Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T04:37:37.307Z Has data issue: false hasContentIssue false

11 - Molecular Genetics of Aggression and Violent Crime

from Part II - Biosocial Foundations of Violence and Aggression

Published online by Cambridge University Press:  30 July 2018

Alexander T. Vazsonyi
Affiliation:
University of Kentucky
Daniel J. Flannery
Affiliation:
Case Western Reserve University, Ohio
Matt DeLisi
Affiliation:
Iowa State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakermans-Kranenburg, M. J., Van Ijzendoorn, M. H., Pijlman, F. T. A., Mesman, J., & Juffer, F. (2008). Experimental evidence for differential susceptibility: Dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers’ externalizing behavior in a randomized controlled trial. Developmental Psychology, 44, 293300.Google Scholar
Balaban, E., Alper, J. S., & Kasamon, Y. L., (1996). Review mean genes and the biology of aggression: A critical review of recent animal and human research. Journal of Neurogenetics, 11, 143.Google Scholar
Barnes, J. C. & Jacobs, B. A. (2013). Genetic risk for violent behavior and environmental exposure to disadvantage and violent crime: The case for gene-environment interaction. Journal of Interpersonal Violence, 18, 92120.Google Scholar
Barnes, J. C., Wright, J. P., Boutwell, B. B., Schwartz, J. A., Connolly, E. J., Nedelec, J. L., & Beaver, K. M. (2014). Demonstrating the validity of twin research in criminology. Criminology, 52, 588626.CrossRefGoogle Scholar
Beaver, K. M. (2011). Genetic influences on being processed through the criminal justice system: Results from a sample of adoptees. Biological Psychiatry, 69, 282–87.Google Scholar
Beaver, K. M., DeLisi, M., Wright, J. P., & Vaughn, M. G. (2009). Gene-environment interplay and delinquency involvement: Evidence of direct, indirect, and interactive effects. Journal of Adolescent Research, 24, 147168.Google Scholar
Beaver, K. M., Gibson, C. L., DeLisi, M., Vaughn, M. G., & Wright, J. P. (2012). The interaction between neighborhood disadvantage and genetic factors in the prediction of antisocial outcomes. Youth Violence and Juvenile Justice, 10, 2540.Google Scholar
Beaver, K. M., Wright, J. P., DeLisi, M., Daigle, L. E., Swatt, M. L., & Gibson, C. L. (2007). Evidence of a gene X environment interaction in the creation of victimization: Results from a longitudinal sample of adolescents. International Journal of Offender Therapy and Comparative Criminology, 51, 620645.Google Scholar
Beaver, K. M., Wright, J. P., & Walsh, A. (2008). A gene-based evolutionary explanation for the association between criminal involvement and number of sex partners. Biodemography and Social Biology, 54, 4755.Google Scholar
Belsky, J. & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908.Google Scholar
Bjork, J. M., Moeller, F. G., Kramer, G. L., Kram, M., Suris, A., Rush, A. J., & Petty, F. (2001). Plasma GABA levels correlate with aggressiveness in relatives of patients with unipolar depressive disorder. Psychiatry Research, 101, 131136.Google Scholar
Brody, G. H., Beach, S. R. H., Philibert, R. A., Chen, Y.-F., & Murry, V. M. (2009). Preventative effects moderate the association of 5-HTTLPR and youth risk behavior initiation: Gene x environment hypotheses tested via a randomized prevention design. Child Development, 80, 645661.Google Scholar
Brody, G. H., Chen, Y. F., Beach, S. R., Kogan, S. M., Yu, T., DiClemente, R. J., Wingwood, G. M., Windle, M., & Philibert, R. A. (2014). Differential sensitivity to prevention programming: A dopaminergic polymorphism-enhanced prevention effect on protective parenting and adolescent substance use. Health Psychology, 33, 182191.Google Scholar
