Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T16:49:46.774Z Has data issue: false hasContentIssue false

2 - Algebras, representations and modules

Published online by Cambridge University Press:  05 June 2012

D. J. H. Garling
Affiliation:
University of Cambridge
Get access

Summary

Clifford algebras are finite-dimensional algebras. Here we consider the properties of finite-dimensional algebras. We also consider how they can be represented as algebras of endomorphisms of a vector space, or equivalently as algebras of matrices. An alternative way of thinking about this is to consider modules over an algebra; this is important in the theory of Clifford algebras, where such modules appear as spaces of spinors.

Algebras

Again, let K denote either the field R of real numbers or the field C of complex numbers. A finite-dimensional (associative) algebra A over K is a finite-dimensional vector space over K equipped with a law of composition: that is, a mapping (multiplication) (a, b)ab from A × A into A which satisfies

  • (ab)c = a(bc) (associativity),

  • a(b + c) = ab + ac,

  • (a + b)c = ac + bc,

  • λ(ab) = (λa)b = ab),

for λ ∈ K and a, b, cA. (As usual, multiplication is carried out before addition).

An algebra A is unital if there exists 1 ∈ A, the identity element, such that 1a = a1 = a for all aA. We shall principally be concerned with unital algebras. An algebra A is commutative if ab = ba for all a, bA.

A mapping φ from an algebra A over K to an algebra B over K is an algebra homomorphism if it is linear, and if φ(ab) = φ(a)φ(b) for a, bA.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×