, 10871097.Google Scholar
Drummond, D. C., et al. (2000). Craving research: Future directionsAddiction, 95(8s2), 247255. doi:10.1046/j.1360-0443.95.8s2.13.xCrossRefGoogle ScholarPubMed
Enoch, M.-A., et al. (2009). Ethical considerations for administering alcohol or alcohol cues to treatment-seeking alcoholics in a research setting: Can the benefits to society outweigh the risks to the individual? Alcoholism: Clinical and Experimental Research, 33(9), 15081512. doi:10.1111/j.1530-0277.2009.00988.xCrossRefGoogle ScholarPubMed
Epstein, L. H., Handley, E. A., Dearing, K. K., et al. (2006). Purchases of food in youth. Influence of price and income. Psychological Science, 17(1), 8289. doi:10.1111/j.1467-9280.2005.01668.xGoogle Scholar
Epstein, L. H., Salvy, S. J., Carr, K. A., Dearing, K. K. & Bickel, W. K. (2010). Food reinforcement, delay discounting and obesity. Physiology & Behavior, 100(5), 438445. doi:10.1016/j.physbeh.2010.04.029Google Scholar
Epstein, L. H., Finkelstein, E., Raynor, H., et al. (2015). Experimental analysis of the effect of taxes and subsides on calories purchased in an on-line supermarket. Appetite, 95, 245251. doi:10.1016/j.appet.2015.06.020Google Scholar
Ferguson, C. J., Coulson, M. & Barnett, J. (2011). A meta-analysis of pathological gaming prevalence and comorbidity with mental health, academic and social problems. Journal of Psychiatric Research, 45(12), 15731578. doi:10.1016/j.jpsychires.2011.09.005Google Scholar
Ferrer-García, M., Gutiérrez-Maldonado, J., Pla-Sanjuanelo, J., et al. (2017). A randomised controlled comparison of second-level treatment approaches for treatment-resistant adults with bulimia nervosa and binge eating disorder: Assessing the benefits of virtual reality cue exposure therapy. European Eating Disorders Review, 25(6), 479490. doi:10.1002/erv.2538Google Scholar
Filbey, F. M., Claus, E., Audette, A. R., et al. (2007). Exposure to the taste of alcohol elicits activation of the mesocorticolimbic neurocircuitry. Neuropsychopharmacology, 33(6), 13911401. doi:10.1038/sj.npp.1301513Google Scholar
Filbey, F. M., Ray, L., Smolen, A., et al. (2008). Differential neural response to alcohol priming and alcohol taste cues is associated with DRD4 VNTR and OPRM1 genotypes. Alcoholism: Clinical and Experimental Research, 32(7), 11131123. doi:10.1111/j.1530-0277.2008.00692.xGoogle Scholar
Filbey, F. M., Schacht, J. P., Myers, U. S., Chavez, R. S. & Hutchison, K. E. (2009). Individual and additive effects of the CNR1 and FAAH genes on brain response to marijuana cues. Neuropsychopharmacology, 35(4), 967975. doi:10.1038/npp.2009.200CrossRefGoogle ScholarPubMed
Fosnocht, A. Q. & Briand, L. A. (2016). Substance use modulates stress reactivity. Behavioral and Physiological Outcomes, 166, 3242. https://doi.org/10.1126/science.1249098.SleepGoogle Scholar
Franken, I. H. a., et al. (1999). Cue reactivity and effects of cue exposure in abstinent posttreatment drug usersJournal of Substance Abuse Treatment, 16(1), 8185. doi:10.1016/s0740-5472(98)00004-xGoogle Scholar
Goeders, N. E. (2003). The impact of stress on addiction. European Neuropsychopharmacology, 13(6), 435441. https://doi.org/10.1016/j.euroneuro.2003.08.004Google Scholar
Goldman, R. L., Borckardt, J. J., Frohman, H. A., et al. (2011). Prefrontal cortex transcranial direct current stimulation (tDCS) temporarily reduces food cravings and increases the self-reported ability to resist food in adults with frequent food craving. Appetite, 56(3), 741746. doi:10.1016/j.appet.2011.02.013Google Scholar