Brown, G. L., Goodwin, F. K., Ballenger, J. C., Goyer, P. F., & Major, L. F. (1979). Aggression in humans correlated with cerebrospinal fluid amine metabolites. Psychiatry Research, 1, 131139.Google Scholar
Budworth, H. & McMurray, C. T. (2013). A brief history of triplet repeat diseases. Methods in Molecular Biology, 1010, 317.Google Scholar
Byrd, A. L. & Manuck, S. B. (2014). MAOA, childhood maltreatment, and antisocial behavior: A meta-analysis of gene-environment interaction. Biological Psychiatry, 75, 917.CrossRefGoogle ScholarPubMed
Cadoret, R. J., Langebehn, D., Caspers, K., Troughton, E. P., Yucuis, R., Sandhu, H. K., & Philibert, R. (2003). Associations of the serotonin transporter promoter polymorphism with aggressivity, attention deficit, and conduct disorder in an adoptee population. Comprehensive Psychiatry, 44, 88101.CrossRefGoogle Scholar
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., Taylor, A., & Poulton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.Google Scholar
Conner, T. S., Jensen, K. P., Tennen, H., Furneaux, H. M., Kranzler, H. R., & Covault, J. (2010). Functional polymorphisms in the serotonin 1B receptor gene (HTR1B) predict self-reported anger and hostility among young men. American Journal of Medical Genetics, Part B, 153, 6778.Google Scholar
DeLisi, M., Beaver, K. M., Vaughn, M. G., & Wright, J. P. (2009). All in the family: Gene x environmental interaction between DRD2 and criminal father is associated with five antisocial phenotypes. Criminal Justice and Behavior, 36, 11871197.Google Scholar
Dick, D. M., Agrawal, A., Schuckit, M. A., Bierut, L., Hinrichs, A., Fox, L., … & Begleiter, H. (2006a). Marital status, alcohol dependence, and GABRA2: Evidence for gene- environment correlation and interaction. Journal of Studies on Alcohol, 67, 185194.CrossRefGoogle ScholarPubMed
Dick, D. M., Beirut, L., Hinrichs, A., Fox, L., Bucholz, K. K., Kramer, J., … & Foroud, T. (2006b). The role of GABRA2 in risk for conduct disorder and alcohol and drug dependence across developmental stages. Behavior Genetics, 36, 577590.Google Scholar
Dick, D. M., Latendresse, S. J., Lansford, J. E., Budde, J. P., Goate, A., Dodge, K. A., … & Bates, J. E. (2009). Role of GABRA2 in trajectories of externalizing behavior across development and evidence of moderation by parental monitoring. Archives of General Psychiatry, 66, 649657.Google Scholar
Dick, D. M., Aliev, F., Krueger, R. F., Edwards, A., Agrawal, A., Lynskey, M., Lin, P., Schuckit, M., Hesselbrock, V., Nurnberger, J., Almasy, L., Porjesz, B., Edenberg, H. J., Bucholz, K., Kramer, J., Kuperman, S., & Bierut, L. (2011). Genome-wide association study of conduct disorder symptomatology. Molecular Psychiatry, 16, 800808.CrossRefGoogle ScholarPubMed
Dick, D. M. & Foroud, T. (2003). Candidate genes for alcohol dependence: A review of genetic evidence form human studies. Alcoholism: Clinical and Experimental Research, 27, 868879.Google Scholar
Douglas, K., Chan, G., Gelernter, J., Arias, A. J., Anton, R. F., Poling, J., … & Kranzler, H. R. (2011). 5-HTTLPR as a potential moderator of the effects of adverse childhood experiences on risk of antisocial personality disorder. Psychiatric Genetics, 21, 240248.Google Scholar
Duke, A. A., Begue, L., Bell, R., & Eisenlohr-Moul, T. (2013). Revisiting the serotonin- aggression relation in humans: A meta-analysis. Psychological Bulletin, 139, 11481172.Google Scholar
Ferguson, C. J. (2010). Genetic contributions to antisocial personality and behavior: A meta-analytic review from an evolutionary perspective. Journal of Social Psychology, 150, 121.Google Scholar
