Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T06:39:39.448Z Has data issue: false hasContentIssue false

2 - Epidemiology of carotid artery atherosclerosis

from Background

Published online by Cambridge University Press:  03 December 2009

Christopher J. O'Donnell
Affiliation:
National Heart, Lung and Blood Institute and its Framingham Heart Study, Bethesda, MD, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
Jonathan Gillard
Affiliation:
University of Cambridge
Martin Graves
Affiliation:
University of Cambridge
Thomas Hatsukami
Affiliation:
University of Washington
Chun Yuan
Affiliation:
University of Washington
Get access

Summary

Introduction

Cardiovascular disease, including stroke and myocardial infarction, is the leading cause of death and disability in the Western world (Thom et al., 2006). When considered separately from other cardiovascular diseases, stroke is a leading cause of mortality, ranked third behind diseases of the heart and cancer (Thom et al., 2006). There are estimated to be 500 000 newly diagnosed cases of stroke in the USA annually, the majority of which are ischemic in nature (Thom et al., 2006). The age-adjusted incidence rate of stroke is substantially greater in Blacks than Whites (White et al., 2005).

Atherosclerotic cardiovascular disease in general, and ischemic stroke in particular, is usually preceded by the presence of subclinical atherosclerosis that develops in the carotid arteries and other vessels. The pathological characteristics of carotid artery atherosclerosis are described in elegant detail by Virmani et al. in Chapter 1. Here, we review the epidemiology of carotid artery atherosclerosis, including its distribution, determinants and risks conferred by its presence. The available evidence demonstrates that carotid artery atherosclerosis is common and high risk, and the identification and treatment of carotid artery atherosclerosis may substantially reduce the burden of cardiovascular disease.

Subclinical atherosclerosis precedes clinically apparent disease

From the current pathological evidence, subclinical atherosclerosis appears to be common and to precede most cases of clinically apparent disease. Atherosclerotic lesions of the human aorta, both fatty streaks and fibrous plaques, are commonly noted in autopsy studies of combatant soldiers and other teenage and young adult victims of premature noncoronary death (Solberg and Strong, 1983; Strong, 1995).