Goodman, W. K., Janson, J. & Wolf, J. M. (2017). Meta-analytical assessment of the effects of protocol variations on cortisol responses to the Trier Social Stress Test. Psychoneuroendocrinology, 80, 2635. https://doi.org/10.1016/j.psyneuen.2017.02.030Google Scholar
Gruenewald, T. L., Kemeny, M. E., Aziz, N. & Fahey, J. L. (2004). Acute threat to the social self: Shame, social self-esteem, and cortisol activity. Psychosomatic Medicine, 66(6), 915924. https://doi.org/10.1097/01.psy.0000143639.61693.efGoogle Scholar
Hartston, H. (2012). The case for compulsive shopping as an addiction. Journal of Psychoactive Drugs, 44(1), 6467. doi:10.1080/02791072.2012.660110Google Scholar
Jarmolowicz, D. P. & Schneider, T. D. (2020). Behavioral economics and addictive disorders. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions, Cambridge, UK: Cambridge University Press, 1222.CrossRefGoogle Scholar
Kirschbaum, C., Pirke, K.-M. & Hellhammer, D. H. (1993). The “Trier Social Stress Test” – A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28, 7681.Google Scholar
Kirschbaum, C. & Hellhammer, D. H. (1994). Review: Salivary cortisol in psychoneuroendocrine research: Recent developments and applications. Psychoneuroendocrinology, 19(4), 313333.Google Scholar
Kirschbaum, C., Kudielka, B. M., Gaab, J., Schommer, N. C. & Hellhammer, D. H. (1999). Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamus-pituitary-adrenal axis. Psychosomatic Medicine, 61(2), 154162. https://doi.org/10.1097/00006842-199903000-00006Google Scholar
Koob, G. F. (1999). Corticotopin-releasing factor, norephinephrine, and stress. Stress: The International Journal on the Biology of Stress, 1800, 4759. https://doi.org/10.1016/j.bbagen.2009.07.018Google Scholar
Koob, G. & Kreek, M. J. (2007). Stress, dysregulation of drug reward pathways, and the transition to drug dependence. American Journal of Psychiatry, 164(8), 11491159. https://doi.org/10.1176/appi.ajp.2007.05030503CrossRefGoogle ScholarPubMed
Kudielka, B. M., Buske-Kirschbaum, A., Hellhammer, D. H. & Kirschbaum, C. (2004). HPA axis responses to laboratory psychosocial stress in healthy elderly adults, younger adults, and children: Impact of age and gender. Psychoneuroendocrinology, 29(1), 8398. https://doi.org/10.1016/S0306-4530(02)00146-4Google Scholar
Kuhn, S. & Gallinat, J. (2011). Common biology of craving across legal and illegal drugs – A quantitative meta-analysis of cue-reactivity brain responseEuropean Journal of Neuroscience, 33(7), 13181326. doi:10.1111/j.1460-9568.2010.07590.xGoogle Scholar
Kushner, M. G., Abrams, K., Donahue, C., et al. (2007). Urge to gamble in problem gamblers exposed to a casino environment. Journal of Gambling Studies, 23(2), 121132. doi:10.1007/s10899-006-9050-4Google Scholar
Laudat, M. H., Cerdas, S., Fournier, C., et al. (1988). Salivary cortisol measurement: A practical approach to assess pituitary-adrenal function. Journal of Clinical Endocrinology and Metabolism, 66(2), 343348. https://doi.org/10.1210/jcem-66-2-343Google Scholar
Loo, J. A., Yan, W., Ramachandran, P. & Wong, D. T. (2010). Comparative human salivary and plasma proteomes. Journal of Dental Research, 89(10), 10161023. https://doi.org/10.1177/0022034510380414Google Scholar
MacKillop, J. & Lisman, S. A. (2008). Effects of a context shift and multiple context extinction on reactivity to alcohol cues. Experimental and Clinical Psychopharmacology, 16(4), 322331. doi:10.1037/a0012686Google Scholar
MacKillop, J., et al. (2010).Behavioral economic analysis of cue-elicited craving for alcoholAddiction, 105(9), 15991607. doi:10.1111/j.1360-0443.2010.03004.xCrossRefGoogle ScholarPubMed