Ficks, C. A. & Waldman, I. D. (2014). Candidate genes for aggression and antisocial behavior: A meta-analysis of association studies of the 5HTTLPR and MAOA-uVNTR. Behavior Genetics, 44, 427444.Google Scholar
Foley, D. L., Eaves, L. J., Wormley, B., Silberg, J. L., Maes, H. H., Kuhn, J., & Riley, B. (2004). Childhood adversity, monoamine oxidase A genotype, and risk for conduct disorder. Archives of General Psychiatry, 61, 738744.CrossRefGoogle ScholarPubMed
Gajos, J. M., Fagan, A. A., & Beaver, K. M. (2016). Use of genetically informed evidence-based prevention science to understand and prevent crime and related behavioral disorders. Criminology & Public Policy, 15, 119. doi: 10.1111/1745–9133.12214.Google Scholar
Gill, M., Daly, G., Heron, S., Hawi, Z., & Fitzgerald, M. (1997). Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Molecular Psychiatry, 2, 311313.Google Scholar
Guo, G., Roettger, M. E., & Shih, J. C. (2007). Contributions of the DAT1 and DRD2 genes to serious and violent delinquency among adolescents and young adults. Human Genetics, 121, 125136.CrossRefGoogle ScholarPubMed
Haberstick, B. C., Smolen, A., & Hewitt, J. K. (2006). Family-based association test of the 5HTTLPR and aggressive behavior in a general population sample of children. Biological Psychiatry, 59, 836843.Google Scholar
Herman, A. I., Philbeck, J. W., Vasilopoulos, N. L., & Depetrillo, P. B., (2003). Serotonin transporter promoter polymorphism and differences in alcohol consumption behavior in a college student population. Alcohol and Alcoholism, 38, 446449.CrossRefGoogle Scholar
Hirata, Y., Zai, C. C., Nowrouzi, B., Beitchman, J. H., & Kennedy, J. L. (2013). Study of the catechol-O-methyltransferase (COMT) gene with high aggression in children. Aggressive Behavior, 39, 4551.CrossRefGoogle ScholarPubMed
Jensen, K. P., Covailt, J., Conner, T. S., Tennen, H., Kranzler, H. R., & Furneaux, H. M. (2009). A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive behavior in humans. Molecular Psychiatry, 14, 381389.CrossRefGoogle Scholar
Jones, G., Zammit, S., Norton, N., Hamshere, M. L., Jones, S. J., Milham, C., … & Owen, M. J. (2001). Aggressive behavior in patients with schizophrenia is associated with catechol-O-methyltransferase genotype. British Journal of Psychiatry, 179, 351355.Google Scholar
Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Newcombe, R., Craig, I. W., & Moffitt, T. E. (2006). MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: New evidence and a meta-analysis. Molecular Psychiatry, 11, 903913.CrossRefGoogle ScholarPubMed
Kruesi, M. J. P., Rapoport, J. L., Hamburger, S., Hibbs, E., Potter, W. Z., Lenane, M., & Brown, G. L. (1990). Cerebrospinal fluid monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents. Archives of General Psychiatry, 47, 419426.CrossRefGoogle ScholarPubMed
Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., … & Murphy, D. I. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 15271531.Google Scholar
Li, D., Sham, P. S., Owen, M. L., & He, L. (2006). Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Human Molecular Genetics, 15, 22762284.CrossRefGoogle ScholarPubMed
Liao, D. L., Hong, C. G., Shih, H. L., & Tsai, S. J. (2004). Possible association between serotonin transporter promoter region polymorphism and extremely violent crime in Chinese males. Neuropsychobiology, 50, 284287.CrossRefGoogle ScholarPubMed
Limson, R., Goldman, D., Roy, A., Lamparski, D., Ravitz, D., Adinoff, B., & Linnoila, M. (1991). Personality and cerebrospinal fluid monoamine metabolites in alcoholics and controls. Archives of General Psychiatry, 48, 37–441.Google Scholar