Type
Chapter
Information
Carotid Disease
The Role of Imaging in Diagnosis and Management
, pp. 22 - 34
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archbold, R. A., Barakat, K., Magee, P. and Curzen, N. (2001). Screening for carotid artery disease before cardiac surgery: is current clinical practice evidence based?Clinical Cardiology, 24, 26–32.CrossRefGoogle Scholar
Asakura, T. and Karino, T. (1990). Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circulation Research, 66, 1045–66.CrossRefGoogle ScholarPubMed
Baldassarre, D., Amato, M., Veglia, F., et al. (2005). Correlation of parents' longevity with carotid intima-media thickness in patients attending a Lipid Clinic. Atherosclerosis, 179, 111–17.CrossRefGoogle ScholarPubMed
Blankenhorn, D. H., Selzer, R. H., Crawford, D. W., et al. (1993). Beneficial effects of colestipol-niacin therapy on the common carotid artery. Two- and four-year reduction of intima-media thickness measured by ultrasound. Circulation, 88, 20–8.CrossRefGoogle ScholarPubMed
Bots, M. L., Breslau, P. J., Briet, E., et al. (1992). Cardiovascular determinants of carotid artery disease. The Rotterdam Elderly Study. Hypertension, 19, 717–20.CrossRefGoogle ScholarPubMed
Bots, M. L., Hoes, A. W., Koudstaal, P. J., Hofman, A. and Grobbee, D. E. (1997). Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation, 96, 1432–7.CrossRefGoogle ScholarPubMed
Brand, F. N., Abbott, R. D. and Kannel, W. B. (1989). Diabetes, intermittent claudication, and risk of cardiovascular events. The Framingham Study. Diabetes, 38, 504–9.CrossRefGoogle ScholarPubMed
Burke, G. L., Evans, G. W., Riley, W. A., et al. (1995). Arterial wall thickness is associated with prevalent cardiovascular disease in middle-aged adults. The Atherosclerosis Risk in Communities (Arteriosclerosis risk in communities study) Study. Stroke, 26, 386–91.CrossRefGoogle ScholarPubMed
Cao, J. J., Thach, C., Manolio, T. A., et al. (2003). C-reactive protein, carotid intima-media thickness, and incidence of ischemic stroke in the elderly: the Cardiovascular Health Study. Circulation, 108, 166–70.CrossRefGoogle ScholarPubMed
Carallo, C., Irace, C., Pujia, A., et al. (1999). Evaluation of common carotid hemodynamic forces. Relations with wall thickening. Hypertension, 34, 217–21.CrossRefGoogle ScholarPubMed
Chambless, L. E., Heiss, G., Shahar, E., Earp, M. J. and Toole, J. (2004). Prediction of ischemic stroke risk in the Atherosclerosis Risk in Communities Study. American Journal of Epidemiology, 160, 259–69.CrossRefGoogle ScholarPubMed
Chambless, L. E., Folsom, A. R., Davis, V., et al. (2002). Risk factors for progression of common carotid atherosclerosis: the Atherosclerosis Risk in Communities Study, 1987–1998. American Journal of Epidemiology, 155, 38–47.CrossRefGoogle ScholarPubMed
Chapman, C. M., Beilby, J. P., McQuillan, B. M., Thompson, P. L. and Hung, J. (2004). Monocyte count, but not C-reactive protein or interleukin-6, is an independent risk marker for subclinical carotid atherosclerosis. Stroke, 35, 1619–24.CrossRefGoogle ScholarPubMed
Crouse, J. R., Toole, J. F., McKinney, W. M., et al. (1987). Risk factors for extracranial carotid artery atherosclerosis. Stroke, 18, 990–6.CrossRefGoogle ScholarPubMed
del Sol, A. I., Moons, K. G., Hollander, M., et al. (2001). Is carotid intima-media thickness useful in cardiovascular disease risk assessment? The Rotterdam Study. Stroke, 32, 1532–8.CrossRefGoogle ScholarPubMed
Duggirala, R., Gonzalez, V. C., O'Leary, D. H., Stern, M. P. and Blangero, J. (1996). Genetic basis of variation in carotid artery wall thickness. Stroke, 27, 833–7.CrossRefGoogle ScholarPubMed
Durand, D. J., Perler, B. A., Roseborough, G. S., et al. (2004). Mandatory versus selective preoperative carotid screening: a retrospective analysis. Annals of Thoracic Surgery, 78, 159–66.CrossRefGoogle ScholarPubMed
Durga, J., Verhoef, P., Bots, M. L. and Schouten, E. (2004). Homocysteine and carotid intima-media thickness: a critical appraisal of the evidence. Atherosclerosis, 176, 1–19.CrossRefGoogle Scholar