MacKillop, J., et al. (2012). Behavioral economic analysis of withdrawal- and cue-elicited craving for tobacco: An initial investigationNicotine & Tobacco Research, 14(12), 14261434., doi:10.1093/ntr/nts006Google Scholar
Maxwell, A. L., Loxton, N. J. & Hennegan, J. M. (2017). Exposure to food cues moderates the indirect effect of reward sensitivity and external eating via implicit eating expectancies. Appetite, 111, 135141. doi:10.1016/j.appet.2016.12.037Google Scholar
Márquez, S. & De la Vega, R. (2015). [Exercise addiction: An emergent behavioral disorder]. Nutricion Hospitalaria, 31(6). doi:10.3305/nh.2015.31.6.8934Google Scholar
McRae, A. L., Saladin, M. E., Brady, K. T., et al. (2006). Stress reactivity:  Biological and subjective responses to the cold pressor and Trier Social stressors. Human Psychopharmacology, 21(August), 377385. https://doi.org/10.1002/hup.778Google Scholar
Metrik, J., et al. (2016). Cue-elicited increases in incentive salience for marijuana: Craving, demand, and attentional biasDrug and Alcohol Dependence, 167, 8288. doi:10.1016/j.drugalcdep.2016.07.027Google Scholar
Meyer, G., Hauffa, B. P., Schedlowski, M., et al. S. (2000). Casino gambling increases heart rate and salivary cortisol in regular gamblers. Biological Psychiatry, 48(9), 948953. https://doi.org/10.1016/S0006-3223(00)00888-XGoogle Scholar
Meyer, G., Schwertfeger, J., Exton, M. S., et al. (2004). Neuroendocrine response to casino gambling in problem gamblers. Psychoneuroendocrinology, 29(10), 12721280. https://doi.org/10.1016/j.psyneuen.2004.03.005Google Scholar
Miller, G. A., Levin, D. N., Kozak, M. J., et al. (1987). Individual differences in imagery and the psychophysiology of emotion. Cognition and Emotion, 1(4), 367390. https://doi.org/10.1080/02699938708408058Google Scholar
Miller, K. A. & Mays, D. (2020). Tanning as an addiction: The state of the research and implications for intervention. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions. Cambridge, UK: Cambridge University Press, pp. 362372.Google Scholar
Mónok, K., Berczik, K., Urbán, R., et al. (2012). Psychometric properties and concurrent validity of two exercise addiction measures: A population wide study. Psychology of Sport and Exercise, 13(6), 739746. doi:10.1016/j.psychsport.2012.06.003Google Scholar
Mogensen, M. & Jemec, G. B. (2010). The potential carcinogenic risk of tanning beds: clinical guidelines and patient safety advice. Cancer Management and Research, 2, 277282.Google Scholar
National Institute on Drug Abuse [NIDA] (2017). Trends & Statistics. NIDA, 24 April 2017. www.drugabuse.gov/related-topics/trends-statisticsGoogle Scholar
NIAAA. (2005). National Advisory Council on Alcohol Abuse and Alcoholism – Recommended Council Guidelines on Ethyl Alcohol Administration in Human Experimentation. Retrieved from www.niaaa.nih.gov/Resources/ResearchResources/Pages/job22.aspxGoogle Scholar
Niaura, R., Abrams, D., Demuth, B., Pinto, R. & Monti, P. (1989). Responses to smoking-related stimuli and early relapse to smoking. Addictive Behaviors, 14(4), 419428. doi:10.1016/0306-4603(89)90029-4Google Scholar
Niaura, R., Abrams, D. B., Shadel, W. G., et al. (1999). Cue exposure treatment for smoking relapse prevention: A controlled clinical trial. Addiction, 94(5), 685695. doi:10.1046/j.1360-0443.1999.9456856.xGoogle Scholar
Niaura, R. (2002). Does “unlearning” ever really occur: Comment on Conklin & Tiffany. Addiction, 97(3), 357. doi:10.1046/j.1360-0443.2002.0055a.xGoogle Scholar
Norberg, M. M., et al. (2016). Craving cannabis: A meta-analysis of self-report and psychophysiological cue-reactivity studiesAddiction, 111(11), 19231934. doi:10.1111/add.13472Google Scholar