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., … & Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461, 747753.Google Scholar
Manuck, S. B., Flory, J. D., Ferrell, R. E., Mann, J. J., & Muldoon, M. F. (2000). A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatry Research, 95, 923.Google Scholar
Manuck, S. B., & McCaffery, J. M. (2014). Gene-environment interaction. Annual Review of Psychology, 65, 4170.Google Scholar
Mason, D. A. & Frick, P. J. (1994). The heritability of antisocial behavior: A meta-analysis of twin and adoption studies. Journal of Psychopathology and Behavioral Assessment, 16, 301323.Google Scholar
Merjonen, P. Keltikangas-Järvinen, L., Jokela, M., Seppälä, I, Lyytikäinen, L. P., Pulkki- Råback, L., … & Lehtimäki, T. (2011). Hostility in adolescents and adults: a genome-wide association study of the young Finns. Translational Psychiatry, 1, e11.Google Scholar
Mick, E., McGough, J., Deutsch, C. K., Frazier, J. A., Kennedy, D., & Goldberg, R. J. (2014). Genome-wise association study of proneness to anger. PLoS ONE, 9, e87257.Google Scholar
Mielke, J. H., Konigsberg, L. W., & Relethford, J. H. (2006). Human biological variation. New York: Oxford University Press.Google Scholar
Miles, D. R. & Carey, G. (1997). Genetic and environmental architecture in human aggression. Journal of Personality and Social Psychology, 72, 207217.Google Scholar
Moore, T. M., Scarpa, A., & Raine, A. (2002) A meta-analysis of serotonin metabolite 5-HIAA and antisocial behavior. Aggressive Behavior, 28, 299316.Google Scholar
Niehoff, D. (1999). The biology of violence: How understanding the brain, behavior, and environment can break the vicious cycle of aggression. New York: The Free Press.Google Scholar
Pappa, I., St Pourcain, B., Benke, K., Cavadino, A., Hakulinen, C., Nivard, M. G., … & Tiemeier, H. (2015). A genome-wide approach to children’s aggressive behavior: The EAGLE consortium. American Journal of Medical Genetics Part B, 9999, 111.Google Scholar
Petty, F., Fulton, M., Kramer, G. L., Kram, M., Davis, L. L., & Rush, A. J. (1999). Evidence for the segregation of a major gene for human plasma GABA levels. Molecular Psychiatry, 4, 587589.Google Scholar
Plomin, R., DeFries, J., Craig, I., & McGuffin, P. (2001). Behavioral genetics (4th ed.). New York: Worth Publishers.Google Scholar
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2013). Behavioral genetics (6th ed.). New York: Worth Publishers.Google Scholar
Plomin, R. (2013). Child development and molecular genetics: 14 years later. Child Development, 84, 104120.Google Scholar
Pohjalainen, T., Rinne, J. O., Någren, K., Lehikoinen, O., Anttila, K., Syvalahti, E. K. G., & Hietala, J. (1998). The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Molecular Psychiatry, 3, 256260.Google Scholar
Polderman, T. J. C., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47, 702–709.Google Scholar
Raine, A. (1993). The psychopathology of crime: Criminal behavior as a clinical disorder. San Diego, CA: Academic Press.Google Scholar
Retz, W., Retz-Junginger, P., Supprian, T., Thome, J., & Rösler, M. (2004). Association of serotonin transporter promoter gene polymorphism with violence: Relation with personality disorders, impulsivity, and childhood ADHD psychopathology. Behavioral Sciences & the Law, 22, 415425.CrossRefGoogle ScholarPubMed
Rhee, S. H. & Waldman, I. D. (2002). Genetic and environmental influences on antisocial behavior: A meta-analysis of twin and adoption studies. Psychological Bulletin, 128, 490529.Google Scholar