Elkind, M. S., Cheng, J., Boden-Albala, B., Paik, M. C. and Sacco, R. L. (2001). Elevated white blood cell count and carotid plaque thickness: the Northern Manhattan stroke study. Stroke, 32, 842–9.CrossRefGoogle ScholarPubMed
Fabris, F., Zanocchi, M., Bo, M., et al. (1994). Carotid plaque, aging, and risk factors. A study of 457 subjects. Stroke, 25, 1133–40.CrossRefGoogle ScholarPubMed
Folsom, A. R., Pankow, J. S., Tracy, R. P., et al. (2001). Association of C-reactive protein with markers of prevalent atherosclerotic disease. American Journal of Cardiology, 88, 112–17.CrossRefGoogle ScholarPubMed
Fox, C. S., Polak, J. F., Chazaro, I., et al. (2003). Genetic and environmental contributions to atherosclerosis phenotypes in men and women: heritability of carotid intima-media thickness in the Framingham Heart Study. Stroke, 34, 397–401.CrossRefGoogle ScholarPubMed
Fox, C. S., Cupples, L. A., Chazaro, I., et al. (2004). Genomewide linkage analysis for internal carotid artery intimal medial thickness: evidence for linkage to chromosome 12. American Journal of Human Genetics, 74, 253–61.CrossRefGoogle ScholarPubMed
Fukuda, I., Gomi, S., Watanabe, K. and Seita, J. (2000). Carotid and aortic screening for coronary artery bypass grafting. Annals of Thoracic Surgery, 70, 2034–9.CrossRefGoogle ScholarPubMed
Furberg, C. D., Adams, H. P. Jr, Applegate, W. B., et al. (1994). Effect of lovastatin on early carotid atherosclerosis and cardiovascular events. Asymptomatic Carotid Artery Progression Study (Asymptomatic carotid artery progression study) Research Group. Circulation, 90, 1679–87.CrossRefGoogle ScholarPubMed
Gnasso, A., Carallo, C., Irace, C., et al. (1996). Association between intima-media thickness and wall shear stress in common carotid arteries in healthy male subjects. Circulation, 94, 3257–62.CrossRefGoogle ScholarPubMed
Grabowski, E. F. and Lam, F. P. (1995). Endothelial cell function, including tissue factor expression, under flow conditions. Thrombosis and Haemostasis, 74, 123–8.
Greenland, P., Smith, S. C. Jr and Grundy, S. M. (2001). Improving coronary heart disease risk assessment in asymptomatic people: role of traditional risk factors and noninvasive cardiovascular tests. Circulation, 104, 1863–7.CrossRefGoogle ScholarPubMed
Greenland, P., Abrams, J., Aurigemma, G. P., et al. (2000). Prevention Conference V: Beyond secondary prevention: identifying the high-risk patient for primary prevention: noninvasive tests of atherosclerotic burden: Writing Group III. Circulation, 101, E16–E22.CrossRefGoogle ScholarPubMed
Hank Juo, S. H., Lin, H. F., Rundek, T., et al. (2004). Genetic and Environmental Contributions to Carotid Intima-Media Thickness and Obesity Phenotypes in the Northern Manhattan Family Study. Stroke, 35, 2243–7.Google Scholar
Hedblad, B., Wikstrand, J., Janzon, L., Wedel, H. and Berglund, G. (2001). Low-dose metoprolol CR/XL and fluvastatin slow progression of carotid intima-media thickness: Main results from the Beta-Blocker Cholesterol-Lowering Asymptomatic Plaque Study (BCAPS). Circulation, 103, 1721–6.CrossRefGoogle Scholar
Hunt, K. J., Duggirala, R., Goring, H. H., et al. (2002). Genetic basis of variation in carotid artery plaque in the San Antonio Family Heart Study. Stroke, 33, 2775–80.CrossRefGoogle ScholarPubMed
Ingall, T. J., Homer, D., Whisnant, J. P., Baker, H. L. Jr and O'Fallon, W. M. (1989). Predictive value of carotid bruit for carotid atherosclerosis. Archives of Neurology, 46, 418–22.CrossRefGoogle ScholarPubMed
Irace, C., Carallo, C., Crescenzo, A., et al. (1999). NIDDM is associated with lower wall shear stress of the common carotid artery. Diabetes, 48, 193–7.CrossRefGoogle ScholarPubMed
Jartti, L., Ronnemaa, T., Kaprio, J., et al. (2002). Population-based twin study of the effects of migration from Finland to Sweden on endothelial function and intima-media thickness. Arteriosclerosis, Thrombosis and Vascular Biology, 22, 832–7.CrossRefGoogle ScholarPubMed
Jiang, Y., Kohara, K. and Hiwada, K. (2000). Association between risk factors for atherosclerosis and mechanical forces in carotid artery. Stroke, 31, 2319–24.CrossRefGoogle ScholarPubMed