Park, C., Park, S. M., Gwak, A. R., et al. (2015). The effect of repeated exposure to virtual gambling cues on the urge to gamble. Addictive Behaviors, 41, 6164. doi:10.1016/j.addbeh.2014.09.027Google Scholar
Pavlov, I. P. & Anrep, G. V. (2003). Conditioned Reflexes. Mineola, NY: Dover Publications.Google Scholar
Pedram, P., Wadden, D., Amini, P., et al. (2013). Food addiction: Its prevalence and significant association with obesity in the general population. PLoS ONE, 8(9). doi:10.1371/journal.pone.0074832Google Scholar
Phan, J. M., Schneider, E., Peres, J., et al. (2017). Social evaluative threat with verbal performance feedback alters neuroendocrine response to stress. Hormones and Behavior, 96(September), 104115. https://doi.org/10.1016/j.yhbeh.2017.09.007Google Scholar
Powell, J. (2006). Conditioned responses to drug-related stimuli: Is context crucial. Addiction, 90(8), 10891095. doi:10.1046/j.1360-0443.1995.90810897.xGoogle Scholar
Pruessner, J. C., Wolf, O. T., Hellhammer, D. H., et al. (1997). Free cortisol levels after awakening: A reliable biological marker for the assessment of adrenocortical activity. Life Sciences, 61(26), 25392549.Google Scholar
Pulido, C., Brown, S. A., Cummins, K., Paulus, M. P. & Tapert, S. F. (2010). Alcohol cue reactivity task development. Addictive Behaviors, 35(2), 8490. doi:10.1016/j.addbeh.2009.09.006Google Scholar
Radley, J. J., Arias, C. M. & Sawchenko, P. E. (2006). Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(50), 1296712976. https://doi.org/10.1523/JNEUROSCI.4297-06.2006Google Scholar
Reed, D. D. (2015). Ultra-violet indoor tanning addiction: A reinforcer pathology interpretation. Addictive Behaviors, 41, 247251. doi:10.1016/j.addbeh.2014.10.026Google Scholar
Reed, D. D, Naudé, G. P., Gelino, B. W. & Amlung, M. (2020). Behavioral economic considerations of novel addictions and nonaddictive behavior: Research and analytic methods. In Sussman, S. (Ed.) The Cambridge Handbook of Substance and Behavioral Addictions, Cambridge, UK: Cambridge University Press, pp. 7386.Google Scholar
Rose, S. & Dhandayudham, A. (2014). Towards an understanding of Internet-based problem shopping behaviour: The concept of online shopping addiction and its proposed predictors. Journal of Behavioral Addictions, 3(2), 8389. doi:10.1556/jba.3.2014.003Google Scholar
Saladin, M. E., Gray, K. M., Carpenter, M. J., et al. (2012). Gender differences in craving and cue reactivity to smoking and negative affect/stress cues. The American Journal on Addictions, 21(3), 210220. doi:10.1111/j.1521-0391.2012.00232.xGoogle Scholar
Sayette, M. A., Shiffman, S., Tiffany, S. T., et al. (2000). The measurement of drug craving. Addiction, 95(8s2), 189210. doi:10.1046/j.1360-0443.95.8s2.8.xGoogle Scholar
Schwabe, L., Haddad, L. & Schachinger, H. (2008). HPA axis activation by a socially evaluated cold-pressor test. Psychoneuroendocrinology, 33(6), 890895. https://doi.org/10.1016/j.psyneuen.2008.03.001Google Scholar
Sephton, S. E., Lush, E., Dedert, E. A., et al. (2013). Diurnal cortisol rhythm as a predictor of lung cancer survival. Brain, Behavior, and Immunity, 30(Supplement), S163S170. https://doi.org/10.1016/j.bbi.2012.07.019Google Scholar
Shaffer, H. J., Hall, M. N. & Bilt, J. V. (1999). Estimating the prevalence of disordered gambling behavior in the United States and Canada: A research synthesis. American Journal of Public Health, 89(9), 13691376. doi:10.2105/ajph.89.9.1369Google Scholar