Rowe, D. C., Stever, C., Gard, J. M. C., Cleveland, H. H., Sanders, M. L., Abramowitz, A., … & Waldman, I. D. (1998). The relation of the dopamine transporter gene (DAT1) to symptoms of internalizing disorders in children. Behavioral Genetics, 28, 215225.Google Scholar
Rujescu, D., Giegling, I., Gietl, A., Hartman, A. M., & Moller, H. J. (2003). A functional single nucleotide polymorphism (V158M) in the COMT gene is associated with aggressive personality traits. Biological Psychiatry, 54, 3439.Google Scholar
Sadeh, N., Javdani, S., Jackson, J. J., Reynolds, E. K., Potenza, M. N., Gelernter, J., … & Verona, E. (2010). Serotnin transporter gene associations with psychopathic traits in youth vary as a function of socioeconomic resources. Journal of Abnormal Psychology, 119, 604609.Google Scholar
Salvatore, J. E., Edwards, A. C., McClintick, J. N., Bigdeli, T. B., Adkins, A., Aliev, F., … & Dick, D. M. (2015). Genome-wide association data suggest ABCB1 and immune-related gene sets may be involved in adult antisocial behavior. Translational Psychiatry, 5, e558.Google Scholar
Taylor, S. E., Way, B. M., Welch, W. T., Hilmert, C. J., Lehman, B. J., & Eisenberger, N. I. (2006). Early family environment, current adversity, the serotonin transporter promoter polymorphism, and depressive symptomatology. Biological Psychiatry, 60, 671676.CrossRefGoogle ScholarPubMed
Terranova, C., Tucci, M., Sartore, D., Cavarzeran, F., Pietra, L., Barzon, L., … & Ferrara, S. D. (2013). GABA receptors, alcohol dependence and criminal behavior. Journal of Forensic Sciences, 58, 12271232.CrossRefGoogle ScholarPubMed
Tielbeek, J. J., Medland, S. E., Benyamin, B., Byrne, E. M., Heath, A. C., Madden, P. A., … & Verweij, K. J. H. (2012). Unraveling the genetic etiology of adult antisocial behavior: A genome-wide association study. PLoS ONE, 7, e45086.Google Scholar
Truman, J. L. & Langton, L. (2015). Criminal victimization, 2014. Washington, DC: US Department of Justice, Office of Justice Programs, Bureau of Justice Statistics.Google Scholar
US Department of Justice, Federal Bureau of Investigation. (2014). Crime in the United States in 2013. Retrieved on July 5, 2016 from www.fbi.gov/about-us/cjis/ucr/crime-in-the-u.s/2013/crime-in-the-u.s.-2013/violent-crime/violent-crime-topic-page/violentcrimemain_final.Google Scholar
Van den Hoofdakker, B. J., Nauta, M. H., Dijck-Brouwer, D. A. J., van der Veen-Mulders, L., Sytema, S., & Emmelkamp, P. M. G. (2012). Dopamine transporter gene moderate response to behavioral parent training in children with ADHD: A pilot study. Developmental Psychology, 48, 567574.Google Scholar
Vaughn, M. G., DeLisi, M., Beaver, K. M., Wright, J. P. (2009). DAT1 and 5HTT are associated with pathological criminal behavior in a nationally representative sample of youth. Criminal Justice and Behavior, 36, 11131124.Google Scholar
Verhoeven, F. E., Booij, L., Kruijt, A. W., Cerit, H., Antypa, N., Does, W. (2012). The effects of MAOA genotype, childhood trauma, and sex on trait and state-dependent aggression. Brain and Behavior, 2, 806813.Google Scholar
Virkkunen, M., Rawlings, R. R., Tokola, R., Poland, R. E., Guidotti, A., Nemeroff, C., … & Linoila, M. (1994). CSF biochemistries, glucose metabolism, and diurnal activity rhythms in alcoholic, violent offenders, fire setters, and healthy volunteers. Archives of General Psychiatry, 51, 2027.Google Scholar
Volavka, J., Bilder, R., & Nolan, K. (2004). Catecholamines and aggression: The role of COMT and MAO polymorphisms. Annals of the New York Academy of Sciences, 1036, 393398.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×