Jorgensen, L., Jenssen, T. and Joakimsen, O. (2004). Glycated hemoglobin level is strongly related to the prevalence of carotid artery plaques with high echogenicity in nondiabetic individuals: the Tromso study. Circulation, 110, 466–70.CrossRefGoogle ScholarPubMed
Kao, W. H., Hsueh, W. C., Rainwater, D. L., et al. (2005). Family history of type 2 diabetes is associated with increased carotid artery intimal-medial thickness in Mexican Americans. Diabetes Care, 28, 1882–9.CrossRefGoogle ScholarPubMed
Kitamura, A., Iso, H., Imano, H., et al. (2004). Carotid intima-media thickness and plaque characteristics as a risk factor for stroke in Japanese elderly men. Stroke, 35, 2788–94.CrossRefGoogle ScholarPubMed
Kivimaki, M., Lawlor, D. A., Juonala, M., et al. (2005). Lifecourse socioeconomic position, C-reactive protein, and carotid intima-media thickness in young adults: the cardiovascular risk in Young Finns Study. Arteriosclerosis, Thrombosis and Vascular Biology, 25, 2197–202.CrossRefGoogle ScholarPubMed
Lange, L. A., Bowden, D. W., Langefeld, C. D., et al. (2002). Heritability of carotid artery intima-medial thickness in type 2 diabetes. Stroke, 33, 1876–81.CrossRefGoogle ScholarPubMed
Lorenz, M. W., , K. S., Steinmetz, H., Markus, H. S. and Sitzer, M. (2006). Carotid intima-media thickening indicates a higher vascular risk across a wide age range: prospective data from the Carotid Atherosclerosis Progression Study (CAPS). Stroke, 37, 87–92.CrossRefGoogle Scholar
Makita, S., Nakamura, M. and Hiramori, K. (2005). The association of C-reactive protein levels with carotid intima-media complex thickness and plaque formation in the general population. Stroke, 36, 2138–42.CrossRefGoogle ScholarPubMed
Malek, A. M., Alper, S. L. and Izumo, S. (1999). Hemodynamic shear stress and its role in atherosclerosis. Journal of the American Medical Association, 282, 2035–42.CrossRefGoogle ScholarPubMed
Manolio, T. A., Boerwinkle, E., O'Donnell, C. J. and Wilson, A. F. (2004). Genetics of ultrasonographic carotid atherosclerosis. Arteriosclerosis, Thrombosis and Vascular Biology, 24, 1567–77.CrossRefGoogle ScholarPubMed
Mayosi, B. M., Avery, P. J., Baker, M., et al. (2005). Genotype at the –174G/C polymorphism of the interleukin-6 gene is associated with common carotid artery intimal-medial thickness: family study and meta-analysis. Stroke, 36, 2215–19.CrossRefGoogle ScholarPubMed
Naghavi, M., Libby, P., Falk, E., et al. (2003a). From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation, 108, 1664–72.CrossRefGoogle Scholar
Naghavi, M., Libby, P., Falk, E., et al. (2003b). From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation, 108, 1772–8.CrossRefGoogle Scholar
Nathan, D. M., Lachin, J., Cleary, P., et al. (2003). Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus. New England Journal of Medicine, 348, 2294–303.Google ScholarPubMed
North, K. E., MacCluer, J. W., Devereux, R. B., et al. (2002). Heritability of carotid artery structure and function: the Strong Heart Family Study. Arteriosclerosis, Thrombosis and Vascular Biology, 22, 1698–703.CrossRefGoogle ScholarPubMed
O'Leary, D. H. and Polak, J. F. (2002). Intima-media thickness: a tool for atherosclerosis imaging and event prediction. American Journal of Cardiology, 90, 18L–21L.Google ScholarPubMed
O'Leary, D. H., Polak, J. F., Kronmal, R. A., et al. (1992). Distribution and correlates of sonographically detected carotid artery disease in the Cardiovascular Health Study. The Cardiovascular health study Collaborative Research Group. Stroke, 23, 1752–60.CrossRefGoogle Scholar
O'Leary, D. H., Polak, J. F., Kronmal, R. A., et al. (1996). Thickening of the carotid wall. A marker for atherosclerosis in the elderly? Cardiovascular Health Study Collaborative Research Group. Stroke, 27, 224–31.CrossRefGoogle Scholar
O'Leary, D. H., Polak, , , J. F., Kronmal, R. A., et al. (1999). Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group, see comments. New England Journal of Medicine, 340, 14–22.CrossRefGoogle Scholar