Singh, A., Petrides, J. S., Gold, P. W., Chrousos, G. P. & Deuster, P. A. (1999). Differential hypothalamic-pituitary-adrenal axis reactivity to psychological and physical stress. The Journal of Clinical Endocrinology & Metabolism, 84(6), 19441948.Google Scholar
Sinha, R. (2008). Chronic stress, drug use, and vulnerability to addiction. Annals of the New York Academy of Sciences, 1141, 105130. https://doi.org/10.1196/annals.1441.030.ChronicGoogle Scholar
Sinha, R., Talih, M., Malison, R., et al. (2003). Hypothalamic-pituitary-adrenal axis and sympatho-adreno-medullary responses during stress-induced and drug cue-induced cocaine craving states. Psychopharmacology, 170(1), 6272. https://doi.org/10.1007/s00213-003-1525-8Google Scholar
Sterling, R. C., Dean, J., Weinstein, S. P., Murphy, J. & Gottheil, E. (2004). Gender differences in cue exposure reactivity and 9-month outcome. Journal of Substance Abuse Treatment, 27(1), 3944. doi:10.1016/j.jsat.2004.03.008Google Scholar
Sussman, S. Y. (2017). Substance and Behavioral Addictions: Concepts, Causes, and Cures. Cambridge, United Kingdom: Cambridge University Press.Google Scholar
Symes, B. A. & Nicki, R. M. (1997). a preliminary consideration of cue-exposure, response-prevention treatment for pathological gambling behaviour: Two case studies. Journal of Gambling Studies, 13(2), 145157. https://doi.org/10.1023/A:1024951301959Google Scholar
Szegedi, A., Lörch, B., Scheurich, A., et al. (2000). Cue exposure in alcohol dependent patients: preliminary evidence for different types of cue reactivity. Journal of Neural Transmission, 107(6), 721730. doi:10.1007/s007020070073Google Scholar
Templeton, J. A., Dixon, M. J., Harrigan, K. A. & Fugelsang, J. A. (2014). Upping the reinforcement rate by playing the maximum lines in multi-line slot machine play. Journal of Gambling Studies, 31(3), 949964. doi:10.1007/s10899-014-9446-5Google Scholar
Testa, M., et al. (2006). Understanding alcohol expectancy effects: Revisiting the placebo conditionAlcoholism: Clinical and Experimental Research, 30(2), 339348. doi:10.1111/j.1530-0277.2006.00039.xGoogle Scholar
Vadlin, S., Åslund, C. & Nilsson, K. W. (2015). Development and content validity of a screening instrument for gaming addiction in adolescents: The Gaming Addiction Identification Test (GAIT). Scandinavian Journal of Psychology, 56(4), 458466. doi:10.1111/sjop.12196Google Scholar
Van Hedger, K., Bershad, A. K. & de Wit, H. (2017). Pharmacological challenge studies with acute psychosocial stress. Psychoneuroendocrinology, 85(August), 123133. https://doi.org/10.1016/j.psyneuen.2017.08.020Google Scholar
Watt, M. J., Weber, M. A., Davies, S. R. & Forster, G. L. (2017). Impact of juvenile chronic stress on adult cortico-accumbal function: Implications for cognition and addiction. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 79(June), 136154. https://doi.org/10.1016/j.pnpbp.2017.06.015Google Scholar
Weinstein, A. & Weinstein, Y. (2014). Exercise addiction – Diagnosis, bio-psychological mechanisms and treatment issues. Current Pharmaceutical Design, 20(25), 40624069. doi:10.2174/13816128113199990614CrossRefGoogle ScholarPubMed
Wohl, M. J. A., Matheson, K., Young, M. M. & Anisman, H. (2008). Cortisol rise following awakening among problem gamblers: Dissociation from comorbid symptoms of depression and impulsivity. Journal of Gambling Studies, 24(1), 7990. https://doi.org/10.1007/s10899-007-9080-6Google Scholar
World Health Organization. (2015, December). Health in 2015: From MDGs to SDGs. Retrieved March 02, 2018, from www.who.int/gho/publications/mdgs-sdgs/en/Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×