Pankow, J. S., Heiss, G., Evans, G. W., et al. (2004). Familial aggregation and genome-wide linkage analysis of carotid artery plaque: the NHLBI family heart study. Human Heredity, 57, 80–9.CrossRefGoogle ScholarPubMed
Pitt, B., Byington, R. P., Furberg, C. D., et al. (2000). Effect of amlodipine on the progression of atherosclerosis and the occurrence of clinical events. PREVENT Investigators. Circulation, 102, 1503–10.CrossRefGoogle ScholarPubMed
Ranjit, N., Diez-Roux, A. V., Chambless, L., et al. (2006). Socioeconomic differences in progression of carotid intima-media thickness in the Atherosclerosis Risk in Communities study. Arteriosclerosis, Thrombosis and Vascular Biology, 26, 411–16.CrossRefGoogle ScholarPubMed
Redberg, R. F., Vogel, R. A., Criqui, M. H., et al. (2003). 34th Bethesda Conference: Task force 3 – What is the spectrum of current and emerging techniques for the noninvasive measurement of atherosclerosis?Journal of the American College of Cardiology, 41, 1886–98.CrossRefGoogle ScholarPubMed
Rosvall, M., Janzon, L., Berglund, G., Engstrom, G. and Hedblad, B. (2005a). Incident coronary events and case fatality in relation to common carotid intima-media thickness. Journal of Internal Medicine, 257, 430–7.CrossRefGoogle Scholar
Rosvall, M., Janzon, L., Berglund, G., Engstrom, G. and Hedblad, B. (2005b). Incidence of stroke is related to carotid Intima media thickness even in the absence of plaque. Atherosclerosis, 179, 325–31.CrossRefGoogle Scholar
Schott, L. L., Wildman, R. P., Brockwell, S., et al. (2004). Segment-specific effects of cardiovascular risk factors on carotid artery intima-medial thickness in women at midlife. Arteriosclerosis, Thrombosis and Vascular Biology, 24, 1951–6.CrossRefGoogle ScholarPubMed
Smilde, T. J., , W. S., Wollersheim, H., et al. (2001). Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial. Lancet, 357, 577–81.CrossRefGoogle ScholarPubMed
Smith, S. C. Jr, Greenland, P. and Grundy, S. M. (2000). American Heart Association Conference Proceedings. Prevention conference V: Beyond secondary prevention: Identifying the high-risk patient for primary prevention: executive summary. American Heart Association. Circulation, 101, 111–16.CrossRefGoogle ScholarPubMed
Solberg, L. A. and Strong, J. P. (1983). Risk factors and atherosclerotic lesions: a review of autopsy studies. Atherosclerosis, 3, 187–98.Google ScholarPubMed
Spence, J. D. and Hegele, R. A. (2004). Noninvasive phenotypes of atherosclerosis: similar windows but different views. Stroke, 35, 649–53.CrossRefGoogle ScholarPubMed
Stary, H. C., Chandler, A. B., Dinsmore, R. E., et al. (1995). A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation, 92, 1355–74.CrossRefGoogle Scholar
Stary, H. C., Chandler, A. B., Glagov, S., et al. (1994). A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation, 89, 2462–78.CrossRefGoogle Scholar
Strong, J. P. (1995). Natural history and risk factors for early human atherogenesis. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Clinical Chemistry, 41, 134–8.Google ScholarPubMed
Swan, L., Birnie, D. H., Inglis, G., Connell, J. M. and Hillis, W. S. (2003). The determination of carotid intima medial thickness in adults – a population-based twin study. Atherosclerosis, 166, 137–41.CrossRefGoogle ScholarPubMed
Taylor, A. J., Kent, S. M., Flaherty, P. J., et al. (2002) ARBITER: Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol: a randomized trial comparing the effects of atorvastatin and pravastatin on carotid intima medial thickness. Circulation, 106, 2055–60.CrossRefGoogle ScholarPubMed
Taylor, A. J., Merz, C. N. and Udelson, J. E. (2003). 34th Bethesda Conference: Executive summary–can atherosclerosis imaging techniques improve the detection of patients at risk for ischemic heart disease?Journal of the American College of Cardiology, 41, 1860–2.CrossRefGoogle ScholarPubMed
Taylor, A. J., Sullenberger, L. E., Lee, H. J., Lee, J. K. and Graee, K. A. (2004). Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins. Circulation, 110, 3512–17.CrossRefGoogle ScholarPubMed
Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. (2002). Circulation, 106, 3143–421.
Thom, T., Haase, N., Rosamond, W., et al. (2006). Heart Disease and Stroke Statistics–2006 Update. A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 2006 January 11.
Topper, J. N., Cai, J., Falb, D. and Gimbrone, M. A Jr. (1996). Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Procceedings of the National Academy of ScienceUltrasoundA, 93, 10417–22.CrossRefGoogle ScholarPubMed
Meer, I. M., Oei, H. H., Hofman, A., et al. (2006). Soluble Fas, a mediator of apoptosis, C-reactive protein, and coronary and extracoronary atherosclerosis. The Rotterdam Coronary Calcification Study. Atherosclerosis.Google ScholarPubMed
Meer, I. M., Maat, M. P., Hak, A. E., et al. (2002). C-reactive protein predicts progression of atherosclerosis measured at various sites in the arterial tree: the Rotterdam Study. Stroke, 33, 2750–5.CrossRefGoogle Scholar
Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A. and Schwartz, S. M. (2000). Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arteriosclerosis, Thrombosis and Vascular Biology, 20, 1262–75.CrossRefGoogle ScholarPubMed
Wang, T. J., Nam, B. H., Wilson, P. W., et al. (2002). Association of C-reactive protein with carotid atherosclerosis in men and women: the Framingham Heart Study. Arteriosclerosis, Thrombosis and Vascular Biology, 22, 1662–7.CrossRefGoogle ScholarPubMed
Wang, T. J., Nam, B. H., D'Agostino, R. B., et al. (2003). Carotid intima-media thickness is associated with premature parental coronary heart disease: the Framingham Heart Study. Circulation, 108, 572–6.CrossRefGoogle ScholarPubMed
Wang, D., Yang, H., Quinones, M. J., et al. (2005). A genome-wide scan for carotid artery intima-media thickness: the Mexican-American Coronary Artery Disease family study. Stroke, 36, 540–5.CrossRefGoogle ScholarPubMed
White, H., Boden-Albala, B., Wang, C., et al. (2005). Ischemic stroke subtype incidence among whites, blacks, and Hispanics: the Northern Manhattan Study. Circulation, 111, 1327–31.CrossRefGoogle ScholarPubMed
Wiklund, O., Hulthe, J., Wikstrand, J., et al. (2002). Effect of controlled release/extended release metoprolol on carotid intima-media thickness in patients with hypercholesterolemia: a 3-year randomized study. Stroke, 33, 572–7.CrossRefGoogle ScholarPubMed
Wilson, P. W., Hoeg, J. M., D'Agostino, R. B., et al. (1997). Cumulative effects of high cholesterol levels, high blood pressure, and cigarette smoking on carotid stenosis. New England Journal of Medicine, 337, 516–22.CrossRefGoogle ScholarPubMed
Wilson, P. W., D'Agostino, R. B., Levy, D., et al. (1998). Prediction of coronary heart disease using risk factor categories. Circulation, 97, 1837–47.CrossRefGoogle ScholarPubMed
Wolf, P. A., Kannel, W. B., Sorlie, P. and McNamara, P. (1981). Asymptomatic carotid bruit and risk of stroke. The Framingham Study. Journal of the American Medical Association, 245, 1442–5.CrossRefGoogle ScholarPubMed
Wolf, P. A., D'Agostino, R. B., Belanger, A. J. and Kannel, W. B. (1991). Probability of stroke: a risk profile from the Framingham Study. Stroke, 22, 312–18.CrossRefGoogle ScholarPubMed
Xiang, A. H., Azen, S. P., Buchanan, T. A., et al. (2002). Heritability of subclinical atherosclerosis in Latino families ascertained through a hypertensive parent. Arteriosclerosis, Thrombosis and Vascular Biology, 22, 843–8.CrossRefGoogle ScholarPubMed
Yuan, C., Zhang, S. X., Polissar, N. L., et al. (2002). Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation, 105, 181–5.CrossRefGoogle ScholarPubMed
Zannad, F., Visvikis, S., Gueguen, R., et al. (1998). Genetics strongly determines the wall thickness of the left and right carotid arteries. Human Genetics, 103, 183–8.CrossRefGoogle ScholarPubMed
Zarins, C. K., Giddens, D. P., Bharadvaj, B. K., et al. (1983). Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circulation Research, 53, 502–14.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×